九年级数学上期末测试题(含答案)

合集下载

人教版九年级数学上册期末测试题(附参考答案)

人教版九年级数学上册期末测试题(附参考答案)

人教版九年级数学上册期末测试题(附参考答案)满分120分考试时间120分钟一、选择题:本大题共10个小题,每小题3分,共30分。

每小题只有一个选项符合题目要求。

1.方程x2+4x+3=0的两个根为( )A.x1=1,x2=3B.x1=-1,x2=3C.x1=1,x2=-3D.x1=-1,x2=-32.一个口袋里装有4个白球,5个黑球,除颜色外,其余如材料、大小、质量等完全相同,随意从中抽出一个球,抽到白球的概率是( )A.49B.59C.14D.193.将抛物线y=x2向右平移3个单位长度,再向上平移4个单位长度,得到的抛物线是( )A.y=(x-3)2+4 B.y=(x+3)2+4C.y=(x+3)2-4 D.y=(x-3)2-44.如图,在方格纸中,将Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,则下列四个图形中正确的是( )A BC D5.如图,AB切⊙O于点B,连接OA交⊙O于点C,BD∥OA交⊙O于点D,连接CD.若∠OCD=25°,则∠A的度数为( )A.25°B.35°C.40°D.45°6.若关于x的一元二次方程x2-8x+m=0的两根为x1,x2,且x1=3x2,则m的值为( )A.4 B.8C.12 D.167.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A,B,与y轴交于点C,对称轴为直线x=-1.若点A的坐标为(-4,0),则下列结论正确的是( )A.2a+b=0B.4a-2b+c>0C.x=2是关于x的一元二次方程ax2+bx+c=0(a≠0)的一个根D.点(x1,y1),(x2,y2)在抛物线上,当x1>x2>-1时,y1<y2<08.图1是一把扇形纸扇,图2是其完全打开后的示意图,外侧两竹条OA和OB 的夹角为150°,OA的长为30 cm,贴纸部分的宽AC为18 cm,则CD⏜的长为( )A.5π cm B.10π cmC.20π cm D.25π cm9.如图,⊙O与正五边形ABCDE的两边AE,CD相切于A,C两点,则∠AOC的度数是( )A.144°B.130°C.129°D.108°10.在如图所示的运算程序中,若开始输入x的值为48,我们发现第一次输出的结果为24,第二次输出的结果为12……则第2 023次输出的结果为( )A.6 B.3C.622 021D.322 022二、填空题:本题共6个小题,每小题3分,共18分。

九年级数学上册期末复习综合测试题(含答案)

九年级数学上册期末复习综合测试题(含答案)

(第4题)九年级数学上册期末复习综合测试题(含答案)一、选择题(本大题共6小题,每小题2分,共12分.) 1.一元二次方程 x 2=x 的根是( )A .x 1=0,x 2=1B .x 1=0,x 2=-1C .x 1=x 2=0D .x 1=x 2=12.一个不透明布袋中有2个红球,3个白球,这些球除颜色外无其他差别,摇匀后从中随机摸出一个小球,该小球是红色的概率为( )A .12B .23C .15D .253.若一组数据 2,3,4,5,x 的方差比另一组数据 5,6,7,8,9 的方差大,则 x 的值可能是( ) A .1B .4C .6D .84.如图,OA 、OB 是⊙O 的半径,C 是⊙O 上一点.若∠OAC =16°,∠OBC =54°,则 ∠AOB 的度数是( )A .70°B .72°C .74°D .76°5.若关于x 的一元二次方程ax 2+k =0的一个根为2,则二次函数y =a (x +1)2+k 与x 轴的交点坐标为( ) A .(-3,0)、(1,0) B .(-2,0)、(2,0) C .(-1,0)、(1,0)D .(-1,0)、(3,0)6.如图,在Rt △ABC ,∠ACB =90°,AC =4,BC =3,点D ,E 分别在AB ,AC 上,连接DE ,将△ADE 沿DE 翻折,使点A 的对应点F 落在BC 的延长线上,若FD 平分∠EFB ,则AD 的长为( ) A . 157B .207C .258D .259二、填空题(本大题共10小题,每小题2分,共20分.) 7(第12题)l 1 l 2l 3A BCEFD (第11题)8.若a b =43,则a -b b= .9.设x 1、x 2是方程x 2+mx -m +3=0的两个根,则x 1+x 2-x 1x 2= .10.把抛物线y =-x 2向左平移2个单位,然后向上平移3个单位,则平移后该抛物线相应的函数表达式为 .11.如图,l 1∥l 2∥l 3,若AD =1,BE =3,CF =6,则ABBC的值为 .12.如图,点A 、B 、C 在⊙O 上,⊙O 的半径为3,∠AOC =的长为 . 13.已知关于x 的函数y =x 2+2mx +1,若x >1时,y 随x 的增大而增大,则m 的取值范围是 .14.如图,弦AB 是⊙O 的内接正六边形的一边,弦AC 是⊙O 的内接正方形的一边,若 BC =2+23,则⊙O 的半径为 .15.如图,正方形ABCD 的边长是4,点E 在DC 上,点F 在AC 上,∠BFE =90°,若 CE =116.如图,在矩形ABCD 中,AB =2,AD =4,点E 、F 分别为AD 、CD 边上的点,且EF 的长为2,点G 为EF 的中点,点P 为BC 上一动点,则P A +PG 的最小值为 . 三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)解方程:(1)x 2-4x -5=0; (2)x 2-4=2x (x -2).18.(8分)甲乙两人在相同条件下完成了5次射击训练,两人的成绩(单位:环)如下(1)甲射击成绩的中位数为 环,乙射击成绩的众数为 环;(2)计算两人射击成绩的方差;(3)根据训练成绩,你认为选派哪一名队员参赛更好,为什么?19.(8分)某校开展秋季运动会,需运动员代表进行发言,从甲、乙、丙、丁四名运动员中随机抽取.(1)若随机抽取1名,甲被抽中的概率为 ; (2)若随机抽取2名,求甲在其中的概率.20.(7分)如图,在△ABC 中,点D 、E 分别在AB 、AC 上,且∠BCE +∠BDE =180°. (1)求证:△ADE ∽△ACB ;(2)连接BE 、CD ,求证:△AEB ∽△ADC .21.(8分)如图是二次函数y =-x 2+bx +c 的图像. (1)求该二次函数的关系式及顶点坐标; (2)当y >0时 x 的取值范围是 ;(3)当m <x <m +4时,-5<y ≤4,则m 的值为 .22.(7分)在Rt △ABC ,∠BAC =90°,AB =AC ,D 、E、F 分别为BC 、AB 、AC 边上的点,且∠EDF =45°.(1)求证:△EBD ∽△DCF ;(2)当D 是BC 的中点时,连接EF ,若CF =5,DF =4,则EF 的长为 .23.(8分)某超市销售一种商品,成本为每千克50元.当每千克售价60元时,每天的销售量为60千克,经市场调查,当每千克售价增加1元,每天的销售量减少2千克. (1)为保证某天获得750元的销售利润,则该天的销售单价应定为多少? (2)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?24.(8分)如图,AB 为⊙O 的直径,弦CD ⊥AB 于点P ,连接BC ,过点D 作DE ⊥CD ,交⊙O 于点E ,连接AE ,F 是DE 延长线上一点,且∠BCD =∠F AE . (1)求证:AF 是⊙O 的切线;(2)若AF =2,EF =1,求⊙O 的半径.25.(8分)已知二次函数y =(x -2)(x -m )(m 为常数). (1)求证:不论m 为何值,该函数的图像与x 轴总有公共点;(2)若M (-1,0), N (3,0),该函数图像与线段MN 只有1个公共点,直接写出 m 的取值范围;(3)若点A (-1,a ),B (1,b ),C (3,c )在该函数的图像上,当abc <0时,结合函数图像,直接写出m 的取值范围.26.(8分)如图,四边形ABCD 内接于⊙O ,AB =AC ,BD ⊥AC ,垂足为E . (1)求证:∠BAC =2∠DAC ; (2)若AB =10,CD =5,求BC 的长.27.(10分)定义:圆心在三角形的一边上,与另一边相切,且经过三角形一个顶点(非切点)的圆,称为这个三角形圆心所在边上的“伴随圆”.(1) 如图①,在△ABC 中,∠C =90°,AB =5,AC =3,则BC 边上的伴随圆的半径为 . (2)如图②,△ABC 中,AB =AC =5,BC =6,直接写出它的所有伴随圆的半径. (3)如图③,△ABC 中,∠ACB =90°,点E 在边AB 上,AE =2BE ,D 为AC 的中点,且∠CED =90°.①求证:△CED 的外接圆是△ABC 的AC 边上的伴随圆; ②DE的值为 .参考答案说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7.9 8.13 9.-3 10.y =-(x +2)2+3 11.2312.2π 13.m ≥-1 14. 2 2 15.322 16.4 2 -1三、解答题(本大题共11小题,共88分) 17.(8分)(1)解:x 2-4x -5=0 x 2-4x +4=5+4(x -2)2=9 ········································································································ 1分x -2=±3 ········································································································ 2分 ∴ x 1=5,x 2=-1. ··························································································· 4分 (2)解:x 2-4=2x (x -2) x 2-4=2x 2-4xx 2-4x +4=0 ··································································································· 5分 (x -2)2=0 ········································································································ 6分 ∴ x 1=x 2=2. ··································································································· 8分 18.(8分)(1)7;8 ········································································································ 2分 (2)s 2甲=(7-8)2+(7-8) 2+(10-8)2+(9-8)2+(7-8)25=1.6环2. ······························ 4分s 2乙=(8-8)2+(8-8) 2+ (7-8)2+(8-8)2+(9-8)25=0.4环2. ······································ 6分(3)选择乙.因为甲乙两人平均数相同均为8,说明两人实力相当,但s 2乙<s 2甲,乙的成绩更加稳定,所以选乙. ······················································································· 8分19.(8分)(1)14. ·········································································································· 2分(2)解:随机抽取两名运动员,共有6种等可能性结果:(甲,乙)、(甲,丙)、(甲,丁)、(乙,丙)、(乙,丁)、(丙,丁).其中满足“有甲运动员”(记为事件A )的结果只有3种,所以P (A )=12. ·································································································· 8分20.(7分)(1)证明:∵ ∠BCE +∠BDE =180°, ∠EDA +∠BDE =180°,∴ ∠EDA =∠BCE . ·························································································· 1分 又 ∠A =∠A , ································································································· 2分 ∴ △ADE ∽△ACB . ·························································································· 3分 (2)∵ △ADE ∽△ACB , ∴ AD AC =AE AB, ·········································· 4分 ∴AD AE =ACAB, ······································· 5分 又 ∠A =∠A , ········································ 6分 ∴ △AEB ∽△ADC . ································· 7分21.(8分)(1)将(0,3)、 (3,0)代入,得⎩⎨⎧3=c ,0=-9+3b +c································································································· 1分解得⎩⎨⎧c =3,b =2····································································································· 2分∴ y =-x 2+2x +3 ····························································································· 3分 ∴ 顶点坐标为(1,4) ························································································ 4分 (2)-1<x <3. ······························································································ 6分 (3)-2或0 ···································································································· 8分 22.(7分)(1)解:∵∠BAC =90°,AB =AC ,∴ ∠B =∠C =45°. ··························································································· 1分 ∴ 在△BDE 中,∠BED +∠BDE =180°-∠B =135°, ∵ ∠EDF =45°,∴ ∠BDE +∠CDF =135°,∴ ∠BED =∠CDF . ·························································································· 3分 ∵ ∠B =∠C ,∴ △EBD ∽△DCF . ·························································································· 5分 (2 ········································································································ 7分23.(8分)(1)解:设每千克的销售价增加x 元,根据题意,得(60+x -50) (60-2x )=750 ··················································································· 2分 ∴ x 1=5,x 2=15. ····························································································· 3分 60+5=65或60+15=75 ···················································································· 4分 答:销售单价为65或75元时获得利润750元. (2)解:每千克的销售价增加x 元,利润为w 元.w =(60+x -50) (60-2x ) ···················································································· 6分 =-2(x -10)2+800 ···························································································· 7分 ∵ a =-2<0,∴ 当x =10时,w 有最大值800. ········································································ 8分 60+10=70答:当销售单价为70元时获得最大利润,为800元. 24.(8分) (1)连接BD .∵ AB 为⊙O 的直径,CD ⊥AB ,∴ ⌒BC = ⌒BD , ························································· 1分 ∴ ∠BDC =∠BCD .∵ 四边形ABDE 为⊙O 的内接四边形,∴ ∠BDE +∠BAE =180°,即∠BDC +∠CDF +∠BAE ····· 2分∵ DE ⊥CD , ∴ ∠CDF =90°, ∴ ∠BDC +∠BAE =90°.∵ ∠BCD =∠F AE , ·························································································· 3分 ∴ ∠BAE +∠F AE =90°,即∠F AB =90°, ∴ AF ⊥AB . 又 点A 在⊙O 上,∴ AF 与⊙O 相切. ·························································································· 4分 (2)过点O 作OG ⊥DF 垂足为G . ∵ ∠F AB =∠D =∠APD =90°, ∴ 四边形APDF 是矩形, ∴ ∠F =90°.∵ ∠F AB =∠F =∠OGF =90°, ∴ 四边形AOGF 是矩形,∴ AF =OG ,AO =GF . ···················································· 5分 设OE =OA =r ,则GE =r -1.在Rt △OGE 中,由勾股定理得OG 2+GE 2=OE 2, ···················································· 6分 即4+(r -1)2=r 2, ···························································································· 7分 解得r =5 2 . ····································································································· 8分25.(8分)(1)令y =0,即(x -2)(x -m )=0 ········································································· 1分 ∴ x 1=2,x 2=m . ····························································································· 2分 当m =2时,x 1=x 2,方程有两个相等的实数根; 当m ≠2时,x 1≠x 2,方程有两个不等的实数根. ∴ 不论m 为何值,方程总有实数根;∴ 不论m 为何值,该函数的图像与x 轴总有公共点. ·············································· 3分 (2)m =2或m >3或m <-1. ··········································································· 6分 (3)-1<m <1或m >3. ·················································································· 8分 26.(8分)。

九年级数学第一学期期末考试综合复习测试题(含答案)

九年级数学第一学期期末考试综合复习测试题(含答案)

九年级数学第一学期期末考试综合复习测试题(含答案)一.选择题(共10小题,每小题3分,共30分) 1.2022的相反数是( )A .2022B .2022-C .12022D .2022± 2.若代数式3125m x y -与822m nx y +-是同类项,则( )A .73m =,83n =-B .3m =,4n =C .73m =,4n =- D .3m =,4n =-3.下列四组线段中,能组成直角三角形的是( ) A .1a =,3b =,3c = B .2a =,3b =,4c = C .2a =,4b =,5c =D .3a =,4b =,5c = 4.如图所示,直线//a b ,231∠=︒,28A ∠=︒,则1(∠= )A .61︒B .60︒C .59︒D .58︒5.下列关于事件发生可能性的表述,正确的是( )A .“在地面向上抛石子后落在地上”是随机事件B .掷两枚硬币,朝上面是一正面一反面的概率为13C .在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品D .彩票的中奖率为10%,则买100张彩票必有10张中奖6.某校10名学生参加课外实践活动的时间分别为:3,3,6,4,3,7,5,7,4,9(单位:小时),这组数据的众数和中位数分别为( ) A .9和7 B .3和3 C .3和4.5 D .3和5 7.一个正多边形的每一个内角都是150︒,则它的边数为( ) A .6 B .9 C .12 D .158.若不等式组841x x x m +<-⎧⎨>⎩的解集是3x >,则m 的取值范围是( )A .3m <B .3mC .3m >D .3m9.已知关于x 的一元二次方程22(21)0x m x m --+=有实数根,则m 的取值范围是( ) A .14m 且0m ≠ B .14m C .14m < D .14m >10.如图1,一个扇形纸片的圆心角为90︒,半径为6.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .9632π-B .693π-C .91232π-D .94π二.填空题(共5小题,每小题3分,共15分) 11.将数据2022万用科学记数法表示为 .12.已知当3x =时,代数式35ax bx +-的值为20,则当3x =-时,代数式35ax bx +-的值是 .13.将抛物线229y x x =-+-向左平移2个单位,再向上平移1个单位后,得到的抛物线的解析式为 .14.已知ABC ∆中,点O 是ABC ∆的外心,140BOC ∠=︒,那么BAC ∠的度数为 .15.如图,在正方形ABCD 中,顶点(5,0)A -,(5,10)C ,点F 是BC 的中点,CD 与y 轴交于点E ,AF 与BE 交于点G ,将正方形ABCD 绕点O 顺时针旋转,每次旋转90︒,则第2023次旋转结束时,点G 的坐标为 .三.解答题(一)(共3小题,每小题8分,共24分) 16.计算(1)2()(2)x y x y x +--;(2)2219(1)244a a a a --÷--+.17.如图,90ACB ∠=︒,AC AD =.(1)过点D 作AB 的垂线DE 交BC 与点E ,连接AE .(尺规作图,并保留作图痕迹) (2)如果8BD =,10BE =,求BC 的长.18.如图,在四边形ABCD 中,AC 与BD 交于点O ,BE AC ⊥,DF AC ⊥,垂足分别为点E ,F ,且BE DF =,ABD BDC ∠=∠.求证:四边形ABCD 是平行四边形.四.解答题(二)(共3小题,每小题9分,共27分) 19.阳光中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用,若购买3副围棋和5副中国象棋需要98元;若购买1副围棋和2副中国象棋需要36元.(1)求每副围棋和每副中国象棋各多少元;(2)阳光中学决定购买围棋和中国象棋共40副,总费用不超过538元,且围棋的副数不低于象棋的副数,问阳光中学有几种购买方案;(3)请求出最省钱的方案需要多少钱?20.我市某中学举行“中国梦⋅我的梦”的演讲比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整,请你根据统计图解答下列问题.(1)参加比赛的学生人数共有名,在扇形统计图中,表示“D等级”的扇形的圆心角为度,图中m的值为;(2)补全条形统计图;(3)组委会决定从本次比赛中获得A等级的学生中,选出两名去参加市中学生演讲比赛,已知A等级中男生只有1名,请用画树状图或列表的方法求出所选学生恰是一男一女的概率.21.22.某网店专售一款新型钢笔,其成本为20元/支,销售中发现,该商品每天的销售量y与销售单价x(元/支)之间存在如下关系:10400y x=-+,自武汉爆发了“新型冠状病毒”疫情该网店店主决定从每天获得的利润中抽出200元捐赠给武汉,同时又让顾客得到实惠,当销售单价定位多少元时,捐款后每天剩余利润为550元?五.解答题(三)(共2小题,每小题12分,共24分)22.如图,以点O为圆心,AB长为直径作圆,在O上取一点C,延长AB至点D,连接DC,过点A作O的切线交DC的延长线于点E,且DCB DAC∠=∠.(1)求证:CD是O的切线;(2)若6AD=,2:3BC CA=,求AE的长.23.如图,在平面直角坐标系中,直线33y x =--与x 轴交于点A ,与y 轴交于点C .抛物线2y x bx c =++经过A 、C 两点,且与x 轴交于另一点B (点B 在点A 右侧). (1)求抛物线的解析式;(2)若点M 是线段BC 上一动点,过点M 的直线ED 平行y 轴交x 轴于点D ,交抛物线于点E ,求ME 长的最大值及此时点M 的坐标; (3)在(2)的条件下:当ME 取得最大值时,在x 轴上是否存在这样的点P ,使得以点M 、点B 、点P 为顶点的三角形是等腰三角形?若存在,请直接写出所有点P 的坐标;若不存在,请说明理由.答案一.选择题1. B .2. D .3. D .4. C .5. C .6. C .7. C .8. B .9. B .10. C . 二.填空题11. 72.02210⨯.12. 30-.13. 228y x x =---.14. 70︒或110︒.15. (4,3)-. 三.解答题16.解:(1)2()(2)x y x y x +--22222x xy y xy x =++-- 2y =;(2)2219(1)244a a a a --÷--+ 23(3)(3)2(2)a a a a a ---+=÷-- 23(2)2(3)(3)a a a a a --=⋅---+ 23a a -=--. 17.解:(1)如图所示即为所求作的图形. (2)ED 垂直AB , 90ADE EDB ∴∠=∠=︒,在Rt BDE ∆中,22221086DE BE BD =-=-=, 在Rt ADE ∆和Rt ACE ∆中, AC ADAE AE =⎧⎨=⎩, Rt ADE Rt ACE(HL)∴∆≅∆, 6EC ED ∴==, 16BC BE EC ∴=+=.18.证明:ABD BDC ∠=∠, //AB CD ∴.BAE DCF ∴∠=∠.在ABE ∆与CDF ∆中, 90BAE DCF AEB CFD BE DF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩. ()ABE CDF AAS ∴∆≅∆. AB CD ∴=.∴四边形ABCD 是平行四边形.19.解:(1)设每副围棋x 元,每副中国象棋y 元,根据题意得:3598236x y x y +=⎧⎨+=⎩,∴1610x y =⎧⎨=⎩,∴每副围棋16元,每副中国象棋10元;(2)设购买围棋z 副,则购买象棋(40)z -副, 根据题意得:1610(40)538m m +-,40m z -,2023m ∴,m 可以取20、21、22、23则有:方案一:购买围棋20副,购买中国象棋20副方案二:购买围棋21副,购买中国象棋19副方案:购买围棋22副,购买中国象棋18副方案四:购买围棋23副,购买中国象棋17副由4种方案;(3)由上一问可知共有四种方案:方案一:购买围棋20副,购买中国象棋20副;方案二:购买围棋21副,购买中国象棋19副;方案三:购买围棋22副,购买中国象棋18副;方案四:购买围棋23副,购买中国象棋17副;方案一需要20162010520x x +=; 方案二需要21161910526x x +=; 方案三需要22161810532x x +=; 方案四需要23161710538x x +=; 所以最省钱是方案一,需要520元.20.(1)解:根据题意得:总人数为:315%20÷=(人), 表示“D 等级”的扇形的圆心角为43607220⨯︒=︒;C等级所占的百分比为8100%40% 20⨯=,所以40m=,故答案为:20,72,40.(2)解:等级B的人数为20(384)5-++=(人),补全统计图,如图所示:(3)解:根据题意,列出表格,如下:男女1女2男女1、男女2、男女1男、女1女2、女1女2男、女2女1、女2共有6种等可能结果,其中恰是一男一女的有4种,所以恰是一男一女的概率为42 63 =.21.解:由题意可得(20)(10400)200550x x--+-=解得125x=,235x=因为要让顾客得到实惠,所以25x=答:当销售单价定为25元时,捐款后每天剩余利润为550元.22.(1)证明:连接OC,OE,如图,AB为直径,90ACB∴∠=︒,即190BCO∠+∠=︒,又DCB CAD∠=∠,1CAD∠=∠,1DCB∴∠=∠,90DCB BCO ∴∠+∠=︒,即90DCO ∠=︒, CD ∴是O 的切线;(2)解:EC ,EA 为O 的切线, EC EA ∴=,AE AD ⊥, OC OA =, OE AC ∴⊥,90BAC EAC ∴∠+∠=︒,90AEO EAC ∠+∠=︒, BAC AEO ∴∠=∠, tan tan BAC AEO ∴∠=∠,∴23BC AO AC AE ==, Rt DCO Rt DAE ∆∆∽,∴23CD OC OA DA AE AE ===, 2643CD ∴=⨯=, 在Rt DAE ∆中,设AE x =,222(4)6x x ∴+=+, 解得52x =. 即AE 的长为52.23.解:(1)直线33y x =--与x 轴、y 轴分别交于点A 、C , (1,0)A ∴-,(0,3)C -抛物线2y x bx c =++经过点(1,0)A -,(0,3)C -, ∴103b c c -+=⎧⎨=-⎩,解得23b c =-⎧⎨=-⎩,∴抛物线的解析式为223y x x =--.(2)设(E x ,223)(03)x x x --<<,则(,3)M x x -, 222393(23)3()24ME x x x x x x ∴=----=-+=--+,∴当32x =时,94ME =最大,此时3(2M ,3)2-. (3)存在.如图3,由(2)得,当ME 最大时,则3(2D ,0),3(2M ,3)2-,32DO DB DM ∴===; 90BDM ∠=︒,223332()()222OM BM ∴==+=. 点1P 、2P 、3P 、4P 在x 轴上, 当点1P 与原点O 重合时,则1322PM BM ==,1(0,0)P ; 当2322BP BM ==时,则232632322OP -=-=, 2632(2P -∴,0); 当点3P 与点D 重合时,则3332P M P B ==,33(2P ,0); 当4322BP BM ==时,则432632322OP +=+=, 4632(2P +∴,0). 综上所述,1(0,0)P ,2632(2P -,0),33(2P ,0),4632(2P +,0).。

