《建筑力学》第九章压杆稳定共30页
建筑力学,第九章压杆稳定,武汉理工概述
干扰平衡的外力消失后, 物体能自动恢复到原来的平 衡位置的平衡
即使干扰平衡的外力消 失后,物体仍继续向远离原 来平衡位置的方向继续运动 的平衡。 干扰平衡的外力消失后, 物体可在任意位置继续保持 平衡。
不稳定平衡:
随遇平衡:
显然,随遇平衡是界于稳定平衡与不稳定平衡之间的状 态,称为临界平衡状态。
压杆稳定
压杆的柔度λ
(1)综合反映了压杆的长度(l)、杆端支承情况(μ )、截面形状和尺寸(I、A、i)对临界应力的影响。 (2)压杆的临界应力与压杆柔度的平方成反比,即 ,柔度越大压杆临界应力越小,压杆越容易失稳。
5 4
Fcr
z 200 y
两端固定,长度系数μ=0.5
EIZ 3.14 1010 2.8810 Fcr N 2 2 ( l ) (0.5 8)
2 2 9 5
120
177103 N 177kN
压杆稳定
Fcr
Fcr
y
z 120 200 z y
200
120
比较计算结果可知 ,第一种情况的临界力 小,所以压杆失稳时将 在最大刚度平面内产生 弯曲。此例说明,当在 最小刚度平面与最大刚 度平面内支承情况不同 时,压杆不一定在最小 刚度平面内失稳,必须 经过具体计算后才能确 定。
2 EI y 3.142 10109 8 105 Fcr N 2 2 (l ) (1 8)
123103 N 123kN
200
120
z
压杆稳定
(2)计算最小刚度平面内的临界力。 由图16-4b,截面惯性矩为
2001203 IZ mm4 12 2.88107 mm4 2.8810 m
推荐-建筑力学电子教案压杆稳定 精品 精品
压杆受压力时弯曲的原因在于:
(1)杆本身不可能绝对地直;
(2)杆的材质不可能绝对地均匀;
F
(3)轴向压力不可能与杆轴线绝对重合。 这些因素使压杆在外加压应力下除了发 生轴向压缩变形外,还发生附加的弯曲 变形。 压杆是在压缩与弯曲组合变形的状 态下工作的。
可以用下列模型来说明稳定问题的关键:
在杆上施加一竖向力 F ,再施加一横向力 Q,使杆 发生转动。如果 F 不大,杆能保持平衡,且撤去 Q 后, 杆将恢复到其原来的直线状态。但当 F 大过一个临界值 时,撤去 Q ,杆不再能恢复到原来的状态。前者称为稳 定平衡,后者称为不稳定平衡。这个从稳定平衡转变到 不稳定平衡的压力临界值称为临界力,用 Fcr表示。而Fcr 只与系统本身的性质 l 、EI 有关。
从而得到求两端铰支细长中心压杆临界力的欧拉公式:
Fcr
π
2 EI l2
I 是横截面最小 形心主惯性矩
此时杆的挠曲线方程可取 k l= ,代入式(c)得到为:
w Asinπ x l
注意到当 x=l/2 时 w= ,故有 A= 。从而挠曲线方程为 w sin π x
l
可见此时的挠曲线为半波正弦曲线。但是 是一个无法确 定的值。即不论 为任何微小值,上述平衡都可以维持, 好象压杆受 作用时可以在微弯状态下处于“随遇而安” 的平衡状态。事实上这种平衡状态是不成立的。 值无法
(a)
在图a 所示微弯状态下,两 端铰支压杆任意 x 截面的挠度(侧 向位移)为 w,该截面上的弯矩为 M(x)=Fcrw (图b)。杆的挠曲线近 似微分方程为
EIw M x Fcrw (a)
(b)
令 k 2 Fcr ,将挠曲线近似微分方程(a)改写成 EI
建筑力学第9章压杆稳定
• 为了说明压杆平衡状态的稳定性,我们取一根细长的直杆进行压缩试 验,如图9-1所示。
上一页 下一页 返回
第一节 压杆稳定的概念
