二次函数绝对值的问题练习及答案
高考数学二次函数绝对值的问题典型试题及答案详解(6页)
高考数学二次函数绝对值的问题典型试题及答案详解 二次函数是最简单的非线性函数之一,而且有着丰富的内容,它对近代数仍至现代数学影响深远,这部分内容为历年来高考数学考试的一项重点考查内容,经久不衰,以它为核心内容的高考试题,形式上也年年有变化,此类试题常常有绝对值,充分运用绝对值不等式及二次函数、二次方程、二次不等式的联系,往往采用直接法,利用绝对值不等式的性质进行适当放缩,常用数形结合,分类讨论等数学思想,以下举例说明例1 设为实数,函数, (1)讨论的奇偶性;(2)求的最小值解;(1)时,为偶函数时,为非奇非偶函数(2)当当当例2 已知函数,. (1)若关于的方程只有一个实数解,求实数的取值范围;(2)若当时,不等式恒函数成立,求实数的取值范围;(3)求函数在区间[-2,2]上的最大值(直接写出结果,不需给出演a 2()||1f x x x a =+-+x R ∈()f x ()f x 0a =()f x 0a ≠()f x 22222131,24()||1131,24x x a x a x a f x x x a x x a x a x a ⎧⎛⎫+-+=++-≥⎪ ⎪⎪⎝⎭=+-+=⎨⎪⎛⎫-++=-++< ⎪⎪⎝⎭⎩()min 13,24a f x a ≤-=-()2min 11,122a f x a -<<=+()min 13,24a f x a ≥=+1)(2-=x x f |1|)(-=x a x g x )(|)(|x g x f =a R x ∈)()(x g x f ≥a )(|)(|)(x g x f x h +=算步骤).解:(1)方程,即,变形得,显然,已是该方程的根,从而欲原方程只有一解,即要求方程,有且仅有一个等于1的解或无解 ,结合图形得.(2)不等式对恒成立,即(*)对恒成立, ①当时,(*)显然成立,此时;②当时,(*)可变形为,令因为当时,,当时,,所以,故此时.综合①②,得所求实数的取值范围是.(3)因为=|()|()f x g x =2|1||1|x a x -=-|1|(|1|)0x x a -+-=1x =|1|x a +=0a<()()f x g x ≥x ∈R 2(1)|1|x a x --≥x ∈R 1x =a ∈R 1x ≠21|1|x a x -≤-21,(1),1()(1),(1).|1|x x x x x x x ϕ+>⎧-==⎨-+<-⎩1x >()2x ϕ>1x <()2x ϕ>-()2x ϕ>-2a -≤a 2a -≤2()|()|()|1||1|h x f x g x x a x =+=-+-2221,(1),1,(11),1,(1).x ax a x x ax a x x ax a x ⎧+--⎪--++-<⎨⎪-+-<-⎩≤≥当时,结合图形可知在上递减,在上递增, 且,经比较,此时在上的最大值为.当时,结合图形可知在,上递减, 在,上递增,且,, 经比较,知此时在上的最大值为.当时,结合图形可知在,上递减, 在,上递增,且,, 经比较,知此时 在上的最大值为.当时,结合图形可知在,上递减, 在,上递增,且, ,经比较,知此时 在上的最大值为.当时,结合图形可知在上递增,在上递减, 故此时 在上的最大值为.综上所述,当时,在上的最大值为;当时, 在上的最大值为;当时, 在上的最大值为0.1,22a a >>即()h x [2,1]-[1,2](2)33,(2)3h a h a -=+=+()h x [2,2]-33a +01,22a a 即0≤≤≤≤()h x [2,1]--[,1]2a -[1,]2a --[1,2](2)33,(2)3h a h a -=+=+2()124a a h a -=++()h x [2,2]-33a +10,02a a -<<即-2≤≤()h x [2,1]--[,1]2a -[1,]2a --[1,2](2)33,(2)3h a h a -=+=+2()124a a h a -=++()h x [2,2]-3a +31,222a a -<-<-即-3≤≤()h x [2,]2a -[1,]2a -[,1]2a [,2]2a -(2)330h a -=+<(2)30h a =+≥()h x [2,2]-3a +3,322a a <-<-即()h x [2,1]-[1,2]()h x [2,2]-(1)0h =0a ≥()h x [2,2]-33a +30a -<≤()h x [2,2]-3a +3a <-()h x [2,2]-练习:1. 已知函数.(1)讨论函数的奇偶性;(2)求函数的最小值2. 已知函数(1)若,,求的值(2)若时,恒成立,求的取值范围3. 已知函数,其中a 是实数.(1)判断的奇偶性,并说明理由;(2)当时,的最小值为,求a 的值答案:1.(1)函数为偶函数非奇非偶函数(2)2||)(2+-+=a x x x f )(x f )(x f ()221()f x x mx m R =-+∈2m =[]0,3x ∈()()max min D f x f x =-[]0,2x ∈()8f x ≤m |21|21)(2a x x x f -++=)(x f ]1,1[-∈x )(x f 221a 0a =0a ≠()22117,2(),24x a f x x x a x a ≥=++-=++-()22217,224x a f x x x a x a ⎛⎫<=-++=-++ ⎪⎝⎭2.(1)4(2)分类讨论二次函数对称轴与区间的关系,寻找最大值的位置 当在上递增 ,当在上递减,上递增当在上递减 综上所述: 3.(1)①当时,,有,所以为偶函数; ②当时,,所以不是奇函数;又因为,而, 即,所以不是偶函数; 综上,当时,既不是奇函数也不是偶函数.(2)①若,即,当时,,2min 71,4211()2,2271,42a a f x a a a a ⎧-≤-⎪⎪⎪=+-<<⎨⎪⎪+≥⎪⎩0,m <()f x []0,2()32804f m ≤∴-≤<02,m ≤≤()f x []0,m [],2m ()()833428f m m f ⎧≥-⎪∴-≤≤⎨≤⎪⎩2,m >()f x []0,2()132824f m ≥-∴<≤31344m -≤≤21=a ||21)(2x x x f +=)()(-x f x f =)(x f 21≠a 0|21|)0(≠-=a f )(x f 2)12(21)1-2(-=a a f |21|2)12(21)2-(12a a a f -+-=)12()2-(1-≠a f a f )(x f 21≠a )(x f 2213(1)2,2122()11(1)2,2122x a x a f x x a x a ⎧--+<-⎪⎪=⎨⎪++-≥-⎪⎩112-≤-a 0≤a ]1,1[-∈x a x a x x x f 221)1(212121)(22-++=-++=故在上递增,所以,得.②若,即, 当时,, 故在上递减,所以,得或.③若,即, 故在上递减,在上递增; 所以,得.综上,或或或.)(x f ]1,1[-=-=-=a f x f 221)1()(min 221a 52--=a 112≥-a 1≥a ]1,1[-∈x a x a x x x f 223)1(212121)(22+--=+--=)(x f ]1,1[-=+-==a f x f 223)1()(min 221a 1=a 3=a 1121<-<-a 10<<a ⎪⎪⎩⎪⎪⎨⎧≤≤--++-<≤-+--=)112(221)1(21)121(223)1(21)(22x a ax a x ax x f )(x f ]12,1[--a ]1,1[2-a 22min 212122)12()(a a a a f x f =+-=-=31=a 52--=a 31=a 1=a 3=a。
(完整word版)二次函数精选练习题及答案
二次函数练习题及答案一、选择题1. 将抛物线23y x =先向左平移2个单位,再向下平移1个单位后得到新的抛物线,则新抛物线的解析式是 ( )A 23(2)1y x =++B 。
23(2)1y x =+-C 。
23(2)1y x =-+ D.23(2)1y x =-- 2.将抛物线22+=x y 向右平移1个单位后所得抛物线的解析式是………………( ) A.32+=x y ; B.12+=x y ;C.2)1(2++=x y ; D.2)1(2+-=x y .3.将抛物线y= (x —1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( )A .y=(x —2)2B .y=(x —2)2+6C .y=x 2+6D .y=x 24.由二次函数1)3(22+-=x y ,可知( )A .其图象的开口向下B .其图象的对称轴为直线3x =-C .其最小值为1D .当x<3时,y 随x 的增大而增大5.如图,抛物线的顶点P 的坐标是(1,﹣3),则此抛物线对应的二次函数有( )A .最大值1B .最小值﹣3C .最大值﹣3D .最小值16.把函数()y f x ==246x x -+的图象向左平移1个单位,再向上平移1个单位,所得图象对应的函数的解析式是( )A .2(3)3y x =-+B .2(3)1y x =-+C .2(1)3y x =-+D .2(1)1y x =-+7.抛物线c bx x y ++=2图像向右平移2个单位再向下平移3个单位,所得图像的解析式为322--=x x y ,则b 、c 的值为A . b=2, c=2 B. b=2,c=0 C 。
b= -2,c=-1 D 。
b= -3, c=2二、填空题8.二次函数y=-2(x -5)2+3的顶点坐标是 .9.已知二次函数2y x bx c =-++中函数y 与自变量x 之间的部分对应值如下表所示,点11(,)A x y 、22(,)B x y 在函数图象上,当1201,23x x <<<<时,则1y 2y (填“>”或“<”).x 0 1 2 3 y1- 2 3 210.在平面直角坐标系中,将抛物线223y x x =++绕着它与y 轴的交点旋转180°,所得抛物线的解析式为 .11.求二次函数2245y x x =--的顶点坐标(___)对称轴____。
人教版九年级数学二次函数专题训练(含答案)
二次函数专题训练(含答案)一、填空题1.把抛物线221x y -=向左平移2个单位得抛物线 ,接着再向下平移3个 单位,得抛物线 .2.函数x x y +-=22图象的对称轴是 ,最大值是 .3.正方形边长为3,如果边长增加x 面积就增加y ,那么y 与x 之间的函数关系是 .4.二次函数6822-+-=x x y ,通过配方化为k h x a y +-=2)(的形为 . 5.二次函数c ax y +=2(c 不为零),当x 取x 1,x 2(x 1≠x 2)时,函数值相等,则 x 1与x 2的关系是 .6.抛物线c bx ax y ++=2当b=0时,对称轴是 ,当a ,b 同号时,对称轴在y 轴 侧,当a ,b 异号时,对称轴在y 轴 侧.7.抛物线3)1(22-+-=x y 开口 ,对称轴是 ,顶点坐标是 .如果y 随x 的增大而减小,那么x 的取值范围是 .8.若a <0,则函数522-+=ax x y 图象的顶点在第 象限;当x >4a-时,函数值随x 的增大而 .9.二次函数c bx ax y ++=2(a ≠0)当a >0时,图象的开口a <0时,图象的开口 ,顶点坐标是 . 10.抛物线2)(21h x y --=,开口 ,顶点坐标是 ,对称轴是 . 11.二次函数)()(32+-=x y 的图象的顶点坐标是(1,-2).12.已知2)1(312-+=x y ,当x 时,函数值随x 的增大而减小. 13.已知直线12-=x y 与抛物线k x y +=25交点的横坐标为2,则k= ,交点坐标为 . 14.用配方法将二次函数x x y 322+=化成k h x a y +-=2)(的形式是 . 15.如果二次函数m x x y +-=62的最小值是1,那么m 的值是 . 二、选择题:16.在抛物线1322+-=x x y 上的点是( )A.(0,-1)B.⎪⎭⎫ ⎝⎛0,21 C.(-1,5) D.(3,4) 17.直线225-=x y 与抛物线x x y 212-=的交点个数是( ) A.0个 B.1个 C.2个 D.互相重合的两个18.关于抛物线c bx ax y ++=2(a ≠0),下面几点结论中,正确的有( ) ① 当a >0时,对称轴左边y 随x 的增大而减小,对称轴右边y 随x 的增大而增大,当a <0时,情况相反.② 抛物线的最高点或最低点都是指抛物线的顶点.③ 只要解析式的二次项系数的绝对值相同,两条抛物线的形状就相同.④ 一元二次方程02=++c bx ax (a ≠0)的根,就是抛物线c bx ax y ++=2与x 轴交点的横坐标.A.①②③④B.①②③C. ①②D.① 19.二次函数y=(x+1)(x-3),则图象的对称轴是( )A.x=1B.x=-2C.x=3D.x=-320.如果一次函数b ax y +=的图象如图代13-3-12中A 所示,那么二次函+=2ax ybx -3的大致图象是( )图代13-2-1221.若抛物线c bx ax y ++=2的对称轴是,2-=x 则=ba( ) A.2 B.21 C.4 D.41 22.若函数xa y =的图象经过点(1,-2),那么抛物线3)1(2++-+=a x a ax y 的性 质说得全对的是( ) A. 开口向下,对称轴在y 轴右侧,图象与正半y 轴相交 B. 开口向下,对称轴在y 轴左侧,图象与正半y 轴相交 C. 开口向上,对称轴在y 轴左侧,图象与负半y 轴相交 D. 开口向下,对称轴在y 轴右侧,图象与负半y 轴相交23.二次函数c bx x y ++=2中,如果b+c=0,则那时图象经过的点是( ) A.(-1,-1) B.(1,1) C.(1,-1) D.(-1,1)24.函数2ax y =与xay =(a <0)在同一直角坐标系中的大致图象是( )图代13-3-1325.如图代13-3-14,抛物线c bx x y ++=2与y 轴交于A 点,与x 轴正半轴交于B , C 两点,且BC=3,S △ABC =6,则b 的值是( )A.b=5B.b=-5C.b=±5D.b=4图代13-3-1426.二次函数2ax y =(a <0),若要使函数值永远小于零,则自变量x 的取值范围是 ( )A .X 取任何实数 B.x <0 C.x >0 D.x <0或x >027.抛物线4)3(22+-=x y 向左平移1个单位,向下平移两个单位后的解析式为 ( )A.6)4(22+-=x y B.2)4(22+-=x y C.2)2(22+-=x y D.2)3(32+-=x y 28.二次函数229k ykx x y ++=(k >0)图象的顶点在( ) A.y 轴的负半轴上 B.y 轴的正半轴上 C.x 轴的负半轴上 D.x 轴的正半轴上 29.四个函数:xy x y x y 1,1,-=+=-=(x >0),2x y -=(x >0),其中图象经过原 点的函数有( )A.1个B.2个C.3个D.4个30.不论x 为值何,函数c bx ax y ++=2(a ≠0)的值永远小于0的条件是( ) A.a >0,Δ>0 B.a >0,Δ<0C .a <0,Δ>0 D.a <0,Δ<0 三、解答题31.已知二次函数1222+-+=b ax x y 和1)3(22-+-+-=b x a x y 的图象都经过x 轴上两上不同的点M ,N ,求a ,b 的值.32.已知二次函数c bx ax y ++=2的图象经过点A (2,4),顶点的横坐标为21,它 的图象与x 轴交于两点B (x 1,0),C (x 2,0),与y 轴交于点D ,且132221=+x x ,试问:y 轴上是否存在点P ,使得△POB 与△DOC 相似(O 为坐标原点)?若存在,请求出过P ,B 两点直线的解析式,若不存在,请说明理由.33.如图代13-3-15,抛物线与直线y=k(x-4)都经过坐标轴的正半轴上A ,B 两点,该 抛物线的对称轴x=-21与x 轴相交于点C ,且∠ABC=90°,求:(1)直线AB 的解析式;(2)抛物线的解析式.图代13-3-15图代13-3-1634.中图代13-3-16,抛物线c x ax y +-=32交x 轴正方向于A ,B 两点,交y 轴正方 向于C 点,过A ,B ,C 三点做⊙D ,若⊙D 与y 轴相切.(1)求a ,c 满足的关系;(2)设∠ACB=α,求tg α;(3)设抛物线顶点为P ,判断直线PA 与⊙O 的位置关系并证明. 35.如图代13-3-17,这是某市一处十字路口立交桥的横断面在平面直角坐标系中的示 意图,横断面的地平线为x 轴,横断面的对称轴为y 轴,桥拱的DGD '部分为一段抛物线,顶点C 的高度为8米,AD 和A 'D '是两侧高为5.5米的支柱,OA 和OA '为两个方向的汽车通行区,宽都为15米,线段CD 和C 'D '为两段对称的上桥斜坡,其坡度为1∶4.