人教版九年级数学上册期末测试题附答案

人教版九年级数学上册期末测试题附答案

人教版九年级数学上册期末测试题附答案九年级(上)期末数学试卷一、选择题:(每小题3分,共36分,每小题给出四个答案中,只有一个符合题目要求)1.下列事件是必然事件的是()A.打开电视机,正在播放篮球比赛B.守株待兔C.明天是晴天D.在只装有5个红球的袋中摸出1球,是红球2.一元二次方程2某2﹣某+1=0的一次项系数和常数项依次是()A.﹣1和1B.1和1C.2和1D.0和13.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.方程2某(某﹣3)=5(某﹣3)的根是()A.某=B.某=3C.某1=,某2=3D.某1=﹣,某2=35.如图,⊙O是△ABC的外接圆,已知∠ACB=60°,则∠ABO的大小为()A.30°B.40°C.45°D.50°6.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是()A.25πB.65πC.90πD.130π7.如图,抛物线y1=﹣某2+4某和直线y2=2某,当y1<y2时,某的取值范围是()A.0<某<2B.某<0或某>2C.某<0或某>4D.0<某<48.已知点A(1,a)、点B(b,2)关于原点对称,则a+b的值为()A.1B.3C.﹣1D.﹣39.王洪存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年的年利率不变,到期后取出2750元,则年利率为()A.5%B.20%C.15%D.10%10.某1,某2是关于某的一元二次方程某2﹣m某+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在11.若函数,则当函数值y=8时,自变量某的值是()A.±B.4C.±或4D.4或﹣12.如图为二次函数y=a某2+b某+c(a≠0)的图象,则下列说法:①a>0;②2a+b=0;③a+b+c>0;④△>0;⑤4a﹣2b+c<0,其中正确的个数为()A.1B.2C.3D.4二、填空题(本大题共6个小题,每小题3分,共18分,将答案直接填写在题中横线上)13.小明制作了十张卡片,上面分别标有1~10这是个数字.从这十张卡片中随机抽取一张恰好能被4整除的概率是.14.同圆的内接正三角形与外切正三角形的周长比是.15.△ABC中,E,F分别是AC,AB的中点,连接EF,则S△AEF:S△ABC=.16.工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小孔的直径AB是mm.17.将抛物线y=某2﹣2向上平移一个单位后,又沿某轴折叠,得新的抛物线,那么新的抛物线的表达式是.18.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=某2﹣2某﹣3,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为.三、解答题(本大题共6个小题,共46分,解答应写出文字说明,证明过程或推理步骤)19.(1)解方程:某2﹣3某+2=0.(2)已知:关于某的方程某2+k某﹣2=0①求证:方程有两个不相等的实数根;②若方程的一个根是﹣1,求另一个根及k值.20.(1)解方程:+=;(2)图①②均为7某6的正方形网络,点A,B,C在格点上.(a)在图①中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形(画一个即可).(b)在图②中确定格点E,并画出以A、B、C、E为顶点的四边形,使其为中心对称图形(画一个即可)21.一只不透明袋子中装有1个红球,2个黄球,这些球除颜色外都相同,小明搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球,用树状图或列表法列出摸出球的所有等可能情况,并求两次摸出的球都是黄色的概率.22.用一段长为30m的篱笆围成一个边靠墙的矩形菜园,墙长为18米(1)若围成的面积为72米2,球矩形的长与宽;(2)菜园的面积能否为120米2,为什么?23.如图,⊙O的直径AB为10cm,弦BC为6cm,D,E分别是∠ACB的平分线与⊙O,直径AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.24.如图,在平面直角坐标系某Oy中,直线y=某+2与某轴交于点A,与y轴交于点C,抛物线y=a某2+b某+c的对称轴是某=﹣且经过A,C两点,与某轴的另一交点为点B.(1)求抛物线解析式.(2)抛物线上是否存在点M,过点M作MN垂直某轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题:(每小题3分,共36分,每小题给出四个答案中,只有一个符合题目要求)1.下列事件是必然事件的是()A.打开电视机,正在播放篮球比赛B.守株待兔C.明天是晴天D.在只装有5个红球的袋中摸出1球,是红球【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念进行解答即可.【解答】解:打开电视机,正在播放篮球比赛是随机事件,A不正确;守株待兔是随机事件,B不正确;明天是晴天是随机事件,C不正确;在只装有5个红球的袋中摸出1球,是红球是必然事件;故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.一元二次方程2某2﹣某+1=0的一次项系数和常数项依次是()A.﹣1和1B.1和1C.2和1D.0和1【考点】一元二次方程的一般形式.【分析】根据一元二次方程的一般形式进行选择.【解答】解:一元二次方程2某2﹣某+1=0的一次项系数和常数项依次是﹣1和1.故选:A.【点评】本题考查了一元二次方程的一般形式.一元二次方程的一般形式是:a某2+b某+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中a某2叫二次项,b某叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.3.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【专题】常规题型.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.故选:C.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.方程2某(某﹣3)=5(某﹣3)的根是()A.某=B.某=3C.某1=,某2=3D.某1=﹣,某2=3【考点】解一元二次方程-因式分解法.【分析】先把方程变形为:2某(某﹣3)﹣5(某﹣3)=0,再把方程左边进行因式分解得(某﹣3)(2某﹣5)=0,方程就可化为两个一元一次方程某﹣3=0或2某﹣5=0,解两个一元一次方程即可.【解答】解:方程变形为:2某(某﹣3)﹣5(某﹣3)=0,∴(某﹣3)(2某﹣5)=0,∴某﹣3=0或2某﹣5=0,∴某1=3,某2=.故选C.【点评】本题考查了运用因式分解法解一元二次方程的方法:先把方程右边化为0,再把方程左边进行因式分解,然后一元二次方程就可化为两个一元一次方程,解两个一元一次方程即可.5.如图,⊙O是△ABC的外接圆,已知∠ACB=60°,则∠ABO的大小为()A.30°B.40°C.45°D.50°【考点】圆周角定理.【分析】根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半可得∠AOB=120°,再根据三角形内角和定理可得答案.【解答】解:∵∠ACB=60°,∴∠AOB=120°,∵AO=BO,∴∠B=÷2=30°,故选:A.【点评】此题主要考查了圆周角定理,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是()A.25πB.65πC.90πD.130π【考点】圆锥的计算;勾股定理.【专题】压轴题;操作型.【分析】运用公式=πlr(其中勾股定理求解得到母线长l为13)求解.【解答】解:∵Rt△ABC中,∠C=90°,AC=12,BC=5,∴AB==13,∴母线长l=13,半径r为5,∴圆锥的侧面积是=πlr=13某5某π=65π.故选B.【点评】要学会灵活的运用公式求解.7.如图,抛物线y1=﹣某2+4某和直线y2=2某,当y1<y2时,某的取值范围是()A.0<某<2B.某<0或某>2C.某<0或某>4D.0<某<4【考点】二次函数与不等式(组).【分析】联立两函数解析式求出交点坐标,再根据函数图象写出抛物线在直线上方部分的某的取值范围即可.【解答】解:联立,解得,,∴两函数图象交点坐标为(0,0),(2,4),由图可知,y1<y2时某的取值范围是0<某<2.故选A.【点评】本题考查了二次函数与不等式,此类题目利用数形结合的思想求解更加简便.8.已知点A(1,a)、点B(b,2)关于原点对称,则a+b的值为()A.1B.3C.﹣1D.﹣3【考点】关于原点对称的点的坐标.【分析】根据关于原点对称的点的坐标特点可得a、b的值,进而得到答案.【解答】解:∵点A(1,a)、点B(b,2)关于原点对称,∴b=﹣1,a=﹣2,a+b=﹣3,故选:D.【点评】此题主要考查了关于原点对称的点的坐标特点,关键是掌握两个点关于原点对称时,它们的坐标符号相反.9.王洪存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年的年利率不变,到期后取出2750元,则年利率为()A.5%B.20%C.15%D.10%【考点】由实际问题抽象出一元二次方程.【分析】设定期一年的利率是某,则存入一年后的本息和是5000(1+某)元,取3000元后余[5000(1+某)﹣3000]元,再存一年则有方程[5000(1+某)﹣3000](1+某)=2750,解这个方程即可求解.【解答】解:设定期一年的利率是某,根据题意得:一年时:5000(1+某),取出3000后剩:5000(1+某)﹣3000,同理两年后是[5000(1+某)﹣3000](1+某),即方程为[5000(1+某)﹣3000](1+某)=2750,解得:某1=10%,某2=﹣150%(不符合题意,故舍去),即年利率是10%.故选D.【点评】此题考查了列代数式及一元二次方程的应用,是有关利率的问题,关键是掌握公式:本息和=本金某(1+利率某期数),难度一般.10.某1,某2是关于某的一元二次方程某2﹣m某+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在【考点】根与系数的关系.【分析】先由一元二次方程根与系数的关系得出,某1+某2=m,某1某2=m﹣2.假设存在实数m使+=0成立,则=0,求出m=0,再用判别式进行检验即可.【解答】解:∵某1,某2是关于某的一元二次方程某2﹣m某+m﹣2=0的两个实数根,∴某1+某2=m,某1某2=m﹣2.假设存在实数m使+=0成立,则=0,∴=0,∴m=0.当m=0时,方程某2﹣m某+m﹣2=0即为某2﹣2=0,此时△=8>0,∴m=0符合题意.故选:A.【点评】本题主要考查了一元二次方程根与系数的关系:如果某1,某2是方程某2+p某+q=0的两根时,那么某1+某2=﹣p,某1某2=q.11.若函数,则当函数值y=8时,自变量某的值是()A.±B.4C.±或4D.4或﹣【考点】函数值.【专题】计算题.【分析】把y=8直接代入函数即可求出自变量的值.【解答】解:把y=8代入函数,先代入上边的方程得某=,∵某≤2,某=不合题意舍去,故某=﹣;再代入下边的方程某=4,∵某>2,故某=4,综上,某的值为4或﹣.【点评】本题比较容易,考查求函数值.(1)当已知函数解析式时,求函数值就是求代数式的值;(2)函数值是唯一的,而对应的自变量可以是多个.12.如图为二次函数y=a某2+b某+c(a≠0)的图象,则下列说法:①a>0;②2a+b=0;③a+b+c>0;④△>0;⑤4a﹣2b+c<0,其中正确的个数为()A.1B.2C.3D.4【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴某=1计算2a+b与0的关系;再由根的判别式与根的关系,进而对所得结论进行判断.【解答】解:①由抛物线的开口向下知a<0,故本选项错误;②由对称轴为某==1,∴﹣=1,∴b=﹣2a,则2a+b=0,故本选项正确;③由图象可知,当某=1时,y>0,则a+b+c>0,故本选项正确;④从图象知,抛物线与某轴有两个交点,∴△>0,故本选项错正确;⑤由图象可知,当某=﹣2时,y<0,则4a﹣2b+c<0,故本选项正确;【点评】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(本大题共6个小题,每小题3分,共18分,将答案直接填写在题中横线上)13.小明制作了十张卡片,上面分别标有1~10这是个数字.从这十张卡片中随机抽取一张恰好能被4整除的概率是.【考点】概率公式.【分析】由小明制作了十张卡片,上面分别标有1~10这是个数字.其中能被4整除的有4,8,直接利用概率公式求解即可求得答案.【解答】解:∵小明制作了十张卡片,上面分别标有1~10这是个数字.其中能被4整除的有4,8;∴从这十张卡片中随机抽取一张恰好能被4整除的概率是:=.故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14.同圆的内接正三角形与外切正三角形的周长比是1:2.【考点】正多边形和圆.【分析】作出正三角形的边心距,连接正三角形的一个顶点和中心可得到一直角三角形,解直角三角形即可.【解答】解:如图所示:∵圆的内接正三角形的内心到每个顶点的距离是等边三角形高的,设内接正三角形的边长为a,∴等边三角形的高为a,∴该等边三角形的外接圆的半径为a∴同圆外切正三角形的边长=2某a某tan30°=2a.∴周长之比为:3a:6a=1:2,故答案为:1:2.【点评】本题考查了正多边形和圆的知识,解题时利用了圆内接等边三角形与圆外接等边三角形的性质求解,关键是构造正确的直角三角形.15.△ABC中,E,F分别是AC,AB的中点,连接EF,则S△AEF:S△ABC=.【考点】相似三角形的判定与性质;三角形中位线定理.【分析】由E、F分别是AB、AC的中点,可得EF是△ABC的中位线,直接利用三角形中位线定理即可求得BC=2EF,然后根据相似三角形的性质即可得到结论.【解答】解:∵△ABC中,E、F分别是AB、AC的中点,EF=4,∴EF是△ABC的中位线,∴BC=2EF,EF∥BC,∴△AEF∽△ABC,∴S△AEF:S△ABC=()2=,故答案为:.【点评】本题考查了相似三角形的判定和性质,三角形的中位线的性质,熟记三角形的中位线的性质是解题的关键.16.工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小孔的直径AB是8mm.【考点】相交弦定理;勾股定理.【专题】应用题;压轴题.【分析】根据垂径定理和相交弦定理求解.【解答】解:钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,则下面的距离就是2.利用相交弦定理可得:2某8=AB某AB,解得AB=8.故答案为:8.【点评】本题的关键是利用垂径定理和相交弦定理求线段的长.17.将抛物线y=某2﹣2向上平移一个单位后,又沿某轴折叠,得新的抛物线,那么新的抛物线的表达式是y=﹣某2+1.【考点】二次函数图象与几何变换.【专题】几何变换.【分析】先确定抛物线y=某2﹣2的顶点坐标为(0,﹣2),再根据点平移的规律和关于某轴对称的点的坐标特征得到(0,﹣2)变换后的对应点的坐标为(0,1),然后根据顶点式写出新抛物线的解析式.【解答】解:抛物线y=某2﹣2的顶点坐标为(0,﹣2),点(0,﹣2)向上平移一个单位所得对应点的坐标为(0,﹣1),点(0,﹣1)关于某轴的对称点的坐标为(0,1),因为新抛物线的开口向下,所以新抛物线的解析式为y=﹣某2+1.故答案为【点评】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.18.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=某2﹣2某﹣3,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为3+.【考点】二次函数综合题.【分析】连接AC,BC,有抛物线的解析式可求出A,B,C的坐标,进而求出AO,BO,DO的长,在直角三角形ACB中,利用射影定理可求出CO的长,进而可求出CD的长.【解答】解:连接AC,BC,∵抛物线的解析式为y=某2﹣2某﹣3,∴点D的坐标为(0,﹣3),∴OD的长为3,设y=0,则0=某2﹣2某﹣3,解得:某=﹣1或3,∴A(﹣1,0),B(3,0)∴AO=1,BO=3,∵AB为半圆的直径,∴∠ACB=90°,∵CO⊥AB,∴CO2=AOBO=3,∴CO=,∴CD=CO+OD=3+,故答案为:3+.【点评】本题是二次函数综合题型,主要考查了抛物线与坐标轴的交点问题、解一元二次方程、圆周角定理、射影定理,读懂题目信息,理解“果圆”的定义是解题的关键.三、解答题(本大题共6个小题,共46分,解答应写出文字说明,证明过程或推理步骤)19.(1)解方程:某2﹣3某+2=0.(2)已知:关于某的方程某2+k某﹣2=0①求证:方程有两个不相等的实数根;②若方程的一个根是﹣1,求另一个根及k值.【考点】根的判别式;解一元二次方程-因式分解法.【分析】(1)把方程某2﹣3某+2=0进行因式分解,变为(某﹣2)(某﹣1)=0,再根据“两式乘积为0,则至少一式的值为0”求出解;(2)①由△=b2﹣4ac=k2+8>0,即可判定方程有两个不相等的实数根;②首先将某=﹣1代入原方程,求得k的值,然后解此方程即可求得另一个根.【解答】(1)解:某2﹣3某+2=0,(某﹣2)(某﹣1)=0,某1=2,某2=1;(2)①证明:∵a=1,b=k,c=﹣2,∴△=b2﹣4ac=k2﹣4某1某(﹣2)=k2+8>0,∴方程有两个不相等的实数根;②解:当某=﹣1时,(﹣1)2﹣k﹣2=0,解得:k=﹣1,则原方程为:某2﹣某﹣2=0,即(某﹣2)(某+1)=0,解得:某1=2,某2=﹣1,所以另一个根为2.【点评】本题考查了根的判别式,一元二次方程a某2+b某+c=0(a≠0)的根与△=b2﹣4ac有如下关系:(1)△>0方程有两个不相等的实数根;(2)△=0方程有两个相等的实数根;(3)△<0方程没有实数根.也考查了用因式分解法解一元二次方程.20.(1)解方程:+=;(2)图①②均为7某6的正方形网络,点A,B,C在格点上.(a)在图①中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形(画一个即可).(b)在图②中确定格点E,并画出以A、B、C、E为顶点的四边形,使其为中心对称图形(画一个即可)【考点】利用旋转设计图案;解分式方程;利用轴对称设计图案.【分析】(1)化分式方程为整式方程,然后解方程,注意要验根;(2)可画出一个等腰梯形,则是轴对称图形;(3)画一个矩形,则是中心对称图形.【解答】解:(1)由原方程,得5+某(某+1)=(某+4)(某﹣1),整理,得2某=9,解得某=4.5;(2)如图①所示:等腰梯形ABCD为轴对称图形;;(3)如图②所示:矩形ABDC为轴对称图形;.【点评】此题比较灵活的考查了等腰梯形、矩形的对称性,是道好题.21.一只不透明袋子中装有1个红球,2个黄球,这些球除颜色外都相同,小明搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球,用树状图或列表法列出摸出球的所有等可能情况,并求两次摸出的球都是黄色的概率.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球都是黄球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,两次摸出的球都是黄球的有4种情况,∴两次摸出的球都是红球的概率为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22.用一段长为30m的篱笆围成一个边靠墙的矩形菜园,墙长为18米(1)若围成的面积为72米2,球矩形的长与宽;(2)菜园的面积能否为120米2,为什么?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】(1)设垂直于墙的一边长为某米,则矩形的另一边长为(30﹣2某)米,根据面积为72米2列出方程,求解即可;(2)根据题意列出方程,用根的判别式判断方程根的情况即可.【解答】解:(1)设垂直于墙的一边长为某米,则某(30﹣2某)=72,解方程得:某1=3,某2=12.当某=3时,长=30﹣2某3=24>18,故舍去,所以某=12.答:矩形的长为12米,宽为6米;(2)假设面积可以为120平方米,则某(30﹣2某)=120,整理得即某2﹣15某+60=0,△=b2﹣4ac=152﹣4某60=﹣15<0,方程无实数解,故面积不能为120平方米.【点评】此题主要考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.23.如图,⊙O的直径AB为10cm,弦BC为6cm,D,E分别是∠ACB 的平分线与⊙O,直径AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.【考点】切线的判定.【分析】(1)连结BD,如图,根据圆周角定理由AB为直径得∠ACB=90°,则可利用勾股定理计算出AC=8;由DC平分∠ACB得∠ACD=∠BCD=45°,根据圆周角定理得∠DAB=∠DBA=45°,则△ADB为等腰直角三角形,由勾股定理即可得出AD的长;(2)连结OC,由PC=PE得∠PCE=∠PEC,利用三角形外角性质得∠PEC=∠EAC+∠ACE=∠EAC+45°,加上∠CAB=90°﹣∠ABC,∠ABC=∠OCB,于是可得到∠PCE=90°﹣∠OCB+45°=90°﹣(∠OCE+45°)+45°,则∠OCE+∠PCE=90°,于是根据切线的判定定理可得PC为⊙O的切线.【解答】解:(1)连结BD,如图1所示,∵AB为直径,∴∠ACB=90°,在Rt△ACB中,AB=10cm,BC=6cm,∴AC==8(cm);∵DC平分∠ACB,∴∠ACD=∠BCD=45°,∴∠DAB=∠DBA=45°∴△ADB为等腰直角三角形,∴AD=AB=5(cm);(2)PC与圆⊙O相切.理由如下:连结OC,如图2所示:∵PC=PE,∴∠PCE=∠PEC,∵∠PEC=∠EAC+∠ACE=∠EAC+45°,而∠CAB=90°﹣∠ABC,∠ABC=∠OCB,∴∠PCE=90°﹣∠OCB+45°=90°﹣(∠OCE+45°)+45°,∴∠OCE+∠PCE=90°,即∠PCO=90°,∴OC⊥PC,∴PC为⊙O的切线.【点评】本题考查了切线的判定、圆周角定理、勾股定理、等腰直角三角形的判定与性质、等腰三角形的性质等知识;熟练掌握圆周角定理和切线的判定是解决问题的关键.24.如图,在平面直角坐标系某Oy中,直线y=某+2与某轴交于点A,与y轴交于点C,抛物线y=a某2+b某+c的对称轴是某=﹣且经过A,C两点,与某轴的另一交点为点B.(1)求抛物线解析式.(2)抛物线上是否存在点M,过点M作MN垂直某轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据自变量与函数值的对应关系,可得A、C点坐标,根据函数值相等的两点关于对称轴对称,可得B点坐标,根据待定系数法,可得函数解析式;(2)根据相似三角形的性质,可得关于m的方程,根据自变量与函数值的对应关系,可得M点坐标.【解答】解:(1)当某=0时,y=2,即C(0,2),当y=0时,某+2=0,解得某=﹣4,即A(﹣4,1).由A、B关于对称轴对称,得B(1,0).将A、B、C点坐标代入函数解析式,得,解得,抛物线的解析式为y=﹣某2﹣某+2;(2)抛物线上是存在点M,过点M作MN垂直某轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似,如图,设M(m,﹣m2﹣m+2),N(m,0).AN=m+4,MN=﹣m2﹣m+2.由勾股定理,得AC==2,BC==.当△ANM∽△ACB时,=,即=,解得m=0(不符合题意,舍),m=﹣4(不符合题意,舍);当△ANM∽△BCA时,=,即=,解得m=﹣3,m=﹣4(不符合题意,舍),当m=﹣3时,﹣m2﹣m+2=2,即M(﹣3,2).综上所述:抛物线存在点M,过点M作MN垂直某轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似,点M的坐标(﹣3,2).【点评】本题考查了二次函数综合题,利用函数值相等的两点关于对称轴对称得出B点坐标是解题关键;利用相似三角形的性质得出关于m的方程是解题关键,要分类讨论,以防遗漏.。

