江西财经大学历届线性代数期末考试试卷(6套)
江西财经大学精品课件【江财线代试卷】09-10线性代数B卷
09-10期末考试试卷B 卷一、填空题(本大题共5个小题,每小题3分,共15分)不写解答过程。
1. 设4阶矩阵234234(,,,),(,,,)A B αγγγβγγγ==,其中234,,,,αβγγγ均为4维列向量,且已知4,1,A B ==则行列式A B +=_________;2. 设01000010,00011000A ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭则1_____A -=; 3. 设(),()ij p p ij p q A a B b ⨯⨯==且(),R B p =如果0,AB =则()____;R A =4. 设3阶方阵A 的特征值为1,2(二重),I 是3阶单位矩阵,*A 是A 的伴随矩阵, 1A -是A 的可逆矩阵,则矩阵*12A A I -++的特征值为_________;5. 如果向量组12:,,,t A βββ可由向量组12:,,,s B ααα线性表示,且,t s >则向量组12:,,,t A βββ线性_________。
二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代号写在答题纸相应位置处。
答案错选或未选者,该题不得分。
每小题3分,共15分。
)1. 设三阶矩阵A 的特征值为1,2,3,I 是3阶单位矩阵,则=--I A 261【 】A . -2B . -1C . 1D . 02. 设向量组m ααα,,,21 的秩为r,则【 】A .向量组中任意r-1个向量均线性无关.B .向量组中任意r 个向量均线性无关.C .向量组中任意r+1个向量均线性相关.D .向量组中向量的个数必大于r.3.若齐次方程组0AX =有非零解,则非齐次线性方程组AX B =【 】A .必有无穷多组解B .必有唯一解C .必定没有解D .C B A ,,,都不对4. 设B A ,均为n 阶方阵,下列命题中正确的是【 】A .00=⇔=A AB 或0B =B .00AB A ≠⇔≠且0B ≠C .00=⇒=A AB 或0B =D .00≠⇒≠A AB 或0B ≠5. 设B A ,都是三阶实对称矩阵,且特征值都是1,1,1,则【 】A .A 与B 的特征多项式相同,但A 与B 不相似B .A 与B 的特征多项式不一定相同,A 与B 不相似C .A 与B 的特征多项式相同,A 与B 相似D .A 与B 的特征多项式相同,但不能确定A 与B 是否相似三、计算题(本大题共2小题,每小题5分,共10分)请写出解答过程。
线性代数期末测试题及其答案
线性代数期末考试题一、填空题将正确答案填在题中横线上;每小题5分,共25分1. 若022150131=---x ,则=χ__________; 2.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足 ;3.已知矩阵n s ij c C B A ⨯=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵;4.已知矩阵A 为3⨯3的矩阵,且3||=A ,则=|2|A ;5.n 阶方阵A 满足032=--E A A ,则=-1A ;二、选择题 每小题5分,共25分6.已知二次型3231212322214225x x x x x tx x x x f +-+++=,当t 取何值时,该二次型为正定A.054<<-tB.5454<<-tC.540<<tD.2154-<<-t7.已知矩阵B A x B A ~,50060321,340430241且⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=,求x 的值A.3B.-2C.5D.-58.设A 为n 阶可逆矩阵,则下述说法不正确的是 A. 0≠A B. 01≠-A C.n A r =)( D.A 的行向量组线性相关9.过点0,2,4且与两平面2312=-=+z y z x 和的交线平行的直线方程为 A.14322-=-=-z y x B.24322-=-=z y x C.14322+=+=-z y x D.24322+=+=z y x10.已知矩阵⎪⎪⎭⎫⎝⎛-=1513A ,其特征值为 A.4,221==λλ B.4,221-=-=λλ C.4,221=-=λλ D.4,221-==λλ三、解答题 每小题10分,共50分11.设,1000110001100011⎪⎪⎪⎪⎭⎫⎝⎛---=B ⎪⎪⎪⎪⎪⎭⎫⎝⎛=2000120031204312C 且矩阵X 满足关系式EX B C T=-)(, 求X ;12.问a 取何值时,下列向量组线性相关 123112211,,221122a a a ααα⎛⎫⎛⎫-⎛⎫ ⎪ ⎪- ⎪ ⎪ ⎪⎪ ⎪ ⎪=-==- ⎪ ⎪ ⎪⎪ ⎪ ⎪- ⎪ ⎪ ⎪-⎝⎭ ⎪⎝⎭⎝⎭;13. λ为何值时,线性方程组⎪⎩⎪⎨⎧-=++-=++-=++223321321321x x x x x x x x x λλλλ有唯一解,无解和有无穷多解 当方程组有无穷多解时求其通解;14. 设.77103 ,1301 ,3192 ,01414321⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=αααα 求此向量组的秩和一个极大无关组,并将其余向量用该极大无关组线性表示;15.证明:若A 是n 阶方阵,且,I AA =T,1-=A 证明 0=+I A ;其中I 为单位矩阵 线性代数期末考试题答案一、填空题 1. 5.解析:采用对角线法则,由002)5(03)2(51=----++-⨯⨯x x 有5=x . 考查知识点:行列式的计算. 难度系数:2.1≠λ.解析:由现行方程组有)1(22211111111-=-+==λλλλλD ,要使该现行方程组只有零解,则0≠D ,即1≠λ.考查知识点:线性方程组的求解 难度系数: 3.n n s s ⨯⨯, 解析;由题可知ns ij c C ⨯=)(,则设D CB AC ==,可知D 的行数与A 一致,列数与B 一致,且A 与B 均为方阵,所以A 为s s ⨯阶矩阵,B 为n n ⨯阶矩阵.考查知识点:n 阶矩阵的性质 难度系数:4. 24解析:由题可知,A 为3阶矩阵且3=A ,则24223==A A .考查知识点:矩阵的运算 难度系数:5. E A 3-解析:由032=--E A A 有E E A A =-)3(,此时E A A 31-=-.考查知识点:求解矩阵的逆矩阵 难度系数:二、选择题 6. A解析:由题可知,该二次型矩阵为⎪⎪⎪⎭⎫ ⎝⎛--5212111t t ,而0455212111,0111,1122>--=-->-=>t t t t t t t,可解得054<<-t ;此时,该二次型正定;考查知识点:二次型正定的判断 难度系数7. C解析:由矩阵特征值性质有1-3+3=1+x+5,可解得x=-5; 考查知识点:n 阶矩阵特征值的性质 难度系数: 8. D解析:由题可知,A 为n 阶可逆矩阵,则A 的行向量组线性无关; 考查知识点:n 阶可逆矩阵的性质 难度系数:9. A.解析:由题可知,两平面法向量分别为)3,1,0(),2,0,1(21-==n n ,则所求直线的方向向量为k j i n n s ++-=⨯=3221;所以所求直线为14322-=-=-z y x ; 考查知识点:求空间平面交线平行的直线方程难度系数:10. C.解析:由08215132=--=⎪⎪⎭⎫ ⎝⎛---=-λλλλλE A ,可解得特征值为4,221=-=λλ 考查知识点:求解矩阵的特征值难度系数:三、解答题11. 解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---==⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=------121012100120001][1210012100120001][1234012300120001100021003210432111)()()(B C B C B C TT T E X B C ,, 考查知识点:矩阵方程的运算求解难度系数:12.解:)22()12(81212121212121||2321-+=------==a a a a aa a a A ,, 当||A =0时即21-=a 或1=a 时,向量组321a a a ,,线性相关;考查知识点:向量组的线性相关性 难度系数:13.解:①当1≠λ且2-≠λ时,方程组有唯一解;②当2-=λ时方程组无解③当1=λ时,有无穷多组解,通解为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=X 10101100221c c 考查知识点:线性方程组的求解难度系数:14.解:由题可知⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------==0000110020102001131300161600241031217130104302410312171307311100943121)(4321a a a a A ,,,则()34321=a a a a r ,,,,其中321a a a ,,构成极大无关组,且线性关系为 321422a a a a ++-=考查知识点:向量组的秩与 最大无关组 难度系数:15.证明:由题可知,()()A I TA I A I A AA A I A TT+-=+-=+=+=+∴()02=+A I ,即()0=+A I 考查知识点:n 阶方阵的性质 难度系数:。