求(1)桥拱DGD '所在抛物线的解析式及CC '的长;(2)BE 和B 'E '为支撑斜坡的立柱,其高都为4米,相应的AB 和A 'B '为两个方 向的行人及非机动车通行区,试求AB 和A 'B '的宽;(3)按规定,汽车通过该桥下时,载货最高处和桥拱之间的距离不得小于0.4米,车 载大型设备的顶部与地面的距离均为7米,它能否从OA (或OA ')区域安全通过?请说明理由.图代13-3-1736.已知:抛物线2)4(2+++-=m x m x y 与x 轴交于两点)0,(),0,(b B a A (a <b ).O 为坐标原点,分别以OA ,OB 为直径作⊙O 1和⊙O 2在y 轴的哪一侧?简要说明理由,并指出两圆的位置关系.37.如果抛物线1)1(22++-+-=m x m x y 与x 轴都交于A ,B 两点,且A 点在x 轴 的正半轴上,B 点在x 同的负半轴上,OA 的长是a ,OB 的长是b. (1) 求m 的取值范围;(2) 若a ∶b=3∶1,求m 的值,并写出此时抛物线的解析式; (3) 设(2)中的抛物线与y 轴交于点C ,抛物线的顶点是M ,问:抛物线上是否存 在 点P ,使△PAB 的面积等于△BCM 面积的8倍?若存在,求出P 点的坐标;若不存在,请 说明理由. 38.已知:如图代13-3-18,EB 是⊙O 的直径,且EB=6,在BE 的延长线上取点P ,使EP=EB.A 是EP 上一点,过A 作⊙O 的切线AD ,切点为D ,过D 作DF ⊥AB 于F ,过B 作AD 的垂线BH ,交AD 的延长线于H ,连结ED 和FH.图代13-3-18(1) 若AE=2,求AD 的长.(2) 当点A 在EP 上移动(点A 不与点E 重合)时,①是否总有FHEDAH AD =?试证 明 你的结论;②设ED=x ,BH=y ,求y 与x 的函数关系式,并写出自变量x 的取值范围. 39.已知二次函数)294(2)254(222+--+--=m m x m m x y 的图象与x 轴的交点为 A ,B (点A 在点B 右边),与y 轴的交点为C. (1) 若△ABC 为Rt △,求m 的值; (2) 在△ABC 中,若AC=BC ,求∠ACB 的正弦值; (3) 设△ABC 的面积为S ,求当m 为何值时,S 有最小值,并求这个最小值. 40.如图代13-3-19,在直角坐标系中,以AB 为直径的⊙C 交x 轴于A ,交y 轴于B , 满足OA ∶OB=4∶3,以OC 为直径作⊙D ,设⊙D 的半径为2.图代13-3-19(1) 求⊙C 的圆心坐标. (2) 过C 作⊙D 的切线EF 交x 轴于E ,交y 轴于F ,求直线EF 的解析式. (3) 抛物线c bx ax y ++=2(a ≠0)的对称轴过C 点,顶点在⊙C 上,与y 轴交点为B ,求抛物线的解析式. 41.已知直线x y 21=和m x y +-=,二次函数q px x y ++=2图象的顶点为M. (1)若M 恰在直线x y 21=与m x y +-=的交点处,试证明:无论m 取何实数值,二次函数q px x y ++=2的图象与直线m x y +-=总有两个不同的交点. (2)在(1)的条件下,若直线m x y +-=过点D (0,-3),求二次函数q px x y ++=2的表达式,并作出其大致图象.图代13-3-20(3) 在(2)的条件下,若二次函数q px x y ++=2的图象与y 轴交于点C ,与x同的左交点为A ,试在直线x y 21=上求异于M 点P ,使P 在△CMA 的外接圆上. 42.如图代13-3-20,已知抛物线b ax x y ++-=2与x 轴从左至右交于A ,B 两点, 与y 轴交于点C ,且∠BAC=α,∠ABC=β,tg α-tg β=2,∠ACB=90°. (1) 求点C 的坐标; (2) 求抛物线的解析式;(3) 若抛物线的顶点为P ,求四边形ABPC 的面积.参 考 答 案动脑动手 1. 设每件提高x 元(0≤x ≤10),即每件可获利润(2+x )元,则每天可销售(100-10x ) 件,设每天所获利润为y 元,依题意,得)10100)(2(x x y -+=.360)4(10200801022+--=++-=x x x∴当x=4时(0≤x ≤10)所获利润最大,即售出价为14元,每天所赚得最大利润360元. 2.∵43432+⎪⎭⎫⎝⎛+-=x m mx y , ∴当x=0时,y=4. 当0,043432≠=+⎪⎭⎫ ⎝⎛+-m x m mx 时mm m 34,321==. 即抛物线与y 轴的交点为(0,4),与x 轴的交点为A (3,0),⎪⎭⎫⎝⎛0,34m B . (1)当AC=BC 时,94,334-=-=m m . ∴ 4942+-=x y(2)当AC=AB 时,5,4,3===AC OC AO .∴ 5343=-m. ∴ 32,6121-==m m . 当61=m 时,4611612+-=x x y ; 当32-=m 时,432322++-=x x y .(3)当AB=BC 时,22344343⎪⎭⎫⎝⎛+=-m m ,∴ 78-=m .∴ 42144782++-=x x y . 可求抛物线解析式为:43232,461161,494222+--=+-=+-=x x y x x y x y 或42144782++-=x x y .3.(1)∵)62(4)]5([222+---=∆m m)1(122222 +=++=m m m图代13-3-21 ∴不论m 取何值,抛物线与x 轴必有两个交点. 令y=0,得062)5(222=+++-m x m x 0)3)(2(2=---m x x , ∴ 3,2221+==m x x .∴两交点中必有一个交点是A (2,0).(2)由(1)得另一个交点B 的坐标是(m 2+3,0).12322+=-+=m m d ,∵ m 2+10>0,∴d=m 2+1.(3)①当d=10时,得m 2=9.∴ A (2,0),B (12,0).25)7(241422--=+-=x x x y .该抛物线的对称轴是直线x=7,顶点为(7,-25),∴AB 的中点E (7,0). 过点P 作PM ⊥AB 于点M ,连结PE , 则2222)7(,,521a MEb PM AB PE -====, ∴ 2225)7(=+-b a . ① ∵点PD 在抛物线上,∴ 25)7(2--=a b . ② 解①②联合方程组,得0,121=-=b b .当b=0时,点P 在x 轴上,△ABP 不存在,b=0,舍去.∴b=-1. 注:求b 的值还有其他思路,请读者探觅,写出解答过程. ②△ABP 为锐角三角形时,则-25≤b <-1; △ ABP 为钝角三角形时,则b >-1,且b ≠0. 同步题库一、 填空题 1.3)2(21,)2(2122-+-=+-=x y x y ; 2.81,41=x ; 3.9)3(2-+=x y ; 4. 2)2(22+--=x y ; 5.互为相反数; 6.y 轴,左,右; 7.下,x=-1,(-1,-3),x >-1;8.四,增大; 9.向上,向下,a bx a b ac a b 2,44,22-=⎪⎪⎭⎫ ⎝⎛--; 10.向下,(h,0),x=h ; 11.-1,-2; 12.x <-1; 13.-17,(2,3); 14.91312-⎪⎭⎫ ⎝⎛+=x y ; 15.10.二、选择题16.B 17.C 18.A 19.A 20.C 21.D 22.B 23.B 24.D 25.B 26.D 27.C 28. C 29.A 30.D 三、解答题31.解法一:依题意,设M (x 1,0),N (x 2,0),且x 1≠x 2,则x 1,x 2为方程x 2+2ax-2b+1=0 的两个实数根,∴ a x x 221-=+,1x ·122+-=b x . ∵x 1,x 2又是方程01)3(22=-+-+-b x a x 的两个实数根, ∴ x 1+x 2=a-3,x 1·x 2=1-b 2.∴ ⎩⎨⎧-=+--=-.112,322b b a a 解得 ⎩⎨⎧==;0,1b a 或⎩⎨⎧==.2,1b a当a=1,b=0时,二次函数的图象与x 轴只有一个交点, ∴a=1,b=0舍去.当a=1;b=2时,二次函数322-+=x x y 和322+--=x x y 符合题意. ∴ a=1,b=2.解法二:∵二次函数1222+-+=b ax x y 的图象对称轴为a x -=,二次函数1)3(22-+-+-=b x a x y 的图象的对称轴为23-=a x , 又两个二次函数图象都经过x 轴上两个不同的点M ,N , ∴两个二次函数图象的对称轴为同一直线.∴ 23-=-a a . 解得 1=a .∴两个二次函数分别为1222+-+=b x x y 和1222-+--=b x x y . 依题意,令y=0,得01222=+-+b x x , 01222=-+--b x x .①+②得022=-b b .解得 2,021==b b . ∴ ⎩⎨⎧==;0,1b a 或⎩⎨⎧==.2,1b a当a=1,b=0时,二次函数的图象与x 轴只有一个交点, ∴a=1,b=0舍去.当a=1,b=2时,二次函数为322-+=x x y 和322+--=x x y 符合题意. ∴ a=1,b=2.32.解:∵c bx ax y ++=2的图象与x 轴交于点B (x 1,0),C (x 2,0), ∴ acx x a b x x =⋅-=+2121,. 又∵132221=+x x 即132)(21221=-+x x x x ,∴ 132)(2=⋅--a cab . ① 又由y 的图象过点A (2,4),顶点横坐标为21,则有4a+2b+c=4, ② 212=-a b . ③ 解由①②③组成的方程组得a=-1,b=1,c=6.∴ y=-x 2+x+6.与x 轴交点坐标为(-2,0),(3,0).与y 轴交点D 坐标为(0,6).设y 轴上存在点P ,使得△POB ∽△DOC ,则有(1) 当B (-2,0),C (3,0),D (0,6)时,有 6,3,2,====OD OC OB ODOP OC OB . ∴OP=4,即点P 坐标为(0,4)或(0,-4).当P 点坐标为(0,4)时,可设过P ,B 两点直线的解析式为y=kx+4.有 0=-2k-4.得 k=-2.∴ y=-2x-4.或 3,6,2,====OC OD OB OCOP OD OB . ∴OP=1,这时P 点坐标为(0,1)或(0,-1).当P 点坐标为(0,1)时,可设过P ,B 两点直线的解析式为y=kx+1.有 0=-2k+1.得 21=k . ∴ 121+-=x y . 当P 点坐标为(0,-1)时,可设过P ,B 两点直线的解析式为y=kx-1,有 0=-2k-1,得 21-=k . ∴ 121--=x y . (2) 当B (3,0),C (-2,0),D (0,6)时,同理可得y=-3x+9,或 y=3x-9,或 131+-=x y , 或 131-=x y . 33.解:(1)在直线y=k(x-4)中,令y=0,得x=4.∴A 点坐标为(4,0).∴ ∠ABC=90°.∵ △CBD ∽△BAO , ∴OBOA OC OB =,即OB 2=OA ·OC.又∵ CO=1,OA=4,∴ OB 2=1×4=4.∴ OB=2(OB=-2舍去)∴B 点坐标为(0,2).将点B (0,2)的坐标代入y=k(x-4)中,得21-=k . ∴直线的解析式为:221+-=x y . (2)解法一:设抛物线的解析式为h x a y ++=2)1(,函数图象过A (4,0),B (0,2),得⎩⎨⎧=+=+.2,025h a h a 解得 .1225,121=-=h a ∴抛物线的解析式为:1225)1(1212++-=x y . 解法二:设抛物线的解析式为:c bx ax y ++=2,又设点A (4,0)关于x=-1的对 称是D.∵ CA=1+4=5,∴ CD=5.∴ OD=6.∴D 点坐标为(-6,0).将点A (4,0),B (0,2),D (-6,0)代入抛物线方程,得 ⎪⎩⎪⎨⎧=+-==++.0636,2,0416c b a c c b a 解得 2,61,121=-=-=c b a . ∴抛物线的解析式为:2611212+--=x x y . 34.解:(1)A ,B 的横坐标是方程032=+-c x ax 的两根,设为x 1,x 2(x 2>x 1),C 的 纵坐标是C.又∵y 轴与⊙O 相切,∴ OA ·OB=OC 2.∴ x 1·x 2=c 2.又由方程032=+-c x ax 知 ac x x =⋅21,∴a c c =2,即ac=1. (2)连结PD ,交x 轴于E ,直线PD 必为抛物线的对称轴,连结AD 、BD ,图代13-3-22∴ AB AE 21=. α=∠=∠=∠ADE ADB ACB 21. ∵ a >0,x 2>x 1, ∴ aa ac x x AB 54912=-=-=. a AE 25=. 又 ED=OC=c ,∴ 25==DE AE tg α. (3)设∠PAB=β,∵P 点的坐标为⎪⎭⎫ ⎝⎛-a a 45,23,又∵a >0, ∴在Rt △PAE 中,aPE 45=. ∴ 25==AE PE tg β. ∴ tg β=tg α. ∴β=α.∴∠PAE=∠ADE.∵ ∠ADE+∠DAE=90°∴PA 和⊙D 相切.35.解:(1)设DGD '所在的抛物线的解析式为c ax y +=2,由题意得G (0,8),D (15,5.5).∴ ⎩⎨⎧+==.255.5,8c a c 解得⎪⎩⎪⎨⎧=-=.8,901c a∴DGD '所在的抛物线的解析式为89012+-=x y . ∵41=AC AD 且AD=5.5, ∴ AC=5.5×4=22(米).∴ 2215(2)(22+⨯=+⨯=='AC OA OC c c )=74(米).答:cc '的长为74米.(2)∵ 4,41==BE BC EB , ∴ BC=16.∴ AB=AC-BC=22-16=6(米).答:AB 和A 'B '的宽都是6米.(3) 在89012+-=x y 中,当x=4时, 45377816901=+⨯-=y . ∵ 4519)4.07(45377=+->0. ∴该大型货车可以从OA (OA ')区域安全通过.36.解:(1)∵⊙O 1与⊙O 2外切于原点O ,∴A ,B 两点分别位于原点两旁,即a <0,b >0.∴方程02)4(2=+++-m x m x 的两个根a ,b 异号.∴ab=m+2<0,∴m <-2.(2)当m <-2,且m ≠-4时,四边形PO 1O 2Q 是直角梯形. 根据题意,计算得22121b S Q O PO =四边形(或221a 或1). m=-4时,四边形PO 1O 2Q 是矩形. 根据题意,计算得22121b S Q O PO =四边形(或221a 或1). (3)∵ 4)2()2(4)4(22++=+-+=∆m m m >0∴方程02)4(2=+++-m x m x 有两个不相等的实数根.∵ m >-2,∴ ⎩⎨⎧+=+=+.02,04 m ab m b a∴ a >0,b >0.∴⊙O 1与⊙O 2都在y 轴右侧,并且两圆内切.37.解:(1)设A ,B 两点的坐标分别是(x 1,0)、(x 2,0),∵A ,B 两点在原点的两侧,∴ x 1x 2<0,即-(m+1)<0,解得 m >-1.∵ )1()1(4)]1(2[2+⨯-⨯--=∆m m 7)21(484422+-=+-=m m m 当m >-1时,Δ>0,∴m 的取值范围是m >-1.(2)∵a ∶b=3∶1,设a=3k ,b=k (k >0),则 x 1=3k ,x 2=-k ,∴ ⎩⎨⎧+-=-⋅-=-).1()(3),1(23m k k m k k解得 31,221==m m . ∵31=m 时,3421-=+x x (不合题意,舍去), ∴ m=2 ∴抛物线的解析式是32++-=x x y .(3)易求抛物线322++-=x x y 与x 轴的两个交点坐标是A (3,0),B (-1,0) 与y 轴交点坐标是C (0,3),顶点坐标是M (1,4).设直线BM 的解析式为q px y +=,则 ⎩⎨⎧+-⋅=+⋅=.)1(0,14q p q p 解得 ⎩⎨⎧==.2,2q p∴直线BM 的解析式是y=2x+2.设直线BM 与y 轴交于N ,则N 点坐标是(0,2),∴ MNC BCN BCM S S S ∆∆∆+= .111211121=⨯⨯+⨯⨯=设P 点坐标是(x,y ),∵ BCM ABP S S ∆∆=8,∴ 1821⨯=⨯⨯y AB . 即 8421=⨯⨯y . ∴ 4=y .∴4±=y .当y=4时,P 点与M 点重合,即P (1,4),当y=-4时,-4=-x 2+2x+3,解得 221±=x .∴满足条件的P 点存在.P 点坐标是(1,4),)4,221(),4,221(---+.38.(1)解:∵AD 切⊙O 于D ,AE=2,EB=6,∴ AD 2=AE ·AB=2×(2+6)=16.∴ AD=4.图代13-2-23(2)①无论点A 在EP 上怎么移动(点A 不与点E 重合),总有FHED AH AD =. 证法一:连结DB ,交FH 于G ,∵AH 是⊙O 的切线,∴ ∠HDB=∠DEB.