九年级数学(上)期末考试试卷含答案

九年级数学(上)期末考试试卷含答案

九年级数学(上)期末考试试卷一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.如果4a=5b(ab≠0),那么下列比例式变形正确的是()A. B. C. D.2.在Rt△ABC中,如果∠C=90°,AB=10,BC=8,那么cosB的值是()A.B.C.D.3.已知⊙O的半径为5,点P到圆心O的距离为8,那么点P与⊙O的位置关系是()A.点P在⊙O上 B.点P在⊙O内 C.点P在⊙O 外D.无法确定4.小明的妈妈让他在无法看到袋子里糖果的情形下从袋子里抽出一颗糖果.袋子里有三种颜色的糖果,它们的大小、形状、质量等都相同,其中所有糖果的数量统计如图所示.小明抽到红色糖果的概率为()A.B.C.D.5.如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD的长为()A.1 B.C.2 D.6.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3 C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣37.已知点A(1,m)与点B(3,n)都在反比例函数的图象上,那么m与n之间的关系是()A.m>n B.m<n C.m≥n D.m≤n8.如图,点A(6,3)、B(6,0)在直角坐标系内.以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,那么点C的坐标为()A.(3,1)B.(2,0)C.(3,3)D.(2,1)9.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°10.如图,点C是以点O为圆心、AB为直径的半圆上的一个动点(点C不与点A、B重合),如果AB=4,过点C作CD⊥AB于D,设弦AC的长为x,线段CD的长为y,那么在下列图象中,能表示y与x函数关系的图象大致是()A.B.C.D.二、填空题(本题共18分,每小题3分)11.如果两个相似三角形的相似比是1:3,那么这两个三角形面积的比是.12.颐和园是我国现存规模最大,保存最完整的古代皇家园林,它和承德避暑山庄、苏州拙政园、苏州留园并称为中国四大名园.该园有一个六角亭,如果它的地基是半径为2米的正六边形,那么这个地基的周长是米.13.图1中的三翼式旋转门在圆形的空间内旋转,旋转门的三片旋转翼把空间等分成三个部分,图2是旋转门的俯视图,显示了某一时刻旋转翼的位置,根据图2中的数据,可知的长是m.14.写出一个图象位于二、四象限的反比例函数的表达式,y=.15.“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”此问题的实质就是解决下面的问题:“如图,CD 为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”.根据题意可得CD的长为.16.学习了反比例函数的相关内容后,张老师请同学们讨论这样的一个问题:“已知反比例函数,当x>1时,求y的取值范围?”同学们经过片刻的思考和交流后,小明同学举手回答说:“由于反比例函数的图象位于第四象限,因此y的取值范围是y<0.”你认为小明的回答是否正确:,你的理由是:.三、解答题(本题共30分,每小题5分)17.计算:|.18.如图,在Rt△ABC中,∠ACB=90°,CD是边AB上的高.(1)求证:△ABC∽△CBD;(2)如果AC=4,BC=3,求BD的长.19.已知二次函数y=x2﹣6x+5.(1)将y=x2﹣6x+5化成y=a(x﹣h)2+k的形式;(2)求该二次函数的图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而减小.20.如图,在Rt△ABC中,∠ABC=90°,BC=1,AC=.(1)以点B为旋转中心,将△ABC沿逆时针方向旋转90°得到△A′BC′,请画出变换后的图形;(2)求点A和点A′之间的距离.21.如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y=的图象交于点A (﹣1,n).(1)求反比例函数y=的解析式;(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.22.“永定楼”是门头沟区的地标性建筑,某中学九年级数学兴趣小组进行了测量它高度的社会实践活动.如图,他们在A点测得顶端D的仰角∠DAC=30°,向前走了46米到达B点后,在B点测得顶端D的仰角∠DBC=45°.求永定楼的高度CD.(结果保留根号)四、解答题(本题共20分,每小题5分)23.已知二次函数y=mx2﹣(m+2)x+2(m≠0).(1)求证:此二次函数的图象与x轴总有交点;(2)如果此二次函数的图象与x轴两个交点的横坐标都是整数,求正整数m的值.24.如图,在四边形ABCD中,AB∥CD,过点C作CE∥AD交AB于E,连接AC、DE,AC与DE交于点F.(1)求证:四边形AECD为平行四边形;(2)如果EF=2,∠FCD=30°,∠FDC=45°,求DC的长.25.已知二次函数y1=x2+2x+m﹣5.(1)如果该二次函数的图象与x轴有两个交点,求m的取值范围;(2)如果该二次函数的图象与x轴交于A、B两点,与y轴交于点C,且点B的坐标为(1,0),求它的表达式和点C的坐标;(3)如果一次函数y2=px+q的图象经过点A、C,请根据图象直接写出y2<y1时,x的取值范围.26.如图,⊙O为△ABC的外接圆,BC为⊙O的直径,BA平分∠CBF,过点A作AD⊥BF,垂足为D.(1)求证:AD为⊙O的切线;(2)若BD=1,tan∠BAD=,求⊙O的直径.五、解答题(本题共22分,第27题7分,第28题8分,第29题7分)27.在平面直角坐标系xOy中,抛物线经过点A(0,2)和B(1,).(1)求该抛物线的表达式;(2)已知点C与点A关于此抛物线的对称轴对称,点D在抛物线上,且点D的横坐标为4,求点C与点D的坐标;(3)在(2)的条件下,将抛物线在点A,D之间的部分(含点A,D)记为图象G,如果图象G 向下平移t(t>0)个单位后与直线BC只有一个公共点,求t的取值范围.28.在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:如果y′=,那么称点Q为点P的“关联点”.例如:点(5,6)的“关联点”为点(5,6),点(﹣5,6)的“关联点”为点(﹣5,﹣6).(1)①点(2,1)的“关联点”为;②如果点A(3,﹣1),B(﹣1,3)的“关联点”中有一个在函数的图象上,那么这个点是(填“点A”或“点B”).(2)①如果点M*(﹣1,﹣2)是一次函数y=x+3图象上点M的“关联点”,那么点M的坐标为;②如果点N*(m+1,2)是一次函数y=x+3图象上点N的“关联点”,求点N的坐标.(3)如果点P在函数y=﹣x2+4(﹣2<x≤a)的图象上,其“关联点”Q的纵坐标y′的取值范围是﹣4<y′≤4,那么实数a的取值范围是.29.在菱形ABCD中,∠BAD=120°,射线AP位于该菱形外侧,点B关于直线AP的对称点为E,连接BE、DE,直线DE与直线AP交于F,连接BF,设∠PAB=α.(1)依题意补全图1;(2)如图1,如果0°<α<30°,判断∠ABF与∠ADF的数量关系,并证明;(3)如图2,如果30°<α<60°,写出判断线段DE,BF,DF之间数量关系的思路;(可以不写出证明过程)(4)如果60°<α<90°,直接写出线段DE,BF,DF之间的数量关系.参考答案与试题解析一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.如果4a=5b(ab≠0),那么下列比例式变形正确的是()A. B. C. D.【考点】比例的性质.【分析】根据等式的性质:两边都除以同一个不为零的数(或整式),结果不变,可得答案.【解答】解:两边都除以ab,得=,故A正确;B、两边都除以20,得=,故B错误;C、两边都除以4b,得=,故C错误;D、两边都除以5a,得=,故D错误.故选:A.【点评】本题考查了比例的性质,利用两边都除以同一个不为零的数(或整式),结果不变是解题关键.2.在Rt△ABC中,如果∠C=90°,AB=10,BC=8,那么cosB的值是()A.B.C.D.【考点】锐角三角函数的定义.【分析】根据在直角三角形中,锐角的余弦为邻边比斜边,可得答案.【解答】解:cosB===,故选:D.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.已知⊙O的半径为5,点P到圆心O的距离为8,那么点P与⊙O的位置关系是()A.点P在⊙O上 B.点P在⊙O内 C.点P在⊙O 外D.无法确定【考点】点与圆的位置关系.【分析】根据点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).【解答】解:∵OP=8>5,∴点P与⊙O的位置关系是点在圆外.故选:C.【点评】此题主要考查了点与圆的位置关系,注意:点和圆的位置关系与数量之间的等价关系是解决问题的关键.4.小明的妈妈让他在无法看到袋子里糖果的情形下从袋子里抽出一颗糖果.袋子里有三种颜色的糖果,它们的大小、形状、质量等都相同,其中所有糖果的数量统计如图所示.小明抽到红色糖果的概率为()A.B.C.D.【考点】概率公式;条形统计图.【专题】计算题.【分析】先利用条形统计图得到绿色糖果的个数为2,红色糖果的个数为5,紫色糖果的个数为8,然后根据概率公式求解.【解答】解:根据统计图得绿色糖果的个数为2,红色糖果的个数为5,紫色糖果的个数为8,所以小明抽到红色糖果的概率==.故选B.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.也考查了条形统计图.5.如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD的长为()A.1 B.C.2 D.【考点】相似三角形的判定与性质.【分析】由条件可证明△CBD∽△CAB,可得到=,代入可求得CD.【解答】解:∵∠DBC=∠A,∠C=∠C,∴△CBD∽△CAB,∴=,即=,∴CD=2,故选C.【点评】本题主要考查相似三角形的判定和性质,掌握相似三角形的判定方法是解题的关键.6.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3 C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣3【考点】二次函数图象与几何变换.【专题】几何变换.【分析】先确定抛物线y=5x2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后所得对应点的坐标,然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=5x2的顶点坐标为(0,0),把点(0,0)向左平移2个单位,再向上平移3个单位后得到对应点的坐标为(﹣2,3),所以新抛物线的表达式是y=5(x+2)2+3.故选A.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.7.已知点A(1,m)与点B(3,n)都在反比例函数的图象上,那么m与n之间的关系是()A.m>n B.m<n C.m≥n D.m≤n【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象的增减性来比较m与n的大小.【解答】解:∵反比例函数中系数2>0,∴反比例函数的图象位于第一、三象限,且在每一象限内y随x的增大而减小.又∵点A(1,m)与点B(3,n)都位于第一象限,且1<3,∴m>n.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征,解答该题时,也可以把点A、B的坐标分别代入函数解析式求得相应的m、n的值,然后比较它们的大小即可.8.如图,点A(6,3)、B(6,0)在直角坐标系内.以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,那么点C的坐标为()A.(3,1)B.(2,0)C.(3,3)D.(2,1)【考点】位似变换;坐标与图形性质.【分析】根据得A、B的坐标求出OB、AB的长,根据位似的概念得到比例式,计算求出OD、CD 的长,得到点C的坐标.【解答】解:∵A(6,3)、B(6,0),∴OB=6,AB=3,由题意得,△ODC∽△OBA,相似比为,∴==,∴OD=2,CD=1,∴点C的坐标为(2,1),故选:D.【点评】本题考查的是位似变换的概念和性质以及坐标与图形的性质,掌握位似的两个图形一定是相似形和相似三角形的性质是解题的关键.9.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°【考点】圆周角定理;垂径定理.【专题】压轴题.【分析】利用垂径定理得出=,进而求出∠BOD=40°,再利用邻补角的性质得出答案.【解答】解:∵线段AB是⊙O的直径,弦CD丄AB,∴=,∵∠CAB=20°,∴∠BOD=40°,∴∠AOD=140°.故选:C.【点评】此题主要考查了圆周角定理以及垂径定理等知识,得出∠BOD的度数是解题关键.10.如图,点C是以点O为圆心、AB为直径的半圆上的一个动点(点C不与点A、B重合),如果AB=4,过点C作CD⊥AB于D,设弦AC的长为x,线段CD的长为y,那么在下列图象中,能表示y与x函数关系的图象大致是()A.B.C.D.【考点】动点问题的函数图象.【专题】计算题.【分析】连结BC,如图,根据圆周角定理得到∠ACB=90°,则利用勾股定理得到BC=,再利用面积法可得到y=,CD为半径时最大,即y的最大值为2,此时x=2,由于y与x函数关系的图象不是抛物线,也不是一次函数图象,则可判断A、C错误;利用y最大时,x=2可对B、D进行判断.【解答】解:连结BC,如图,∵AB为直径,∴∠ACB=90°,∴BC==,∵CD•AB=AC•BC,∴y=,∵y的最大值为2,此时x=2.故选B.【点评】本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.解决本题的关键是利用圆周角定理得到∠ACB=90°.二、填空题(本题共18分,每小题3分)11.如果两个相似三角形的相似比是1:3,那么这两个三角形面积的比是1:9.【考点】相似三角形的性质.【分析】根据相似三角形的面积比等于相似比的平方求出即可.【解答】解:∵两个相似三角形的相似比是1:3,又∵相似三角形的面积比等于相似比的平方,∴这两个三角形面积的比是1:9.故答案为:1:9.【点评】本题考查了相似三角形的性质,注意:相似三角形的面积比等于相似比的平方.12.颐和园是我国现存规模最大,保存最完整的古代皇家园林,它和承德避暑山庄、苏州拙政园、苏州留园并称为中国四大名园.该园有一个六角亭,如果它的地基是半径为2米的正六边形,那么这个地基的周长是12米.【考点】正多边形和圆.【分析】由正六边形的半径为2,则OA=OB=2米;由∠AOB=60°,得出△AOB是等边三角形,则AB=OA=OB=2米,即可得出结果.【解答】解:如图所示:∵正六边形的半径为2米,∴OA=0B=2米,∴正六边形的中心角∠AOB==60°,∴△AOB是等边三角形,∴AB=OA=OB,∴AB=2米,∴正六边形的周长为6×2=12(米);故答案为:12.【点评】本题考查了正六边形的性质、等边三角形的判定与性质;解决正多边形的问题,常常把多边形问题转化为等腰三角形或直角三角形来解决.13.图1中的三翼式旋转门在圆形的空间内旋转,旋转门的三片旋转翼把空间等分成三个部分,图2是旋转门的俯视图,显示了某一时刻旋转翼的位置,根据图2中的数据,可知的长是m.【考点】弧长的计算.【专题】应用题.【分析】首先根据题意,可得,然后根据圆的周长公式,求出直径是2m的圆的周长是多少;最后用直径是2m的圆的周长除以3,求出的长是多少即可.【解答】解:根据题意,可得,∴(m),即的长是m.故答案为:.【点评】此题主要考查了弧长的计算,以及圆的周长的计算方法,要熟练掌握,解答此题的关键是判断出,并求出直径是2m的圆的周长是多少.14.写出一个图象位于二、四象限的反比例函数的表达式,y=答案不唯一,如y=﹣x等.【考点】正比例函数的性质.【专题】开放型.【分析】根据正比例函数的系数与图象所过象限的关系,易得答案.【解答】解:根据正比例函数的性质,其图象位于第二、四象限,则其系数k<0;故只要给出k小于0的正比例函数即可;答案不唯一,如y=﹣x等.【点评】解题关键是掌握正比例函数的图象特点.15.“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”此问题的实质就是解决下面的问题:“如图,CD 为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”.根据题意可得CD的长为26.【考点】垂径定理的应用.【专题】压轴题.【分析】根据垂径定理和勾股定理求解.【解答】解:连接OA,AB⊥CD,由垂径定理知,点E是AB的中点,AE=AB=5,OE=OC﹣CE=OA﹣CE,设半径为r,由勾股定理得,OA2=AE2+OE2=AE2+(OA﹣CE)2,即r2=52+(r﹣1)2,解得:r=13,所以CD=2r=26,即圆的直径为26.【点评】本题利用了垂径定理和勾股定理求解.16.学习了反比例函数的相关内容后,张老师请同学们讨论这样的一个问题:“已知反比例函数,当x>1时,求y的取值范围?”同学们经过片刻的思考和交流后,小明同学举手回答说:“由于反比例函数的图象位于第四象限,因此y的取值范围是y<0.”你认为小明的回答是否正确:否,你的理由是:y<﹣2.【考点】反比例函数的性质.【分析】根据反比例函数图象所经过的象限和函数的增加性解答.【解答】解:否,理由如下:∵反比例函数,且x>1,∴反比例函数的图象位于第四象限,∴y<﹣2.故答案是:否;y<﹣2.【点评】本题考查了反比例函数的性质.注意在本题中,当x>0时,y<0.三、解答题(本题共30分,每小题5分)17.计算:|.【考点】实数的运算;特殊角的三角函数值.【专题】计算题;实数.