江西财经大学线性代数
江西财经大学03-04学年第一学期期末考试试卷试卷代码:03043B 卷 课时:48课时 课程名称:线性代数 适用对象:选课班一、填空题(3×5=15分)1、若五阶行列式||A 的第二行元素依次是1,2,-3,4,-1,它们的余子式对应为2,-1,0,12,5,则||A = 。
2、设A 为n 阶方阵,12,X X 均为线性方程组AX B =的解,且12X X ≠,则||A = 。
3、设,A B 均是n 阶方阵,A 与B 相似,如果B 的n 个特征值是1,2,,n 为前n 个自然数,则齐次线性方程组()0I A X -=的基础解系中含 个向量。
4、设1234,,,αααα为3维向量,且123,,ααα线性无关,则()1234,,,R αααα= 。
5、设123,,ααα均为n 维向量,且(,)i j i j αα=+,则1213(,)αααα+-= 。
二、单项选择题(3×5=15分)1、设A ,B 均是n 阶方阵,以下论断正确的是 。
(A )若0AB =,则0A =或0B = (B )若AC BC =,且0C ≠,则A B =(C )若2A B AB =,则0A =或A I = (D )若n AB I =则()()R A R B = 2、设A 为n 阶方阵,线性方程组0AX =有非零解,则 。
(A )0AX =有无穷多个非零解 (B )0AX =仅有一个非零解 (C )0AX =仅有二个非零解 (D )0AX =仅有n 个非零解 3、下列关于向量内积的论断中,正确的是 。
(A )若(2α,β)=0,则2βα=-(B )若(α,β)=(X ,Y )则X α=,Y β=(C )若(αβ+,γ)=2(α,γ),则βα= (D )若(αβ-,αβ-)=0,则αβ=4、设10002301A x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦的三个特征值是1,1,5,则x = 。
(A )0 (B )1 (C )5 (D )4 5、A ,B 为n 阶方阵,若||||A B =,则A 与B 。
江西财经大学历届线性代数期末考试试卷及详细答案解析
江西财经大学历届线性代数期末考试试卷及详细答案解析江西财经大学07—08第一学期期末考试试卷【请注意:将各题题号及答案写在答题纸上,写在试卷上无效】一、 填空题(要求在答题纸相应位置上,不写解答过程,本大题共5个小题,每小题3分,共15分)。
1.设4⨯4矩阵A=()234,,,αγγγ,B=()234,,,βγγγ,其中,α234,,,,βγγγ均在4维列向量,且已知A =4,B =1,则行列式A B += ;2.设A 为n 阶矩阵,A ≠0,*A 为A 的伴随矩阵,若A 有特征值λ,则*A 的一个特征值为 ;3.设n 阶矩阵A 的各行元素之和均为零,且()R A =n-1,则线性方程组AX=0的通解为 ;p1334.设()1,2,,Tn aa a α=L ,()12,,Tnb b b β=L 为非零向量,且满足条件)(,0αβ=,记n 阶矩阵TA αβ=,则2A = ;5.设二阶矩阵A=712yx ⎡⎤⎢⎥⎣⎦与B=1324⎡⎤⎢⎥⎣⎦相似,则x = ,y = 。
二、 单项选择题(从下列各题四个备选答案中(列)向量的线性组合5.设A 、B 为同阶可逆矩阵,则【 D 】 A. AB=BAB.存在可逆矩阵P ,使1PAP B-= C.存在可逆矩阵C ,使TCAC B=D.存在可逆矩阵P 和Q ,使PAQ B = 五、 计算题(要求在答题纸相应位置上写出详细计算步骤及结果,本题12分)计算行列式ab ac ae D bd cd de bfcfef-=--六、 计算题(要求在答题纸相应位置上写出详细计算步骤及结果,本题12分) 设A 满足100020001A ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦满足*A BA=2BA-8I ,求B七、 计算题(要求在答题纸相应位置上写出详细计算步骤及结果,本题12分)根据K 的取值求解非齐次线性方程组123123123322kx x x k x kx x x x kx ++=-⎧⎪++=-⎨⎪++=-⎩八、 计算题(要求在答题纸相应位置上写出详细计算步骤及结果,本题12分)设A 为三阶矩阵,123,,ααα是线性无关的三维列向量,且满足1123,A αααα=++2232,A ααα=+32323,A ααα=+(1)求三围矩阵B ,使()123A ααα= ()123B ααα;(2)求矩阵A 的特征值。
江西财经大学线性代数历年试卷
_江西财经大学2009-2010学年第二学期期末考试试卷试卷代码:03043 C 授课课时:48 考试用时:150分钟 课程名称:线性代数 适用对象:本科试卷命题人 何明 试卷审核人 盛积良 [请注意:将各题题号及答案写在答题纸上,写在试卷上无效] 一、填空题(本大题共5个小题,每小题3分,共15分。
)不写解答过程。
1. 行列式11111111---x 的展开式中x 的系数是_________;2. 已知3阶矩阵A 的特征值为0,1,2,则=+-E A A 752__________;3. 向量组)0,0,1(),1,1,1(),1,1,0(),1,0,0(4321====αααα的秩为______;4. 设⎪⎪⎪⎭⎫ ⎝⎛-=12032211t A ,若3阶非零方阵B 满足0=AB ,则=t ;5. 设3阶可逆方阵A 有特征值2,则方阵12)(-A 有一个特征值为_________。
二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代号写在答题纸相应位置处。
答案错选或未选者,该题不得分。
每小题3分,共15分。
) 1. A 是n 阶方阵,*A 是其伴随矩阵,则下列结论错误的是【 】A .若A 是可逆矩阵,则*A 也是可逆矩阵;B .若A 不是可逆矩阵,则*A 也不是可逆矩阵;C .若0||*≠A ,则A 是可逆矩阵;D .AE AA =||*。
2. 设⎪⎪⎪⎭⎫⎝⎛=333222111c b a c b a c b a A ,若⎪⎪⎪⎭⎫ ⎝⎛=333222111b c a b c a b c a AP ,则P =【 】 A . ⎪⎪⎪⎭⎫⎝⎛010100001; B .⎪⎪⎪⎭⎫⎝⎛010001100;_C . ⎪⎪⎪⎭⎫ ⎝⎛001010100; D .⎪⎪⎪⎭⎫⎝⎛010100000. 3. n m >是n 维向量组m ααα,,,21 线性相关的【 】.A 充分条件 .B 必要条件 .C 充分必要条件.D 必要而不充分条件4.设321,,ααα是0=Ax 的基础解系,则该方程组的基础解系还可以表示为【 】A .321,,ααα的一个等价向量组; B. 321,,ααα的一个等秩向量组; C. 321221,,αααααα+++; D. 133221,,αααααα---.5. s ααα,,,21 是齐次线性方程组0=AX (A 为n m ⨯矩阵)的基础解系,则=)(A R 【 】 A .s B .s n - C .s m - D .s n m -+三、计算题(要求在答题纸相应位置上写出详细计算步骤及结果。
2021年财经大学财务会计专业《线性代数》期末考试卷(B卷)及答案
2021年财经大学财务会计专业《线性代数》期末考试卷(B 卷)考试形式 闭卷 使用学生 考试时间 120分钟 出卷时间说明:考生应将全部答案都写在答题纸上,否则作无效处理。
答题时字迹要清晰。