又∵BH ⊥AH ,BE 为直径,∴ ∠BDE=90°有 ∠DBE=90°-∠DEB=90°-∠HDB=∠DBH.在△DFB 和△DHB 中,DF ⊥AB ,∠DFB=∠DHB=90°,DB=DB ,∠DBE=∠DBH ,∴ △DFB ∽△DHB.∴BH=BF , ∴△BHF 是等腰三角形.∴BG ⊥FH ,即BD ⊥FH.∴ED ∥FH ,∴FH ED AH AD =.图代13-3-24证法二:连结DB ,∵AH 是⊙O 的切线,∴ ∠HDB=∠DEF.又∵DF ⊥AB ,BH ⊥DH ,∴ ∠EDF=∠DBH.以BD 为直径作一个圆,则此圆必过F ,H 两点,∴∠DBH=∠DFH ,∴∠EDF=∠DFH. ∴ ED ∥FH.∴ FHED AH AD =. ②∵ED=x ,BH=,BH=y ,BE=6,BF=BH ,∴EF=6y.又∵DF 是Rt △BDE 斜边上的高,∴ △DFE ∽△BDE ,∴EBED ED EF =,即EB EF ED ⋅=2. ∴)6(62y x -=,即6612+-=x y . ∵点A 不与点E 重合,∴ED=x >0.A 从E 向左移动,ED 逐渐增大,当A 和P 重合时,ED 最大,这时连结OD ,则OD ⊥PH. ∴ OD ∥BH.又 12,936==+=+=PB EO PE PO ,4,=⋅==POPB OD BH PB PO BH OD , ∴ 246,4=-=-===BF EB EF BH BF ,由ED 2=EF ·EB 得 12622=⨯=x ,∵x >0,∴32=x .∴ 0<x ≤32.(或由BH=4=y ,代入6612+-=x y 中,得32=x )故所求函数关系式为6612+-=x y (0<x ≤32). 39.解:∵]294)[2(2942254222⎪⎭⎫ ⎝⎛+--+=⎪⎭⎫ ⎝⎛+--⎪⎭⎫ ⎝⎛+--=m m x x m m x m m x y , ∴可得⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+--⎪⎭⎫ ⎝⎛+--2942,0,0,294),0,2(22m m C m m B A . (1)∵△ABC 为直角三角形,∴OB AO OC⋅=2, 即⎪⎭⎫ ⎝⎛+-⨯=⎪⎭⎫ ⎝⎛+-22942294422m m m m , 化得0)2(2=-m .∴m=2.(2)∵AC=BC ,CO ⊥AB ,∴AO=BO ,即22942=+-m m . ∴429422=⎪⎭⎫ ⎝⎛+-=m m OC .∴25==BC AC . 过A 作AD ⊥BC ,垂足为D ,∴ AB ·OC=BC ·AD.∴ 58=AD .∴ 545258sin ===∠AC AD ACB .图代13-3-25(3)CO AB S ABC ⋅=∆21 .1)1()2(2942229421222-+=+=⎪⎭⎫ ⎝⎛+-⋅⎪⎭⎫ ⎝⎛++-=u u u m m m m ∵ 212942≥+-=m m u ,∴当21=u ,即2=m 时,S 有最小值,最小值为45. 40.解:(1)∵OA ⊥OB ,OA ∶OB=4∶3,⊙D 的半径为2,∴⊙C 过原点,OC=4,AB=8.A 点坐标为⎪⎭⎫ ⎝⎛0,532,B 点坐标为⎪⎭⎫ ⎝⎛524,0. ∴⊙C 的圆心C 的坐标为⎪⎭⎫⎝⎛512,516. (2)由EF 是⊙D 切线,∴OC ⊥EF.∵ CO=CA=CB ,∴ ∠COA=∠CAO ,∠COB=∠CBO.∴ Rt △AOB ∽Rt △OCE ∽Rt △FCO.∴OBOC AB OF OA OC AB OE ==,. ∴ 320,5==OF OE . E 点坐标为(5,0),F 点坐标为⎪⎭⎫ ⎝⎛320,0, ∴切线EF 解析式为32034+-=x y . (3)①当抛物线开口向下时,由题意,得抛物线顶点坐标为⎪⎭⎫⎝⎛+4512,516,可得 ⎪⎪⎩⎪⎪⎨⎧==-=⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-.524,1,325.52453244,51622c b a c a b ac a b ∴ 5243252++-=x x y . ②当抛物线开口向上时,顶点坐标为⎪⎭⎫ ⎝⎛-4512,516,得⎪⎪⎩⎪⎪⎨⎧=-==⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=-=-.524,4,85.524,5844,51622c b a c a b ac a b ∴ 5244852+--=x x y . 综合上述,抛物线解析式为5243252++-=x x y 或5244852+-=x x y . 41.(1)证明:由⎪⎩⎪⎨⎧+-==,,21m x y x y 有m x x +-=21, ∴ m y m x m x 31,32,23===. ∴交点)31,32(m m M . 此时二次函数为m m x y 31322+⎪⎭⎫ ⎝⎛-= m m mx x 31943422++-=. 由②③联立,消去y ,有 0329413422=-+⎪⎭⎫ ⎝⎛--m m x m x . ⎪⎭⎫ ⎝⎛--⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--=∆m m m 3294413422 .013891613891622>=+-+-=m m m m∴无论m 为何实数值,二次函数q px x y ++=2的图象与直线m x y +-=总有两个不同的交点.图代13-3-26(2)解:∵直线y=-x+m 过点D (0,-3),∴ -3=0+m ,∴ m=-3.∴M (-2,-1).∴二次函数为)1)(3(341)2(22++=+-=-+=x x x x x y .图象如图代13-3-26.(3)解:由勾股定理,可知△CMA 为Rt △,且∠CMA=Rt ∠,∴MC 为△CMA 外接圆直径.∵P 在x y 21=上,可设⎪⎭⎫ ⎝⎛n n P 21,,由MC 为△CMA 外接圆的直径,P 在这个圆上, ∴ ∠CPM=Rt ∠.过P 分别作PN ⊥y ,轴于N ,PQ ⊥x 轴于R ,过M 作MS ⊥y 轴于S ,MS 的延长线与PR 的 延长线交于点Q.由勾股定理,有222QP MQ MP +=,即222121)2(⎪⎭⎫ ⎝⎛+++=n n MP . 22222213n n NP NC CP +⎪⎭⎫ ⎝⎛-=+=. 202=CM. 而 222CM CPMP =+, ∴ 20213121)2(2222=+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+++n n n n , 即 062252=-+n n , ∴ 012452=-+n n ,0)2)(65(=+-n n .∴ 2,5621-==n n . 而n 2=-2即是M 点的横坐标,与题意不合,应舍去.∴ 56=n , 此时 5321=n . ∴P 点坐标为⎪⎭⎫ ⎝⎛53,56. 42.解:(1)根据题意,设点A (x 1,0)、点(x 2,0),且C (0,b ),x 1<0,x 2>0,b >0, ∵x 1,x 2是方程02=++-b ax x 的两根,∴ b x x a x x -=⋅=+2121,.在Rt △ABC 中,OC ⊥AB ,∴OC 2=OA ·OB.∵ OA=-x 1,OB=x 2,∴ b 2=-x 1·x 2=b.∵b >0,∴b=1,∴C (0,1).(2)在Rt △AOC 的Rt △BOC 中, 211212121==+-=--=-=-ba x x x x x x OB OC OA OC tg tg βα. ∴ 2=a .∴抛物线解析式为122++-=x x y .图代13-3-27(3)∵122++-=x x y ,∴顶点P 的坐标为(1,2),当0122=++-x x 时,21±=x .∴)0,21(),0,21(+-B A .延长PC 交x 轴于点D ,过C ,P 的直线为y=x+1,∴点D 坐标为(-1,0).∴ DCA DPB ABPC S S S ∆∆-=四边形).(22321)22(212)22(212121平方单位+=⨯-⨯-⨯+⨯=⋅-⋅⋅=yc AD y DB p。
二次函数练习题附答案
(3)点M是线段AB上一动点(不包括点A和点B),过点M作MN∥BC交AC于点N,连接MC,是否存在点M使∠AMN=∠ACM?若存在,求出点M的坐标和此时刻直线MN的解析式;若不存在,请说明理由.
26.如图,抛物线 (a≠0)经过点A(﹣3,0)、B(1,0)、C(﹣2,1),交y轴于点M.
(1)求抛物线的表达式;
(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM于点F,求线段DF长度的最大值,并求此时点D的坐标;
(3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A、N为顶点的三角形与△MAO相似?若存在,求点P的坐标;若不存在,请说明理由.
28.求a的值
29.当m≠3时,求S与m的函数关系式.
30.如图②,设直线PE交射线OC于点R,交抛物线于点Q.以RQ为一边,在RQ的右侧作矩形RQMN,其中RN= .直接写出矩形RQMN与△AOB重叠部分为轴对称图形时m的取值范围.
参考答案
【答案】B
【解析】分析:根据函数图象平移的法则“左加右减,上加下减”的原则进行解答即可.
23.已知点M,N的坐标分别为(0,1),(0,-1),点P是抛物线y= x2上的一个动点.
(1)求证:以点P为圆心,PM为半径的圆与直线y=-1的相切;
(2)设直线PM与抛物线y= x2的另一个交点为点Q,连接NP,NQ,求证:∠PNM=∠QNM.
24.研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x(吨)时,所需的全部费用y(万元)与x满足关系式y= x2+5x+90,
高一数学二次函数试题(有详细解答)
高一数学二次函数试题一.选择题(共23小题)1.如果函数f (x)=x2+bx+c对任意实数t都有f(2+t)=f(2﹣t),那么()A.f(2)<f(1)<f (4)B.f(1)<f(2)<f(4)C.f(2)<f(4)<f(1)D.f(4)<f(2)<f(1)考点:二次函数的图象;二次函数的性质.专题:压轴题;数形结合.分析:先从条件“对任意实数t都有f (2+t)=f (2﹣t)”得到对称轴,然后结合图象判定函数值的大小关系即可.解答:解:∵对任意实数t都有f (2+t)=f (2﹣t)∴f(x)的对称轴为x=2,而f(x)是开口向上的二次函数故可画图观察可得f(2)<f(1)<f(4),故选A.点评:本题考查了二次函数的图象,通过图象比较函数值的大小,数形结合有助于我们的解题,形象直观.2.二次函数f(x)=ax2+bx+c的图象开口向下,对称轴为x=1,图象与x轴的两个交点中,一个交点的横坐标x1∈(2,3),则有()A.a bc>0 B.a+b+c<0 C.a+c>b D.3b<2c考点:二次函数的图象;二次函数的性质.专题:计算题.分析:由二次函数f(x)=ax2+bx+c的图象开口向下,对称轴为x=1,可以知道a<0,b=﹣2a,交点的横坐标x1∈(2,3),可得到,从而可得答案.解答:解:∵二次函数f(x)=ax2+bx+c的图象开口向下,∴a<0,又对称轴为x=1,∴x=﹣=1,∴b=﹣2a;∴f(x)=ax2﹣2ax+c.又与x轴的两个交点中,一个交点的横坐标x1∈(2,3),a<0,∴即:,∴,∴a+c>﹣2a=b.C符合.又a<0,b=﹣2a>0,c>0,∴abc<0,排出A,∵二次函数f(x)=ax2+bx+c的图象开口向下,对称轴为x=1,∴f(1)=a+b+c>0,排出B,f(﹣1)=f(3),图象与x轴的两个交点中一个交点的横坐标x1∈(2,3),∴f(﹣1)=f(3)<0,而f(﹣1)=a﹣b+c=﹣b+c<0,∴3b>2c,排出D.故选C.点评:本题考查了二次函数图象与性质,关键在于准确把握题目信息的意图,合理转化,特别是分析与应用是难点.属于中档题.3.(2011•厦门模拟)已知函数,这两个函数图象的交点个数为()A.1B.2C.3D.4考点:二次函数的图象;一次函数的性质与图象.专题:综合题.分析:本题考查的知识点是指数函数的图象,要求函数y=f(x)的图象与函数y=3x的图象的交点个数,我们画出函数的图象后,利用数形结合思想,易得到答案.解答:解:在同一坐标系下,画出函数y=f(x)的图象与函数y=3x的图象如下图:由图可知,两个函数图象共有2个交点故选B.点评:求两个函数图象的交点个数,我们可以使用数形结合的思想,在同一坐标系中,做出两个函数的图象,析图象后,即可等到答案.4.已知函数f(x)=mx2+(m﹣3)x+1的图象与x轴的交点至少有一个在原点右侧,则实数m的取值范围是()A.[0,1]B.(0,1)C.(﹣∞,1)D.(﹣∞,1]考点:二次函数的图象.专题:常规题型;计算题;压轴题;分类讨论.分析:本题考查的是函数的图象问题.在解答时,应先结合m是否为零对函数是否为二次函数进行区别,对于二次函数情况下充分结合图形的特点利用判别式和对称轴即可获得问题解答.解答:解:由题意可知:当m=0时,由f(x)=0 知,﹣3x+1=0,∴>0,符合题意;当m>0时,由f(0)=1可知:,解得0<m≤1;当m<0时,由f(0)=1可知,函数图象恒与X轴正半轴有一个交点综上可知,m的取值范围是:(﹣∞,1].故选D.点评:本题考查的是二次函数的图象问题.在解答的过程当中充分体现了数形结合的思想、函数与方程的思想以及问题提转化的能力.值得同学们体会和反思.5.已知,若|f(x)|≥ax在x∈[﹣1,1]上恒成立,则实数a的取值范围()B.[﹣1,0]C.[0,1]D.[﹣1,0)A.(﹣∞﹣1]∪[0,+∞)考点:二次函数的图象;一次函数的性质与图象.专题:计算题;压轴题;数形结合.分析:先画出函数和|f(x)|的图象;利用图象再结合答案即可解决本题.解答:解:函数的图象如图:|f(x)|的图象如图:因为|f(x)|≥ax在x∈[﹣1,1]上恒成立,所以y=ax的图象应在y=|f(x)|的图象的下方,故须斜率为负,或为0.当斜率为负时,排除答案A,C;当a=0,y=0满足要求,排除D.故选B.点评:本题主要考查函数的图象.其中涉及到二次函数,一次函数,分段函数以及带绝对值的函数的图象,是对函数的大汇总,在画整体带绝对值的函数图象时,注意起翻折原则是X轴上方的保持不变,X轴下方的沿x轴对折.6.已知二次函数f(x)=x2﹣ax+4,若f(x+1)是偶函数,则实数a的值为()A.﹣1 B.1C.﹣2 D.2考点:二次函数的图象.专题:计算题.分析:根据f(x)求出f(x+1),由f(x+1)是偶函数得到f(x+1)=f(﹣x+1)即可得到关于a的方程,求出集即可得到a的值.解答:解:∵f(x)=x2﹣ax+4,∴f(x+1)=(x+1)2﹣a(x+1)+4=x2+2x+1﹣ax﹣a+4=x2+(2﹣a)x+5﹣a,f(1﹣x)=(1﹣x)2﹣a(1﹣x)+4=x2﹣2x+1﹣a+ax+4=x2+(a﹣2)x+5﹣a.∵f(x+1)是偶函数,∴f(x+1)=f(﹣x+1),∴a﹣2=2﹣a,即a=2.故选D点评:本题考查学生灵活运用函数的奇偶性解决实际问题.是一道基础题.7.已知m>2,点(m﹣1,y1),(m.y2),(m+1,y3)都在二次函数y=x2﹣2x的图象上,则()A.y1<y2<y3B.y3<y2<y1C.y1<y3<y2D.y2<y1<y3考点:二次函数的图象.专题:函数的性质及应用.分析:根据二次函数的解析式,可判断出二次函数y=x2﹣2x的图象形状,进而判断出函数的单调性,结合m>2可得1<m﹣1<m<m+1,结合函数的单调性可判断出y1,y2,y3的大小.解答:解:∵二次函数y=x2﹣2x的图象是开口朝上且以直线x=1为对称轴的抛物线故二次函数y=x2﹣2x在区间[1,+∞)上为增函数又∵m>2∴1<m﹣1<m<m+1∴y1<y2<y3故选A点评:本题考查的知识点是二次函数的图象和性质,其中根据函数的解析式分析出函数的单调性是解答的关键.8.已知,若函数y=f(x)﹣c的图象与x轴恰有两个公共点,则实数c的取值集合是()A.{c|c≤﹣5或c=﹣1或c=3} B.{c|c<﹣5或c=﹣1或c=3}C.{c|2<c<3或c>4} D.{c|2<c≤3或c≥4}考点:二次函数的图象.专题:函数的性质及应用.分析:作出函数y=f(x)的图象,然后根据图象确定实数c的取值集合.解答:解:作出函数的图象如图:由y=f(x)﹣c=0得f(x)=c,所以由图象可知要使方程f(x)=c,恰有两个公共点,则有c=﹣1或c=3或c<﹣5.故选B.点评:本题主要考查二次函数的图象,以及两个图象的交点问题,利用数形结合是解决这类问题常见的方法.9.(2011•渭南三模)设函数若f(﹣4)=f(0),f(﹣2)=0,则关于x的不等式f(x)≤1的解集为()A.(﹣∞,﹣3]∪[﹣1,+∞)B.[﹣3,﹣1]C.[﹣3,﹣1]∪(0,+∞)D.[﹣3,+∞)考点:二次函数的性质;一元二次不等式的解法.专题:计算题.