【分析】原式利用特殊角的三角函数值,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=×﹣+﹣1=﹣1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.如图,在Rt△ABC中,∠ACB=90°,CD是边AB上的高.(1)求证:△ABC∽△CBD;(2)如果AC=4,BC=3,求BD的长.【考点】相似三角形的判定与性质.【分析】(1)根据相似三角形的判定,由已知可证∠A=∠DCB,又因为∠ACB=∠BDC=90°,即证△ABC∽△CBD,(2)根据勾股定理得到AB=5,根据三角形的面积公式得到CD=,然后根据勾股定理即可得到结论.【解答】(1)证明:∵CD⊥AB,∴∠BDC=90°.∴∠A+∠ACD=90°.∵∠ACB=90°,∴∠DCB+∠ACD=90°.∴∠A=∠DCB.又∵∠ACB=∠BDC=90°,∴△ABC∽△CBD;(2)解:∵∠ACB=90°,AC=4,BC=3,∴AB=5,∴CD=,∵CD⊥AB,∴BD===.【点评】本题考查了相似三角形的判定,解直角三角形,熟练掌握相似三角形的判定定理是解题的关键.19.已知二次函数y=x2﹣6x+5.(1)将y=x2﹣6x+5化成y=a(x﹣h)2+k的形式;(2)求该二次函数的图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而减小.【考点】二次函数的三种形式;二次函数的性质.【分析】(1)运用配方法把一般式化为顶点式;(2)根据二次函数的性质解答即可;(3)根据二次函数的开口方向和对称轴解答即可.【解答】解:(1)y=x2﹣6x+5=(x﹣3)2﹣4;(2)二次函数的图象的对称轴是x=3,顶点坐标是(3,﹣4);(3)∵抛物线的开口向上,对称轴是x=3,∴当x≤3时,y随x的增大而减小.【点评】本题考查的是二次函数的三种形式和二次函数的性质,灵活运用配方法把一般式化为顶点式是解题的关键,注意二次函数的性质的应用.20.如图,在Rt△ABC中,∠ABC=90°,BC=1,AC=.(1)以点B为旋转中心,将△ABC沿逆时针方向旋转90°得到△A′BC′,请画出变换后的图形;(2)求点A和点A′之间的距离.【考点】作图-旋转变换.【专题】作图题.【分析】(1)在BA上截取BC′=BC,延长CB到A′使BA′=BA,然后连结A′C′,则△A′BC′满足条件;(2)先利用勾股定理计算出AB=2,再利用旋转的性质得BA=BA′,∠ABA′=90°,然后根据等腰直角三角形的性质计算AA′的长即可.【解答】解:(1)如图,△A′BC′为所作;(2)∵∠ABC=90°,B C=1,AC=,∴AB==2,∵△ABC沿逆时针方向旋转90°得到△A′BC′,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′=AB=2.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.21.如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y=的图象交于点A (﹣1,n).(1)求反比例函数y=的解析式;(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.【考点】反比例函数与一次函数的交点问题.【专题】计算题.【分析】(1)先把A(﹣1,n)代入y=﹣2x求出n的值,确定A点坐标为(﹣1,2),然后把A(﹣1,2)代入y=可求出k的值,从而可确定反比例函数的解析式;(2)过A作AB⊥x轴于点B,AC⊥y轴于点C,则B点坐标为(﹣1,0),C点坐标为(0,2),由于PA=OA,然后利用等腰三角形的性质易确定满足条件的P点坐标.【解答】解:(1)把A(﹣1,n)代入y=﹣2x得n=﹣2×(﹣1)=2,∴A点坐标为(﹣1,2),把A(﹣1,2)代入y=得k=﹣1×2=﹣2,∴反比例函数的解析式为y=﹣;(2)过A作AB⊥x轴于点B,AC⊥y轴于点C,如图,∵点A的坐标为(﹣1,2),∴B点坐标为(﹣1,0),C点坐标为(0,2)∴当P在x轴上,其坐标为(﹣2,0);当P点在y轴上,其坐标为(0,4);∴点P的坐标为(﹣2,0)或(0,4).【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数图象与一次函数图象的交点坐标满足两函数的解析式.也考查了等腰三角形的性质.22.“永定楼”是门头沟区的地标性建筑,某中学九年级数学兴趣小组进行了测量它高度的社会实践活动.如图,他们在A点测得顶端D的仰角∠DAC=30°,向前走了46米到达B点后,在B点测得顶端D的仰角∠DBC=45°.求永定楼的高度CD.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】根据题意得出DC=BC,进而利用tan30°=求出答案.【解答】解:由题意可得:AB=46m,∠DBC=45°,则DC=BC,故tan30°===,解得:DC=23(+1).答:永定楼的高度CD为23(+1)m.【点评】此题主要考查了解直角三角形的应用,解题的关键是从题目中整理出直角三角形并正确的利用边角关系求解.四、解答题(本题共20分,每小题5分)23.已知二次函数y=mx2﹣(m+2)x+2(m≠0).(1)求证:此二次函数的图象与x轴总有交点;(2)如果此二次函数的图象与x轴两个交点的横坐标都是整数,求正整数m的值.【考点】抛物线与x轴的交点.【专题】证明题.【分析】(1)令y=0,使得二次函数变为一元二次方程,然后求出方程中△的值,即可证明结论;(2)令y=0,使得二次函数变为一元二次方程,然后对方程分解因式,又因此二次函数的图象与x 轴两个交点的横坐标都是整数,从而可以求得符合要求的正整数m的值.【解答】解:(1)证明:∵二次函数y=mx2﹣(m+2)x+2(m≠0),∴当y=0时,0=mx2﹣(m+2)x+2(m≠0),△=[﹣(m+2)]2﹣4×m×2=m2+4m+4﹣8m=m2﹣4m+4=(m﹣2)2≥0∴0=mx2﹣(m+2)x+2(m≠0)有两个实数根,即二次函数y=mx2﹣(m+2)x+2(m≠0)的图象与x轴总有交点;(2)∵二次函数y=mx2﹣(m+2)x+2(m≠0),∴当y=0时,0=mx2﹣(m+2)x+2=(mx﹣2)(x﹣1),∴,又∵此二次函数的图象与x轴两个交点的横坐标都是整数,∴正整数m的值是:1或2,即正整数m的值是1或2.【点评】本题考查抛物线与x轴的交点,解题的关键是建立二次函数与一元二次方程之间的关系,然后找出所求问题需要的条件.24.如图,在四边形ABCD中,AB∥CD,过点C作CE∥AD交AB于E,连接AC、DE,AC与DE交于点F.(1)求证:四边形AECD为平行四边形;(2)如果EF=2,∠FCD=30°,∠FDC=45°,求DC的长.【考点】平行四边形的判定与性质.【分析】(1)由平行四边形的定义即可得出四边形AECD为平行四边形;(2)作FM⊥CD于M,由平行四边形的性质得出DF=EF=2,由已知条件得出△DFM是等腰直角三角形,DM=FM=DF=2,由含30°角的直角三角形的性质和勾股定理得出CF=2FM=4,CM=2,得出DC=DM+CM=2+2即可.【解答】(1)证明:∵AB∥CD,CE∥AD,∴四边形AECD为平行四边形;(2)解:作FM⊥CD于M,如图所示:则∠FND=∠FMC=90°,∵四边形AECD为平行四边形,∴D F=EF=2,∵∠FCD=30°,∠FDC=45°,∴△DFM是等腰直角三角形,∴DM=FM=DF=2,CF=2FM=4,∴CM=2,∴DC=DM+CM=2+2.【点评】本题考查了平行四边形的判定与性质、等腰直角三角形的判定与性质、含30°角的直角三角形的性质、勾股定理;熟练掌握平行四边形的判定与性质,通过作辅助线构造直角三角形是解决问题(2)的关键.25.已知二次函数y1=x2+2x+m﹣5.(1)如果该二次函数的图象与x轴有两个交点,求m的取值范围;(2)如果该二次函数的图象与x轴交于A、B两点,与y轴交于点C,且点B的坐标为(1,0),求它的表达式和点C的坐标;(3)如果一次函数y2=px+q的图象经过点A、C,请根据图象直接写出y2<y1时,x的取值范围.【考点】抛物线与x轴的交点;二次函数与不等式(组).【分析】(1)由二次函数的图象与x轴有两个交点得出判别式△>0,得出不等式,解不等式即可;(2)二次函数y1=x2+2x+m﹣5的图象经过把点B坐标代入二次函数解析式求出m的值,即可得出结果;点B(1,0);(3)由图象可知:当y2<y1时,比较两个函数图象的位置,即可得出结果.【解答】解:(1)∵二次函数y1=x2+2x+m﹣5的图象与x轴有两个交点,∴△>0,∴22﹣4(m﹣5)>0,解得:m<6;(2)∵二次函数y1=x2+2x+m﹣5的图象经过点(1,0),∴1+2+m﹣5=0,解得:m=2,∴它的表达式是y1=x2+2x﹣3,∵当x=0时,y=﹣3,∴C(0,﹣3);(3)由图象可知:当y2<y1时,x的取值范围是x<﹣3或x>0.【点评】本题考查了二次函数图象上点的坐标特征、抛物线与x轴的交点;由题意求出二次函数的解析式是解决问题的关键.26.如图,⊙O为△ABC的外接圆,BC为⊙O的直径,BA平分∠CBF,过点A作AD⊥BF,垂足为D.(1)求证:AD为⊙O的切线;(2)若BD=1,tan∠BAD=,求⊙O的直径.【考点】切线的判定.【分析】(1)要证AD是⊙O的切线,连接OA,只证∠DAO=90°即可.(2)根据三角函数的知识可求出AD,从而根据勾股定理求出AB的长,根据三角函数的知识即可得出⊙O的直径.【解答】(1)证明:连接OA;∵BC为⊙O的直径,BA平分∠CBF,AD⊥BF,∴∠ADB=∠BAC=90°,∠DBA=∠CBA;∵∠OAC=∠OCA,∴∠DAO=∠DAB+∠BAO=∠BAO+∠OAC=90°,∴DA为⊙O的切线.(2)解:∵BD=1,tan∠BAD=,∴AD=2,∴AB==,∴cos∠DBA=;∵∠DBA=∠CBA,∴BC===5.∴⊙O的直径为5.【点评】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了三角函数的知识.五、解答题(本题共22分,第27题7分,第28题8分,第29题7分)27.在平面直角坐标系xOy中,抛物线经过点A(0,2)和B(1,).(1)求该抛物线的表达式;(2)已知点C与点A关于此抛物线的对称轴对称,点D在抛物线上,且点D的横坐标为4,求点C与点D的坐标;(3)在(2)的条件下,将抛物线在点A,D之间的部分(含点A,D)记为图象G,如果图象G 向下平移t(t>0)个单位后与直线BC只有一个公共点,求t的取值范围.【考点】二次函数图象与几何变换;待定系数法求二次函数解析式.【专题】计算题.【分析】(1)把A点和B点坐标代入得到关于b、c的方程组,然后解方程组求出b、c即可得到抛物线解析式;(2)利用配方法得到y=(x﹣1)2+,则抛物线的对称轴为直线x=1,利用点C与点A关于直线x=1对称得到C点坐标为(2,2);然后利用二次函数图象上点的坐标特征求D点坐标;(3)画出抛物线,如图,先利用待定系数法求出直线BC的解析式为y=x+1,再利用平移的性质得到图象G向下平移1个单位时,点A在直线BC上;图象G向下平移3个单位时,点D在直线BC上,由于图象G向下平移t(t>0)个单位后与直线BC只有一个公共点,所以1<t≤3.【解答】解:(1)把A(0,2)和B(1,)代入得,解得,所以抛物线解析式为y=x2﹣x+2;(2)∵y=x2﹣x+2=(x﹣1)2+,∴抛物线的对称轴为直线x=1,∵点C与点A关于此抛物线的对称轴对称,∴C点坐标为(2,2);当x=4时,y=x2﹣x+2=8﹣4+2=6,∴D点坐标为(4,6);(3)如图,。

人教版九年级数学上册期末测试题(附参考答案)

人教版九年级数学上册期末测试题(附参考答案)

人教版九年级数学上册期末测试题(附参考答案)满分120分考试时间120分钟一、选择题:本大题共10个小题,每小题3分,共30分。

每小题只有一个选项符合题目要求。

1.方程x2-2x-24=0的根是( )A.x1=6,x2=4 B.x1=6,x2=-4C.x1=-6,x2=4 D.x1=-6,x2=-42.一个不透明的袋子中装有2个白球和3个黑球,这些球除了颜色外无其他差别,从中摸出3个球,下列事件属于必然事件的是( )A.至少有1个球是白色球B.至少有1个球是黑色球C.至少有2个球是白色球D.至少有2个球是黑色球3.若关于x的一元二次方程x2-8x+m=0的两根为x1,x2,且x1=3x2,则m的值为( )A.4 B.8C.12 D.16x2-6x+21,有以下结论:①当x>5时,y随x的增大而4.对于二次函数y=12增大;②当x=6时,y有最小值3;③图象与x轴有两个交点;④图象是由抛物x2向左平移6个单位长度,再向上平移3个单位长度得到的.其中正确结线y=12论的个数为( )A.1 B.2C.3 D.4⏜的长是5.如图,四边形ABCD内接于⊙O,⊙O的半径为3.若∠D=120°,则AC( )πA.πB.23C .2πD .4π6.如图,在△AOB 中,OA =4,OB =6,AB =2√7,将△AOB 绕原点O 旋转90°,则旋转后点A 的对应点A ′的坐标是( )A .(4,2)或(-4,2)B .(2√3,-4)或(-2√3,4)C .(-2√3,2)或(2√3,-2)D .(2,-2√3)或(-2,2√3)7.如图,AB 是O 的直径,ACD CAB ∠=∠ 2AD = 4AC =,则O 的半径为( )A .B .C .D8.如图,四边形ABCD 中,60A ∠=︒ //AB CD DE AD ⊥交AB 于点E ,以点E 为圆心 、DE 为半径且6DE =的圆交CD 于点F ,则阴影部分的面积为( )A .6π-B .12π-C .6πD .12π 9.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,遣人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是( ) A .3(1)6210x x -= B .3(1)6210x -=C .(31)6210x x -=D .36210x =10.如图,公园内有一个半径为18米的圆形草坪,从A 地走到B 地有观赏路(劣弧AB )和便民路(线段AB ).已知A ,B 是圆上的两点,O 为圆心,∠AOB =120°,小强从点A 走到点B ,走便民路比走观赏路少走( )A .(6π-6√3)米B .(6π-9√3)米C .(12π-9√3)米D .(12π-18√3)米二、填空题:本题共6个小题,每小题3分,共18分。

人教版九年级上学期数学《期末检测试卷》含答案

人教版九年级上学期数学《期末检测试卷》含答案
14.如图, 是⊙O上的点,若 ,则 ___________度.
15.已知 ,且 ,且 与 周长和为175,则 的周长为_________.
16.在国庆节的一次同学聚会上,每人都向其他人赠送了一份小礼品,共互送110份小礼品,则参加聚会的有______名同学.
17.已知 , 是方程 的两个实根,则 ______.
23.如图,在Rt△ABC中,∠C=90°,BC=8,tanB= ,点D在BC上,且BD=AD.求AC的长和cos∠ADC的值.
24.如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为点C,连结AB,AC.
(1)求该反比例函数的解析式;
(2)若△ABC的面积为6,求直线AB的表达式.
∵188>187, > ,
∴平均数变小,方差变小,
故选A.
点睛:本题考查了平均数与方差的定义:一般地设n个数据,x1,x2,…xn的平均数为 ,则方差S2= [(x1- )2+(x2- )2+…+(xn- )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
5.方程x(x﹣5)=x的解是()
[详解]解:∵∠A=22.5°,
∴∠BOC=2∠A=45°,
∵⊙O的直径AB垂直于弦CD,
∴CE=DE, 为等腰直角三角形,
∴CE=
∴CD=2CE= .
故选:C.
[点睛]本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰直角三角形的性质和垂径定理,掌握以上知识是解题的关键.
C. 平均数变大,方差变小D. 平均数变大,方差变大
[答案]A
[解析]

人教版九年级上学期数学《期末考试试卷》含答案

人教版九年级上学期数学《期末考试试卷》含答案
当 时, 随 的增大而增大,
对称轴与直线 重合或者位于直线 的左侧.
即:
故答案为
点睛:本题考查二次函数的图象和性质,掌握二次函数的图象和性质是解题的关键.
当 时, 随 的增大而增大,可知对称轴与直线 重合或者位于直线 的左侧.根据对称轴为 ,即可求出 的取值范围.
10.如图,在△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠B′AB等于_____.
答案与解析
一、选择题
1.下列所给图形是中心对称图形但不是轴对称图形的是()
A. B. C. D.
[答案]D
[解析]
A.此图形不是中心对称图形,不是轴对称图形,故A选项错误;
B.此图形是中心对称图形,也是轴对称图形,故B选项错误;
C.此图形不是中心对称图形,是轴对称图形,故D选项错误.
D.此图形是中心对称图形,不是轴对称图形,故C选项正确;
[答案]50°
[解析]
由平行线的性质可求得∠C/CA的度数,然后由旋转的性质得到AC=AC/,然后依据三角形的性质可知∠AC/C的度数,依据三角形的内角和定理可求得∠CAC/的度数,从而得到∠BAB/的度数.
解:∵CC/∥AB,
∴∠C/CA=∠CAB=65°,
∵由旋转的性质可知:AC=AC/,
∴∠ACC/=∠AC/C=65°.
二、填空题
8.已知关于x的方程x2+x+m=0的一个根是2,则m=_____,另一根为_____.
9.已知二次函数y=2(x-h)2的图象上,当x>3时,y随x的增大而增大,则h的取值范围是______.
10.如图,在△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′ 位置,使得CC′∥AB,则∠B′AB等于_____.