姓名 学号 班级一、选择题(每题3分,共18分)1.已知三阶行列式2333231232221131211==a a a a a a a a a D ,则三阶行列式=+-+-+-=333231312322212113121111254254254a a a a a a a a a a a a D ( ). A 、12 B 、8 C 、16 D 、40 2.下列叙述成立的是( ). A .若B A ,可逆,则B A +必可逆 B .若B A ,可逆,则AB 必可逆 C .若B A ,可逆,则B A -必可逆 D .若B A +可逆,则A 与B 都可逆3.已知4阶行列式D 中第二行的元素自左向右依次为-1,3,-2,2,它们的余子式分别为3,1,-3,5,则4阶行列式D =( ).A 、10B 、-10C 、16D 、-16 4.设矩阵A =(1 2),⎪⎪⎭⎫⎝⎛=4321B ,C =⎪⎪⎭⎫⎝⎛654321,则下列矩阵运算中有意义的是( ). A .ACB B .BAC C .ABCD .CAB5.当λ=( )时,方程组1231231222x x x x x x λ++=⎧⎨++=⎩,有无穷多解。
A .1B .2C .3D .4 6. 设A 是n 阶方阵,2A =,则*AA =( ). A 、2 B 、12- C 、12n - D 、2n二、填空题(每题3分,共24分)1. 排列64175382的逆序数为 .2.设⎪⎪⎪⎭⎫ ⎝⎛-=2110154214321A ,则=)(A R .3.设A =802020301⎛⎫ ⎪⎪ ⎪⎝⎭,*A 为A 的伴随矩阵,则*A = .4.行列式D 4=5123121232122x x x x x 的展开式中4x 的系数= .5.设142513A ⎡⎤=⎢⎥⎣⎦,100145B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则T A B += . 6.设5阶行列式4,3-==B A ,则2T A B = .7. 行列式123207236的12a 2=的代数余子式12A = . 8. 齐次线性方程组0AX (A 是m n ⨯矩阵)只有零解的充要条件是 .三、计算题(每小题8分,共40分)1.计算四阶行列式xx x xD ++++=11111111111111114.2. 计算n 阶行列式122222222222322222122222n D n n=-.3. 判别矩阵012114210A ⎛⎫ ⎪= ⎪ ⎪-⎝⎭是否可逆, 若可逆,则求出逆矩阵1-A .4.求向量组12(1,2,3,1),(3,2,1,1)T T αα=-=-,34(2,4,1,1),(2,2,2,1)T Tαα==-的秩与它的一个最大无关组,并把其余向量用该最大无关组线性表示.5.求解非齐次线性方程组12341234123423135322423x x x x x x x x x x x x -+-=⎧⎪-+-=⎨⎪++-=⎩.四、综合题(每小题9分,共18分)1.设向量组12,,,m ααα线性无关,而向量组12,,,,m βααα线性相关,则β可由向量组12,,,m ααα线性表示,且表示法唯一.2.某水果批发部向A 、B 、C 、D 四家水果店分别批发的苹果、橘子和香蕉的数量如下(单位:千克):已知苹果、橘子和香蕉的批发价分别为每千克1.50元、1.80元和2.20元. 试通过矩阵运算计算A 、B 、 C 、D 四家水果店应支付的金额各为多少元?试卷答案(B 卷)一、选择题(每题3分,共18分)1、C2、B3、A4、C5、B6、D 二、填空题(每题3分,共24分)1、152、23、2040206016-⎛⎫ ⎪ ⎪ ⎪-⎝⎭4、105、254268⎛⎫ ⎪ ⎪ ⎪⎝⎭6、487、28、()R A n = 三、计算题(每题8分,共40分)1、34411141114111000(4)41110004111000xx x x x D x x x x x xxx++++===+++++. (8分)注:解法不唯一,酌情给分.2、1000010000222220222200100001002(2)!000300003000002002n D n n n n n --===------ (8分) .注:解法不唯一,酌情给分.3、因0121142210A ==-,故A 可逆. (4分) 且*14221842||2321A A A --⎛⎫⎪==-- ⎪ ⎪--⎝⎭. (4分) 4、设[]1234A αααα=,110013221322132222242040202011010231120854001000101111023100000000⎡⎤⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥=→→→⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦A 所以[]12343R αααα=,故向量组的秩为3. (4分)1α,2α,3α为一个最大无关组,且4121122ααα=+. (4分)注:此题有很多种答案5、1231131532~21223B --⎛⎫ ⎪-=- ⎪ ⎪-⎝⎭1231105401~05401--⎛⎫⎪--⎪ ⎪-⎝⎭123110540100002--⎛⎫⎪-- ⎪ ⎪⎝⎭(4分) ()2,()3R A R B ∴==. (2分) ∴ 方程组无解. (2分)四、综合题(每题9分,共18分)1、因为r αααβ,,,,21 线性相关,所以存在一组不全为零的数12,,,,r k c c c ,使得 11220r r k c c c βααα++++=. (2分)若0k =, 则11220r r c c c ααα+++=. 而r ααα,,,21 线性无关,可得120r c c c ====,与12,,,,r k c c c 不全为零矛盾. 故0k ≠.从而1212r r c c ck k kβααα=----. (3分)下证表示法唯一. 设1122r r c c c βααα=+++,1122r r k k k βααα=+++.两式相减得:111222()()()0r r r c k c k c k ααα-+-++-=.而r ααα,,,21 线性无关,可得0,1,2,,i i c k i r -==,即,1,2,,i i c k i r ==. (4分)2、 10040603541.56035502631.86030602702.2504530222⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. (7分)故A 、B 、 C 、D 四家水果店应支付的金额各为354、263、270、222元. (2分)。
线性代数期末测试题(卷)与答案解析
线性代数期末考试题一、填空题(将正确答案填在题中横线上。
每小题5分,共25分)1. 若022150131=---x ,则=c __________。
2.若齐次线性方程组ïîïíì=++=++=++000321321321x x x x x x x x x l l 只有零解,则l 应满足 。
3.已知矩阵n s ij c C B A ´=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。
4.已知矩阵A 为3´3的矩阵,且3||=A ,则=|2|A 。
5.n 阶方阵A 满足032=--E A A ,则=-1A 。
二、选择题 (每小题5分,共25分)6.已知二次型3231212322214225x x x x x tx x x x f +-+++=,当t 取何值时,该二次型为正定?( )A.054<<-tB.5454<<-tC.540<<tD.2154-<<-t7.已知矩阵B A x B A ~,50060321,340430241且÷÷÷øöçççèæ=÷÷÷øöçççèæ-=,求x 的值( )A.3B.-2C.5D.-58.设A 为n 阶可逆矩阵,则下述说法不正确的是( ) A. 0¹A B. 01¹-A C.n A r =)( D.A 的行向量组线性相关9.过点(0,2,4)且与两平面2312=-=+z y z x 和的交线平行的直线方程为( )A.14322-=-=-z y xB.24322-=-=z y xC.14322+=+=-z y x D.24322+=+=z y x10.已知矩阵÷÷øöççèæ-=1513A ,其特征值为() A.4,221==l lB.4,221-=-=l lC.4,221=-=l l D.4,221-==l l三、解答题 (每小题10分,共50分)11.设,1000110001100011÷÷÷÷øöççççèæ---=B ÷÷÷÷÷øöçççççèæ=2000120031204312C 且矩阵C 满足关系式EX B C T=-)(, 求C 。
线性代数期末考试考核试卷
4.以下哪个向量组构成一个基?