• 压杆的平衡状态可以分为三种。图9-1(a)中,当压力P不太大时, 用一微小的横向力干扰它,压杆微弯,当横向力撤去后,压杆能自动 恢复原有的直线形状,这时压杆处于稳定的平衡状态。图9-1(b) 中,当压力P增大到某一特定值Pcr时,微小的横向干扰力撤去后, 压杆在微弯状态下维持新的平衡,这时压杆处于临界平衡状态,这个 特定值Pcr叫作临界力。图9-1(c)中,当压力P超过临界力Pcr 后,干扰力作用下的微弯会越来越大直至压杆弯断,此时压杆丧失了 稳定性。
• σcr=π2E/λ2≤σP
• ■四、中长杆的临界应力计算———经验公式
• 当压杆的柔度小于λP时,称为中长杆或中柔度杆。中长杆的临界应 力σcr大于材料的比例极限σP,此时欧拉公式不再适用。工程中对 这类压杆一般采用经验公式计算临界力或临界应力。常用的经验公式 有两种:直线公式和抛物线公式。
上一页
• Pcr=π2EI/(μl)2(9-1) • 式中 • E———材料的弹性模量; • I———压杆横截面的最小惯性矩; • EI———压杆的抗弯刚度;
下一页 返回
第二节 临界力和临界应力
• l———压杆的实际长度; • μ———压杆的长度系数,见表9-1; • μl———压杆的计算长度。 • ■二、临界应力 • 在临界力作用下,细长压杆横截面上的平均压应力叫作压杆的临界应
• 从前面几节内容可知,影响压杆稳定性的主要因素有:压杆的截面形 状、长度、两端的约束条件以及材料的性质等。要提高压杆的稳定性 ,可采取以下四个措施。
第九章_压杆稳定
第 1 页/共 2 页9-5 未失稳失,轴向压缩 T F L L ∆=∆TEA F TL L EAFL L l l T F αα=⇒=∆=∆, 临界状态 kN 3.109)5.0(22cr ==L EIF π由cr F F =得,温升C EALEI T l ︒==2.29422απ 9-8 由铰B 平衡,22BC AB F F F +=,ABBC F F =θtan F 最大时,AB F 与BC F 均达到临界值2222)sin ()cos (βπβπAC EI F AC EI F BC AB ==, )arctan(cot cot tan 22βθβθ==⇒, 9-10 柔度临界值 p2p σπλE = (1)5.72p =λ,(2)8.65p =λ,(3)6.73p =λ 9-12 AB 与BC 均为两力杆,由铰B 平衡可得 F F BC 75=(压) 柔度 m m 320m 5.215.216=====i l i l,,,其中μμλ 稳定因素 06.028002==λϕ稳定许用应力 MPa 6.0][][st ==σϕσ st ][MPa 58.0σσ<==AF BC ,满意稳定性条件。
9-15 组合压杆的临界力cr F 为杆BC 与AB 临界力的最小值柔度临界值 1002==PP E σπλ P ACAC P BC BC i AC i BC λλλλ>=====1047.0100,大柔度杆,由欧拉公式N 1094.0)7.0(N 1004.1622622⨯==⨯==AC EIF BC EIF AC BC ππ,N 1094.06cr ⨯==⇒AC F F许用压力 kN 376][stcr ==n F F ⎪⎪⎭⎫ ⎝⎛======kN 416MPa 8.82][MPa 1.207BC kN 376MPa 6.76][MPa 4.191AC st cr st cr F F ,,:,,:σσσσ 9-17 杆AC ,强度许用应力 MPa 118][st ==n σσ 最大弯矩 26132bh W F M B ==, 最大应力 kN 6.95][41][2max =≤⇒≤=bh F W M B σσσ 杆CD ,柔度P iCD λλ>==200,大柔度杆 由欧拉公式 MPa 3.4922cr ==λπσE 稳定许用应力 MPa 4.16][st cr st ==n σσ 压力 F F CD 31=应力 kN 5.15][3][st st =≤⇒≤=A F AF CD σσσ 结构的许可荷载 kN 5.15][=F。