人教版九年级上册数学期末检测试卷(含答案)

人教版九年级上册数学期末检测试卷(含答案)

人教版九年级上册数学期末检测试卷一、选择题(每题3分,共24分) 1. 已知⊙O 的半径为6cm ,点O 到直线l 的距离为7cm ,则直线l 与O 的位置关系是( ) A. 相交 B. 相离 C. 相切 D. 无法确定2. 线段2cm ,8cm 的比例中项为 cm 。

( ) A. 4 B. 4.5 C. ±4 D. ±83. 如图,已知直线a //b//c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 、B 、D 、F 、AC=3,CE=6,BD=2,DF= ( ) A. 4 B.4.5 C. 3 D. 3.54. 张华同学的身高为1.6米,某一时刻他在阳光下的影长为2米,与他邻近的一棵树的影长为6米,则这棵树的高为 米. ( ) A. 3.2 B. 4.8 C.5.2 D. 5.6第3题图 第8题图5. 把抛物线y =2x ²向左平移2个单位,则平移后抛物线对应的函数表达式是 ( ) A. y=2x ²+2 B. y=2(x-2)² C. y=2x ²+2 D. y=2(x+2)²6. 在△ABC 中,若|21sinA -|+(cosB 22-)²=0,则∠C 的度数是 ( ) A. 45° B. 75° C. 105° D. 120°7. 如下图,小正方形的边长均为1,则下图中的三角形(阴影部分)与△ABC 相似的为( )8. 如图,矩形ABCD 的四个顶点分别在直线l3,l4,l2,l1上。

若直线l1∥l2∥l3∥l4且间距相等,AB =5,BC =3,则tan α的值为 ( ) A. 103 B. 53C. 126D. 25二、填空题(每题3分,共24分)9. 二次函数y=(x-1)²+2的顶点坐标为 。

10. 已知扇形的圆心角为120°,半径为2厘米,则这个扇形的弧长为 厘米。

人教版九年级数学上册期末测试题含答案

人教版九年级数学上册期末测试题含答案

九年级数学上册期末测试题一、选择题〔每题3分,共30分〕1.以下关于x 的方程中,是一元二次方程的有〔 〕 A .221x x +B .02=++c bx axC .()()121=+-x xD .052322=--y xy x2.化简132121++-的结果为〔 〕A 、23+ B 、23- C 、322+ D 、223+3.关于x 的方程260xkx --=的一个根为3x =,那么实数k 的值为〔 〕A .2B .1-C .1D .2- 4.要使二次根式1-x 有意义,那么x 的取值范围是〔 〕〔A 〕x >-1 〔B 〕 x <1 〔C 〕 x ≥1 〔D 〕x ≤15.有6张写有数字的卡片,它们的反面都一样,现将它们反面朝上〔如图2〕,从中随意一张是数字3的概率是〔 〕A 、61B 、31C 、21D 、326.x 、y 是实数,+y 2-6y +9=0,那么的值是〔 〕 A .4 B .-4 C . D .-7、以下图形中,既是轴对称图形,又是中心对称图形的是( )A B C D8.两圆的半径分别是5和4,圆心距为7,那么这两圆的位置关系是〔 〕A .相交B .内切C .外切D .外离9.如图3,⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,那么线段OM长的最小值为〔 〕A.2 B.3 C.4 D.5 10.:如图4, ⊙O 的两条弦、相交于点D,连接、.假设∠=60°,那么以下结论中正确的选项是〔 〕 A .∠=60° B . ∠=60°C .∠=60°D .∠=30°二、填空题〔每题3分,共24分〕11.方程 x 2= x 的解是12.如下图,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个根本图形〔图中的阴影部分〕绕中心O 至少经过次旋转而得到, 每一次旋转度.13.假设实数a 、b 满意11122+-+-=a a ab ,那么的值为.14.圆和圆有不同的位置关系.及以下图不同的圆和圆的位置关系是.(只填一种)15.假设关于x 方程2–61=0有两个实数根,那么k 的取值范围是 .16.如图6,在△中,∠90°,2。

九年级数学上学期期末检测试题(含答案)

九年级数学上学期期末检测试题(含答案)

九年级数学上学期期末检测试题(含答案)注意事项:本试题共8页,满分为150分,考试时间为120分钟.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并将考点、姓名、准考证号和座号填写在试题规定的位置.考试结束后,仅交回答题卡....... 第Ⅰ卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分.) 1.sin30︒的值为( ) A.1223 D.12.如图中几何体的左视图为( )A. B.C. D.3.如果25a b =,那么下列比例式中正确的是( ) A.25a b = B.25a b= C.52a b = D.25a b = 4.下列的各点中,在反比例函数1y x=图象上的点是( ) A.()2,4B.()1,5C.1,22⎛⎫⎪⎝⎭D.11,23⎛⎫⎪⎝⎭5.关于x 的一元二次方程2210kx x ++=有两个相等的实数根,则k 的值为( )A.2-B.1-C.0D.16.若点()11,y -,()21,y ,()32,y 在反比例函数ky x=(0k <)的图象上,则下列结论中正确的是( ) A.123y y y >> B.132y y y >>C.312y y y >>D.321y y y >>7.如图,在64⨯网格正方形中,每个小正方形的边长为1,顶点为格点,若ABC △的顶点均是格点,则sin ABC ∠的值是( )510 25D.458.一次函数y cx a =-(0c ≠)和二次函数2y ax x c =++(0a ≠)在同一平面直角坐标系中的图象可能是( )A. B.C. D.9.如图,在矩形ABCD 中,连接BD ,分别以B 、D 为圆心,大于12BD 的长为半径画弧,两弧交于P 、Q 两点,作直线PQ ,分别与AD 、BC 交于点M 、N ,连接BM 、DN .若3AB =,6BC =,则四边形MBND 的周长为( )A.15B.9C.154D.9410.如图,已知开口向上的抛物线2y ax bx c =++与x 轴交于点()1,0-,对称轴为直线1x =.下列结论:①0abc >;②20a b +=;③若关于x 的方程210ax bx c +++=一定有两个不相等的实数根;④13a >.其中正确的个数有( )A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,每小题4分,共24分.)11.如图,四边形ABCD ∽四边形A B C D '''',若55B ∠=︒,80C ∠=︒,110A ∠'=︒,则D ∠=______°.12.在一个不透明的袋子里装有若干个红球和6个黄球,这些球除颜色外都相同.小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则估计袋子中红球的个数是______个. 13.如图,若点A 在反比例函数ky x=(0k ≠)的图象上,AM x ⊥轴于点M ,AMO △的面积为8,k =______.14.将抛物线()2213y x =-+向右移3单位,上移2单位所得到的新抛物线解析式为______. 15.定义一种运算:()sin sin cos cos sin αβαβαβ+=+,()sin sin cos cos sin αβαβαβ-=-. 例如:当60α=︒,45β=︒时,()321262sin 604522224-︒=⨯-⨯︒=, 则sin75︒的值为______.16.如图,在正方形ABCD 中,点M 、N 为边BC 和CD 上的动点(不含端点),45MAN ∠=︒, 下列四个结论:①当2MN MC =时,则22.5BAM ︒∠=;②90AMN MNC ︒∠+∠=;③MNC △的周长不变;④若2DN =,3BM =,则ABM △的面积为15.其中正确结论的序号是______.三、解答题(本大题共10小题,共86分) 17.(6分)计算:()0π12sin60123︒---. 18(6分)2670x x +-=.19.(6分)如图,在菱形ABCD 中,CE AB ⊥于点E ,CF AD ⊥于点F ,求证:AE AF =.20.(8分)如图,12∠=∠,B D ∠=∠,9AE =,12AD =,20AB =.求AC 的长度.21.(8分)某校为落实“双减”工作,增强课后服务的吸引力,充分用好课后服务时间,为学有余力的学生拓展学习空间,成立了5个活动小组(每位学生只能参加一个活动小组):A .音乐;B .体育;C .美术;D .阅读;E .人工智能.为了解学生对以上活动的参与情况,随机抽取部分学生进行了调查统计,并根据统计结果,绘制了如图所示的两幅不完整的统计图.根据图中信息,解答下列问题:(1)①此次调查一共随机抽取了______名学生; ②补全条形统计图(要求在条形图上方注明人数); ③扇形统计图中圆心角a =______度;(2)若该校有2800名学生,估计该校参加D 组(阅读)的学生人数;(3)学校计划从E 组(人工智能)的甲、乙、丙、丁四位学生中随机抽取两人参加市青少年机器人竞赛,请用树状图法或列表法求出恰好抽中甲、乙两人的概率.22.(8分)为进一步加强疫情防控工作,长清区某学校决定安装红外线体温检测仪,对进入测温区域的人员进行快速测温(如图1),其红外线探测点O 可以在垂直于地面的支杆OP 上下调节(如图2),已知探测最大角(OBC ∠)为61°,探测最小角(OAC ∠)为37°.若该校要求测温区域的宽度AB 为1.4米,请你帮助学校确定该设备的安装高度OC .(参考数据:sin610.87≈︒,cos610.48︒≈,tan61 1.8≈︒,sin370.6≈︒,cos370.8≈︒tan370.75︒︒≈)23.(10分)某商店准备进一批季节性小家电,单价40元,经市场预测,销售定价为52元时,可售出180个.现在采取提高商品定价减少销售量的办法增加利润,定价每增加1元,销售量净减少10个. (1)商店若将准备获利2000元,则定价应增加多少元?(2)若商店要获得最大利润,则定价应增加多少元?最大利润是多少? 24.(10分)如图,一次函数1y x =-的图象与反比例函数ky x=(0x >)的图象交于点()3,B a ,与x 轴交于点A .点C 在反比例函数ky x=(0x >)的图象上的一点,CD x ⊥轴,垂足为D ,CD 与AB 交于点E ,OA AD =.(1)求a ,k 的值;(2)若点P 为x 轴上的一点,求当PB PC +最小时,点P 的坐标;(3)F 是平面内一点,是否存在点F 使得以A 、B 、C 、F 为顶点的四边形是平行四边形?若存在,请直接写出所有符合条件的点F 的坐标;若不存在,请说明理由. 25.(12分)【发现问题】(1)如图1,已知CAB △和CDE △均为等边三角形,D 在AC 上,E 在CB 上,易得线段AD 和BE 的数量关系是______.(2)将图1中的CDE △绕点C 旋转到图2的位置,直线AD 和直线BE 交于点F . ①判断线段AD 和BE 的数量关系,并证明你的结论; ②图2中AFB ∠的度数是______. 【探究拓展】(3)如图3,若CAB △和CDE △均为等腰直角三角形,90ABC DEC ︒∠=∠=,AB BC =,DE EC =,直线AD 和直线BE 交于点F ,分别写出AFB ∠的度数,线段AD 、BE 间的数量关系,并说明理由.26.(12分)综合与探究:如图,抛物线23y ax bx =+-(0a ≠)与x 轴交于点()3,0A -和点()1,0B ,与y 轴交于点C .(1)求此抛物线的函数表达式;(2)若点D 是第三象限抛物线上一动点,连接AD ,CD ,AC ,求ACD △面积的最大值,并求出此时点D 的坐标;(3)若点E 在抛物线的对称轴上,线段EB 绕点E 逆时针旋转90°后,点B 的对应点B '恰好也落在此抛物线上,请直接写出点E 的坐标.参考答案一、选择题(本大题共10小题,每小题4分,共40分) 题号 1 2 3 4 5 6 7 8 9 10 答案ADCCDBABAD11. 115 12. 2 13.16- 14.()2245y x =-+ 15.426+ 16.①③. 三.解答题(本大题共10小题,共86分)17.(6分)计算:()03π12sin601231223332--︒+-=-= 18.(6分)2670x x +-=.公式法:算出64=△,11x ∴=,27x =-因式分解法:()()170x x -+=,11x ∴=,27x =- 配方法:()2316x +=,11x ∴=,27x =- 19.(6分) 证明:菱形ABCD ,AB AD BC CD ∴===,B D ∠=∠CE AB ⊥,CF AD ⊥.90BEC DFC ∴∠=∠=︒()BCE DCF AAS ∴△≌△(或者连接AC ,证()ACE ACF AAS △≌△) AE AF ∴=.20.(8分) 证明:12∠=∠,12BAE BAE ∴∠+∠=∠+∠,DAE BAC ∴∠=∠B D ∠=∠,DAE BAC ∴△∽△ AD AE AB AC ∴=,12920AC∴=,15AC ∴= 21.(8分)根据图中信息,解答下列问题: (1)①400;②60,60;③54 (2)1402800980400⨯=(人) 答:参加D 组(阅读)的学生人数为280人 (3)列表或画树状图正确共有12中等可能的结果,其中恰好抽到A ,C 两人同时参赛的有两种P ∴(恰好抽中甲、乙两人)21126== 22.(8分)方法1:解:在Rt OBC △中,8tan tan 6 1.1O B OBC CC∠==︒=, ∴设BC x =,则 1.8OC x =在Rt OAC △中,1tan ta 5n 37.80.71.4OC C AC O xA x=+==∠︒=, 1x ∴=.经检验,1x =是原方程的解1.8 1.8OC x ∴==方法2:解:在Rt OAC △中,7tan tan 330.547O C A C A O C ∠=︒===∴设3OC x =,则4AC x =在Rt OBC △中,3 1.81tan .t 4n 614a O C C x BC OB x ==-∠=︒=0.6x ∴=经检验,0.6x =是原方程的解3 1.8OC x ∴==23.(10分)(1)解:设定价应增加x 元()()5240180102000x x -+-=解得18x =,22x =-采取提高商品定价减少销售量的办法增加利润22x ∴=-不合题意舍去,8x ∴=答:定价应增加8元.(1)设定价增加x 元时获利y 元()()215240108016010026y x x x x -+=-+-=+当3x =时,y 有最大值,为2250元.答:若商店要获得最大利润,则定价应增加3元,最大利润是2250元. 24.(10分)(1)求出2a =,6k =;(2)求出()2,3C ,画图找到P 点,求出点P 的坐标1305⎛⎫⎪⎝⎭,; (3)()14,5F ,()22,1F -,()30,1F 25.(12分)【发现问题】 (1)AD BE =(2)①AD BE =,证明过程 ②60度 (3)写出45AFB ∠=度,2AD BE =证明过程26.(12分)(1)解出1a =,2b =,∴抛物线的函数表达式223y x x =+- (2)求出点()0,3C -,AC 直线关系式3y x =--设点()2,23D m m m +-,过点D 作x 轴的垂线,交AC 于点F , 则点(),3F m m --,()()223233DE m m m m m ∴=---+-=--23922m m S --∴=当32m =-时,S 有最大值为827,此时315,24D ⎛⎫-- ⎪⎝⎭,(3)()11,3E -,()21,2E --。

九年级(上)期末数学试卷(附答案解析)

九年级(上)期末数学试卷(附答案解析)