A. (1, 0, 0), (0, 1, 0), (0, 0, 0)
B. (1, 2, 3), (4, 5, 6), (7, 8, 9)
C. (1, 2, 3), (2, 4, 6), (1, 1, 1)
D. (1, 1, 0), (0, 1, 1), (1, 0, 1)
...
20.(根据实际题目内容填写答案)
二、多选题
1. BCD
2. ABCD
3. ABC
4. AB
5. ABC
...
20.(根据实际题目内容填写答案)
三、填题
1. 1
2.线性无关
3.主
...
10.(根据实际题目内容填写答案)
四、判断题
1. √
2. √
3. √
...
10. ×
五、主观题(参考)
1.向量组线性无关,可以通过计算行列式不为零来证明。一个可以由给定向量组线性表示的向量可以是它们的线性组合,例如\(a\vec{v}_1 + b\vec{v}_2 + c\vec{v}_3\),其中\(a, b, c\)是适当的系数。
D. (1, 1), (1, -1)
(答题括号:________)
5.在求解线性方程组时,以下哪些情况下可以使用高斯消元法?
A.系数矩阵是方阵
B.系数矩阵是非奇异的
C.方程组中方程的个数等于未知数的个数
D.方程组可能有无穷多解
(答题括号:________)
(以下题目类似,省略以节约空间)
6. ...
A.若A为m×n矩阵,则A的转置为n×m矩阵
B.若A为m×n矩阵,则A的转置为m×n矩阵
线性代数期末考试试卷+答案
大学线性代数期末考试题一、填空题(将正确答案填在题中横线上。
每小题2分,共10分)1. 若022150131=---x ,则=χ__________。
2.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足 。
3.已知矩阵n s ij c C B A ⨯=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。
4.矩阵⎪⎪⎪⎭⎫⎝⎛=323122211211a a a a a a A 的行向量组线性 。
5.n 阶方阵A 满足032=--E A A ,则=-1A 。
二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。
每小题2分,共10分)1. 若行列式D 中每个元素都大于零,则0〉D 。
( )2. 零向量一定可以表示成任意一组向量的线性组合。
( )3. 向量组m a a a ,,, 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。
( )4. ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=010*********0010A ,则A A =-1。
( )5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。
( )三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。
每小题2分,共10分)1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。
① n2② 12-n③ 12+n ④ 42. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( )。
① s ααα,,, 21中任意两个向量都线性无关 ② s ααα,,, 21中存在一个向量不能用其余向量线性表示 ③ s ααα,,, 21中任一个向量都不能用其余向量线性表示④ s ααα,,, 21中不含零向量 3. 下列命题中正确的是( )。
① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。
江西财经大学精品课件【江财线代试卷】05-06 线性代数期末试卷B
江西财经大学2005-2006学年第一学期期末考试试卷试卷代码:03043B 卷 课程名称:线性代数试卷類型 适用对象:选课班【请注意:将各题题号及答案写在答题纸上,写在试卷上无效】一. 填空题(本大题共5个小题,每小题3分,共15分),不写解答过程.1. 如果n 阶行列式中等于零的元素个数大于2n n -,那么行列式的值为;2.设A =()12B I +,则当且仅当2B = 时,2A =A ; 3.若向量组1a =()1,2,3,2a =()4,,6t ,3a =()0,0,1线形相关,则常数t= ;4.向量组()1,2,()3,4,()4,6的秩为 ;5.三阶方阵A 的特征值为1,2(二重),则A 的伴随矩阵*A 的特征值为 .二.单项选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中只有一个是符合题目要求的.1. 设n 维向量组1,2,s ααα与1,2t βββ的秩均为r,则下列结论正确的是【 】A.两个向量组等价;B.当s=t,时,两个向量组等价;C.当1,2,s ααα可由1,2t βββ线形表示时, 1,2t βββ也可由1,2,s ααα线形表示;D.R(1,2,s ααα,1,2t βββ)=r2.设A =124112001x ⎡⎤⎢⎥-+⎢⎥⎢⎥⎣⎦,且A 的特征值为1,2,3, 则x 为【 】 A. 3 B.4 C.-1 D.53.设矩阵A =11111x x y y ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦与B =000020001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦相似,则x,y 满足的条件是【 】 A. x=0,且y=0 B.x=0,或y=0 C.x=y D.x ≠y4.设A 为3阶方阵,且行列式det(A )的行向量组中【 】A. 必存在一个行向量为零向量;B. 必存在两个行向量,其对应分量成比例;C. 任意一个行向量都是其它两个行向量的线形组合;D. 存在一个行向量,它是其它两个行向量的线形组合.5.设A 为m n ⨯矩阵,则n 元齐次线形方程组Ax =0存在非零解的充分必要条件是【 】A. A 的行向量组线形相关B. A 的行向量组线形无关C. A 的列向量组线形相关D. A 的列向量组线形无关三. 计算题 (本题12分)计算行列式n D =12321003010001nn 四. 计算题 (本题12分) 设A =()1,2,3.B =103011232⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦,计算()12T T A B A -+ 五. 计算题 (本题12分)求向量组()1 1.3.4.2α=-,()22,1,3,1α=-,()33,1,2,0α=- ,()44,3,1,1α=-的一个极大无关组,并用极大无关组表示其余含量.六. 计算题 (本题12分)求解Ax b =. 211221033011A --⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦,123b ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦七. 计算题 (本题12分)设2125312A a b -⎡⎤⎢⎥=⎢⎥⎢⎥--⎣⎦的一个特征向量为1111δ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,求数,a b 及A 的全体特征值与特征向量.八. 证明题(本大题共2小题,每小题5分,共10分)1. 设,A B 为n 阶可逆方阵, 证明:()***AB B A =2. 设向量组1234,,,αααα与向量组1234,,,,ααααβ有相同的秩, 证明:β可由1234,,,αααα线形表示.。