建筑力学压杆稳定课件
由此可以计算压杆在保证稳定的前提下,能承受的最大轴压力,又称为压杆的临界荷载 或容许荷载。当施加的压力小于容许荷载时,构件不会发生失稳破坏,反之,构件将发生失
稳破坏。对于此类问题,一般也要首先计算出压杆的长细比 ,根据 查出相应的折减系 数 ,再按照上式进行计算。
建筑力学压杆稳定
3. 对压杆进行截面设计
建筑力学压杆稳定
• 应用压杆的稳定条件,可以进行三个方面的问题计 算:
• 1. 稳定校核 • 已知压杆的截面形状和尺寸,杆件长度及支承条件
,杆件的轴心压力,根据公式(9-16)即可以验证 压杆是否会发生失稳破坏,即验证其稳定性。
建筑力学压杆稳定
例 9-4 如图 所示,构架由两根直径相同的圆杆构成,杆的材料为 Q235 钢,直径
立,由此可得的适用条件为:
cr
2E 2
p
令
p
2E p
则
p
(9-7) (9-8)
式(9-8)是欧拉公式适用范围的柔度表达形式,表明只有当压杆的实际柔度 p 时,才能
用欧拉公式来计算其临界应力和临界力。显然, p 是应用欧拉公式的最小柔度。压杆的实
际柔度 λ 随压杆的几何形状尺寸和杆端约束条件变化,但 p 是仅由材料性质确定的值。
d=20mm,材料的许用应力 =170MPa,已知 h=0.4m,作用力 F=15kN。试在计算平面内校核
二杆的稳定。
图 9-3
建筑力学压杆稳定
解:(1)计算各杆承受的压力 取结点 A 为研究对象,根据平衡条件列方程
x 0 FAB cos 450 FAC cos 300 0 Y 0 FAB sin 450 FAC sin 300 F 0
建筑力学压杆稳定
第二节 临界力和临界应力 1、影响临界力的因素 实践表明,影响细长压杆临界力的主要因素是材料的特性、截面几何形状和杆件的长度, 以及压杆两端的约束条件。 (1)材料的特性 对于两个截面几何形状及杆件长度相同的木杆和钢杆,受轴向压力 作用,木杆会先失稳,即木杆的临界力比钢杆的小,说明弹性模量 E 小的材料,其临界力也 小。 (2)截面几何形状 当截面尺寸相同,而截面形状不同时,其临界力也会不相同。影 响临界力的截面参数是截面惯性矩,惯性矩越大,杆件就越不容易失稳,说明截面的惯性矩 大,临界力也大。 (3)杆件的长度 其他条件相同时,长杆比短杆更易失去稳定,故临界力要小些。 (4)压杆两端的约束条件 对同一根细长压杆,两端的约束越强,压杆的轴心受压承 载力越大,因而,压杆两端的约束条件对压杆的稳定临界力也有很大的影响。当其他条件相 同时,一端固定、而一端铰支的压杆比两端铰支的更不容易失稳,说明两端支承越牢固,压 杆的临界力就越大。
压杆稳定—压杆稳定的概念(建筑力学)
二、压杆稳定概念
压杆稳定
当FP值超过某一值Fcr时,撤除干扰后,杆不能恢复到原来 的直线形状,只能在一定弯曲变形下平衡(图d),甚至折 断,此时称杆的原有直线状态的平衡为不稳定平衡。
由此可知,压杆的直线平衡状态是否稳定,与压力FP的大 小有关。
压杆稳定
当压力FP逐渐增大至某一特定值Fcr时,压杆将从稳定平 衡过渡到不稳定平衡,此时称为临界状态。 压力Fcr称为压杆的临界力。 当外力达到压杆的临界力值时,压杆即开始丧失稳定。