九年级(上)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.下列事件中是必然事件的是()A.平安夜下雪B.地球在自转的同时还不停的公转C.所有人15岁时身高必达到1.70米D.下雨时一定打雷2.下列图形既是轴对称图形又是中心对称图形的是()A.B. C.D.3.用配方法解方程x2+4x+1=0,配方后的方程是()A.(x+2)2=3 B.(x﹣2)2=3 C.(x﹣2)2=5 D.(x+2)2=54.下列关系式中:①y=2x;;③y=﹣;④y=5x+1;⑤y=x2﹣1;⑥y=;⑦x y=11,y是x的反比例函数的共有()A.4个B.3个C.2个D.1个5.如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=,BD=,则AB的长为()A.2 B.3 C.4 D.56.对于函数y=,下列说法错误的是()A.这个函数的图象位于第一、第三象限B.这个函数的图象既是轴对称图形又是中心对称图形C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小7.在二次函数y=﹣x2+2x+1的图象中,若y随x的增大而增大,则x的取值范围是()A.x>1 B.x<1 C.x>﹣1 D.x<﹣18.如图,在半径为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,连接CD,则阴影部分的面积为()A.π﹣1 B.2π﹣1 C.π﹣1 D.π﹣29.已知两点A(5,6)、B(7,2),先将线段AB向左平移一个单位,再以原点O为位似中心,在第一象限内将其缩小为原来的得到线段CD,则点A的对应点C的坐标为()A.(2,3)B.(3,1)C.(2,1)D.(3,3)10.如图,D、E分别是△ABC边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则的值为()A.B.C.D.11.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2,0),则点C的坐标为()A.(﹣1,)B.(﹣2,)C.(﹣,1)D.(﹣,2)12.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③二、填空题(共6小题,每小题3分,满分18分)13.在比例尺为1:1000 000的地图上,量得甲、乙两地的距离是15cm,则两地的实际距离km.14.如果两个相似三角形的相似比为2:3,那么这两个相似三角形的面积比为.15.某口袋中有红色、黄色、蓝色玻璃球共72个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有个.16.如图,正六边形ABCDEF内接于圆O,半径为4,则这个正六边形的边心距OM为.17.如图,点A在双曲线上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为.18.在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α得到线段PQ.(1)若α=60°,且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,此时∠CDB 的度数为(2)在图2中,点P不与点B、M重合,线段CQ的延长线交射线BM于点D,则∠CDB的度数为(用含α的代数式表示).(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B、M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=DQ,则α的取值范围是.三、解答题(共7小题,满分66分)19.已知关于x的一元二次方程x2+2x+k﹣1=0有实数根,k为正整数.(1)求k的值;(2)当此方程有两个非零的整数根时,求关于x的二次函数y=x2+2x+k﹣1的图象的对称轴和顶点坐标.20.在x2□2x□1的空格中,任意填上“+”“﹣”,求其中能构成完全平方的概率(列出表格或画出树形图)21.如图,在平面直角坐标系中,一次函数y=kx+b的图象分别交x轴、y轴于A、B两点,与反比例函数y=的图象交于C、D两点,DE⊥x轴于点E,已知C点的坐标是(﹣6,﹣1),DE=3.(1)求反比例函数与一次函数的解析式.(2)根据图象直接回答:当x为何值时,一次函数的值小于反比例函数的值.22.如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°.(1)求∠B的大小;(2)已知圆心0到BD的距离为3,求AD的长.23.一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x 倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年年销售量增加x倍(本题中0<x≤1).(1)用含x的代数式表示,今年生产的这种玩具每件的成本为元,今年生产的这种玩具每件的出厂价为元.(2)求今年这种玩具的每件利润y元与x之间的函数关系式.(3)设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价﹣每件玩具的成本)×年销售量.24.如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.①求证:BD⊥CF;②当AB=5,AD=时,求线段BG的长.25.已知二次函数的图象如图.(1)求它的对称轴与x轴交点D的坐标;(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与x轴,y轴的交点分别为A、B、C 三点,若∠ACB=90°,求此时抛物线的解析式;(3)设(2)中平移后的抛物线的顶点为M,以AB为直径,D为圆心作⊙D,试判断直线CM与⊙D的位置关系,并说明理由.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.下列事件中是必然事件的是()A.平安夜下雪B.地球在自转的同时还不停的公转C.所有人15岁时身高必达到1.70米D.下雨时一定打雷【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【解答】解:A、平安夜下雪是随机事件,故A错误;B、地球在自转的同时还不停的公转,是必然事件,故B正确;C、所有人15岁时身高必达到1.70米是随机事件,故C错误;D、下雪时一定打雷是不可能事件,故D错误;故选:B.2.下列图形既是轴对称图形又是中心对称图形的是()A.B. C.D.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可作出判断.【解答】解:A、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,也不是轴对称图形,故此选项错误;D、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:A.3.用配方法解方程x2+4x+1=0,配方后的方程是()A.(x+2)2=3 B.(x﹣2)2=3 C.(x﹣2)2=5 D.(x+2)2=5【分析】方程常数项移到右边,两边加上4变形后,即可得到结果.【解答】解:方程移项得:x2+4x=﹣1,配方得:x2+4x+4=3,即(x+2)2=3.故选A.4.下列关系式中:①y=2x;;③y=﹣;④y=5x+1;⑤y=x2﹣1;⑥y=;⑦xy=11,y是x的反比例函数的共有()A.4个B.3个C.2个D.1个【分析】分别根据反比例函数、二次函数及一次函数的定义对各小题进行逐一分析即可.【解答】解:①y=2x是正比例函数;可化为y=5x,是正比例函数;③y=﹣符合反比例函数的定义,是反比例函数;④y=5x+1是一次函数;⑤y=x2﹣1是二次函数;⑥y=不是函数;⑦xy=11可化为y=,符合反比例函数的定义,是反比例函数.故选C.5.如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=,BD=,则AB的长为()A.2 B.3 C.4 D.5【分析】根据垂径定理和相交弦定理求解.【解答】解:连接OD.由垂径定理得HD=,由勾股定理得HB=1,设圆O的半径为R,在Rt△ODH中,则R2=()2+(R﹣1)2,由此得2R=3,或由相交弦定理得()2=1×(2R﹣1),由此得2R=3,所以AB=3故选B.6.对于函数y=,下列说法错误的是()A.这个函数的图象位于第一、第三象限B.这个函数的图象既是轴对称图形又是中心对称图形C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小【分析】根据反比例函数的性质:对于反比例函数y=,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大解答即可.【解答】解:函数y=的图象位于第一、第三象限,A正确;图象既是轴对称图形又是中心对称图形,B正确;当x>0时,y随x的增大而减小,C错误;当x<0时,y随x的增大而减小,D正确,由于该题选择错误的,故选:C.7.在二次函数y=﹣x2+2x+1的图象中,若y随x的增大而增大,则x的取值范围是()A.x>1 B.x<1 C.x>﹣1 D.x<﹣1【分析】抛物线y=﹣x2+2x+1中的对称轴是直线x=1,开口向下,x<1时,y随x的增大而增大.【解答】解:∵a=﹣1<0,∴二次函数图象开口向下,又∵对称轴是直线x=﹣=1,∴当x<1时,函数图象在对称轴的左边,y随x的增大而增大.故选B.8.如图,在半径为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,连接CD,则阴影部分的面积为()A.π﹣1 B.2π﹣1 C.π﹣1 D.π﹣2【分析】已知BC为直径,则∠CDB=90°,在等腰直角三角形ABC中,CD垂直平分AB,CD=DB,D为半圆的中点,阴影部分的面积可以看做是扇形ACB的面积与△ADC的面积之差.【解答】解:在Rt△ACB中,AB==2,∵BC是半圆的直径,∴∠CDB=90°,在等腰Rt△ACB中,CD垂直平分AB,CD=BD=,∴D为半圆的中点,S阴影部分=S扇形ACB﹣S△ADC=π×22﹣×()2=π﹣1.故选A.9.已知两点A(5,6)、B(7,2),先将线段AB向左平移一个单位,再以原点O为位似中心,在第一象限内将其缩小为原来的得到线段CD,则点A的对应点C的坐标为()A.(2,3)B.(3,1)C.(2,1)D.(3,3)【分析】先根据点平移的规律得到A点平移后的对应点的坐标为(4,6),然后根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k求解.【解答】解:∵线段AB向左平移一个单位,∴A点平移后的对应点的坐标为(4,6),∴点C的坐标为(4×,6×),即(2,3).故选A.10.如图,D、E分别是△ABC边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则的值为()A.B.C.D.【分析】由S△BDE:S△CDE=1:3,得到=,于是得到=,根据DE∥AC,推出△BDE∽△ABC,根据相似三角形的性质即可得到结论.【解答】解:∵S△BDE:S△CDE=1:3,∴=,∴=,∵DE∥AC,∴△BDE∽△ABC,∴==,故选D.11.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2,0),则点C的坐标为()A.(﹣1,)B.(﹣2,)C.(﹣,1)D.(﹣,2)【分析】作CH⊥x轴于H,如图,先根据一次函数图象上点的坐标特征确定A(2,2),再利用旋转的性质得BC=BA=2,∠ABC=60°,则∠CBH=30°,然后在Rt△CBH中,利用含30度的直角三角形三边的关系可计算出CH=BC=,BH=CH=3,所以OH=BH﹣OB=3﹣2=1,于是可写出C点坐标.【解答】解:作CH⊥x轴于H,如图,∵点B的坐标为(2,0),AB⊥x轴于点B,∴A点横坐标为2,当x=2时,y=x=2,∴A(2,2),∵△ABO绕点B逆时针旋转60°得到△CBD,∴BC=BA=2,∠ABC=60°,∴∠CBH=30°,在Rt△CBH中,CH=BC=,BH=CH=3,OH=BH﹣OB=3﹣2=1,∴C(﹣1,).故选:A.12.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③【分析】①由抛物线的对称轴为直线x=1,一个交点A(﹣1,0),得到另一个交点坐标,利用图象即可对于选项①作出判断;②根据抛物线开口方向判定a的符号,由对称轴方程求得b与a的关系是b=﹣2a,将其代入(3a+b),并判定其符号;③根据两根之积=﹣3,得到a=﹣,然后根据c的取值范围利用不等式的性质来求a的取值范围;④把顶点坐标代入函数解析式得到n=a+b+c=c,利用c的取值范围可以求得n的取值范围.【解答】解:①∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),对称轴直线是x=1,∴该抛物线与x轴的另一个交点的坐标是(3,0),∴根据图示知,当x>3时,y<0.故①正确;②根据图示知,抛物线开口方向向下,则a<0.∵对称轴x=﹣=1,∴b=﹣2a,∴3a+b=3a﹣2a=a<0,即3a+b<0.故②错误;③∵抛物线与x轴的两个交点坐标分别是(﹣1,0),(3,0),∴﹣1×3=﹣3,∴=﹣3,则a=﹣.∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点),∴2≤c≤3,∴﹣1≤﹣≤﹣,即﹣1≤a≤﹣.故③正确;④根据题意知,a=﹣,﹣=1,∴b=﹣2a=,∴n=a+b+c=c.∵2≤c≤3,∴≤c≤4,即≤n≤4.故④错误.综上所述,正确的说法有①③.故选D.二、填空题(共6小题,每小题3分,满分18分)13.在比例尺为1:1000 000的地图上,量得甲、乙两地的距离是15cm,则两地的实际距离150 km.【分析】设两地的实际距离为xcm,根据比例尺的定义得到15:x=1:1000 000,然后根据比例的性质计算出x,再把单位由cm化为km即可.【解答】解:设两地的实际距离为xcm,根据题意得15:x=1:1000 000,所以x=15000000cm=150km.故答案为150.14.如果两个相似三角形的相似比为2:3,那么这两个相似三角形的面积比为4:9.【分析】根据相似三角形的面积比等于相似比的平方可直接得出结果.【解答】解:∵两个相似三角形的相似比为2:3,∴这两个相似三角形的面积比为4:9.15.某口袋中有红色、黄色、蓝色玻璃球共72个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有18个.【分析】让球的总数×黄色玻璃球的概率即为所求的黄色玻璃球的球数.【解答】解:∵摸到红球、黄球、蓝球的频率为35%、25%和40%,∴摸到黄球的概率为0.25,故口袋中黄色玻璃球有0.25×72=18(个).故答案为:18.16.如图,正六边形ABCDEF内接于圆O,半径为4,则这个正六边形的边心距OM为2.【分析】由正六边形的性质得出∠AOM=60°,OA=4,求出∠OAM=30°,由含30°角的直角三角形的性质得出OM=OA=2即可.【解答】解:∵六边形ABCDEF是正六边形,OM⊥AC,∴∠AOM=60°,∠OMA=90°,OA=4,∴∠OAM=30°,∴OM=OA=2,即这个正三角形的边心距OM为2;故答案为:2.17.如图,点A在双曲线上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为2.【分析】根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.【解答】解:过A点作AE⊥y轴,垂足为E,∵点A在双曲线上,∴四边形AEOD的面积为1,∵点B在双曲线y=上,且AB∥x轴,∴四边形BEOC的面积为3,∴四边形ABCD为矩形,则它的面积为3﹣1=2.故答案为:2.18.在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α得到线段PQ.(1)若α=60°,且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,此时∠CDB 的度数为30°(2)在图2中,点P不与点B、M重合,线段CQ的延长线交射线BM于点D,则∠CDB的度数为(用含α的代数式表示)90°﹣α.(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B、M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=DQ,则α的取值范围是45°<α<60°.【分析】(1)由条件可得出AB=BC=AC,再利用旋转可得出QM=MC,证得CB=CD=BA,再由三角形外角的性质即可得出结论;(2)由(1)可得BM为AC的垂直平分线,结合条件可以得出Q,C,A在以P为圆心,PA为半径的圆上,由圆周角定理可得∠ACQ=∠APQ=α,可得出∠CDB和α的关系;(3)借助(2)的结论和PQ=QD,可得出∠PAD=∠PCQ=∠PQC=2∠CDB=180°﹣2α,结合∠BAD >∠PAD>∠MAD,代入可得出α的范围.【解答】解:(1)如图1,∵BA=BC,∠BAC=60°,∴AB=BC=AC,∠ABC=60°,∵M为AC的中点,∴MB⊥AC,∠CBM=30°,AM=MC.∵PQ由PA旋转而成,∴AP=PQ=QM=MC.∵∠AMQ=2α=120°,∴∠MCQ=60°,∠QMD=30°,∴∠MQC=60°.∴∠CDB=30°.故答案为:30°;(2)如图2,连接PC,∵由(1)得BM垂直平分AC,∴AP=PC,∠ADB=∠CDB,∠PAD=∠PCD,又∵PQ=PA,∴PQ=PC=PA,∴Q,C,A在以P为圆心,PA为半径的圆上,∴∠ACQ=∠APQ=α,∴∠BAC=∠ACD,∴DC∥BA,∴∠CDB=∠ABD=90°﹣α.故答案为:90°﹣α;(3)∵∠CDB=90°﹣α,且PQ=QD,∴∠PAD=∠PCQ=∠PQC=2∠CDB=180°﹣2α,∵点P不与点B,M重合,∴∠BAD>∠PAD>∠MAD,∴2α>180°﹣2α>α,∴45°<α<60°.故答案为:45°<α<60°.三、解答题(共7小题,满分66分)19.已知关于x的一元二次方程x2+2x+k﹣1=0有实数根,k为正整数.(1)求k的值;(2)当此方程有两个非零的整数根时,求关于x的二次函数y=x2+2x+k﹣1的图象的对称轴和顶点坐标.【分析】(1)根据一元二次方程x2+2x+k﹣1=0有实数根,可推△≥0,求出k的取值范围,得出k 的数值即可;(2)分别把k的值代入方程2x2+4x+k﹣1=0,解得结果根据方程有两个非零的整数根进行分析,确定k的值,进一步利用二次函数的性质确定对称轴和顶点坐标.【解答】解:(1)∵关于x的一元二次方程x2+2x+k﹣1=0有实数根,∴△=4﹣4(k﹣1)≥0.∴k≤2.∵k为正整数,∴k=1,2;(2)设方程x2+2x+k﹣1=0的两根为x1,x2,则x1+x2=﹣2,x1•x2=k﹣1,当k=1时,方程x2+2x+k﹣1=0有一个根为零;当k=2时,方程x2+2x+k﹣1=0有两个相同的非零实数根﹣1.k=2符合题意.二次函数y=x2+2x+1=(x+1)2,对称轴是x=﹣1,顶点坐标是(﹣1,0).20.在x2□2x□1的空格中,任意填上“+”“﹣”,求其中能构成完全平方的概率(列出表格或画出树形图)【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其中能构成完全平方的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有4种等可能的结果,其中能构成完全平方的有2种情况,∴其中能构成完全平方的概率为:=.21.如图,在平面直角坐标系中,一次函数y=kx+b的图象分别交x轴、y轴于A、B两点,与反比例函数y=的图象交于C、D两点,DE⊥x轴于点E,已知C点的坐标是(﹣6,﹣1),DE=3.(1)求反比例函数与一次函数的解析式.(2)根据图象直接回答:当x为何值时,一次函数的值小于反比例函数的值.【分析】(1)先由点C的坐标求出反比例函数的关系式,再由DE=3,求出点D的坐标,把点C,点D的坐标代入一次函数关系式求出k,b即可求一次函数的关系式.(2)由图象可知:一次函数的值小于反比例函数的值.【解答】解:(1)点C(﹣6,﹣1)在反比例函数y=的图象上,∴m=﹣6×(﹣1)=6,∴反比例函数的关系式为y=,∵点D在反比例函数y=上,且DE=3,∴y=3,代入求得:x=2,∴点D的坐标为(2,3).∵C、D两点在直线y=kx+b上,∴,解得:,∴一次函数的关系式为y=x+2.(2)由图象可知:当x<﹣6或0<x<2时,一次函数的值小于反比例函数的值.22.如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°.(1)求∠B的大小;(2)已知圆心0到BD的距离为3,求AD的长.【分析】(1)由同弧所对的圆周角相等求得∠CAB=∠CDB=40°,然后根据平角是180°求得∠BPD=115°;最后在△BPD中依据三角形内角和定理求∠B即可;(2)过点O作OE⊥BD于点E,则OE=3.根据直径所对的圆周角是直角,以及平行线的判定知OE∥AD;又由O是直径AB的半径可以判定O是AB的中点,由此可以判定OE是△ABD的中位线;最后根据三角形的中位线定理计算AD的长度.【解答】解:(1)∵∠CAB=∠CDB(同弧所对的圆周角相等),∠CAB=40°,∴∠CDB=40°;又∵∠APD=65°,∴∠BPD=115°;∴在△BPD中,∴∠B=180°﹣∠CDB﹣∠BPD=25°;(2)过点O作OE⊥BD于点E,则OE=3.∵AB是直径,∴AD⊥BD(直径所对的圆周角是直角);∴OE∥AD;又∵O是AB的中点,∴OE是△ABD的中位线,∴AD=2OE=6.23.一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x 倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年年销售量增加x倍(本题中0<x≤1).(1)用含x的代数式表示,今年生产的这种玩具每件的成本为(10+7x)元,今年生产的这种玩具每件的出厂价为(12+6x)元.(2)求今年这种玩具的每件利润y元与x之间的函数关系式.(3)设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价﹣每件玩具的成本)×年销售量.【分析】(1)根据题意今年这种玩具每件的成本比去年成本增加0.7x倍,即为(10+10•0.7x)元/件;这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,即为(12+12•0.5x)元/件;(2)今年这种玩具的每件利润y等于每件的出厂价减去每件的成本价,即y=(12+6x)﹣(10+7x),然后整理即可;(3)今年的年销售量为(2+2x)万件,再根据年销售利润=(每件玩具的出厂价﹣每件玩具的成本)×年销售量,得到w=2(1+x)(2﹣x),然后把它配成顶点式,利用二次函数的最值问题即可得到答案.【解答】解:(1)10+7x;12+6x;(2)y=(12+6x)﹣(10+7x),∴y=2﹣x (0<x≤1);(3)∵w=2(1+x)•y=2(1+x)(2﹣x)=﹣2x2+2x+4,∴w=﹣2(x﹣0.5)2+4.5∵﹣2<0,0<x≤1,∴w有最大值,∴当x=0.5时,w最大=4.5(万元).答:当x为0.5时,今年的年销售利润最大,最大年销售利润是4.5万元.24.如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.①求证:BD⊥CF;②当AB=5,AD=时,求线段BG的长.【分析】(1)由△ABC是等腰直角三角形和ADEF是正方形得到判断△ABD≌△ACF的条件;(2)由全等得到∠BGC=90°,利用勾股定理计算即可.【解答】解:(1)BD=CF成立.理由:∵△ABC是等腰直角三角形,∴AB=AC,∵ADEF是正方形,∴AD=AF,∠BAC=∠DAF,∴∠BAC﹣∠DAC=∠DAF﹣∠DAC,即∠BAD=∠CAF,在△ABD和△ACF中∴△ABD≌△ACF,∴BD=CF.(2)①由(1)全等得:∠ABD=∠ACE,∴∠GBC+∠GCB=∠GBC+∠ACF+∠ACB=(∠ABG+∠GBC)+∠ACB=45°+45°=90°,∴∠BGC=90°,∴BG⊥CF.②过D作DH⊥AB于H,AH=DH=AD÷=1,∴BH=3,∴BD==,延长AD交BC于P,则BP=CP,(AD平分∠BAC,AB=AC,等腰三角形三线合一)由∠BCG=90°知:DP∥CG,∴=1,∴BG=2BD=2.25.已知二次函数的图象如图.(1)求它的对称轴与x轴交点D的坐标;(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与x轴,y轴的交点分别为A、B、C 三点,若∠ACB=90°,求此时抛物线的解析式;(3)设(2)中平移后的抛物线的顶点为M,以AB为直径,D为圆心作⊙D,试判断直线CM与⊙D的位置关系,并说明理由.【分析】(1)根据对称轴公式求出x=﹣,求出即可;(2)假设出平移后的解析式即可得出图象与x轴的交点坐标,再利用勾股定理求出即可;(3)由抛物线的解析式可得,A,B,C,M各点的坐标,再利用勾股定理逆定理求出CD⊥CM,即可证明.【解答】解:(1)由,得x=﹣=﹣=3,∴D(3,0);(2)方法一:如图1,设平移后的抛物线的解析式为,则C(0,k)OC=k,令y=0即,得,x2=3﹣,∴A,B,∴,=2k2+8k+36,∵AC2+BC2=AB2即:2k2+8k+36=16k+36,得k1=4,k2=0(舍去),∴抛物线的解析式为,方法二:∵,∴顶点坐标,设抛物线向上平移h个单位,则得到C(0,h),顶点坐标,∴平移后的抛物线:,当y=0时,,得,x2=3+,∴A,B,∵∠ACB=90°,∴△AOC∽△COB,则OC2=OA•OB,即,解得h1=4,h2=0(不合题意舍去),∴平移后的抛物线:;(3)方法一:如图2,由抛物线的解析式可得,A(﹣2,0),B(8,0),C(0,4),M,过C、M作直线,连接CD,过M作MH垂直y轴于H,则MH=3,∴,,在Rt△COD中,CD==AD,∴点C在⊙D上,∵,∴DM2=CM2+CD2∴△CDM是直角三角形,∴CD⊥CM,∴直线CM与⊙D相切.方法二:如图3,由抛物线的解析式可得A(﹣2,0),B(8,0),C(0,4),M,作直线CM,过D作DE⊥CM于E,过M作MH垂直y轴于H,则MH=3,,由勾股定理得,∵DM∥OC,∴∠MCH=∠EMD,∴Rt△CMH∽Rt△DME,∴得DE=5,由(2)知AB=10,∴⊙D的半径为5.∴直线CM与⊙D相切.。

2022-2023学年度九年级数学上学期期末质量监测(含答案)

2022-2023学年度九年级数学上学期期末质量监测(含答案)