线性代数期末考试试卷(doc 6页)
D .12.n ααα⋅⋅⋅中任一部分线性无关。
5.下列条件中不是n 阶方阵A 可逆的充要条件的是( )。
A .0A ≠;B .()R A n =;C .A 是正定矩阵;D .A 等价于n 阶单位矩阵。
二、填空题(每小题3分,共15分)6.123212233031332x x x x x x x x x ------=+-的根的个数为 个。
7.20102009100110100001012010010101001-⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪-= ⎪ ⎪⎪ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭。
8.010100002A x ⎛⎫ ⎪=- ⎪ ⎪⎝⎭,当 时,矩阵A 为正交矩阵。
9.设A 为5阶方阵,且()3R A =,则()*R A = 。
10.设三阶方阵A 的特征值为1、2、2,则14A E --= 。
三、计算题(每小题10分,共50分)11.计算行列式ab ac ae bd cd de bfcf ef ---。
得分 得分12.已知111022003A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,求()1*A -、()*1A -、1A -。
13.问,a b 各取何值时,线性方程组1231231232021324x x x x x ax x x x b ++=⎧⎪++=⎨⎪++=⎩有唯一解?无解?有无穷多解?有无穷多解时求其通解。
得分 得分14.设向量组()131T a α=,()223T b α=,()3121T α=,()4231T α=的秩为2,求,a b 。
15. 设n 维向量(),0,0,T a a α=⋅⋅⋅,0a <,且T A E αα=-⋅,11T A E a αα-=+⋅,求a 。
得分得分学院:专业:班级:四、解答题(10分)16.设3阶对称矩阵A的特征值为6、3、3,与6对应的特征向量为()1111TP=,,,求矩阵A。
得分五、证明题(每小题5分,共10分) 17.设A 、B 为两个n 阶方阵,且A 的n 个特征值互异,若A 的特征向量恒为B 的特征向量,证明AB BA =。
江西财经大学精品课件【历年试题】08-09 线性代数B卷
江西财经大学08-09第一学期期末考试试卷试卷代码:03043B 授课课时:48课程名称:线性代数 适用对象:本科试卷命题人 徐晔 试卷审核人[请注意:将各题题号及答案写在答题纸上,写在试卷上无效]一、填空题(本大题共5个小题,每小题3分,共15分)不写解答过程。
1. 计算四阶行列式==7298191216366112525518421D _________; 2. 设,3120132513⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=B A 则=-1BA __________;3. 设21,λλ 为n 阶方阵A 的两个互不相等的特征值,与之对应的特征向量分别为21,X X ,则21X X + _______矩阵A 的特征向量;4. 设方阵⎪⎪⎭⎫ ⎝⎛-=2112A ,I 是单位阵,矩阵B 满足I B BA 2+=,则=B _________;5. 若齐次线性方程组⎪⎩⎪⎨⎧=+-=-=++.03,0,02z x z ax z y x 存在非零解,则系数a = _________。
二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代号写在答题纸相应位置处。
答案错选或未选者,该题不得分。
每小题3分,共15分。
)1. 设三阶矩阵A 的特征值为1,2,3,则=-I A 3*【 】A . -2B . -1C . 1D . 02. 设n 维向量)(,,,21n m m <ααα 线性无关,则n 维向量m βββ,,,21 线性无关的充要条件为【 】A .向量组m ααα,,,21 可由向量组m βββ,,,21 线性表示B .向量组m βββ,,,21 可由向量组m ααα,,,21 线性表示C .向量组m ααα,,,21 与向量组m βββ,,,21 等价D .矩阵()m A ααα,,,21 =与矩阵()m B βββ,,,21 =等价3. 设B A ,为n 阶矩阵,且)()(B R A R =,则【 】A .存在可逆矩阵P ,使B AP P =-1 B .B A ,有相同的特征值C .存在可逆矩阵P 、Q ,使B PAQ =D .B A ,有相同的特征向量4. 设A 为n 阶方阵,且0=A ,则【 】A .A 中至少有一行(列)的元素为全为零B .A 中必有两行(列)元素对应成比例C .A 中任意一行(列)向量是其余各行(列)向量的线性组合D .A 中必有一行(列)向量是其余各行(列)向量的线性组合5. 设B A ,都是三阶实对称矩阵,且特征值都是3,2,2,则【 】A .A 与B 的特征多项式相同,但A 与B 不相似B .A 与B 的特征多项式不一定相同,A 与B 不相似C .A 与B 的特征多项式相同,A 与B 相似D .A 与B 的特征多项式相同,但不能确定A 与B 是否相似三、计算题(本题12分)请写出解答过程。
大学线性代数期末试卷及答案
大学线性代数期末试题一、填空题(每小题2分,共10分)1. 若022150131=---x ,则=χ__________。
2.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足 。
3、n 阶方阵A 满足032=--E A A ,则=-1A。
4.矩阵⎪⎪⎪⎭⎫⎝⎛=323122211211a a a a a a A 的行向量组线性 。
5.已知矩阵n s ij c C B A ⨯=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。
二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。
每小题2分,共10分)1. 若行列式D 中每个元素都大于零,则0〉D 。
( )2. 零向量一定可以表示成任意一组向量的线性组合。
( )3. 向量组m a a a ,,, 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。
( )4. ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=010*********0010A ,则A A =-1。
( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。
( ) 三、单项选择题 (每小题仅有一个正确答案。
每小题2分,共10分)1. 设A 为n 阶矩阵,且2=A ,则=TA A ( )。
① n2② 12-n③ 12+n ④ 42. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( )。
① s ααα,,, 21中任意两个向量都线性无关② s ααα,,, 21中存在一个向量不能用其余向量线性表示 ③ s ααα,,, 21中任一个向量都不能用其余向量线性表示④ s ααα,,, 21中不含零向量3. 下列命题中正确的是( )。
① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。
线性代数_江西财经大学中国大学mooc课后章节答案期末考试题库2023年