分析:利用f(﹣4)=f(0),f(﹣2)=0,建立方程组,解得b=c=4,由此能求出关于x的不等式f(x)≤1的解集.解答:解:∵函数,f(﹣4)=f(0),f(﹣2)=0,∴,解得b=c=4,∴,∴当x>0时,f(x)=﹣2≤1;当x≤0时,由f(x)=x2+4x+4≤1,解得﹣3≤x≤﹣1.综上所述,x的不等式f(x)≤1的解集为{x|x>0,或﹣3≤x≤﹣1}.故选C.点评:本题考查二次函数的性质和应用,是基础题.解题时要认真审题,仔细解答,注意一元二次不等式的性和应用.10.(2011•湖北模拟)设函数f(x)=ax2+bx+c,若f(x)>0的解集为{x|x<﹣2或x>4},则()A.f(5)<f(2)<f (﹣1)B.f(﹣1)<f(2)<f(5)C.f(2)<f(﹣1)<f(5)D.f(2)<f(5)<f(﹣1)考点:二次函数的性质.专题:计算题.分析:由于函数f(x)=ax2+bx+c,若f(x)>0的解集为{x|x<﹣2或x>4},利用不等式与函数之间的联系及二次函数的对称性即可求解.解答:解:因为函数f(x)=ax2+bx+c且f(x)>0的解集为{x|x<﹣2或x>4},利用不等式与函数的联系可以知道:﹣2,4应为方程ax2+bx+c=0的两个根,∴利用二次函数的韦达定理可以知道:由此得次二次函数为开口向上,对称轴x=﹣=1,利用二次函数的图象关于对称轴对称可以知道:f(5)>f(﹣1)>f(2)故选C点评:此题考查了函数与不等式之间的联系,二次函数的对称性及利用对称性比较函数值的大小.11.(2010•大连模拟)已知函数y=x2﹣4|x|+5在(﹣∞,a)内单调递减,则实数a的取值范围是()A.a≥﹣2 B.a≤﹣2 C.a≥0 D.a≤2考点:二次函数的性质.专题:计算题;数形结合.分析:先对函数y=x2﹣4|x|+5取绝对值,画出其对应的图象,利用图象来找实数a的取值范围即可.解答:解:因为y=x2﹣4|x|+5=其图象如图.由图得,函数y=x2﹣4|x|+5在(﹣∞,a)内单调递减区间为(﹣∞,﹣2],故实数a的取值范围是a≤﹣2.故选B.点评:本题考查了二次函数的图象,通过图象来找函数的单调区间,数形结合有助于我们的解题,形象直观.12.若函数f(x)=x2+2(a+1)x+2在区间(﹣∞,4]上是减函数,则实数a的取值范围是()A.a<﹣5 B.a≤﹣5 C.a>﹣5 D.a≥﹣5考点:二次函数的性质.专题:计算题;函数的性质及应用.分析:由题意可得﹣(a+1)≥4,由此解得a的取值范围.解答:解:由题意可得,﹣(a+1)≥4∴a≤﹣5故选B点评:本题主要考查求二次函数的单调性,属于基础题.13.已知二次函数f(x)=a(x﹣m)(x﹣n)(m<n),若不等式f(x)>0的解集是(m,n)且不等式f(x)+2>0的解集是(α,β),则实数m、n、α、β的大小关系是()A.m<α<β<n B.α<m<n<βC.m<α<n<βD.α<m<β<n考点:二次函数的性质.专题:计算题.分析:令g(x)=f(x)+2,因f(x)=a(x﹣m)(x﹣n)>0的解集是(m,n),说明a为负数,再根据图象变换的性质可知f(x)的图象是由g(x)向下平移得来的,α、β是g(x)=0的两根,m和n是f(x)=0的两根,画出图象,则可得到答案.解答:解:令g(x)=f(x)+2=a(x﹣α)(x﹣β),f(x)=a(x﹣m)(x﹣n)则f(x)的图象是由g(x)向下平2个单位长度移得来的,依题意可知a,b是g(x)=0的两根,m和n是f(x)=0的两根,α、β是g(x)=0的两根作出图象如图,可得α<m<n<β,故选B.点评: 本题主要考查了一元二次方程根的分布与系数的关系,采用数形结合的方法是解决本题的关键.考查了生分析问题和解决的能力,不失为一道成功的考题.14.已知函数f (x )=﹣x 2+ax+b 2﹣b+1,(a ,b ∈R )对任意实数x 都有f (1﹣x )=f (1+x )成立,若当x ∈[﹣1,1]时,f (x )>0恒成立,则b 的取值范围是( )A . ﹣1<b <0B . b >2C . b >2或b <﹣1D . b <﹣1考点:二次函数的性质;函数的图象. 专题:计算题. 分析:先根据条件“对任意实数x 都有f (1﹣x )=f (1+x )成立”得到对称轴,求出a ,再研究函数f (x )在[﹣1,1]上的单调性,求出函数的最小值,使最小值大于零即可.解答:解:∵对任意实数x 都有f (1﹣x )=f (1+x )成立, ∴函数f (x )的对称轴为x=1=,解得a=2,∵函数f (x )的对称轴为x=1,开口向下,∴函数f (x )在[﹣1,1]上是单调递增函数,而f (x )>0恒成立,f (x )min =f (﹣1)=b 2﹣b ﹣2>0,解得b <﹣1或b >2,故选C点评:本题主要考查了函数恒成立问题,二次函数在给定区间上恒成立问题必须从开口方向,对称轴,判别式及端点的函数值符号4个角度进行考虑.15.已知函数,若f (2a+1)>f (a ),则实数a 的取值范围是( ) A . B . (﹣∞,﹣3)∪(﹣1,+∞) C . D . (﹣3,﹣1)考点: 二次函数的性质.专题: 函数的性质及应用.分析: 先判断函数f (x )的奇偶性和单调性,求参数的取值范围.解答: 解:因为函数,所以作出函数f (x )的图象,则函数f (x )为偶函数,且在(+∞)上单调递增.则f (2a+1)>f (a ),等价为f (|2a+1|)>f (|a|),所以|2a+1|>|a|,平方得4a2+4a+1>a2,即3a2+4a+1>0,解得.故选A.点评:本题主要考查二次函数的图象和性质,以及函数单调性的应用.16.不等式(m﹣2)x2+2(m﹣2)x﹣4≤0对一切实数x都成立,则实数m的取值范围是()A.﹣2<m<2 B.﹣2≤m≤2 C.﹣2≤m<2 D.﹣2<m≤2考点:二次函数的性质.分析:等式(m﹣2)x2+2(m﹣2)x﹣4≤0对一切实数x都成立,包括两种情况,一是二次项及一次项系数全为0,常数项小于等于0,而是二次项系数小于0,△小于等于0,分类讨论后,综合讨论结果,即可得到答案.解答:解:当m=2时,不等式(m﹣2)x2+2(m﹣2)x﹣4≤0可化为﹣4≤0对一切实数x都成立,故m=2满足条件;当m<2时,若不等式(m﹣2)x2+2(m﹣2)x﹣4≤0对一切实数x都成立,则解得﹣2≤m<2综上满足条件的实数m的取值范围是﹣2≤m≤2故选B点评:本题考查的知识点是二次函数的性质,其中解答时容易忽略m=2时,不等式(m﹣2)x2+2(m﹣2)x﹣4≤0可化为﹣4≤0对一切实数x都成立,而错选C17.f(x)=ax2+bx+c,不等式f(x)>0的解集是{x|x1<x<x2},f(0)>0,则f(x1+x2)的值()A.小于0 B.大于0C.等于0 D.以上三种情况都有可能考点:二次函数的性质.专题:计算题.分析:根据已知条件得到a<0且x1,x2是ax2+bx+c=0的两个根,由韦达定理得到x1+x2=﹣,因为f(0)>0,得到c>0,得到f(x1+x2)=.解答:解:因为不等式f(x)>0的解集是{x|x1<x<x2},所以a<0且x1,x2是ax2+bx+c=0的两个根,所以x1+x2=﹣,又因为f(0)>0,所以c>0,所以f(x1+x2)=故选B.点评:本题考查二次不等式的解集形式、与相应的二次方程的根的关系;考查二次方程的韦达定理,属于基础题.18.(2012•山西模拟)二次函数f(x)满足f(4+x)=f(﹣x),且f(2)=1,f(0)=3,若f(x)在[0,m]上有最小值1,最大值3,则实数m的取值范围是()A.[2,4]B.(0,2]C.(0,+∞)D.[2,+∞)考点:二次函数的性质.专题:计算题.分析:由f(4+x)=f(﹣x)可知f(4)=f(0)=3是最大值,f(2)=1是最小值,而f(x)在[0,m]上有最小值1,最大值3,说明m至少得是2,进而可得到答案.解答:解:由f(4+x)=f(﹣x),可知f(4)=f(0)=3是最大值,而f(2)=1是最小值,而f(x)在[0,m]上有最小值1,最大值3,则m必须得有2,又f(4)=f(0)=3,故m也可等于4,故答案选A.点评:本题主要考查二次函数的值域和单调性.19.(2011•绵阳一模)已知函数f(x)=ax2+2ax+4(a>0),若x1<x2,x1+x2=0,则()A.f(x1)<f(x2)B.f(x1)=f(x2)C.f(x1)>f(x2)D.f(x1)与f(x2)的大小不能确定考点:二次函数的性质.分析:函数值作差进行比较大小,根据条件判f(x1)﹣f(x2)的正负即可.解答:解:由题意,可有f(x1)﹣f(x2)=(ax12+2ax1+4)﹣(ax22+2ax2+4)=a(x1﹣x2)(x1+x2)+2a(x1﹣x2)=a(x1﹣x2)(x1+x2+2)因为a>0,x1<x2,x1+x2=0所以a>0,x1﹣x2<0,x1+x2+2>0所以f(x1)﹣f(x2)<0即f(x1)<f(x2).故选A.点评:本题主要考查:函数值作差进行比较大小,根据条件判式子的正负.20.二次函数f(x)=ax2﹣2(a﹣1)x+2在区间(4,+∞)内是减函数,则实数a的取值范围为()D.a=﹣3A.B.C.且a≠0考点:二次函数在闭区间上的最值.专题:综合题;分类讨论.分析:考虑两种情况:当a大于0时,得出二次函数的图象为开口向上的抛物线,根据二次函数的增减性得到函数在区间(4,+∞)内是减函数不可能;当a小于0时,得出二次函数的图象为开口向下的抛物线,根据二次函数的顶点坐标公式求出此函数的顶点坐标,因为二次函数f(x)=ax2﹣2(a﹣1)x+2在区间(4,+∞)内是减函数,经过判断得出关于a的不等式,求出不等式的解集即可得到实数a的取值范围.解答:解:当a>0时,得到二次函数为开口向上的抛物线,与二次函数在区间(4,+∞)内是减函数矛盾,a取空集;当a<0时,二次函数f(x)=ax2﹣2(a﹣1)x+2在区间(4,+∞)内是减函数,得到x=≤4,解得:a≤﹣.故选B点评:此题考查学生灵活运用二次函数的图象与性质解决实际问题,考查了分类讨论的数学思想,是一道综合题.21.函数y=﹣x2﹣4x+1,x∈[﹣3,3]的值域为()A.[﹣∞,5]B.[5,+∞]C.[﹣20,5]D.[﹣4,5]考点:二次函数在闭区间上的最值.专题:计算题.分析:先求出函数的对称轴方程,根据到对称轴距离的远近即可求出其值域.解答:解:∵f(x)=y=﹣x2﹣4x+1=﹣(x+2)2+5对称轴为x=﹣2,开口向下.所以在[﹣3,﹣2]上递增,在[﹣2,3]上递减.且3离对称轴距离远.所以当x=3时,有最小值为f(3)=﹣20.当x=﹣2时,函数有最大值为f(2)=5.即值域为[﹣20,5].故选C.点评:本题主要考查二次函数在闭区间上的最值问题.二次函数在闭区间上的最值问题,一定要讨论对称轴和间的位置关系.22.实数x、y满足3x2+2y2=6x,则x2+y2的最大值为()A.B.4C.D.5考点:二次函数在闭区间上的最值.专题:计算题.分析:把3x2+2y2=6x化为y2=3x﹣x2,求出x的取值范围,并代入x2+y2中消去y,然后根据二次函数的性质求出它的最值即可.解答:解:∵实数x、y满足3x2+2y2=6x,∴y2=3x﹣x2≥0,因此0≤x≤2,∴x2+y2=3x﹣x2=(x﹣3)2,0≤x≤2,∴当x=2时,x2+y2的最大值为4.故选B.点评:本题主要考查二次函数在闭区间上的最值的知识点,解答本题的关键是熟练掌握二次函数的性质,此题难度不大.属中档题.23.已知函数f(x)=x2﹣2x+5,x∈[2,4],若存在实数x∈[2,4]使m﹣f(x)>0成立,则m的取值范围为()A.(5,+∞)B.(13,+∞)C.(4,+∞)D.(﹣∞,13)考点:二次函数在闭区间上的最值.专题:计算题.分析:存在实数x∈[2,4],使m﹣f(x)>0成立,等价于x∈[2,4],m>f(x)min.利用配方法求二次函数的最小值,即可得结论.解答:解:存在实数x∈[2,4],使m﹣f(x)>0成立,等价于x∈[2,4],m>f(x)min.∵函数f(x)=x2﹣2x+5=(x﹣1)2+4∴函数的图象开口向上,对称轴为直线x=1∵x∈[2,4],∴x=2时,f(x)min=f(2)=22﹣2×2+5=5∴m>5故选A.点评:本题考查的重点是存在性问题,解题的关键是求二次函数的最小值,存在实数x∈[2,4],使m﹣f(x)成立,等价于x∈[2,4],m>f(x)min.易错点是与对于任意实数x∈[2,4],使m﹣f(x)>0成立问题混淆.二.解答题(共7小题)24.已知函数f(x)=|x2﹣2x|﹣1(1)在坐标系中画出函数f(x)的简图;(2)观察图象,写出函数f(x)的单调增区间及函数f(x)的零点个数;(3)利用图象,写出使方程f(x)+a=0有四个不同解的实数a的取值范围.考点:二次函数的图象.专题:数形结合;分类讨论.分析:(1)分类讨论,去掉绝对值,化简函数的解析式,结合函数的解析式画出函数的图象.(2)结合图象写出函数的单调增区间,以及函数的零点个数.(3)要使方程f(x)+a=0有四个不同解,需函数f(x)的图象和y=﹣a 有4个交点,结合图象列出不等式,求得实数a的取值范围.解答:解:(1)∵函数f(x)=|x2﹣2x|﹣1,当x<0或x>2时,函数f(x)=x2﹣2x﹣1,当0≤x≤2时,f(x)=﹣x2 +2x﹣1,如右图所示.(2)由函数的图象可得,增区间为[0,1],[2,+∞),函数f(x)有三个零点.(3)要使方程f(x)+a=0有四个不同解,需函数f(x)的图象和y=﹣a 有4个交点,∴﹣1<﹣a<0,∴0<a<1.点评:本题考查由函数的解析式做出函数图象的方法,体现了分类讨论、数形结合的数学思想.25.(2011•徐汇区三模)已知函数f(x)=|x|•(a﹣x),a∈R.(1)当a=4时,画出函数f(x)的大致图象,并写出其单调递增区间;(2)若函数f(x)在x∈[0,2]上是单调递减函数,求实数a的取值范围;(3)若不等式|x|•(a﹣x)≤6对x∈[0,2]恒成立,求实数a的取值范围.考点:二次函数的图象;函数单调性的性质;函数恒成立问题.专题:计算题.分析:(1)首先对x分类讨论,去掉绝对值符号;然后根据二次函数的图象特征,即可画出其草图;而其单调性,观察图象显而易见.(2)由x∈[0,2]易于把函数f(x)化简为二次函数,再把其单调减区间表示出来,进而根据f(x)在x∈[0,2]上是单调递减函数,可得a的不等式,则a可求.(3)要用分离参数的方法把a分离出来,需对x=0单独讨论;由于0<x≤2时,恒成立,则利用导数法求出x+的最小值即可.解答:解:(1)a=4时,,f(x)的图象如图所示,所以其单调递增区间为[0,2].(2)x∈[0,2]时,∴f(x)在(﹣∞,)上单调递增,在[,+∞)上单调递减.又函数f(x)在x∈[0,2]上是单调递减函数,所以.解得a≤0.(3)当x=0时,0≤6成立,所以a∈R;当0<x≤2时,,即,只要设,则g′(x)=1﹣,∴g(x)在上递减,在上递增,∴当0<x≤2时,g(x)min=g(2)=5.所以a≤5.综上,|x|(a﹣x)≤6对x∈[0,2]恒成立的实数a的取值范围是(﹣∞,5].点评:二次函数的图象与性质是解决更复杂函数问题的前提,必须把此基础打牢;分离参数法是求解不等式恒成立问题的常用思想方法,它是通过分离参数转化为不含参数的函数的最值题求解.26.(2013•宁德模拟)已知二次函数f(x)=ax2+bx+1为偶函数,且f(﹣1)=﹣1.(I )求函数f(x)的解析式;(II)若函数g(x)=f(x)+(2﹣k)x在区间(﹣2,2)上单调递增,求实数k的取值范围.考点:二次函数的性质.专题:函数的性质及应用.分析:(I)由偶函数的图象关于y轴对称,可得b值,进而根据f(﹣1)=﹣1,可得a值,进而可得函数f(x)的解析式;(II)若函数g(x)=f(x)+(2﹣k)x在区间(﹣2,2)上单调递减,可得区间(﹣2,2)在对称轴的左侧,进而得到实数k的取值范围解答:解:(I)∵二次函数f(x)=ax2+bx+1为偶函数,故函数f(x)的图象关于y轴对称即x=﹣=0,即b=0又∵f(﹣1)=a+1=﹣1,即a=﹣2.故f(x)=﹣2x2+1(II)由(I)得g(x)=f(x)+(2﹣k)x=﹣2x2+(2﹣k)x+1故函数g(x)的图象是开口朝下,且以x=为对称轴的抛物线故函数g(x)在(﹣∞,]上单调递增,又∵函数g(x)在区间(﹣2,2)上单调递增,∴≥2解得k≤﹣6故实数k的取值范围为(﹣∞,﹣6]点评:本题考查的知识点是函数解析式的求法,二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.27.(2011•武进区模拟)设函数f(x)=ax2+bx+1,a>0,b∈R 的最小值为﹣a,f(x)=0两个实根为x1、x2.(1)求x1﹣x2的值;(2)若关于x的不等式f(x)<0解集为A,函数f(x)+2x在A上不存在最小值,求a 的取值范围;(3)若﹣2<x1<0,求b的取值范围.考点:二次函数的性质.专题:计算题;压轴题.分析:(1)由,知,由此能求出x1﹣x2的值.