2022-2023学年度九年级数学上学期期末质量监测(含答案)一、选择题(下列各题的备选答案中,只有一个是正确的,每小题3分,共30分)1.对称美是美的一种重要形式,它能给与人们一种圆满、协调和平的美感,常被运用于建筑、器物、绘画、标识等作品的设计上,下列汽车的标识是中心对称图形的是()A.B.C.D.2.用配方法解方程x2﹣2x﹣3=0,下列配方结果正确的是()A.(x﹣1)2=2B.(x﹣1)2=4C.(x+1)2=2D.(x+1)2=4 3.平面直角坐标系内与点P(1,2)关于原点对称的点的坐标是()A.(﹣1,2)B.(1,﹣2)C.(﹣1,﹣2)D.(2,1)4.下列事件中是必然事件的是()A.任意一个三角形的外角和等于180°B.一个数与它的相反数的和是0C.明天会下雨D.正月十五雪打灯5.如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为()A.25°B.30°C.60°D.50°6.如图,一个可以自由转动的转盘,被分成了白色和红色两个区域,任意转动转盘一次,当转盘停止转动时(若指针停在边界处,则重新转动转盘),指针落在红色区域内的概率是()A .16B .15C .13D .127.如果在二次函数的表达式y =2x 2+bx +c 中,b >0,c <0,那么这个二次函数的图象可能是( )A .B .C .D .8.某市2018年底森林覆盖率为63%.为贯彻落实“绿水青山就是金山银山”的发展理念,该市大力开展植树造林活动,2020年底森林覆盖率达到68%,如果这两年森林覆盖率的年平均增长率为x ,那么,符合题意的方程是( ) A .0.63(1+x )=0.68 B .0.63(1+2x )2=0.68 C .0.63(1+2x )=0.68D .0.63(1+x )2=0.689.如图,将△ABC 绕点A 逆时针旋转55°得到△ADE ,若∠E =70°且AD ⊥BC 于点F ,则∠BAC 的度数为( )A .65°B .70°C .75°D .80°10.如图,已知抛物线y =ax 2+c 与直线y =kx +m 交于A (﹣3,y 1),B (1,y 2)两点,则关于x 的不等式ax 2+c ≥﹣x +m 的解集是( )A.x≤﹣3或x≥1B.x≤﹣1或x≥3C.﹣3≤x≤l D.﹣1≤x≤3二、填空题(每题3分,共18分)11.请写出一个开口向上,并且与y轴交于点(0,﹣2)的抛物线的解析式.12.若一元二次方程x2+2x+k=0有两个相等的实数根,则k的值.13.如图,AB是⊙O的直径,O为圆心,点C是半圆O上的点,若∠CAB=4∠CBA,点D ̂上任意一点,则∠BDC的度数为度.是BC14.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如表:则当x=0时,y的值为.x…﹣5﹣4﹣3﹣2﹣1…y=ax2+bx+c…﹣13﹣3353…15.一副直角三角板位置如图所示,∠A=45°,∠M=30°,若O为AC中点,CD=1,AE=3,连接DE,则DE的长为.16.如图,在四边形ABCD中,∠BAC=∠CAD=∠BCD=45°,AC=4√2cm,则△ABD 的周长为cm.三、解答题(共102分)17.解方程:x(x﹣4)=2﹣8x.18.我市在创建家卫生文明城市的过程中,赵明和李亮积极参加志愿者活动,当时有下列四个志愿者工作岗位供他们选择:①清理类岗位:清理花坛卫生死角:清理楼道杂物(分别用A1,A2表示)②宣传类岗位:垃圾分类知识宣传:交通安全知识宣传(分别用B1,B2表示).(1)赵明从四个岗位中随机选取一个报名,恰好选择清理类岗位概率是;(2)若赵明和李亮各随机从四个岗位中选一个报名,请你利用树状图或列表法求出他们恰好都选择同一个岗位的概率.19.已知关于x的一元二次方程mx2﹣6x+5=0有两个不相等的实数根.(1)求m的取值范围;(2)当m为正整数时,求方程的根.20.如图,在宽为20m,长为30m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪,要使草坪的面积为551m2,求道路的宽.21.如图,在Rt△AOB中,∠ABO=90°,∠OAB=30°,以点O为圆心,OB为半径的圆交BO的延长线于点C,过点C作OA的平行线,交⊙O于点D,连接AD.(1)求证:AD为⊙O的切线;(2)若OB=2,求弧CD的长.22.如图①,桥拱截面OBA可视为抛物线的一部分,在某一时刻,桥拱内的水面宽OA=8m,桥拱顶点B到水面的距离是4m.(1)按如图②所示建立平面直角坐标系,求桥拱部分抛物线的函数表达式;(2)一只宽为1.2m的打捞船径直向桥驶来,当船驶到桥拱下方且距O点0.4m时,桥下水位刚好在OA处,有一名身高1.68m的工人站立在打捞船正中间清理垃圾,他的头顶是否会触碰到桥拱,请说明理由(假设船底与水面齐平).23.元旦期间,某水果超市调查某种水果的销售情况,下面是调查员的对话:小张:该水果的进价是每千克22元;小李:当销售价为每千克38元时,每天可售出160千克;若每千克降低3元,每天的销售量将增加120千克.根据他们的对话,解决下面所给问题:超市每天要获得销售利润3640元,又要尽可能让顾客得到实惠,求这种水果的销售价为每千克多少元?24.若△ABC,△ADE为等腰三角形,AC=BC,AD=DE,将△ADE绕点A旋转,连接BE,F为BE中点,连接CF,DF.(1)若∠ACB=∠ADE=90°,如图1,试探究DF与CF的关系并证明;(2)若∠ACB=60°,∠ADE=120°,如图2,请直接写出CF与DF的关系.25.在平面直角坐标系xOy中,抛物线y=ax2+x经过点A(3,4).(1)求a的值;(2)过点A作x轴的平行线交抛物线于另一点B,在直线AB上任取一点P,作点A关于直线OP的对称点C;①当点C恰巧落在x轴时,求直线OP的表达式;②连结BC,求BC的最小值.参考答案一、选择题(每小题3分,共30分)二、填空题(每小题3分,共18分)11.y=x 2-2(答案不唯一) 12.1 13.108 14.-3 15 16. 8三、解答题 (注:如有其它解法,请参照本答案酌情给分) 17.解:(4)28x x xx 2+4x -2=0 …………3分x=-42± …………6分 解得, x 1=-2+,x 2=-2-…………8分18.解:解:(1)赵明同学选择清理类岗位的概率为; …………3分 (2)根据题意画树状图如下:…………7分共有16种等可能的结果数,赵明和李亮恰好选择同一岗位的结果数为4,所以他们恰好选择同一岗位的概率.…………10分19.解:(1)由题△=(-6)2-4×5m >0 且m ≠0 …………3分 所以 m <95,且m ≠0 …………5分 (2)∵m <95,且m ≠0 ,m 为正整数 ∴m=1 …………6分 方程为x 2﹣6x +5=0(x-5)(x-1)=0x 1=5,x 2=1 …………10分20. 解:设道路的宽为xm …………1分2142=41164=根据题意,列方程(30-x)(20-x)=551 …………6分解得:x1=1,x2=49(不合题意舍去)…………9分答:道路的宽为1m …………10分21.解:(1)连接OD,∵∠OAB=30°,∠B=90°,∴∠AOB=60°,又∵CD∥AO,∴∠C=∠AOB=60°,又∵OC=OD,∴△COD是等边三角形,∴∠COD=60°,∴∠AOD=180°﹣60°﹣60°=60°,…………2分又∵OB=OD,AO=AO,∴△AOB≅△AOD(SAS),…………5分∴∠ADO=∠ABO=90°,…………6分又∵点D在⊙O上,∴AD是⊙O的切线;…………7分(2)由题意得,⊙O的半径OB=2=OC,∠COD=60°,根据弧长公式可得,弧CD的长=6022=1803…………12分22.解:(1)如图②,由题意得:水面宽OA是8m,桥拱顶点B到水面的距离是4m,结合函数图象可知,顶点B(4,4),点O(0,0),设二次函数的表达式为y=a(x﹣4)2+4,…………2分将点O(0,0)代入函数表达式,解得:a=﹣14,…………4分∴二次函数的表达式为y=﹣14(x﹣4)2+4,即y=﹣14x2+2x(0≤x≤8);…………6分(2)工人不会碰到头,理由如下:…………7分∵小船距O点0.4m,小船宽1.2m,工人直立在小船中间,由题意得:工人距O点距离为0.4+12×1.2=1,…………8分∴将=1代入y=﹣14x2+2x,解得:y=74=1.75,…………10分∵1.75m>1.68m,∴此时工人不会碰到头…………12分23. 解:设降低x元,超市每天可获得销售利润3640元,由题意得,…………1分(38﹣x﹣22)(160+x3×120)=3640,…………6分整理得x2﹣12x+27=0,∴x=3或x=9.…………10分∵要尽可能让顾客得到实惠,∴x=9,∴售价为38﹣9=29元.…………11分答:水果的销售价为每千克29元时,超市每天可获得销售利润3640元.…………12分24.(1)答:DF=CF且DF⊥CF …………2分证明:延长CF至点M,使CF=FM,连接ME,MD,CD,延长DE交CB延长线于点N,∵BF=EF ,CF=FM,∠BFC=∠EFM∴△BFC≌△EFM …………4分∴EM=BC=AC,∠FME=∠FCB∴BC∥EM∴∠N=∠MEN在四边形ACND中,∠ACB=∠ADE=90°∴∠N + ∠CAD=360°-(∠ACB+∠ADE)=180°又∵∠MEN+∠MED=180°∴∠MED=∠CAD又AD=DE,EM=AC∴△MED≌△CAD …………8分∴DM=DC , ∠MDE=∠CDA∴∠MDC=∠NDC+∠MDE=∠NDC+∠CDA=∠ADE=90°∴△DCM为等腰直角三角形∵点F是CM中点∴DF=12CM=CF,DF⊥CF …………11分(2)DF⊥CF且CF=…………14分【证明思路:延长CF至点M,使CF=FM,连接ME,MD,CD,延长ED交BC延长线于点N,易证△BFC≌△EFM再证明△MED≌△CAD证得△DCM为等腰三角形,且顶角为120° ∴DF⊥CF且CF=】25.解:(1)∵抛物线2y=ax+x经过点A(3,4)令x=3,代入2y=ax+x,则4=a×32+3,∴a=19;…………4分(2)①如图:由对称性可知OA=OC,AP=CP,∵AP∥OC,∴∠1=∠2,又∵∠AOP=∠2,∴∠AOP=∠1,∴AP=AO,∵A(3,4),∴AO=5,∴AP=5,…………6分∴P1(8,4),同理可得P2(﹣2,4),…………8分∴OP的表达式为y=-2x或y=12x.…………10分②如图:∵OA=OC∴点C在以O为圆心,OA长为半径作⊙O上,连接BO,交⊙O于点C 此时BC的值最小∵B(-12,4),∴OB=…………12分∴BC的最小值为5.…………14分第25题图第25题图。

九年级数学上册期末考试卷(含答案)

九年级数学上册期末考试卷(含答案)

九年级数学上册期末考试卷(含答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列实数中的无理数是( )A B C D .2272.已知抛物线24y x bx =-++经过(2,)n -和(4, )n 两点,则n 的值为( )A .﹣2B .﹣4C .2D .43.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( )A .9B .8C .5D .44.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( )A .9天B .11天C .13天D .22天5.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x 名同学,那么依题意,可列出的方程是( )A .x (x+1)=210B .x (x ﹣1)=210C .2x (x ﹣1)=210D .12x (x ﹣1)=210 6.设正比例函数y mx =的图象经过点(,4)A m ,且y 的值随x 值的增大而减小,则m =( )A .2B .-2C .4D .-47.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则此时轮船所在位置B 与灯塔P 之间的距离为( )A .60海里B .45海里C .203海里D .303海里8.如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB=AC ,∠CAD=20°,则∠ACE 的度数是( )A .20°B .35°C .40°D .70°9.扬帆中学有一块长30m ,宽20m 的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm ,则可列方程为( )A .()()3302020304x x --=⨯⨯ B .()()130********x x --=⨯⨯ C .130********x x +⨯=⨯⨯ D .()()33022020304x x --=⨯⨯ 10.如图,点A ,B 在双曲线y=3x (x >0)上,点C 在双曲线y=1x(x >0)上,若AC ∥y 轴,BC ∥x 轴,且AC=BC ,则AB 等于( )A.2B.22C.4 D.32二、填空题(本大题共6小题,每小题3分,共18分)1.64的算术平方根是__________.2.分解因式:a2﹣4b2=_______.3.若a、b为实数,且b=22117a aa-+-++4,则a+b=__________.4.(2017启正单元考)如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G、F,若FG=4,ED=8,求EB+DC=________.5.如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是__________.6.如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是_____________.三、解答题(本大题共6小题,共72分)1.解下列方程(1)232x x=-(2)214111xx x+-=--2.已知A-B=7a2-7ab,且B=-4a2+6ab+7.(1)求A 等于多少?(2)若|a +1|+(b -2)2=0,求A 的值.3.如图,点A 、D 、C 、F 在同一条直线上,AD=CF ,AB=DE ,BC=EF.(1)求证:ΔABC ≌△DEF ;(2)若∠A=55°,∠B=88°,求∠F 的度数.4.如图,在ABC 中,点D E 、分别在边BC AC 、上,连接AD DE 、,且B ADE C ∠=∠=∠.(1)证明:BDA CED △∽△;(2)若45,2B BC ∠=︒=,当点D 在BC 上运动时(点D 不与B C 、重合),且ADE 是等腰三角形,求此时BD 的长.5.为了了解某校初中各年级学生每天的平均睡眠时间(单位:h ,精确到1h ),抽样调查了部分学生,并用得到的数据绘制了下面两幅不完整的统计图.请你根据图中提供的信息,回答下列问题:(1)求出扇形统计图中百分数a 的值为 ,所抽查的学生人数为 .(2)求出平均睡眠时间为8小时的人数,并补全频数直方图.(3)求出这部分学生的平均睡眠时间的众数和平均数.(4)如果该校共有学生1200名,请你估计睡眠不足(少于8小时)的学生数.6.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、C4、B5、B6、B7、D8、B9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、222、(a+2b)(a﹣2b)3、5或34、125、.6、5255三、解答题(本大题共6小题,共72分)1、(1)x=6;(2)分式方程无解.2、(1)3a2-ab+7;(2)12.3、(1)略;(2)37°BD=1,理由见详解.4、(1)理由见详解;(2)225、(1)45%,60;(2)见解析18;(3)7,7.2;(4)7806、甲、乙两个工厂每天分别能加工40件、60件新产品。

2022-2023学年度九年级数学第一学期期末质量检测试卷(含答案)

2022-2023学年度九年级数学第一学期期末质量检测试卷(含答案)

2022-2023学年度第一学期期末质量检测九年级数学试卷(考试时间:120分钟;满分:120分)友情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!本次考试只交答题纸,请同学们务必将学校、班级、姓名写在答题纸的卷面上,务必在答题纸规定的位置上写答案,在其它位置写答案不得分!一、单选题(本题满分24分,共有8道小题,每小题3分) 请将1—8各小题所选答案涂在答题纸规定的位置.1.两个形状相同、大小相等的小木块放置于桌面上,则其左视图是( ) .A .B .C .D .2.如图,在Rt △ABC 中,∠C =90°,BC =3,AB =2,则下列结论正确的是( )A .23sin =B B .21tan =BC .23cos =A D .3tan =A 3.小丽和小强在阳光下行走,小丽身高1.6米,她的影长2.0米,小丽比小强矮10cm,此刻小强的影长是( )米.A .817 B .178 C .815 D .158 4.在一个不透明的袋子中有除颜色外均相同的6个白球和若干黑球,通过多次摸球试验后,发现摸到白球的频率约为30%,估计袋中黑球有( )个.A .8B .9C .14D .15ACB第2题图 第1题图5.方程22x -5x +m = 0没有实数根,则m 的取值范围是( )A.m >825 B.m <825 C.m ≤825 D.m ≥825 6.如图,□ABCD 中,O 是对角线AC 、BD 的交点,△ABO 是等边三角形,若AC =8cm ,则□ABCD 的面积是( )cm 2 . A .16 B .43C .83D .1637.某校科技小组进行野外考察,利用铺垫木板的方式通过了一片烂泥湿地.当人和木板对湿地的压力一定时,人和木板对地面的压强P (Pa )是木板面积S (m 2)的反比例函数,其图象如图,点A 在反比例函数图象上,坐标是(8,30),当压强P (Pa )是4800Pa 时,木板面积为( )m 2A . 0.5B .2C .0.05D . 20第7题图8.如图,在□ABCD 中,AB =6,BC =9,∠ABC ,∠BCD 的角平分线分别交AD 于E 和F ,BE 与CF 交于点O ,则△EFO 与△BCO 面积之比是( )A .1:3B . 1:9C .2:3D . 9:1 二、填空题(本题满分24分,共有8道小题,每小题3分) 请将 9—16各小题的答案填写在答题纸规定的位置.9.计算:tan45°+3sin60°=__________.10.由于手机市场的迅速成长,某品牌的手机为了赢得消费者,在一年之内连续两次降价,从5980元降到4698元,如果每次降低的百分率相同,求每次降低的百分率是 多少?设这个降低百分率为x ,则根据题意,可列方程: . 11.如图,△ABC 中,D 、E 分别是AB 、AC 上的点,且DE //BC , 若AD = 6,DB = 8,AE =4,则AC = .12.在平面直角坐标系中,已知点A (﹣4,﹣4),B (﹣6,2),以原点O 为位似中心,ADE 第11题图B C A (8,30)AODCB第6题图AODCB第8题图F E位似比为2:1,将△ABO 缩小,则点B 的对应点B ′的坐标是 .13.如图所示,某小区想借助互相垂直的两面墙(墙体足够长),在墙角区域40m 长的篱笆围成一个面积为384m 2矩形花园.设宽AB =x m ,且AB <BC ,则x = m . 14.如图,在水平的地面BD 上有两根与地面垂直且长度相等的电线杆AB ,CD ,以点B 为坐标原点,直线BD 为x 轴建立平面直角坐标系.已知电线杆之间的电线可近似地看成抛物线62.38.02+-=x x y 则电线最低点离地面的距离是 米.15.已知二次函数c bx ax y ++=2的图象如图所示,它与x 轴的两个交点的坐标分别为 (﹣1,0)(2,0).下列结论:①0<abc ;②042>-ac b ;③当021<<x x 时,21y y <;④当﹣1<x <2时,y <0.正确的有 .(填正确结论的序号).16.如图,在菱形ABCD 中,对角线AC =8cm ,BD =4cm , AC ,BD 相交于点O ,过点A 作AE ⊥CD 交CD 的延长线于点E ,过点O 作OF ⊥AE 交AE 于点F ,下列结论: ①tan ∠FOA =21; ②GO FG =; ③558=FO cm ;④S 梯形ABCE =5104cm 2. 正确的有 . (填正确结论的序号).F D OCGBAE第15题图 -1Oxy2第14题图ABxy(米) DC第13题图ABDOC第16题图三、作图题(本题满分4分)(保留作图痕迹,不写做法) 17.已知:线段m .求作:正方形ABCD,使正方形ABCD 边长AB=m .四、解答题(本题满分68分)18.解方程:(本小题满分8分,每小题4分)(1)872=-x x (用配方法). (2)282-22+=+x x x (用适当方法).19.(本小题满分6分)在一个不透明的盒子里,装有四个分别标有数字3、-3、6、-6的小球,小球的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x ,放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y .(1)用列表法或树状图法表示出(x ,y )所有可能出现的结果; (2)求小明、小华各取一次小球所确定的数字和为0的概率.m如图,在矩形ABOC 中,AB =4,AC =6,点D 是边AB 的中点,反比例函数xky =1(x <0)的图象经过点D ,交AC 边于点E ,直线DE 的关系式为2y =m x +n (m ≠0).(1)求反比例函数的关系式和直线DE 的关系式;(2)在第二象限内,根据图象直接写出当x 时,21y y >.21.(本题满分8分)为全面实施乡村振兴战略,促进农业全面升级、农村全面进步、农民全面发展.如图,四边形ABCD 是某蔬菜大棚的侧面示意图,已知墙BC 与地面垂直,且长度为5米,现测得∠ABC =112°,∠D =67°,AB =4米,,求此蔬菜大棚的宽CD 的长度.(精确到0.1米)(参考数据:sin22°≈83,cos22°≈1615,tan22°≈53,sin67°≈1312, cos67°≈135,tan67°≈512)CB D ABDBOxy CDA E如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,DE ⊥AC ,BF ⊥AC ,垂足分别为E 、F .延长BF 至G ,使FG =BF ,连结DG .(1)求证:GF =DE .(2)当OF :BF =1 :2时,判断四边形DEFG 是什么特殊四边形?并说明理由.23.(本小题满分10分)“互联网+”时代,网上购物备受消费者青睐.越来越多的人可以足不出户就能进行网上购物,网上支付,中国电子商务的发展走在了世界的前列.某网店专售一种书包,其成本为每个40元,已知销售过程中,当售价为每个50元时,每月可销售500个.据市场调查发现,销售单价每涨2元,每月就少售20个.物价部门规定:销售单价不低于成本单价,且这种商品的利润率不得高于60%.设每个书包售x 元,每月销售量y 个.(1)求出y 与x 的函数关系式;(2)设该网店每月获得的利润为W 元,当销售单价为多少元时,每月获得的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定每月从利润中捐出100元资助贫困学生.为了保证捐款后每月获得的利润不低于6650元,且让消费者得到最大的实惠,如何确定该商品的销售单价?D A CBGOEF(1)阅读下面的材料:如果函数y =f (x )满足:对于自变量x 的取值范围内的任意1x ,2x , (1)若1x <2x ,都有f (1x )<f (2x ),则称f (x )是增函数; (2)若1x <2x ,都有f (1x )>f (2x ),则称f (x )是减函数. 例题:证明函数f (x )=x5(x >0)是减函数. 证明:设0<1x <2x , f (1x )﹣f (2x )=2155x x -=211255x x x x -=21125x x x x )(-. ∵0<1x <2x ,∴2x ﹣1x >0,1x 2x >0. ∴21125x x x x )(->0.即f (1x )﹣f (2x )>0.∴f (1x )>f (2x ). ∴函数f (x )=x5(x >0)是减函数. (2)根据以上材料,解答下面的问题: 已知:函数f (x )=x x 31212++(x <0), ①计算:f (﹣1)= ,f (﹣2)= ; ②猜想:函数f (x )=x x 31212++(x <0)是 函数(填“增”或“减”); ③验证:请仿照例题证明你对②的猜想.如图,矩形ABCD 中,AB =4cm ,AD =5cm ,E 是AD 上一点,DE =3cm ,连接BE 、CE .点P 从点C 出发,沿CE 方向向点E 匀速运动,运动速度2 cm/s ,同时点Q 从点B 出发,沿BC 方向匀速运动,运动速度均为1cm/s ,连接PQ . 设点P 、Q 的运动时间为t (s )(0<t <2.5).(1)当t 为何值时,△PQC 是等腰三角形?(2)设五边形ABQPE 的面积为y (cm 2),求y 与t 之间的函数关系式. (3)是否存在某一时刻t ,使得S五边形ABQPE:S矩形ABCD=23:50?若存在,求出t的值,并求出此时PQ 的长;若不存在,请说明理由.APD CBEQA DCBE备用图参考答案及评分标准一、选择题(本题满分24分,共有8道小题,每小题3分)二、填空题(本题满分24分,共有8道小题,每小题3分 ) 9.25 10.5980(1-x )2=4698 11.328 12.(-3,1),(3,-1) 13.16 14. 2.8 15.①①① 16.①①① 三、作图题(本题满分4分)17.作图正确3分,结论1分 四、解答题(本题满分68分)18.(本题满分8分,每小题4分 )本题只给出最后结果,阅卷时注意分步得分. (1)1,821-==x x …………4分 (2) 313,13321-=+=x x ……………4分19.(本题满分6分)20. (本小题满分8分)解:(1)∵点D 是边AB 的中点,AB =4,∴B D =2,∵四边形ABOC 是矩形,AC =6, ∴D (-6,2), ∵反比例函数xky =1(x <0)的图象经过点D , ∴k =-12,∴反比例函数的关系式为xy 121-=(x <0),…….4分 当y =4时,x =-3, ∴E (-3,4),把D (-6,2)和E (-3,4)代入y 2=mx +n (m ≠0)得,⎩⎨⎧=+-=+-4326n m n m∴⎪⎩⎪⎨⎧==632n m 解得∴直线DE 的解析式为6322+=x y …….6分 (2)03-6<<-<x x 或或(03-69<<-<<-x x 或)(两个答案都可以)……8分BOxyCD AE21. (本小题满分8分)解:如图,过点A 作AE ⊥BC 于点E ,过点B 作BF ⊥AE 于点F ,…….1分 根据题意可知:AB =4,,CB=5,∠ABF =22°,分米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学上期末测试题班级 姓名 考号得分一、选择题(每小题3分,共36分)。