线性代数_江西财经大学中国大学mooc课后章节答案期末考试题库2023年1.写出四阶行列式【图片】中元素【图片】的代数余子式分别是()()参考答案:108,-202.【图片】取何值时,齐次线性方程组【图片】可能有非零解参考答案:-1或43.【图片】取()时,该齐次线性方程组可能有非零解:【图片】参考答案:14.【图片】的值为()参考答案:185.【图片】的值为()参考答案:7266.设【图片】为【图片】阶方阵,且【图片】,则由【图片】,可得【图片】参考答案:错误7.已知【图片】,求【图片】【图片】参考答案:正确8.每一个方阵均可表示为一个对称矩阵和一个反对称矩阵的和。
参考答案:正确9.当【图片】取( )时,齐次线性方程组【图片】有非零解.参考答案:a=0,任意实数;或者,a不等于-3,b等于2a/(3+a)10.设行列式【图片】,则【图片】()参考答案:11.设【图片】【图片】,若线性方程组【图片】无解,则【图片】 .参考答案:-112.【图片】阶方阵【图片】,对于【图片】,若每个【图片】维向量都是解,则【图片】 .参考答案:13.设【图片】矩阵【图片】的秩为3,【图片】是非齐次线性方程组【图片】的三个不同的解向量,若【图片】,则【图片】的通解为【图片】为任意实数。
参考答案:正确14.【图片】,则【图片】为()参考答案:15.线性方程组【图片】仅有零解的充分必要条件是【图片】且【图片】参考答案:正确16.设四阶行列式【图片】【图片】表示第i行、第j列位置上元素的余子式,那么,【图片】为()参考答案:517.设四阶行列式【图片】【图片】表示第i行、第j列位置上元素的代数余子式,那么,【图片】为()参考答案:18.【图片】维向量组【图片】线性无关的充要条件是( )参考答案:中任一部分组线性无关19.已知【图片】是齐次线性方程组【图片】的一个基础解系,那么【图片】也是该方程组的一个基础解系。
参考答案:正确20.若线性方程组【图片】的系数矩阵的秩为【图片】,则其增广矩阵的秩为【图片】参考答案:正确21.设向量组【图片】的秩为【图片】,则( )参考答案:中至少有一个由个向量组成的部分组线性无关22.已知向量组【图片】线性无关,则向量组()参考答案:线性无关23.设【图片】,且已知【图片】,则行列式【图片】_______参考答案:124.设2【图片】,则行列式【图片】的值为_______参考答案:-425.设4阶方阵【图片】的秩为2,则其伴随矩阵【图片】的秩为_______参考答案:26.设【图片】为n阶方阵,且【图片】,则( )。
江西财经大学历届线性代数期末考试卷和详细答案解析
江西财经大学07—08第一学期期末考试试卷【请注意:将各题题号及答案写在答题纸上,写在试卷上无效】一、 填空题(要求在答题纸相应位置上,不写解答过程,本大题共5个小题,每小题3分,共15分)。
1.设4⨯4矩阵A=()234,,,αγγγ,B=()234,,,βγγγ,其中,α234,,,,βγγγ均在4维列向量,且已知A =4,B =1,则行列式A B += ;2.设A 为n 阶矩阵,A ≠0,*A 为A 的伴随矩阵,若A 有特征值λ,则*A 的一个特征值为 ;3.设n 阶矩阵A 的各行元素之和均为零,且()R A =n-1,则线性方程组AX=0的通解为 ;p133 4.设()1,2,,T n a a a α=,()12,,Tn b b b β=为非零向量,且满足条件)(,0αβ=,记n 阶矩阵TA αβ=,则2A = ; 5.设二阶矩阵A=712y x ⎡⎤⎢⎥⎣⎦与B=1324⎡⎤⎢⎥⎣⎦相似,则x = ,y = 。
二、 单项选择题(从下列各题四个备选答案中选出一个正确答案。
并将其代号写在答题纸相应位置处。
答案错选或未选者,该题不得分。
每小题3分,共15分)。
1. 设三阶矩阵A 的特征值为1,2,3,则22A I -=【 】 A. 0 B. 24 C. -14 D. 20 2. 设有向量组()11124α=-,()20312α=,()330714α=,()41220α=-,()521510α= 则该向量组的极大无关组是【 】123.,,A ααα 124.,,B ααα 125.,,C ααα 1245.,,,D αααα3. n 阶方阵A 具有n 个不同的特征值是A 与对角阵相似的【 】 A. 充分必要条件 B. 充分而非必要条件 C. 必要而非充分条件 D.即非充分也非必要条件4.设A 为n 阶方阵,且A =0,则 【 D 】 A. A 中至少有一行(列)的元素为全为零 B. A 中必有两行(列)的元素对应成比例C. A 中任意一行(列)向量是其余各行(列)向量的线性组合D. A 中必有一行(列)向量是其余各行(列)向量的线性组合 5.设A 、B 为同阶可逆矩阵,则【 D 】 A. AB=BAB.存在可逆矩阵P ,使1P AP B -=C.存在可逆矩阵C ,使T C AC B =D.存在可逆矩阵P 和Q ,使PAQ B =三、 计算题(要求在答题纸相应位置上写出详细计算步骤及结果,本题12分)计算行列式abac ae D bdcd de bfcfef-=--四、 计算题(要求在答题纸相应位置上写出详细计算步骤及结果,本题12分)设A 满足100020001A ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦满足*A BA=2BA-8I ,求B五、 计算题(要求在答题纸相应位置上写出详细计算步骤及结果,本题12分)根据K 的取值求解非齐次线性方程组123123123322kx x x k x kx x x x kx ++=-⎧⎪++=-⎨⎪++=-⎩六、 计算题(要求在答题纸相应位置上写出详细计算步骤及结果,本题12分) 设A 为三阶矩阵,123,,ααα是线性无关的三维列向量,且满足1123,A αααα=++ 2232,Aααα=+ 32323,A ααα=+ (1)求三围矩阵B ,使()123A ααα= ()123B ααα;(2)求矩阵A 的特征值。
线性代数期末试卷及详细答案
(A )A=E
(B ) A 相似于 E ( C) A2 E
( D) A 合同于 E
8、若 1, 2, 3 , 4 是线性方程组 AX O 的基础解系,则 1 + 2 + 3 + 4 是 AX O 的
(A )解向量
( B)基础解系
( C )通解;
( D) A 的行向量;
9、 1 , 2 都是 n 阶矩阵 A 的特征值, 1 2 ,且 X 1 和 X 2 分别是对应于 1 和 2 的特征
准型,并求出正交变换。 四、证明题( 7 分)
设 A 为 m× n 矩阵, B 为 n 阶矩阵,已知 R(A) n
证明:若 AB=O ,则 B=O
《线性代数》期末考试题 A 题参考答案与评分标准
填空题
1、 -10;
2、 81;
3、
4,
6,
12;
1
4、
A
3E ;
2
5、 5;
二、单项选择题 ( 每小题 2 分,共 20 分)
填空题 (将正确答案填在题中横线上。每小题 2 分,共 10 分)
345
1、设 D1 = 3 1
5 , D2= 5
2
2
1 0
0 ,则 D = D1 O
0
O
= _____________。
D2
2、四阶方阵
A、B ,已知
1 A=
,且 B= 2A -1
16
1
2A ,则 B =_____________ 。
1b1
002
求 a,b 6、齐次线性方程组
2 x1 x2 3x3 0 x1 3x2 4 x3 0
x1 2 x2 ax 0
线性代数-期末测试题及其答案
线性代数期末考试题一、填空题(将正确答案填在题中横线上。
每小题5分,共25分)1. 若022150131=---x ,则=χ__________。
2.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足 。
3.已知矩阵n s ij c C B A ⨯=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。
4.已知矩阵A 为3⨯3的矩阵,且3||=A ,则=|2|A 。
5.n 阶方阵A 满足032=--E A A ,则=-1A 。