(2)设x1<x2,f(x)+2x=ax2﹣(a(x1+x2)﹣2)x+ax1x2,在(x1,x2)不存在最小值,由此能求出a的取值范围.(3)由,,知.由此能求出b的取值范围.解答:解:(1)∵∴∴x1﹣x2=±2.(4分)(2)不妨设x1<x2;f(x)+2x=ax2﹣(a(x1+x2)﹣2)x+ax1x2,在(x1,x2)不存在最小值,∴或(8分)又x2﹣x1=2,a>0∴0<a≤1(10分)(3)∵,∴(12分)又﹣2<x1<0∴x2=x1﹣2∴在x1∈(﹣2,0)上为增函数.∴(16分)点评:本昰考查二次函数的性质,解题时要认真审题,仔细解答,注意合理地进行等价转化.28.(2009•惠州模拟)(1)已知二次函数f(x)=ax2+bx+c,满足f(0)=f(1)=0,且f(x)的最小值是,求f(x)的解析式;(2)设f(x)=x2﹣2ax+2,当x∈[﹣1,+∞)时,f(x)≥a恒成立,求实数a的取值范围.考点:二次函数的性质.专题:函数的性质及应用.分析:(1)利用待定系数法求a,b,c.(2)要求当x∈[﹣1,+∞)时,f(x)≥a恒成立,实质是求函数f(x)在[﹣1,+∞)上的最小值即可.解答:解:(1)由二次函数图象的对称性,可设,(a>0)又f(0)=0,∴a=1.故f(x)=x2﹣x…(4分)(2)要使x∈[﹣1,+∞),f(x)≥a恒成立⇔f(x)min≥a,当a≤﹣1时,f(x)min=f(﹣1)=3+2a…(6分)即3+2a≥a⇔a≥﹣3故此时﹣3≤a≤﹣1…(8分)当a>﹣1时,,若x∈[﹣1,+∞),f(x)≥a恒成立⇔f(x)min≥a,即2﹣a2≥a⇔a2+a﹣2≤0⇔﹣2≤a≤1故此时﹣1<a≤1…(12分)综上当﹣3≤a≤﹣1时,x∈[﹣1,+∞),f(x)≥a恒成立…(14分)点评:本题考查了利用待定系数法求二次函数的解析式,以及二次函数在给定区间上的最值求法,要求利用数形结合的思想去求解.29.(2012•成都一模)已知函数f(x)=x2﹣2mx+2﹣m.(I)若不等式f(x)≥x﹣mx在R上恒成立,求实数m的取值范围;(II)记A={y|y=f(x),0≤x≤1},且A⊆[0,+∞],求实数m的最大值.考点:二次函数在闭区间上的最值;二次函数的性质.专题:函数的性质及应用.分析:(I)由题意可得x2﹣2mx+2﹣m≥x﹣mx在R上恒成立,即x2 ﹣(m+1)x+2﹣m≥0恒成立,由判别式小于或等于零求得实数m的取值范围.(II)由题意可得x2﹣2mx+2﹣m≥0 在[0,1]上恒成立,分m<0、0≤m≤1、m>1三种情况分别求出实数m的取值范围,再去并集,即得所求.解答:解:(I)由题意可得x2﹣2mx+2﹣m≥x﹣mx在R上恒成立,即x2 ﹣(m+1)x+2﹣m≥0恒成立,∴△=(m+1)2﹣4(2﹣m)≤0,解得﹣7≤m≤1,故实数m的取值范围为[﹣7,1].(II)由题意可得,A={y|y=f(x),0≤x≤1}={y|y≥0 在[0,1]上恒成立},即x2﹣2mx+2﹣m≥0 在[0,1]上恒成立.当m<0时,y=f(x)=x2﹣2mx+2﹣m在[0,1]上的最小值为f(0)=2﹣m≥0,m≤2.当0≤m≤1时,y=f(x)=x2﹣2mx+2﹣m在[0,1]上的最小值为f(m)=2﹣m﹣m2≥0,解得﹣2≤m≤1,故此时0≤m≤1.当m>1时,y=f(x)=x2﹣2mx+2﹣m在[0,1]上的最小值为f(1)=﹣3m+3≥0,m≤1.故此时m的值不存在.综上,实数m的取值范围为(﹣∞,1],故实数m的最大值为1.点评:本题主要考查求二次函数在闭区间上的最值,求函数的最值,二次函数的性质的应用,体现了分类讨论数学思想,属于中档题.30.已知函数f(x)=﹣2x2+(a+3)x+1﹣2a,g(x)=x(1﹣2x)+a,其中a∈R.(1)若函数f(x)是偶函数,求函数f(x)在区间[﹣1,3]上的最小值;(2)用函数的单调性的定义证明:当a=﹣2时,f(x)在区间上为减函数;(3)当x∈[﹣1,3],函数f(x)的图象恒在函数g(x)图象上方,求实数a的取值范围.考点:二次函数在闭区间上的最值;函数单调性的判断与证明;奇偶性与单调性的综合.专题:计算题.分析:(1)根据偶函数的定义f(x)=f(﹣x),求出a的值和函数解析式,进而求出最小值;(2)先设x1<x2 ,x1、x2∈,推出f(x1)>f(x2),从而可以证明结论;(3)首先由题意得出(a+2)x+1﹣3a>0在[﹣1,3]上恒成立.转化成求函数h(x)=(a+2)x+1﹣3a的最小值,要采取分类讨论次函数的斜率与单调性的关系,求出a的取值范围.解答:解:(1)函数f(x)是偶函数∴f(x)=f(﹣x),即:﹣2x2+(a+3)x+1﹣2a=﹣2x2﹣(a+3)x+1﹣2a∴a=﹣3则f(x)=﹣2x2+7∴对称轴为x=0∴最小值f(3)=﹣11(2)∵a=﹣2∴f(x)=﹣2x2+x+5设x1<x2 ,x1、x2∈f(x1)﹣f(x2)=﹣2x12+x1+5+2x22﹣x2﹣5=(x2﹣x1)[2(x1+x2)﹣1]∵x1<x2 ,∴x2>x1∵x1、x2∈∴2(x1+x2)>1∴2(x1+x2)﹣1>0∴f(x1)﹣f(x2)>0 即f(x1)>f(x2)∴当a=﹣2时,f(x)在区间上为减函数.(3)由题意得﹣2x2+(a+3)x+1﹣2a>x(1﹣2x)+a在[﹣1,3]上恒成立.即(a+2)x+1﹣3a>0在[﹣1,3]上恒成立.设h(x)=(a+2)x+1﹣3a,①若a>﹣2,该函数是增函数,只需f(﹣1)>0即可,则f(﹣1)=﹣4a﹣1>0,解得a<﹣,所以﹣2<a<﹣;②若a<﹣2,该函数是减函数,只需f(3)>0即可,则f(3)=7>0,,所以a<﹣2满足;③若a=﹣2,则该函数是y=7,它总在x轴上方,所以a=﹣2满足要求.故a的取值范围是a<.。
5含绝对值的二次函数(教案及练习)
含绝对值的二次函数含绝对值的二次函数其本质是分段函数,研究含绝对值的二次函数就是分段研究二次函数的局部性态.设定分类讨论的标准是问题解决的前提条件,数形结合则是问题能否正确解决的关键 所在.例1.解下列各题:(1)(2010全国)直线1=y 与曲线a x x y +-=2有4个交点,则实数a 的取值范围是 .(2)(2008浙江)已知t 为常数,函数t x x y --=22在区间]3,0[上的最大值为2,则=t .(3)设集合{}{}2,,022<=∈<++-=x x B R a a a x x x A ,若Φ≠A 且B A ⊆,则实数a 的取值范围是 .例2.设函数R x a x x x f ∈+-+=,1)(2(1)判断函数)(x f 的奇偶性;(2)求函数)(x f 的最小值.例3.已知函数1)(,1)(2-=-=x a x g x x f .(1)若关于x 的方程)()(x g x f =只有一个实数解,求实数a 的取值范围;(2)若R x ∈时,)()(x g x f ≥恒成立,求实数a 的取值范围;(3)求函数)()()(x g x f x h +=在区间]2,2[-上的最大值.例4.设a 为实数,函数2()2()f x x x a x a =+--.(1)若(0)1f ≥,求实数a 的取值范围;(2)求()f x 的最小值.5.含绝对值的二次函数班级 姓名一、综合练习1.设b a <<0,且xx x f ++=11)(,则下列大小关系式成立的是( ) (A ))()2()(ab f b a f a f <+< (B ))()()2(ab f b f b a f <<+ (C ))()2()(a f b a f ab f <+< (D ))()2()(ab f b a f b f <+< 2.已知{}n a 为等差数列,n S 是{}n a 的前n 项和,若9843=++a a a ,则9S = .3.直线750x y +-=截圆221x y +=所得的两段弧长之差的绝对值是 .4.函数y k x a b =--+与y k x c d =-+的图象1(k 0k )3>≠且交于两点)3,8(),5,2(,则c a +的值是_______________. 5.任意满足305030x y x y x -+≤⎧⎪+-≥⎨⎪-≤⎩的实数,x y ,若不等式222()()a x y x y +<+恒成立,则实数a 的取值范围是 .6.已知双曲线22221(0,0)x y a b a b-=>>,N M ,是双曲线上关于原点对称的两点,P 是双曲线上的动点,且直线PN PM ,的斜率分别为12,k k ,021≠k k ,若21k k +的最小值为1,则双曲线的离心率为 .二、本讲练习1.设函数c bx x x x f ++=)(给出下列四个命题:① 0=c 时,)(x f y =是奇函数; ② 0,0>=c b 时,方程0)(=x f 只有一个实根; ③ )(x f y =的图象关于),0(c 对称; ④ 方程0)(=x f 至多有两个实根.其中正确的命题是 ( )(A )①④ (B )①③ (C )①②③ (D )①②④2.若不等式21x x a <-+的解集是区间()33-,的子集,则实数a 的范围为 . 3.设a 为实数,函数a x x x f -=)(,求函数)(x f 在]2,2[-上的最大值.4.己知2)(,0bx ax x f a -=>函数,(1)();2,10b a x f R x b ≤≤∈>证明:都有时,若对任意当(2)当 1>b 时,证明:对任意]1,0[∈x ,1|)(|≤x f 的充要条件是:b a b 21≤≤-.5.已知函数)1(52)(2>+-=a ax x x f .(1)若函数)(x f 的定义域和值域均为],1[a ,求实数a 的值;(2)若)(x f 在区间]2,(-∞上是减函数,且对]1,1[,21+∈∀a x x ,总有4)()(21≤-x f x f ,求实数a 的取值范围.6.已知函数2()(1)||f x x x x a =+--.(1)若1a =-,解方程()1f x =;(2)若函数()f x 在R 上单调递增,求实数a 的取值范围;(3)若1a <且不等式()23f x x ≥-对一切实数x R ∈恒成立,求a 的取值范围.6.已知函数2()(1)||f x x x x a =+--.(1)若1a =-,解方程()1f x =;(2)若函数()f x 在R 上单调递增,求实数a 的取值范围;(3)若1a <且不等式()23f x x ≥-对一切实数x R ∈恒成立,求a 的取值范围.解:(1)当1-=a 时,有⎩⎨⎧-<-≥-=1,11,12)(2x x x x f ………2分 当1-≥x 时,1122=-x ,解得:1=x 或1-=x当1-<x 时,1)(=x f 恒成立 ………4分∴方程的解集为:1|{-≤x x 或}1=x ………5分(2)⎩⎨⎧<-+≥++-=a x a x a a x a x a x x f ,)1(,)1(2)(2 ………7分 若)(x f 在R 上单调递增,则有⎪⎩⎪⎨⎧>+≤+0141a a a ,解得:31≥a ………10分 (3)设)32()()(--=x x f x g ,则⎩⎨⎧<+--≥+++-=a x a x a a x a x a x x g 3)1(,3)3(2)(2 即不等式0)(≥x g 对一切实数R x ∈恒成立 ………11分∵1<a∴当a x <时,)(x g 单调递减,其值域为:),32(2∞++-a a∵22)1(3222≥+-=+-a a a ,∴0)(≥x g 恒成立 ………13分当a x ≥时,∵1<a ,∴43+<a a , ∴08)3(3)43()(2min ≥+-+=+=a a a g x g ,得53≤≤-a∵1<a ,∴13<≤-a ………15分 综上:13<≤-a ………16分。
培优专题01 二次函数含参数最值问题(解析版)高一数学同步教学题型(人教A版2019必修第一册)
培优专题01二次函数含参数最值问题【题型目录】题型一:定轴动区间问题题型二:定区间动轴问题题型三:含绝对值二次函数问题题型四:定义域为[]n m ,,值域为[]kn km ,求参数问题题型五:二次函数值域包含性问题【典型例题】题型一:定轴动区间问题【例1】已知二次函数满足2()(0)f x ax bx c a =++≠,满足(1)()21f x f x x +-=-,且(0)0f =.(1)求()f x 的解析式;(2)当[]()2R x t t t ∈+∈,时,求函数()f x 的最小值()g t (用t 表示).【答案】(1)()22f x x x=-(2)()222,11,112,1t t t g t t t t t ⎧-≥⎪=--<<⎨⎪+≤-⎩【分析】(1)由题意可得0c =,再代入(1)()21f x f x x +-=-到2()(0)f x ax bx a =+≠,化简可求出,a b ,从而可求出()f x 的解析式.(2)求出抛物线的对称轴,然后分1,21t t ≥+≤和11t t <<+三种情况求解函数的最小值.【详解】(1)因为二次函数2()(0)f x ax bx c a =++≠,且满足(0)0f =,(1)()21f x f x x +-=-,所以0c =,()()221121221a x b x ax bx x ax a b x +++--=-⇒++=-,所以221a a b =⎧⎨+=-⎩,得12a b =⎧⎨=-⎩.所以()22f x x x =-.(2)()22f x x x =-是图象的对称轴为直线1x =,且开口向上的二次函数.当1t ≥时,()22f x x x =-在[]()2R x t t t ∈+∈,上单调递增,则()()2min 2f x f t t t ==-;当21t +≤即1t ≤-时,()22f x x x =-在[]()2R x t t t ∈+∈,上单调递减,则()()()()22min 22222f x f t t t t t =+=+-+=+;当11t t <<+,即11t -<<时,()()()2min 11211f x f ==-=-;综上所述()222,11,112,1t t t g t t t t t ⎧-≥⎪=--<<⎨⎪+≤-⎩.【例2】已知定义在R 上的函数()f x ,满足()226f x x x -=--.(1)求()f x 的解析式.(2)若()f x 在区间[]0,m 上的值域为25,44⎡⎤--⎢⎥⎣⎦,写出实数m 的取值范围(不必写过程).(3)若()f x 在区间[],2t t +上的最小值为6,求实数t 的值.【例3】对于函数()f x ,若存在0R x ∈,使得()00f x x =成立,则称0x 为()f x 的不动点,已知函数2()(2)4f x ax b x =+++的两个不动点分别是-2和1.(1)求,a b 的值及()f x 的表达式;(2)当函数()f x 的定义域是[,1]t t +时,求函数()f x 的最大值()g t .【例4】已知函数()f x 为二次函数,不等式()0f x >的解集是()1,5,且()f x 在区间[1,4]-上的最小值为12-.(1)求()f x 的解析式;(2)设函数()f x 在[,1]t t +上的最大值为()g t ,求()g t 的表达式.【答案】(1)()265f x x x =-+-(2)()224,24,2365,3t t tg t t t t t ⎧-+≤⎪=<<⎨⎪-+-≥⎩【分析】(1)根据题意,设()()1(5)f x a x x =--,可得函数的对称轴3x =,再根据函数在[]1,4-上的最小值,求出a ,可得函数()f x 数的表达式;(2)分13t + 时、3t 时和23t <<时三种情况,分别讨论函数的单调性,可得相应情况下函数的最大值,最后综合可得()g t 的表达式.。
初三数学二次函数知识点总结材料及经典习题含问题详解
初三数学 二次函数知识点总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质: 上加下减。