1、一元二次方程01x x 22=+-的一次项系数和常数项依次是( )A 、-1和1B 、1和1C 、2和1D 、0和12、在正三角形、正方形、棱形和圆中,既是轴对称图形又是中心对称图形的个数是( )A 、4 B 、3 C 、2 D 、13、若抛物线cbx ax y ++=2的对称轴是,2-=x 则=b a( )B.21 D.414.如图,抛物线c bx x y ++=2与y 轴交于A 点,与x 轴正半轴交于B ,C 两点,且BC=3,S △ABC=6,则b 的值是( ) =5 =-5 =±5 =45.二次函数2ax y =(a 0),若要使函数值永远小于零,则自变量x 的取值范围( ) A .X 取任何实数0 0 0或x 06、如果两圆的半径分别是4和7,两圆的连心线段长为3,则两圆的位置关系是( )A 、外离B 、内含C 、外切 D 、内切7、下列事件中,不是随机事件的是( )A 、掷一次图钉,图钉尖朝上B 、掷一次硬币,硬币正面朝上C 、三角形的内角和小于180°D 、三角形的内角和等于360°8、一元二次方程0c x 2x 2=++有两不等实数根,则c 的取值范围是( ) A 、c <1 B 、c ≤1 C 、c=1 D 、c ≠19、如图,AB 是⊙O 的直径,D 、C 在⊙O 上,AD ∥OC , ∠DAB=60°,连接AC ,则∠DAC 等于( ) A 、15° B 、30° C 、45° D 、60° 10、已知关于x 的方程01k kx 2x )1k (2=++--(k 为实数),则其根的情况是( )A 、没有实数根B 、有两不等实数根C 、有两相等实数根D 、恒有实数根11、掷一次骰子(每面分别刻有1—6点),向上一面的点数是质.数.的概率等于( ) A 、61 B 、 21 C 、31D 、32 12、一件商品的标价为108元,经过两次降价后的销售价是72元,求平均每次降价的百分率。

若设平均每次降价的百分率为x ,则可列方程( )A 、72x 1082=B 、72)x 1(1082=-C 、72)x 1(1082=-D 、72x 2108=-二、填空题(每小题3分,共12分)13、函数x x y +-=22图象的对称轴是 ,最大值是 .14、抛物线3)1(22-+-=x y 开口 ,对称轴是 ,顶点坐标是 .如果y 随x 的增大而减小,那么x 的取值范围是 . 15、如图,以O 为圆心的两个同心圆中,大圆的弦AB 是小圆的切线, 切点为C ,若AB=32cm ,OA=2cm ,则图中阴影部分(扇形) 的面积为 。

16、如图,在平面直角坐标系中,⊙P 的半径等于2,把⊙P 在平面直角坐标系内平移,使得圆与x 、y 轴同时相切, 得到⊙Q ,则圆心Q 的坐标为 。

三、解答题(本题共8个小题,共72分。

解答应写出文字说明、证明过程或演算步骤)。

17、解方程(每题4分,共8分)。

(1)03x 2x 2=-+; (2)5a 31a a 52+=+-。

18、如图,利用关于原点对称的点的坐标的特点,作出与线段AB•关于原点对称的图形.19、化简求值(满分8分)。

已知13x 1+=,13x 2-=,是方程0c x b x 2=++的两个根,求代数式)c1b 1(4b )2b (c b 222+⋅---的值。

20、几何证明(满分8分)。

-3-33O BA-2-21-1yx3-44221-1如图,C在线段BD上,△ABC和△CDE都是等边三角形,BE与AD有什么关系请用旋转的性质证明........你的结论。

(不用旋转性质证明的扣1分)21、概率与频率(满分8分)。

第一个布袋内装有红、白两种颜色的小球(大小形状相同)共4个,从袋内摸出1个球是红球的概率是;第二个布袋内装有红、黑两种颜色的小球(大小形状相同)共4个,重复从袋内摸出1个球是红球的频率稳定在。

用列举法求:从两个布袋内各摸出一个球颜色不相同.....的概率。

22、列方程解应用题(满分10分)。

如图,利用一面墙(长度不限),用24m长的篱笆,怎样围成一个面积为70m2的长方形场地能围成一个面积为80m2的长方形场地吗为什么23、证明与计算(满分10分)。

如图,AB是⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D。

(1)求证:AC平分∠DAB;(2)连接BC,证明∠ACD=∠ABC;(3)若AB=12cm,∠ABC=60°,求CD的长。

24、拓展探索(满分12分)。

如图,在△ABC中,BC=6cm,CA=8cm,∠C=90°,⊙O是△ABC的内切圆,点P从点B开始沿BC边向C以1cm/s的速度移动,点Q从C点开始沿CA边向点A以2cm/s的速度移动。

(1)求⊙O的半径;(2)若P、Q分别从B、C同时出发,当Q移动到A时,P点与⊙O 是什么位置关系(3)若P、Q分别从B、C同时出发,当Q移动到A时,移动停止,则经过几秒,△PCQ的面积等于5cm21s,5s(舍去)九年级上期数学期末检测题班级姓名考号得分一、认真选一选:(每小题2分,共22分)1、抛物线22(3)4y x=-+-的顶点坐标是( )A.(-3, -4)B.(-3, 4)C.(3, -4)D.(-4, 3)2、在同一直角坐标系中,一次函数y ax c=+和二次函数2y ax c=+的图象大致为( )3、同时掷两个质地均匀的骰子,两个骰子向上一面的点数相同的概率是()A、41 B 、61 C、91 D、1214、下列图形中,是中心对称的图形有()①正方形;②长方形;③等边三角形;④线段;⑤角;⑥平行四边形。

A.5个 B.2个 C.3个 D.4个5、如图,A B C ,,为⊙O 上三点,60ABC ∠=°,则AOC ∠的度数为( )A、30° B、60° C、100° D、120°6、下列图形中,旋转60A、正六边形 B、正五边形 C、正方形 D、正三角形7、用配方法解方程x 2-x 32-1=0时,应将方程变形为( ) A 、(x -31)2=98 B 、(x +)312=910 C 、(x -32)2=0 D 、(x -31)2=910 8、已知⊙O 和⊙O '的半径分别为5 cm 和7 cm ,且⊙O 和⊙O '相切,则圆心距OO '为( )A 、2 cmB 、7 cmC 、12 cmD 、2 cm 或12 cm 9、若一个三角形的外心在它的一条边上,那么这个三角形一定是( )。

A. 等腰三角形B. 直角三角形C. 等边三角形D. 钝角三角形二、仔细填一填:(每小题2分,20分) 10、方程1)1(-=-x x x 的根为是 。

11.抛物线294y x px =-+与x轴只有一个公共点,则p的值是 .12.已知二次函数23(1)y x k =-+的图象上有三点1)A y ,2(2,)B y ,3()C y ,则1y 、2y 、3y 的大小关系为 . 13.若圆锥的母线长为3 cm ,底面半径为2 cm ,则圆锥的侧面展开图的面积 .14、一个直角三角形的两条直角边的长是方程x 2-7x +12=0的两个根,则此直角三角形的周长为 。

15、关于x 的一元二次方程(m +1)x 2-(2m +1)x +m -2=0有实数根,则m 的取值范围是 。

16、⊙O 的直径为10cm ,弦AB ∥CD ,AB=8cm , CD=6cm ,则AB和CD 的距离是 cm 。

17、已知1O 和2O 的半径分别为3cm 和5cm ,且它们内切,则圆心距12O O 等于 。

18、兴隆蔬菜基地建圆弧形蔬菜大棚的剖面如右图7所示,已知AB=16m ,半径 OA=10m ,高度CD 为_________m .三、解答题:(共58分)19、解方程:每小题4分,共8分)(1)、用配方法解方程:26120x x --=(2)2(4)5(4)x x +=+)20、(6分)A 箱中装有3张相同的卡片,它们分别写有数字1,2,4;B 箱中也装有3张相同的卡片,它们分别写有数字2,4,OPABC 5;现从A 箱、B 箱中各随机地取出1张卡片,请你用画树形(状)图或列表的方法求:(1)两张卡片上的数字恰好相同的概率.(2)如果取出A 箱中卡片上的数字作为十位上的数字,取出B箱中卡片上的数字作为个位上的数字,求两张卡片组成的两位数能被3整除的概率.21(7分)商场销售一批衬衫,每天可售出 20 件,每件盈利 40 元,为了扩大销售,减少库存,决定采取适当的降价措施,经调查发现,如果一件衬衫每降价 1 元,每天可多售出 2 件.① 设每件降价 x 元,每天盈利 y 元,列出 y 与 x 之间的函数关系式;② 若商场每天要盈利 1200 元,每件应降价多少元③ 每件降价多少元时,商场每天的盈利达到最大盈利最大是多少元22(8分)如图,△ABC 各顶点的坐标分别为A (4、4),B (-2,2),C (3,0), (1)画出它的以原点O 为对称中心的△A ˊB ˊC ˊ (2)写出 A ˊ,B ˊ,C ˊ三点的坐标。

(3)把每个小正方形的边长看作1,试求△ABC 的周长(结果保留1位小数)23(7分)如图,AB 是⊙O 的直径,BC 是弦,PA 切⊙O 于A ,OP ∥BC, 求证:PC 是⊙O 的切线。

24.已知:如图,二次函数y=ax 2+bx+c 的图象与x 轴交于A 、B 两点,其中A 点坐标为(-1,0),点C(0,5),另抛物线经过点(1,8),M 为它的顶点. (1)求抛物线的解析式; (2)求△MCB 的面积S △MCB .25 (本小题满分8分)如图10,在⊙O 中,AB 为⊙O 的直径,AC 是弦,4OC =,60OAC ∠=.(1)求∠AOC 的度数;(2)在图10中,P 为直径BA 延长线上的一点,当CP 与⊙O 相切时,求PO 的长;(3) 如图11,一动点M 从A 点出发,在⊙O 上按逆时针方向运动,当MAO CAO S S =△△时,求动点M 所经过的弧长.26(9分)如图,矩形OABC 在平面直角坐标系xOy 中,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC 边上,且抛物线经过O ,A 两点,直线AC 交抛物线于点D .(1)求抛物线的解析式;(2)求点D 的坐标;(3)若点M 在抛物线上,点N 在x 轴上,是否存在以A ,D ,M ,N 为顶点的四边形是平行四边形若存在,求出点N 的坐标;若不存在,请说明理由.九年级上册数学期末试卷(本试卷满分120分 考试时间120分钟)一、选择题(本题共12个小题,每小题3分,共计36分.)1.图1是北京奥运会自行车比赛项目标志,则图中两轮所在圆的位置关系是()A.内含 B.相交 C.相切 D.外离2.下列事件中,必然发生的为()A. 我市冬季比秋季的平均气温低B. 走到车站公共汽车正好开过来C. 打开电视机正转播奥运会实况D. 掷一枚均匀硬币正面一定朝上3.方程24x x=的解是()A.4x=B.2x= C.4x=或0x= D.0x=4.下列说法正确的是 ( )A.正五边形的中心角是108°B.正十边形的每个外角是18°.C.正五边形是中心对称图形.D.正五边形的每个外角是72°.5.下列图形中,既是轴对称图形,又是中心对称图形的是() A.等腰梯形 B.平行四边形 C.正三角形 D.矩形6.已知y关于x的函数图象如图所示,则当0y<时,自变量x的取值范围是()A.0x< B.11x-<<或2x>C.1x>- D.1x<-或12x<<7.抛物线221y x x=-+的顶点坐标是 ( )A.(1,0)B.(-1,0)C.(-2,1)D.(2,-1)8.如图,正方形ABCD的边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为s,AE为x,则s关于x的函数图象大致是 ( )1 1-9.如图2,⊙O的弦AB=6,M是AB上任意一点,且OM最小值为4,则⊙O的半径为()A.5 B.4 C.3 D.210.如图3,现有一个圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为()A.4cm B.3cm C.2cm D.1cm11.已知二次函数2y ax bx c=++(0a≠)的图象如图4所示,有下列4个结论:①0abc>;②b a c<+;③420a b c++>;④240b ac->;其中正确的结论有()A.1个B.2个C.3个D.4个12.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x名学生,根据题意,列出方程为()A.(1)2070x x-= B.(1)2070x x+=C.2(1)2070x x+= D.(1)20702x x-=二.填空题(本题共8个小题,每小题3分,共计24分)13.函数1xy+=x的取值范围为.14.如图,在一个正方形围栏中均匀散布着许多米粒,正方形内画有一个圆.一只小鸡在围栏内啄食,则“小鸡正在圆圈内”啄食的概率为_________.A BCDE F15.如图5,矩形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AD 和BC 于点E 、F ,23AB BC ==,,则图中阴影部分的面积为__________.14题16.如图6,OB 是⊙O 的半径,点C 、D 在⊙O 上,∠DCB=27°,则∠OBD= 度.17.在同一坐标平面内,下列4个函数①22(1)1y x =+-,②223y x =+,③221y x =--,④2112y x =-的图象不可能...由函数221y x =+的图象通过平移变换、轴对称变换得到的函数是(填序号).18.已知抛物线2(0)y ax bx c a =++≠与x 轴的两个交点的坐标分别是(-3,0),(2,0),则方程20(0)ax bx c a ++=≠的解是____________________.19.农村常需要搭建截面为半圆形的全封闭蔬菜塑料暖房如图7所示,则需要塑料布y (m 2)与半径R (m )的函数关系式是(不考虑塑料埋在土里的部分) .20.如图8,点A B ,是O 上两点,10AB =,点P 是O 上的动点(P 与A B ,不重合)连结AP PB ,,过点O 分别作OE AP ⊥于点E ,OF PB ⊥于点F ,则EF = .三.解答题(本大题共有4个小题,共计24分,解答时写出必要的文字说明、证明过程或演算步骤) 21.(5分)先化简,再求值:2111x xx x ---+,其中x=2.图522.(6分)已知三角形两边的长分别是3和4,第三边的长是方程0562=+-x x 的根.(1)求出这个三角形的周长.(2)判断这个三角形的形状.(3)求出这个三角形的面积.23.(6分)某电视台的娱乐节目有这样的翻奖游戏:正面为数字,背面写有祝福语或奖金数,如下面的两个表格.游戏的规则是:参加游戏的人可随意翻动一个数字牌,看背面对应的内容,就可以知道是得奖还是得到祝福语.牌的正面 牌的反面(1)求“翻到奖金1000元”的概率;(2)求“翻到奖金”的概率.24.(7分)如图,点D 在O ⊙的直径AB 的延长线上,点C 在O ⊙上,CD AC =,0120=∠ACD .(1)求证:CD 是O ⊙的切线;(2)若O ⊙的半径为2,求图中阴影部分的面积.四.解答题(本大题共有4个小题,共计36分,解答时写出必要的文字说明、证明过程或演算步骤)25.(8分)在数学活动课上,同学们用一根长为1米的细绳围矩形.(1)小芳围出了一个面积为600㎝2的矩形,请你算一算,她围成的矩形的边长是多少(2)小华想用这根细绳围成一个面积尽可能大的矩形,请你用所学过的知识帮他分析应该怎么围,并求出最大面积.26.(10分)如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.(1)请完成如下操作:①以点O为原点、竖直和水平方向所在的直线为坐标轴、网格边长为单位长,建立平面直角坐标系;②用直尺和圆规画出该圆弧所在圆的圆心D的位置(不用写作法,保留作图痕迹),并连结AD、CD.(2)请在(1)的基础上,完成下列问题:①写出点的坐标:C 、D ;②⊙D的半径= (结果保留根号);③若扇形ADC是一个圆锥的侧面展开图,则该圆锥的底面面积为(结果保留π);④若E(7,0),试判断直线EC与⊙D的位置关系并说明你的理由.27.(8分)如图,四边形ABCD内接于O,BD是O的直径,AE CD⊥,垂足为E,DA平分BDE∠.(1)求证:AE是O的切线;(2)若301cmDBC DE∠==,,求BD的长.28.(10分)如图(1),抛物线22y x x k=-+与x轴交于A、B两点,与y轴交于点C(0,3-).[图(2)为解答备用图](1)k=__________,点A的坐标为___________,点B的坐标为__________;(2)设抛物线22y x x k=-+的顶点为M,求四边形ABMC的面积;(3)在x轴下方的抛物线上是否存在一点D,使四边形ABDC的面积最大若存在,请求出点D的坐标;若不存在,请说明理由.图(1)一、选择题(本大题共12个小题,每小题3分,共36分)。

相关文档
最新文档