二、选择题 (每小题5分,共25分)6.已知二次型3231212322214225x x x x x tx x x x f +-+++=,当t 取何值时,该二次型为正定?( ) A.054<<-t B.5454<<-t C.540<<t D.2154-<<-t7.已知矩阵B A x B A ~,50060321,340430241且⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=,求x 的值( )A.3B.-2C.5D.-58.设A 为n 阶可逆矩阵,则下述说法不正确的是( ) A. 0≠A B. 01≠-A C.n A r =)( D.A 的行向量组线性相关9.过点(0,2,4)且与两平面2312=-=+z y z x 和的交线平行的直线方程为( )A.14322-=-=-z y x B.24322-=-=z y x C.14322+=+=-z y x D.24322+=+=z y x10.已知矩阵⎪⎪⎭⎫⎝⎛-=1513A ,其特征值为( ) A.4,221==λλ B.4,221-=-=λλ C.4,221=-=λλ D.4,221-==λλ三、解答题 (每小题10分,共50分)11.设,1000110001100011⎪⎪⎪⎪⎭⎫⎝⎛---=B ⎪⎪⎪⎪⎪⎭⎫⎝⎛=2000120031204312C 且矩阵X 满足关系式EX B C T=-)(, 求X 。
2010江西财经大学线性代数03A83试卷C答案
江西财经大学2009-2010学年第二学期期末考试试卷答案 试卷代码:03A83 C 授课课时:48 考试用时:150分钟课程名称:线性代数 适用对象:本科试卷命题人 试卷审核人 [请注意:将各题题号及答案写在答题纸上,写在试卷上无效]一、填空题(本大题共5个小题,每小题3分,共15分。
)不写解答过程。
1. 2;2. 3;3. 3;4. ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----2/52/7003400002/12/30012-4; 5. 6,-1。
二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代号写在答题纸相应位置处。
答案错选或未选者,该题不得分。
每小题3分,共15分。
)1. C2.A3. A4.C5. B三、计算题(要求在答题纸相应位置上写出详细计算步骤及结果。
本题10分)。
hg d c b e h g f d c a h g f e d c b a D 0000)1(0000)1(000000001311⋅-⋅+⋅-⋅==++------------------------2分)()1()()1(1311bch bdg e gfd cfh a -⋅-⋅+-⋅-⋅=++--------------------------------------------6分 )()(bch bdg e gfd cfh a -⋅+-⋅=-------------------------------------------------------------------8分 ))((gd ch be af ebch ebdg agfd acfh --=-+-=-------------------------------------------10分四、计算题(要求在答题纸相应位置上写出详细计算步骤及结果。
本题10分)。
求解矩阵方程⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--234311*********X . 解:所以可逆,0111012112≠------------------------------------------------------------------------------2分1111012112234311-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=X --------------------------------------------------------------------------4分 ⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛---0113/213/23/103/11110121121-------------------------------------------------------------8分 ⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=-3/253/81221110121122343111X ----------------------------------------------10分 五、计算题(要求在答题纸相应位置上写出详细计算步骤及结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江西财经大学07—08第一学期期末考试试卷【请注意:将各题题号及答案写在答题纸上,写在试卷上无效】一、 填空题(要求在答题纸相应位置上,不写解答过程,本大题共5个小题,每小题3分,共15分)。
1.设4⨯4矩阵A=()234,,,αγγγ,B=()234,,,βγγγ,其中,α234,,,,βγγγ均在4维列向量,且已知A =4,B =1,则行列式A B += ;2.设A 为n 阶矩阵,A ≠0,*A 为A 的伴随矩阵,若A 有特征值λ,则*A 的一个特征值为 ;3.设n 阶矩阵A 的各行元素之和均为零,且()R A =n-1,则线性方程组AX =0的通解为 ;4.设()1,2,,T n a a a α= ,()12,,Tn b b b β= 为非零向量,且满足条件)(,0αβ=,记n 阶矩阵T A αβ=,则2A = ; 5.设二阶矩阵A=712y x ⎡⎤⎢⎥⎣⎦与B=1324⎡⎤⎢⎥⎣⎦相似,则x = ,y = 。
二、 单项选择题(从下列各题四个备选答案中选出一个正确答案。
并将其代号写在答题纸相应位置处。
答案错选或未选者,该题不得分。
每小题3分,共15分)。
1. 设三阶矩阵A 的特征值为1,2,3,则22A I -=【 】A. 0B. 24C. -14D. 20 2. 设有向量组()11124α=-,()20312α=,()330714α=,()41220α=-,()521510α= 则该向量组的极大无关组是【 】123.,,A ααα 124.,,B ααα 125.,,C ααα 1245.,,,D αααα3. n 阶方阵A 具有n 个不同的特征值是A 与对角阵相似的【 】 A. 充分必要条件 B. 充分而非必要条件C. 必要而非充分条件D.即非充分也非必要条件 4.设A 为n 阶方阵,且A =0,则 【 】 A. A 中至少有一行(列)的元素为全为零B. A 中必有两行(列)的元素对应成比例C. A 中任意一行(列)向量是其余各行(列)向量的线性组合D. A 中必有一行(列)向量是其余各行(列)向量的线性组合 5.设A 、B 为同阶可逆矩阵,则【 】 A. AB=BAB.存在可逆矩阵P ,使1P AP B -= C.存在可逆矩阵C ,使T C AC B = D.存在可逆矩阵P 和Q ,使PAQ B =三、 计算题(要求在答题纸相应位置上写出详细计算步骤及结果,本题12分)计算行列式abac ae D bdcd de bfcfef-=-- 四、 计算题(要求在答题纸相应位置上写出详细计算步骤及结果,本题12分)设A 满足100020001A ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦满足*A BA=2BA-8I ,求B五、 计算题(要求在答题纸相应位置上写出详细计算步骤及结果,本题12分)根据K 的取值求解非齐次线性方程组123123123322kx x x k x kx x x x kx ++=-⎧⎪++=-⎨⎪++=-⎩六、 计算题(要求在答题纸相应位置上写出详细计算步骤及结果,本题12分) 设A 为三阶矩阵,123,,ααα是线性无关的三维列向量,且满足1123,A αααα=++ 2232,A ααα=+ 32323,A ααα=+(1)求三围矩阵B ,使()123A ααα= ()123B ααα;(2)求矩阵A 的特征值。