3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 四、二次函数()2y a x h k =-+与2y a x b x c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a<-时,y 随x 的增大而减小; 当2bx a>-时,y 随x 的增大而增大; 当2bx a=-时,y 有最小值244ac b a -.2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a-.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式(交点式):12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.(同左异右 b 为0对称轴为y 轴)3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负.总结起来,c 决定了抛物线与y 轴交点的位置.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.. ② 当0∆=时,图象与x 轴只有一个交点;③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;九矿新概念辅导班 二次函数对应练习试题一、选择题1. 二次函数247y x x =--的顶点坐标是( )A.(2,-11)B.(-2,7)C.(2,11)D. (2,-3) 2. 把抛物线22y x =-向上平移1个单位,得到的抛物线是( )A. 22(1)y x =-+ B. 22(1)y x =-- C. 221y x =-+ D. 221y x =-- 3.函数2y kx k =-和(0)ky k x=≠在同一直角坐标系中图象可能是图中的( )4.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论: ①a,b 同号;②当1x =和3x =时,函数值相等;③40a b +=④当2y =-时, x 的值只能取0.其中正确的个数是( )A.1个B.2个C. 3个D. 4个5.已知二次函数2(0)y ax bx c a =++≠的顶点坐标(-1,-3.2)及部分图象(如图),由图象可知关于x 的一元二次方程20ax bx c ++=的两个根分别是121.3x x ==和( )A.-1.3 B.-2.3 C.-0.3 D.-3.36. 已知二次函数2y ax bx c =++的图象如图所示,则点(,)ac bc 在( )A .第一象限B .第二象限C .第三象限D .第四象限 7.方程222x x x-=的正根的个数为( ) A.0个 B.1个 C.2个. 3 个8.已知抛物线过点A(2,0),B(-1,0),与y 轴交于点C,且OC=2.则这条抛物线的解析式为A. 22y x x =-- B. 22y x x =-++C. 22y x x =--或22y x x =-++ D. 22y x x =---或22y x x =++二、填空题9.二次函数23y x bx =++的对称轴是2x =,则b =_______。
二次函数知识点及例题详解最终
二次函数知识点及例题详解最终文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]二次函数知识点总结及经典习题一、二次函数概念:1.二次函数的概念:一般地,形如y ax bx c (a,b,c是常数,a 0 )的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数a 0 ,而b ,c 可以为零.二次函数的定义域是全体实数.2. 二次函数y ax bx c 的结构特征:⑴等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是 2.⑵a ,b ,c 是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1.二次函数基本形式:y ax的性质:2.y ax c 的性质:上加下减。
3.y a x h的性质:左加右减。
4.y a x h k的性质:三、二次函数图象的平移1.平移步骤:⑴将抛物线解析式转化成顶点式y a x h k,确定其顶点坐标h,k;⑵保持抛物线y ax的形状不变,将其顶点平移到h ,k 处,具体平移方法如下:2.平移规律在原有函数的基础上“ h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.四、二次函数y a x h k与y ax bx c的比较从解析式上看,y a x h k与y ax bx c是两种不同的表达形式,后者通过配方可以得到前者,即y a(x+b2a )24ac− b24a,其中h= -b2a,k4ac− b24a五、二次函数y ax bx c 的性质当a 0 时,抛物线开口向上,对称轴为x2a ,顶点坐标为(−b2a,4ac− b24a).当x-b2a时,y随x的增大而减小;当x b2a时,y随x的增大而增大;当x= b2a 时,y有最小值4ac− b24a.当时,抛物线开口向下,对称轴为x-b2a , 顶点坐标为(−b2a,4ac− b24a).当x- b 2a时, y 随 x 的大而增大y;当随 x b 2a时,y 随 x 的增大而减小;当x = b2a时 , y 有最大值4ac − b 24a.六、二次函数解析式的表示方法1.一般式:y ax bx c(a,b,c为常数,a0);2.顶点式:y a(x h)k(a,h,k为常数,a0);3.两根式(交点式):y a(x x)(x x)(a0,x,x是抛物线与x轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即b 4ac 0 时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1.二次项系数a⑴当a 0 时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大;⑵当a 0 时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.2.一次项系数b在二次项系数a确定的前提下,b决定了抛物线的对称轴.(同左异右b为0对称轴为y轴)3.常数项c⑴当c 0 时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;⑵当c 0 时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0 ;⑶当c 0 时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负.总结起来,c 决定了抛物线与y 轴交点的位置.八、二次函数与一元二次方程:1.二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程ax bx c 0 是二次函数y ax bx c 当函数值y 0 时的特殊情况. 图象与x 轴的交点个数:①当b 4ac 0 时,图象与x 轴交于两点Ax1,0,B x2,0(x1x2) ,其中的x1,x 2是一元二次方程ax bx c 0a 0的两根.②当 0 时,图象与x 轴只有一个交点;③当 0 时,图象与x 轴没有交点.1' 当a 0 时,图象落在x 轴的上方,无论x 为任何实数,都有y 0 ;2 ' 当a 0 时,图象落在x 轴的下方,无论x 为任何实数,都有y 0 .2.抛物线y ax bx c 的图象与y 轴一定相交,交点坐标为(0 ,c) ;中考题型例析1. 二次函数解析式的确定例 1 求满足下列条件的二次函数的解析式 (1)图象经过 A(-1,3)、B(1,3)、C(2,6); (2)图象经过 A(-1,0)、B(3,0),函数有最小值-8; (3)图象顶点坐标是(-1,9),与 x 轴两交点间的距离是 6.分析:此题主要考查用待定系数法来确定二次函数解析式.可根据已知条件中的不同条件分别设出函数解析式,列出方程或方程组来求解.(1)解:设解析式为 y=ax 2+bx+c,把 A(-1,3)、B(1,3)、C(2,6)各点代入上式得{3=a −b +c3=a +b +c 6=4a +2b +c 解得 {a =1b =0c =2∴解析式为 y=x 2+2.(2)解法1:由 A(-1,0)、B(3,0)得抛物线对称轴为 x=1,所以顶点为(1,-8). 设解析式为 y=a(x-h)2+k,即 y=a(x-1)2-8.把 x=-1,y=0 代入上式得 0=a(-2)2-8, ∴a=2. 即解析式为 y=2(x-1)2-8,即 y=2x 2-4x-6.解法2:设解析式为 y=a(x+1)(x-3),确定顶点为(1,-8)同上, 把 x=1,y=-8 代入上式得-8=a(1+1)(1-3).解得 a=2, ∴解析式为 y=2x 2-4x-6. 解法 3:∵图象过 A(-1,0),B(3,0)两点,可设解析式为:y=a(x+1)(x-3)=ax 2-2ax-3a. ∵函数有最小值-8.∴4a (−3a )−(2a)24a=-8.又∵a≠0,∴a=2.∴解析式为 y=2(x+1)(x-3)=2x 2-4x-6.(3)解:由顶点坐标(-1,9)可知抛物线对称轴方程是 x=-1, 又∵图象与 x 轴两交点的距离为 6,即 AB=6.由抛物线的对称性可得 A 、B 两点坐标分别为 A(-4,0),B(2,0), 设出两根式 y=a(x-x 1)·(x -x 2),将 A(-4,0),B(2,0)代入上式求得函数解析式为 y=-x 2-2x+8.点评:一般地,已知三个条件是抛物线上任意三点(或任意 3 对 x,y 的值)可设表达式为y=ax 2+bx+c,组成三元一次方程组来求解; 如果三个已知条件中有顶点坐标或对称轴或最值,可选用 y=a(x-h)2+k 来求解;若三个条件中已知抛物线与 x 轴两交点坐标,则一般设解析式为 y=a(x-x 1)(x-x 2). 2. 二次函数的图象例 2 y=ax 2+bx+c(a≠0)的图象如图所示,则点 M(a,bc)在( ).A.第一象限B.第二象限C.第三象限D.第四象限分析:由图可知: 抛物线开口向上 a>0.抛物线与y 轴负半轴相交 c 0b bc>0. 对称轴x2a在y 轴右侧 b 0∴点 M(a,bc)在第一象限. 答案:A.点评:本题主要考查由抛物线图象会确定 a 、b 、c 的符号.例 3 已知一次函数 y=ax+c 二次函数 y=ax 2+bx+c(a≠0),它们在同一坐标系中的大致图象是(). 分析:一次函数 y=ax+c,当 a>0 时,图象过一、三象限;当 a<0 时,图象过二、 四象限;c>0 时, 直线交 y 轴于正半轴; 当 c<0 时, 直线交 y 轴于负半轴; 对于二次函数y= ax 2+bx+c(a≠0)来讲:开口上下决定a 的正负左同右异(即对称轴在y 轴左侧,b 的符号与a 的符号相同;)来判别b 的符号抛物线与y 轴的正半轴或负半轴相交确定c 的正负解:可用排除法,设当 a>0 时,二次函数 y=ax 2+bx+c 的开口向上,而一次函数 y= ax+c 应过一、三象限,故排除 C;当 a<0 时,用同样方法可排除 A;c 决定2 直线与 y 轴交点;也在抛物线中决定抛物线与y 轴交点,本题中c 相同则两函数图象在y 轴上有相同的交点,故排除B.答案:D. 3. 二次函数的性质例 4 对于反比例函数 y=- 2x与二次函数 y=-x 2+3, 请说出他们的两个相同点:①, ②; 再说出它们的两个不同点:① ,②.分析:本小题是个开放性题目,可以从以下几点性质来考虑①增减性②图象的形状③ 最值④自变量取值范围⑤交点等.解:相同点:①图象都是曲线,②都经过(-1,2)或都经过(2,-1); 不同点:①图象形状不同,②自变量取值范围不同,③一个有最大值,一个没有最大值. 点评:本题主要考查二次函数和反比例函数的性质,有关函数开放性题目是近几年命 题的热点.4. 二次函数的应用例 5 已知抛物线 y=x 2+(2k+1)x-k 2+k,(1)求证:此抛物线与 x 轴总有两个不同的交点.(2)设 x 1、x 2 是此抛物线与 x 轴两个交点的横坐标,且满足x 12+x 2=-2k 2+2k+1. ①求抛物线的解析式.②设点 P (m 1,n 1)、Q(m 2,n 2)是抛物线上两个不同的点, 且关于此抛物线的对称轴对称. 求 m+m 的值.分析:(1)欲证抛物线与 x 轴有两个不同交点,可将问题转化为证一元二次方程有两个不相等实数根,故令 y=0,证△>0 即可.(2)①根据二次函数的图象与x 轴交点的横坐标即是一元二次方程的根.由根与系数的关系,求出 k 的值,可确定抛物线解析式;②由 P 、Q 关于此抛物线的对称轴对称得 n 1=n 2, 由 n 1=m 12+m 1,n 2=m 22+m 2得 m 12+m 1=m 22+m 2,即(m 1-m 2)(m 1+m 2+1)=0 可求得 m 1+m 2= - 1.解:(1)证明:△=(2k+1)2-4(-k 2+k)=4k 2+4k+1+4k 2-4k=8k 2+1.2 2 ∵8k 2+1>0,即△>0,∴抛物线与 x 轴总有两个不同的交点.(2) ①由题意得 x 1+x 2=-(2k+1), x 1· x 2=-k 2+k. ∵x 1 2+x 2 2=-2k 2+2k+1,∴(x 1+x 2)2-2x 1x 2=- 2k 2+2k+1, 即(2k+1)2-2(-k 2+k)=-2k 2+k+1, 4k 2+4k+1+2k 2-2k= - 2k 2+2k+1. ∴8k 2=0, ∴k=0,∴抛物线的解析式是 y=x 2+x.②∵点 P 、Q 关于此抛物线的对称轴对称, ∴n 1=n 2.又 n 1=m 12+m 1,n2=m 2+m 2. ∴m 12+m 1=m 2+m 2,即(m 1-m 2)(m 1+m 2+1)=0. ∵P 、Q 是抛物上不同的点, ∴m 1≠m 2,即 m 1-m 2≠0. ∴m 1+m 2+1=0 即 m 1+m 2=-1.点评:本题考查二次函数的图象(即抛物线)与 x 轴交点的坐标与一元二次方程根与系数的关系.二次函数经常与一元二次方程相联系并联合命题是中考的热点.二次函数对应练习试题一、选择题1. 二次函数 y x 24x 7 的顶点坐标是()A.(2,-11)B.(-2,7)C.(2,11)D. (2,-3)2. 把抛物线 y 2x 2 向上平移 1 个单位,得到的抛物线是()A. y 2(x 1)2B. y 2(x 1)2C. y 2x2 1D. y 2x2 13.函数y kx2 k 和y k(k 0) 在同一直角坐标系中图象可能是图中的( ) x4.已知二次函数y ax2 bx c(a 0) 的图象如图所示,则下列结论: ①a,b 同号;②当x1和x 3时,函数值相等;③4a b 0 ④当y 2时, x 的值只能取 0.其中正确的个数是( )个个 C. 3 个个5.已知二次函数y ax2 bx c(a 0) 的顶点坐标(-1,)及部分图象(如图),由图象可知关于x 的一元二次方程ax2 bx c 0 的两个根分别是x1和x2()A.已知二次函数y ax2 bx c 的图象如图所示,则点(ac, bc) 在()A.第一象限B.第二象限C.第三象限D.第四象限7.方程2x x2=2x的正根的个数为()个个个. 3 个8.已知抛物线过点 A(2,0),B(-1,0),与y 轴交于点 C,且 OC=2.则这条抛物线的解析式为A. y x2 x 2B. y x2 x 2C. y x2 x 2 或y x2 x 2D. y x2 x 2 或y x2 x 2二、填空题9.二次函数y x2 bx 3 的对称轴是x 2 ,则b 。
二次函数的应用(含答案)
二次函数的应用练习题1、在一幅长60cm ,宽40cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是y cm 2,设金色纸边的宽度为x cm 2,那么y 关于x 的函数是( )A .y =(60+2x )(40+2x )B .y =(60+x )(40+x )C .y =(60+2x )(40+x )D .y =(60+x )(40+2x )2、把一根长为50cm 的铁丝弯成一个长方形,设这个长方形的一边长为x (cm ),它的面积为y (cm 2),则y 与x 之间的函数关系式为( ) A .y = -x 2+50xB .y =x 2-50xC .y = -x 2+25xD .y = -2x 2+253、某公司的生产利润原来是a 元,经过连续两年的增长达到了y 万元,如果每年增长的百分数都是x ,那么y 与x 的函数关系是()A .y =x 2+a B .y =a (x -1)2C .y =a (1-x )2D .y =a (1+x )2 4、如图所示是二次函数y=2122x -+的图象在x 轴上方的一部分,对于这段图象与x轴所围成的阴影部分的面积,你认为可能的值是( )A .4B .163C .2πD .85、周长8m 的铝合金制成如图所示形状的矩形窗柜,使窗户的透光面积最大,那么这个窗户的最大透光面积是()m 2A .45 B . 83 C .4 D . 566、如图,从地面竖直向上抛出一个小球,小球的高度h (单位:m )与小球运动时间t(单位:s )之间的关系式为h =30t -5t 2,那么小球从抛出至回落到地面所需要的时间是( ) A .6sB .4sC .3sD .2s7、如图,二次函数y = -x 2-2x 的图象与x 轴交于点A 、O ,在抛物线 上有一点P ,满足S △AOP =3,则点P 的坐标是( )A .(-3,-3)B .(1,-3)C .(-3,-3)或(-3,1)D .(-3,-3)或(1,-3)8、向空中发射一枚炮弹,经x 秒后的高度为y 米,且时间与高度的关系为y =ax 2+bx +c (a ≠0)、若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是()A.第8秒B.第10秒C.第12秒D.第15秒9、将进货单价为70元的商品按零售价100元/个售出时每天能卖出20个,若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1个,为了获得最大利润,则应降价()A.5元B.10元C.15元D.20元(2)在销售过程中,水果商发现每天荔枝的销售量m(千克)与销售单价x(元/千克)之间满足关系:m= -10x+120,那么当销售单价定为多少时,每天获得的利润w最大?24、某工厂在生产过程中要消耗大量电能,消耗每千度电产生利润与电价是一次函数关系,经过测算,工厂每千度电产生利润y(元/千度))与电价x(元/千度)的函数图象如图:(1)当电价为600元/千度时,工厂消耗每千度电产生利润是多少?(2)为了实现节能减排目标,有关部门规定,该厂电价x(元/千度)与每天用电量m(千度)的函数关系为x=10m+500,且该工厂每天用电量不超过60千度,为了获得最大利润,工厂每天应安排使用多少度电?工厂每天消耗电产生利润最大是多少元?参考答案1.答案:A解析:解答:长是:60+2x,宽是:40+2x,由矩形的面积公式得则y=(60+2x)(40+2x).故选A.分析:挂图的面积=长×宽,本题需注意长和宽的求法.2.答案:C解析:解答:设这个长方形的一边长为x cm,则另一边长为(25-x)cm,所以面积y=x(25-x)= -x2+25x.故选C.分析:由长方形的面积=长×宽可求解.3.答案:D解析:解答:依题意,得y=a(1+x)2.故选D.分析:本题是增长率的问题,基数是a元,增长次数2次,结果为y,根据增长率的公式表示函数关系式.4.答案:B解析:解答:函数与y 轴交于(0,2)点,与x 轴交于(-2,0)和(2,0)两点,则三点构成的三角形面积S 1=4,则以半径为2的半圆的面积为S 2=π×12×22=2π,则阴影部分的面积S 有:4<S <2π.因为选项A 、C 、D 均不在S 取值范围内.故选 B分析:本题不能硬求面积,要观察找一个范围,然后选一个合适的答案.由图形可知阴影部分的面积介于一个三角形和一个半圆之间,问题就好解决了. 5. 答案:B解析:解答:设窗户的宽是x ,根据题意得S =()832x x -=2348()(04)233x x --+<< ∴当窗户宽是43m 时,面积最大是83m 2 分析:根据窗户框的形状可设宽为x ,其高就是8-32x,所以窗户面积S =()832x x -,再求出二次函数解析式—顶点式即可求出最大面积。
二次函数知识点总结及相关典型题目(含答案)
二次函数知识点总结及相关典型题目第一部分二次函数基础知识相关概念及定义二次函数的概念:一般地,形如2yaxbxc (a b c ,,是常数,0a)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a,而b c ,可以为零.二次函数的定义域是全体实数.二次函数2yaxbxc 的结构特征:⑴等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二次函数各种形式之间的变换二次函数c bx axy 2用配方法可化成:k hx a y2的形式,其中abac kab h4422,.二次函数由特殊到一般,可分为以下几种形式:①2ax y ;②k axy2;③2h x a y ;④k hx a y2;⑤c bx axy 2.二次函数解析式的表示方法一般式:2y axbx c (a ,b ,c 为常数,0a );顶点式:2()y a x h k (a ,h ,k 为常数,0a );两根式:12()()ya xx x x (0a,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240bac时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 二次函数2ax y 的性质二次函数2y ax c 的性质二次函数2ya x h 的性质:二次函数2ya x hk 的性质抛物线2yaxbx c 的三要素:开口方向、对称轴、顶点.a 的符号决定抛物线的开口方向:当0a时,开口向上;当0a 时,开口向下;a 相等,抛物线的开口大小、形状相同.对称轴:平行于y 轴(或重合)的直线记作2b xa.特别地,y 轴记作直线0x .顶点坐标坐标:),(a bac a b4422顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 抛物线c bx axy 2中,c b a ,,与函数图像的关系二次项系数a 二次函数2yaxbxc 中,a 作为二次项系数,显然0a.⑴当0a 时,抛物线开口向上,a 越大,开口越小,反之a 的值越小,开口越大;⑵当0a 时,抛物线开口向下,a 越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.⑴在0a 的前提下,当0b 时,02ba ,即抛物线的对称轴在y 轴左侧;当0b 时,02ba,即抛物线的对称轴就是y 轴;a 的符号开口方向顶点坐标对称轴性质a向上00,y 轴0x 时,y 随x 的增大而增大;0x 时,y随x 的增大而减小;0x 时,y 有最小值0.0a 向下00,y 轴0x 时,y 随x 的增大增大而减小;0x 时,y 随x 的增大而增大;0x 时,y 有最大值0.a 的符号开口方向顶点坐标对称轴性质性质a向上0c,y 轴0x时,y 随x 的增大而增大;0x时,y随x 的增大而减小;0x 时,y 有最小值c .a 向下0c ,y 轴0x时,y 随x 的增大而减小;0x时,y随x 的增大而增大;0x 时,y 有最大值c .a 的符号开口方向顶点坐标对称轴性质a向上h ,X=hxh 时,y 随x 的增大而增大;x h 时,y 随x 的增大而减小;x h 时,y 有最小值0.0a向下h ,X=hxh 时,y 随x 的增大而减小;x h 时,y 随x的增大而增大;xh 时,y 有最大值0.a 的符号开口方向顶点坐标对称轴性质a向上h k,X=hxh 时,y 随x 的增大而增大;xh 时,y 随x 的增大而减小;xh 时,y 有最小值k .a 向下h k,X=hxh 时,y 随x 的增大而减小;xh 时,y 随x 的增大而增大;xh 时,y 有最大值k .当0b 时,02ba,即抛物线对称轴在y 轴的右侧.⑵在0a的前提下,结论刚好与上述相反,即当0b 时,02b a ,即抛物线的对称轴在y 轴右侧;当0b 时,02b a ,即抛物线的对称轴就是y 轴;当0b时,02ba,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.总结:常数项c⑴当0c 时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;⑵当0c 时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;⑶当0c时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负.总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.求抛物线的顶点、对称轴的方法公式法:abac abxa cbx axy 442222,∴顶点是),(ab ac a b4422,对称轴是直线ab x2.配方法:运用配方的方法,将抛物线的解析式化为k hx a y 2的形式,得到顶点为(h ,k ),对称轴是直线h x .运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点. 用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 用待定系数法求二次函数的解析式一般式:c bx axy 2.已知图像上三点或三对x 、y 的值,通常选择一般式.顶点式:k h x a y2.已知图像的顶点或对称轴,通常选择顶点式.交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:21x x x xa y.直线与抛物线的交点y 轴与抛物线c bx axy2得交点为(0, c ).与y 轴平行的直线h x与抛物线c bx axy2有且只有一个交点(h ,c bh ah2).抛物线与x 轴的交点:二次函数c bx axy2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02cbx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点0抛物线与x 轴相交;②有一个交点(顶点在x 轴上)0抛物线与x 轴相切;③没有交点抛物线与x 轴相离.平行于x 轴的直线与抛物线的交点可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax2的两个实数根.一次函数0k n kx y 的图像l 与二次函数02ac bx axy的图像G 的交点,由方程组2y kx n yaxbx c的解的数目来确定:①方程组有两组不同的解时l 与G 有两个交点; ②方程组只有一组解时l 与G 只有一个交点;③方程组无解时l 与G 没有交点. 抛物线与x 轴两交点之间的距离:若抛物线c bx axy2与x 轴两交点为0021,,,x B x A ,由于1x 、2x 是方程02c bx ax的两个根,故ac x x a b x x 2121,aaac bac ab x x x x x x x x AB444222122122121二次函数图象的对称:二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达关于x 轴对称2ya xb xc 关于x 轴对称后,得到的解析式是2y axbx c ;2y a x hk 关于x 轴对称后,得到的解析式是2y a xhk ;关于y 轴对称2y a x b x c 关于y 轴对称后,得到的解析式是2y ax bxc ;2ya x hk 关于y 轴对称后,得到的解析式是2y a x h k ;关于原点对称2y a x b x c 关于原点对称后,得到的解析式是2y axbx c ;2ya xhk 关于原点对称后,得到的解析式是2y a x hk ;关于顶点对称2y a x b x c关于顶点对称后,得到的解析式是222byaxbx ca;2ya xhk 关于顶点对称后,得到的解析式是2ya xhk .关于点m n ,对称2y a x hk 关于点m n ,对称后,得到的解析式是222y a x h m n k总结:根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.二次函数图象的平移平移步骤:⑴将抛物线解析式转化成顶点式2ya xhk ,确定其顶点坐标h k ,;⑵保持抛物线2yax 的形状不变,将其顶点平移到h k ,处,具体平移方法如下:向右(h>0)【或左(h<0)】平移 |k|个单位向上(k>0)【或下(k<0)】平移|k|个单位向右(h>0)【或左(h<0)】平移|k|个单位向右(h>0)【或左(h<0)】平移|k|个单位向上(k>0)【或下(k<0)】平移|k|个单位向上(k>0)【或向下(k<0)】平移|k|个单位y=a(x-h )2+ky=a(x-h )2y=ax 2+ky=ax2平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.根据条件确定二次函数表达式的几种基本思路。
二次函数常用公式、结论及训练
初中函数问题涉及到的常用公式或结论及其训练一、 常用公式或结论(1)横线段的长 = x 大-x 小 =x 右-x 左 =横标之差的绝对值(用于情况不明)。
纵线段的长 = y 大-y 小=y 上-y 下 = 纵标之差的绝对值(用于情况不明)。
(2)点轴距离:点P (x 0 ,y 0)到X 轴的距离为0y ,到Y 轴的距离为o x 。
(3)两点间的距离公式:若A (x 1,y 1),B(x 2,y 2), 则 AB=221212()()x x y y -+- (4)点到直线的距离:点P (x 0 ,y 0)到直线Ax+By+C=0 (其中常数A,B,C 最好化为整系数,也方便计算)的距离为:0022Ax By Cd A B++=+(5)中点坐标公式:若A(x 1,y 1),B (x 2,y 2),则线段AB 的中点坐标为(1212,22x x y y ++)(6)直线的斜率公式:若A (x 1,y 1),B (x 2,y 2)(x 1≠x 2),则直线AB 的斜率为:1212=AB y y k x x --,(x 1≠x 2) (7)两直线平行的结论:已知直线l 1: y=k 1x+b 1 ; l 2: y=k 2x+b 2①若l 1//l 2,则k 1=k 2;②若k 1=k 2,且b 1 ≠b 2,则 l 1//l 2。
(8)两直线垂直的结论:已知直线l 1: y=k 1x+b 1 ; l 2: y=k 2x+b 2 ①若l 1┴l 2,则k 1•k 2 =-1;②若k 1•k 2 =-1,则l 1┴l 2(9)直线与抛物线(或双曲线)截得的弦长公式:【初高中数学重要衔接内容之一,设而不求的思想】直线y=kx+n 与抛物线y=ax 2+bx+c (或双曲线y=m/x )截得的弦长公式是:AB=2121x x k -∙+=2122124)(1x x x x k -+∙+证明如下:设直线y=kx+n 与抛物线y=ax 2+bx+c (或双曲线y=m/x )交于A (x 1, y 1), B (x 2, y 2)两点,由两点间的距离公式可得:AB=221221)()(y y x x -+-,因为A (x 1, y 1),B (x 2, y 2)两点是直线y=kx+n 与抛物线抛物线y=ax 2+bx+c (或双曲线y=m/x )的交点,所以 A (x 1, y 1),B (x 2, y 2)两点也在直线y=kx+n 上,∴y 1=kx 1+n, y 2=kx 2+n, ∴y 1-y 2=(kx 1+n )—(kx 2+n )=kx 1-kx 2=k (x 1-x 2), ∴AB=2212221)()(x x k x x -+-=2212))(1(x x k -+=2121x x k -∙+=2122124)(1x x x x k -+∙+而x 1, x 2显然是直线y=kx+n 与抛物线y=ax 2+bx+c (或双曲线y=m/x )组成方程组后,消去y (用代入法)所得到的那个一元二次方程的两根,从而运用韦达定理x 1+x 2 , x 1∙x 2可轻松求出,进而直线与抛物线(或双曲线)截得的弦长就很容易计算或表示出来。
二次函数绝对值压轴题
1、已知|x-1|+|x-3|=a有两个不相等的实数根,则a的取值范围是?A、a>2B、a=2C、a<2D、a≤2(答案:A,解析:考虑绝对值的几何意义,|x-1|+|x-3|表示x到1和3的距离之和。
当x 在1和3之间时,距离和最小,为2;当x小于1或大于3时,距离和会大于2。
因此,要使方程有两个不相等的实数根,a必须大于2。
)2、若|y|=x2-2x+1,且y有两个不相等的实数取值,则x的取值范围是?A、x≠1B、x<1C、x>1D、x<0或x>2(答案:A,解析:首先,将x2-2x+1化简为(x-1)2,这是一个非负的表达式。
由于|y|也是非负的,所以要使y有两个不相等的实数取值,必须有(x-1)2>0,即x≠1。
)3、已知函数y=|x2-4x+3|,则该函数图像与x轴交点的个数是?A、1B、2C、3D、4(答案:C,解析:首先,解方程x2-4x+3=0,得到x=1或x=3。
然后,考虑绝对值函数的性质,当x2-4x+3=0时,y=0;当x2-4x+3<0时,即1<x<3时,y也为0(因为绝对值会将负数转为正数)。
所以,函数图像与x轴有三个交点:x=1,x=3以及1<x<3区间内的任意一点。
)4、若|x2-9|=|2x-6|,则x的取值范围是?A、x=3B、x=3或x≤-3C、x≥3D、x≤-3或x=3(答案:D,解析:首先,将方程分为两部分考虑:x2-9=2x-6和x2-9=-(2x-6)。
解第一个方程得到x=3;解第二个方程得到x=-3或x=3(但这个解与第一个方程重复,所以舍去)。
然后,考虑绝对值函数的性质,当x≤-3时,两个绝对值表达式都变为正数,方程成立;当x=3时,方程也成立。
所以,x的取值范围是x≤-3或x=3。
)5、已知|x2-2x-3|=m,且m有最小值,则m的最小值是?A、0B、1C、4D、9(答案:C,解析:首先,将x2-2x-3化简为(x-1)2-4。
绝对值与二次函数_一次函数问题的探讨
时, 总有 | g ( x ) | [ 4. ¾记 g( x ) = Kax + b , 求证: 当 | x | [
1 时, 总有 | g( x ) | [ 2K. ¿ 记 h( x ) = cx2 ? bx + a. 求证: 当 | x | [ 1 时, 总有 | h( x ) | [ 2.