七、 计算题(要求在答题纸相应位置上写出详细计算步骤及结果,本题12分)用正交矩阵将实对称矩阵220212020A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦对角化。
八、 证明题(要求在答题纸相应位置上写出详细证明步骤,本大题共2小题,每小题5分,共10分)1. 设A,B 是两个n 阶反对称矩阵,证明:AB-BA 是n 阶反对称矩阵。
2. 设1X ,2X 为某个齐次线性方程组的基础解系,证明:12X X +,122X X -也是该齐次线性方程组的基础解系。
江西财经大学09-10第一学期期末考试试卷试卷代码:03043B 授课课时:48 课程名称:线性代数 适用对象:本科 试卷命题人 试卷审核人[请注意:将各题题号及答案写在答题纸上,写在试卷上无效]一、填空题(本大题共5个小题,每小题3分,共15分)不写解答过程。
1. 设4阶矩阵234234(,,,),(,,,)A B αγγγβγγγ==,其中234,,,,αβγγγ均为4维列向量,且已知4,1,A B ==则行列式A B +=_________;2. 设01000010,00011000A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭则1_____A -=; 3. 设(),()ij p p ij p q A a B b ⨯⨯==且(),R B p =如果0,AB =则()____;R A = 4. 设3阶方阵A 的特征值为1,2(二重),I 是3阶单位矩阵,*A 是A 的伴随矩阵, 1A -是A 的可逆矩阵,则矩阵*12A A I -++的特征值为_________; 5. 如果向量组12:,,,t A βββ 可由向量组12:,,,s B ααα 线性表示,且,t s >则向量组12:,,,t A βββ 线性_________。
二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代号写在答题纸相应位置处。
答案错选或未选者,该题不得分。
每小题3分,共15分。
) 1. 设三阶矩阵A 的特征值为1,2,3,I 是3阶单位矩阵,则=--I A 261【 】A . -2B . -1C . 1D . 02. 设向量组m ααα,,,21 的秩为r,则【 】A .向量组中任意r-1个向量均线性无关.B .向量组中任意r 个向量均线性无关.C .向量组中任意r+1个向量均线性相关.D .向量组中向量的个数必大于r.3.若齐次方程组0AX =有非零解,则非齐次线性方程组AX B =【 】A .必有无穷多组解B .必有唯一解C .必定没有解D .C B A ,,,都不对4. 设B A ,均为n 阶方阵,下列命题中正确的是【 】A .00=⇔=A AB 或0B = B .00AB A ≠⇔≠且0B ≠C .00=⇒=A AB 或0B =D .00≠⇒≠A AB 或0B ≠5. 设B A ,都是三阶实对称矩阵,且特征值都是1,1,1,则【 】A .A 与B 的特征多项式相同,但A 与B 不相似B .A 与B 的特征多项式不一定相同,A 与B 不相似C .A 与B 的特征多项式相同,A 与B 相似D .A 与B 的特征多项式相同,但不能确定A 与B 是否相似 三、计算题(本大题共2小题,每小题5分,共10分)请写出解答过程。
计算下列行列式(1)cb b a ac b a a c c b ac cb b a D ---------= (2) 00000000000000000000n b ab a D b a b a a b=四、计算题(本题10分)请写出解答过程。
设矩阵111111111---=A ,且I B A A B A 128)21(1**+=-*,其中I 是3阶单位矩阵, *A 是A 的伴随矩阵,求矩阵B 。
五、计算题(本题12分)请写出解答过程。
设向量组(),),,1(,`)4,1,1(,)5,1,2(,10,2,321T T T T c b a =-=-==βααα问,,a b c 满足什么条件时,(1) β可由向量组123,,ααα线性表示,且表示式唯一 ; (2)β不能由向量组123,,ααα线性表示 ;(3)β可由向量组123,,ααα线性表示,但表示式不唯一。
六、计算题(本题10分)请写出解答过程。
求解方程组⎪⎩⎪⎨⎧--=-+--=--+=-+-1)5(4224)5(2122)2(321321321λλλλx x x x x x x x x七、计算题(本题10分)请写出解答过程。
试求一个正交的相似变换矩阵P,将⎪⎪⎪⎭⎫ ⎝⎛----=552552223A 化为对角阵。
九、证明题(本题共10分)设1234,,,αααα为n 维向量组,且112,βαα=+223βαα=+,334βαα=+,441,βαα=+试证向量组1234,,,ββββ必线性相关,并写出1β由向量组234,,βββ表示的线性表达式.江西财经大学2009-2010学年第二学期期末考试试卷试卷代码:03043 C 授课课时:48 考试用时:150分钟 课程名称:线性代数 适用对象:本科试卷命题人 试卷审核人[请注意:将各题题号及答案写在答题纸上,写在试卷上无效]一、填空题(本大题共5个小题,每小题3分,共15分。
)不写解答过程。
1. 行列式11111111---x 的展开式中x 的系数是_________;2. 已知3阶矩阵A 的特征值为0,1,2,则=+-E A A 752__________;3. 向量组)0,0,1(),1,1,1(),1,1,0(),1,0,0(4321====αααα的秩为______;4. 设⎪⎪⎪⎭⎫ ⎝⎛-=12032211t A ,若3阶非零方阵B 满足0=AB ,则=t ;5. 设3阶可逆方阵A 有特征值2,则方阵12)(-A 有一个特征值为_________。
二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代号写在答题纸相应位置处。
答案错选或未选者,该题不得分。
每小题3分,共15分。
)1. A 是n 阶方阵,*A 是其伴随矩阵,则下列结论错误的是【 】A .若A 是可逆矩阵,则*A 也是可逆矩阵;B .若A 不是可逆矩阵,则*A 也不是可逆矩阵;C .若0||*≠A ,则A 是可逆矩阵;D .AE AA =||*。
2. 设⎪⎪⎪⎭⎫⎝⎛=333222111c b a c b a c b a A ,若⎪⎪⎪⎭⎫ ⎝⎛=333222111b c a b c a b c a AP ,则P =【 】 A . ⎪⎪⎪⎭⎫ ⎝⎛010100001; B . ⎪⎪⎪⎭⎫⎝⎛010001100;C . ⎪⎪⎪⎭⎫ ⎝⎛001010100;D . ⎪⎪⎪⎭⎫ ⎝⎛010100000.3. n m >是n 维向量组m ααα,,,21 线性相关的【 】.A充分条件 .B 必要条件.C 充分必要条件.D 必要而不充分条件4.设321,,ααα是0=Ax 的基础解系,则该方程组的基础解系还可以表示为【 】A .321,,ααα的一个等价向量组; B. 321,,ααα的一个等秩向量组; C. 321221,,αααααα+++; D . 133221,,αααααα---.5. s ααα,,,21 是齐次线性方程组0=AX (A 为n m ⨯矩阵)的基础解系,则=)(A R 【 】A .sB .s n -C .s m -D .s n m -+三、计算题(要求在答题纸相应位置上写出详细计算步骤及结果。