+ b + c) + 3( a - b + c) - 3c | [ 1 + 3+ 3
= 7;
3b
若
-
b 2a
>
1,
则顶点不在闭区间
内, 函数最值在端点取得, 由 1b, 2b 知,
当 | x | [ 2, | f ( x ) | [ 7;
若
-
b 2a
[
1,
则
f (-
b 2a
)
=
4ac - b2 4a
| a - b + c | [ 1,
| c | [ 1. 所以 1b | f ( 2) | = | 4a + 2b + c | =
| 3( a + b + c) + ( a - b + c) - 3c | [ 3+ 1
+ 3 = 7;
2b | f (- 2) | = | 4a - 2b + c | = | ( a
f ( 0) = c 言, 由 f ( 1) = a + b + c 可 将系 数表出
f (- 1) = a - b + c
例谈含绝对值的二次函数相关题型再探讨
例谈含绝对值的二次函数相关题型再探讨
含绝对值的二次函数是高等教育中一项重要的数学概念,它最为人们所熟悉,也经常被用在诸多理工类学科中。
含绝对值的二次函数是一种把绝对值表达式和一个二次函数表达式结合起来的函数,用简洁的符号表示,例如y=|x^2|-1。
它
的特点是将一些复杂的问题拆分成更加简单的方程组,只有将它们结合起来才能求得最终解决方案,无论问题的复杂程度有多高,都可综合解决。
使用含绝对值的二次函数主要有以下几类应用。
首先,它可以用作高校对
学生的考核标准。
高校从定义中可以指定一系列绝对值函数,从而根据学生的实际能力来划分学生的分数。
其次,含绝对值的二次函数可以用作高校组织教学时的任务分配标准。
学校可以按照相同的函数模式安排和分配老师的任务,从而保证教学水平的统一。
届时,学生就可以更加密切地联系到老师,并得到学习上的更大帮助。
最后,含绝对值的二次函数可以用来学校管理活动计划。
学校可以划定一
定的绝对值函数,根据CGPA或其他标准,来指导学生和家长安排相应的课外活动,从而实现学校流动轨迹的可控性和有序性。
从以上可以看出,含绝对值的二次函数是高校和高等教育中一项重要的数
学概念,它能够广泛用于考核标准、任务分配标准、活动计划等教学管理中,有效地提高学校管理的效率与秩序,实现教育质量的可持续性提升。
与二次函数有关的含有绝对值不等式的证明问题
与二次函数有关的含有绝对值不等式的证明问题二次函数是最简单的非线性函数之一,而且有着丰富的内容,它对近代数仍至现代数学影响深远,这部分内容为历年来高考数学考试的一项重点考查内容,经久不衰,以它为核心内容的高考试题,形式上也年年有变化,此类试题常常有绝对值,充分运用绝对值不等式及二次函数、二次方程、二次不等式的联系,往往采用直接法,利用绝对值不等式的性质进行适当放缩,常用数形结合,分类讨论等数学思想,以下举例说明。
1.设()c bx ax x f ++=2,当1≤x 时,总有()1≤x f ,求证当2≤x 时,()7≤x f . 证明:由于()x f 是二次函数,()x f 在[]2,2-上最大值只能是()()2,2-f f ,或⎪⎭⎫ ⎝⎛-a b f 2,故只要证明()()72;72≤-≤f f ;当22≤-a b 时,有72≤⎪⎭⎫ ⎝⎛-a b f ,由题意有()()()11,11,10≤≤-≤f f f .由()()()⎪⎩⎪⎨⎧+-=-++==c b a f c b a f c f 110 得()()()[]()()[]()⎪⎪⎪⎩⎪⎪⎪⎨⎧=--=--+=01121021121f c f f b f f f a()()()()()()()0311303113242f f f f f f c b a f +-+≤--+=++=∴7313=++≤.()()()()()()()0313103131242f f f f f f c b a f +-+≤--+=+-=-7331=++≤.()()()()()()1112111211121=+≤-+≤--=f f f f b . ∴ 当22≤-a b 时,22444222b a b c a b c a b ac a b f ⋅-=-=-=⎪⎭⎫ ⎝⎛- 72212122<=⨯+≤⋅+≤b a b c . 因此当2≤x 时,()7≤x f . 点评:从函数性质的角度分析,要证2≤x 时,()7≤x f ,只要证当2≤x 时,()x f 的最大值M 满足7≤M . 而()x f 又是二次函数,不论a 、b 、c 怎么取值()x f 在[]2,2-上的最大值只能是()()2,2f f -,或⎪⎭⎫ ⎝⎛-a b f 2,因而只要证明()()72,72≤-≤f f ,72≤⎪⎭⎫ ⎝⎛-a b f ,这里需要特别指出的是要将()()2,2-f f 与()()()1,1,0-f f f 建立联系,将二次函数中的系数b a ,c ,用()1f 、()1-f 、()0f 表示:()()(),20211f f f a --+=()()()0,211f c f f b =--=,然后用含有绝对值不等式的性质,进行适当放缩。
培优专题01 二次函数含参数最值问题(解析版)
培优专题01二次函数含参数最值问题【题型目录】题型一:定轴动区间问题题型二:定区间动轴问题题型三:含绝对值二次函数问题题型四:定义域为[]n m ,,值域为[]kn km ,求参数问题题型五:二次函数值域包含性问题【典型例题】题型一:定轴动区间问题【例1】已知二次函数满足2()(0)f x ax bx c a =++≠,满足(1)()21f x f x x +-=-,且(0)0f =.(1)求()f x 的解析式;(2)当[]()2R x t t t ∈+∈,时,求函数()f x 的最小值()g t (用t 表示).【答案】(1)()22f x x x =-(2)()222,11,112,1t t t g t t t t t ⎧-≥⎪=--<<⎨⎪+≤-⎩【详解】(1)因为二次函数2()(0)f x ax bx c a =++≠,且满足(0)0f =,(1)()21f x f x x +-=-,所以0c =,()()221121221a x b x ax bx x ax a b x +++--=-⇒++=-,所以221a ab =⎧⎨+=-⎩,得12a b =⎧⎨=-⎩.所以()22f x x x =-.(2)()22f x x x =-是图象的对称轴为直线1x =,且开口向上的二次函数.当1t ≥时,()22f x x x =-在[]()2R x t t t ∈+∈,上单调递增,则()()2min 2f x f t t t ==-;当21t +≤即1t ≤-时,()22f x x x =-在[]()2R x t t t ∈+∈,上单调递减,则()()()()22min 22222f x f t t t t t =+=+-+=+;当11t t <<+,即11t -<<时,()()()2min 11211f x f ==-=-;综上所述()222,11,112,1t t t g t t t t t ⎧-≥⎪=--<<⎨⎪+≤-⎩.【例2】已知定义在R 上的函数)f x ,满足()226f x x x -=--.(1)求()f x 的解析式.(2)若()f x 在区间[]0,m 上的值域为25,44⎡⎤--⎢⎥⎣⎦,写出实数m 的取值范围(不必写过程).f x 在区间[],2t t +上的最小值为6,求实数t 的值.【例3】对于函数()f x ,若存在0R x ∈,使得()00f x x =成立,则称0x 为()f x 的不动点,已知函数2()(2)4f x ax b x =+++的两个不动点分别是-2和1.(1)求,a b 的值及()f x 的表达式;[,1]t t +【例4】已知函数为二次函数,不等式的解集是,且在区间上的最小值为12-.(1)求()f x 的解析式;上的最大值为【例1】已知函数2()f x x mx m =-+-.(1)若函数()f x 在[]1,0-上单调递减,求实数m 的取值范围;(2)若当1x >时,()4f x <恒成立,求实数m 的取值范围;(3)是否存在实数m ,使得()f x 在[]2,3上的值域恰好是[]2,3?若存在,求出实数m 的值;若不存在,说明上单调递减,应满足【例2】已知二次函数的图象过点,且不等式20ax bx c ++≤1(1)求()f x 的解析式:24g x f x t x =--在区间[]1,2-上有最小值2,求实数t 的值.(1)若函数()f x 在(1,)+∞上是增函数,求实数a 的取值范围;(2)若不等式()0f x ≤的解集为{|02}x x ≤≤,求,a b 的值;时,函数【例4】已知函数,R b ∈.(1)若函数()f x 的图象经过点()4,3,求实数b 的值;(2)在(1)条件下,求不等式()0f x <的解集;1,2x ∈-时,函数()y f x =的最小值为1,求当[]1,2x ∈-时,函数()y f x =的最大值.【例5】在①2,2x ∀∈-,②1,3x ∃∈这两个条件中任选一个,补充到下面问题的横线中,并求解该问题.已知函数()24f x x ax =++.(1)当2a =-时,求函数()f x 在区间]22-,上的值域;【例1】已知二次函数()()20,,,f x ax bx c a a b c =++>∈R ,()11f -=,对任意x ∈R ,()()2f x f x +=-,且()0f x x +≥恒成立.(1)求二次函数()f x 的解析式;(1)若x f 为偶函数,求a 的值;(1)当2a =时,试写出函数()()g x f x x =-的单调递增区间;)x(1)当2a =时,求f x 的单调增区间;,所以(1)若函数f x 在[]1,2上单调递增,求实数m 的取值范围;2g x xf x m =+在[]1,2的最小值为7,求实数m 的值.【例1】已知a ,b 是常数,0a ≠,()2f x ax bx =+,()20f =,且方程()f x x =有两个相等的实数根.(1)求a ,b 的值;(2)是否存在实数m ,n ()m n <,使得()f x 的定义域和值域分别为[],m n 和[]2,2m n ?若存在,求出实数m ,=【例2】已知函数()1,111,01x xf x x x⎧-≥⎪⎪=⎨⎪-<<⎪⎩.(1)当0a b <<,且()()f a f b =时,求11a b+的值;(2)若存在实数,(1)a b a b <<,使得函数()y f x =的定义域为[],a b 时,其值域为[],ma mb ,求实数m 的取值【例3】已知函数()22f x a a x=+-,实数a R ∈且0a ≠.(1)设0m n <<,判断函数()f x 在[],m n 上的单调性,并说明理由;f x 的定义域和值域都是[],m n ,求n m -的最大值.【例4】已知二次函数,满足对任意实数(3)(1)f x f x -=-,且关于x 的方程()2f x x =有两个相等的实数根.(1)求函数()f x 的解析式:(2)是否存在实数m 、()n m n <,使得()f x 的定义域为[,]m n ,值域为22,m n ⎡⎤⎣⎦?若存在,求出m ,n 的值;【例5】已知函数-2x +b 的自变量的取值区间为A ,若其值域区间也为A ,则称A 为的保值区间.(1)若b =0,求函数f (x )形如[,)()t t R ∞+∈的保值区间;m n <【例6】已知函数()2f x x-=.(1)求函数()y f x =的值域;(2)若不等式()231x f x x kx +≥+在[]1,2x ∈时恒成立,求实数k 的最大值;(3)设()()1g x t f x =⋅+(11,x m n ⎡⎤∈⎢⎥⎣⎦,0m n >>,0t >),若函数()y g x =的值域为[]23,23m n --,求实数【例7】已知是定义在R 上的函数,且0f x f x +-=,当0x >时,(1)求函数()f x 的解析式;(2)当[)1,x ∞∈+时,()()g x f x =,当(),1x ∞∈-时()223g x x mx m =-+-,()g x 在R 上单调递减,求m 的取值范围;(3)是否存在正实数a b ,,当[],x a b ∈时,()()h x f x =且()h x 的值域为11,b a ⎡⎤⎢⎥⎣⎦,若存在,求出a b ,,若不【例1】已知函数()1f x x x=+,()21g x x ax a =-+-.(1)若()g x 的值域为[)0,∞+,求a 的值.证明:对任意1,2x ∈,总存在1,3x ∈-,使得f x g x =成立.【例2】函数y f x =的图象关于坐标原点成中心对称图形的充要条件是函数y f x =为奇函数,可以将其推广为:函数()y f x =的图象关于点(),P a b 成中心对称图形的充要条件是函数()y f x a b =+-为奇函数,给定函数()261+-=+x x f x x .(1)求()f x 的对称中心;(2)已知函数()g x 同时满足:①()11+-g x 是奇函数;②当[]0,1x ∈时,()2g x x mx m =-+.若对任意的0,2x ∈1,5x ∈,使得()()g x f x =所以【例3】已知函数(1)若函数()g x 的值域为[0,)+∞,求a 的取值集合;[2,2]x ∈-[2,2]x ∈-f x g x =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数绝对值的问题练习及答案
二次函数是最简单的非线性函数之一,而且有着丰富的内容,它对近代数仍至现代数学影响深远,这部分内容为历年来高考数学考试的一项重点考查内容,经久不衰,以它为核心内容的高考试题,形式上也年年有变化,此类试题常常有绝对值,充分运用绝对值不等式及二次函数、二次方程、二次不等式的联系,往往采用直接法,利用绝对值不等式的性质进行适当放缩,常用数形结合,分类讨论等数学思想,以下举例说明
例1 设a 为实数,函数
2
()||1f x x x a =+-+,x R ∈ (1)讨论()f x 的奇偶性; (2)求()f x 的最小值 解;(1)0a =时,
()
f x 为偶函数
0a ≠时,()f x 为非奇非偶函数
(2)2
222
2131,24()||1131,24x x a x a x a
f x x x a x x a x a x a ⎧⎛
⎫+-+=++-≥⎪ ⎪⎪⎝
⎭=+-+=⎨⎪⎛
⎫-++=-++< ⎪⎪⎝⎭⎩
当()min 13
,24a f x a
≤-=- 当()2min 11
,1
22a f x a -<<=+ 当()min 13
,24a f x a
≥=+
例2 已知函数
1)(2
-=x x f ,|1|)(-=x a x g . (1)若关于x 的方程)(|)(|x g x f =只有一个实数解,求实数a 的取值范围; (2)若当R x ∈时,不等式)()(x g x f ≥恒函数成立,求实数a 的取值范围;
(3)求函数)(|)(|)(x g x f x h +=在区间[-2,2]上的最大值(直接写出结果,不需给出演算步骤).
解:(1)方程|()|()f x g x =,即
2
|1||1|x a x -=-,变形得|1|(|1|)0x x a -+-=,显然,1x =已是该方程的根,从而欲原方程只有一解,即要求方程|1|x a +=,有且仅有一个等于1的
解或无解 ,结合图形得0a <.
(2)不等式()()f x g x ≥对x ∈R 恒成立,即
2(1)|1|x a x --≥(*)对x ∈R 恒成立, ①当1x =时,(*)显然成立,此时a ∈R ;
②当1x ≠时,(*)可变形为
21
|1|x a x -≤
-,令21,(1),1()(1),(1).|1|x x x x x x x ϕ+>⎧-==⎨-+<-⎩ 因为当1x >时,()2x ϕ>,当1x <时,()2x ϕ>-, 所以()2x ϕ>-,故此时2a -≤.
综合①②,得所求实数a 的取值范围是2a -≤.
(3)因为2
()|()|()|1||1|h x f x g x x a x =+=-+-=22
21,(1),1,(11),1,(1).x ax a x x ax a x x ax a x ⎧+--⎪--++-<⎨⎪-+-<-⎩≤≥
当1,22a
a >>即时,结合图形可知()h x 在[2,1]-上递减,在[1,2]上递增,
且(2)33,(2)3h a h a -=+=+,经比较,此时()h x 在[2,2]-上的最大值为33a +.
当01,22a a 即0≤≤≤≤时,结合图形可知()h x 在[2,1]--,[,1]
2a -上递减, 在[1,]
2a --,[1,2]上递增,且(2)33,(2)3h a h a -=+=+,2
()124a a h a -=++,
经比较,知此时()h x 在[2,2]-上的最大值为33a +.
当10,02a a -<<即-2≤≤时,结合图形可知()h x 在[2,1]--,[,1]
2a
-上递减, 在[1,]
2a --,[1,2]上递增,且(2)33,(2)3h a h a -=+=+,2
()124a a h a -=++,
经比较,知此时()h x 在[2,2]-上的最大值为3a +.
当31,222a a -<-<-即-3≤≤时,结合图形可知()h x 在[2,]2a -,[1,]
2a
-上递减, 在[,1]2a ,[,2]2a
-上递增,且(2)330h a -=+<, (2)30h a =+≥,
经比较,知此时()h x 在[2,2]-上的最大值为3a +.
当3
,3
22a a <-<-即时,结合图形可知()h x 在[2,1]-上递增,在[1,2]上递减,
故此时()h x 在[2,2]-上的最大值为(1)0h =. 综上所述,
当0a ≥时,()h x 在[2,2]-上的最大值为33a +; 当30a -<≤时,()h x 在[2,2]-上的最大值为3a +; 当3a <-时,()h x 在[2,2]-上的最大值为0.
练习:1. 已知函数
2||)(2
+-+=a x x x f . (1)讨论函数)(x f 的奇偶性;(2)求函数)(x f 的最小值 2. 已知函数
()221()
f x x mx m R =-+∈
(1)若2m =,[]
0,3x ∈,求
()()max min
D f x f x =-的值
(2)若
[]
0,2x ∈时,
()8
f x ≤恒成立,求m 的取值范围
3. 已知函数
|21|21)(2
a x x x f -++=
,其中a 是实数.
(1)判断)(x f 的奇偶性,并说明理由;
(2)当]1,1[-∈x 时,)(x f 的最小值为2
21a
,求a 的值
答案:
1.(1)0a =函数为偶函数
0a ≠非奇非偶函数
(2)()22117
,2(),
24x a f x x x a x a ≥=++-=++-
()2
2
217,224x a f x x x a x a
⎛
⎫<=-++=-++ ⎪⎝⎭
2min 7
1,4211()2,227
1,42a a f x a a a a ⎧-≤-⎪⎪
⎪
=+-<<
⎨⎪
⎪+≥⎪⎩
2.(1)4
(2)分类讨论二次函数对称轴与区间的关系,寻找最大值的位置 当0,
m <()
f x 在
[]0,2上递增 ,
()3
2804f m ≤∴-
≤<
当02,m ≤≤()f x 在[]0,m 上递减,[],2m 上递增()()8
33428f m m f ⎧≥-⎪∴-≤≤⎨
≤⎪⎩
当2,
m >()
f x 在
[]0,2上递减
()13
2824f m ≥-∴<≤
综上所述:3134
4m -
≤≤
3.(1)①当
21=
a 时,|
|21
)(2x x x f +=,有)()(-x f x f =,所以)(x f 为偶函数;
②当21≠
a 时,0|21|)0(≠-=a f ,所以)(x f 不是奇函数; 又因为
2)12(21)1-2(-=
a a f ,而|21|2)12(21
)2-(12a a a f -+-=,
即)12()2-(1-≠a f a f ,所以)(x f 不是偶函数;
综上,当
21
≠
a 时,)(x f 既不是奇函数也不是偶函数.
(2)2
213(1)2,2122()11(1)2,2122x a x a f x x a x a ⎧--+<-⎪⎪=⎨
⎪++-≥-⎪⎩
①若112-≤-a ,即0≤a , 当]1,1[-∈x 时,
a x a x x x f 221
)1(212121)(22-++=-++=
,
故)(x f 在]1,1[-上递增,
所以
=-=
-=a f x f 221)1()(min 221a ,得52--=a .
②若112≥-a ,即1≥a , 当]1,1[-∈x 时,
a x a x x x f 223
)1(212121)(22+--=+--=
,
故)(x f 在]1,1[-上递减,
所以
=+-
==a f x f 223)1()(min 221a ,得1=a 或3=a .
③若1121<-<-a ,即10<<a ,⎪⎪⎩⎪⎪⎨
⎧≤≤--++-<≤-+--=)112(221)1(21)121(223)1(21)(22
x a a x a x a x x f
故)(x f 在]12,1[--a 上递减,在]1,1[2-a 上递增;
所以
22min 212122)12()(a a a a f x f =+
-=-=,得31=a .
综上,52--=a 或
31
=
a 或1=a 或3=a .。