压杆稳定
第一节 压杆稳定概念
一、稳定问题的提出
两根相同材料(松木)制成的杆,
σb=20MPa;A=10mm×30mm
短杆长:l=30mm;
长杆长:l=1000mm F
若按强度条件计算,
两根杆压缩时的极限承载
能力均应为:
F
F =σbA=6kN
F
1m 30mm
F
压杆的破坏实验结果:
(1)短杆在压力增加到约 为6kN时,因木纹出现裂纹而 破坏。
(2)长杆在压力增加到约40N 时突然弯向一侧,继续增大压力 ,弯曲迅速增大,杆随即折断。
F
1m
F
30mm
F
F
结论:
短压杆与长压杆在压缩时的破坏 性质完全不同
• 短压杆的破坏属于强 度问题;
F• 长压杆的破坏则属于能否保持其原来的直线平衡
状态的问题
F
F
1m 30mm
F
压杆稳定性:压杆保持其原来直线平衡状态 的能力。
压杆稳定
压杆稳定
学习目标:
1.深刻理解压杆稳定的概念,理解临界力和柔度的概念。 2. 理解杆端约束对临界力的影响,了解压杆的分类和临界 应力总图。 3.掌握压杆临界力、临界应力的计算。 4.掌握压杆的稳定计算以及提高压杆稳定性的措施。
工程力学精品课程压杆稳定.ppt
F
b y
解:(a) 判断发生弯曲的方向。由于杆截面是矩形, 杆在不同方向弯曲的难易程度不同,如图:
l
h
z
y
因为
h z
b
Iy Iz
所以在各个方向上发生弯曲时约束条件相同的情况下,压杆最易在xz平面内发生弯曲
(b) 判断欧拉公式的适用范围。因为是细长杆
1
(c) 计算临界压力。由欧拉公式
所以可用欧拉公式
d
A
1 d 2
4
4
l 4l 120
i
d
(b) 判别压杆的性质。
1
2 E 102 p
1
压杆是大柔度杆,用欧拉公式计算临界力。
(c) 计算临界应力。
Pcr
cr
A
2E 2
A
269 kN
(d) 当l1=0.75l时,计算压杆的柔度,判别压杆的性质。
0.75120 90
2
a s
解决压杆稳定问题的关键是确定其临界压力。
二。临界压力的欧拉公式
1 两端铰支压杆的临界压力
y
P
xv
l
v xP
P
M x
P
压杆距支座x处截面上的弯矩是
M Pv
代入挠曲线的近似微分方程
d 2v dx2
M EI
Pv EI
令: k 2 P
则有:
EI
d 2v k2v 0 dx 2
以上微分方程的通解是
z b
y
y
x z
h
解:(a) 求在xz平面内弯曲时的柔度。
iy
Iy A
1 hb3
12
hb
b 12
y
1l
工程力学精品课程压杆稳定.ppt
压杆稳定
Stability of columns
一。稳定性概念
细长杆件承受轴向压缩载荷作用时,会表现出与强度失效性质全然不同的失效现象, 即将会由于平衡的不稳定性而发生失效,这种失效称为稳定性失效,简称失稳,又称为 屈曲失效。
内燃机配气机构中的挺杆
磨床液压装置的活塞杆
细长压杆随受力的改变,平衡的稳定性会发生改变,由稳定平衡转为不稳定平衡的 临界值称为压杆的临界压力或临界力;它是压杆保持稳定的直线平衡的最大值,或是 压杆保持微曲平衡的最小值。
b
经验公式: cr a b
其中,a,b是由杆件材料决定的常数
2)小柔度杆的临界应力
小柔度杆或短杆: λ < λ2 此时压杆属强度问题,临界应力就是屈服极限或强度极限,即
cr s
或
b
3) 临界应力总图
σ σcr=σs
σs σp
σcr=a-bλ σcr=π2E/λ2
O
λ2
λ1
可以明显地看出,短杆的临界应力与柔度λ无关,而中、长杆的临界应力则随柔度 λ的增加而减小。
例10-4图示钢结构,承受载荷F作用,试校核斜撑杆的稳定性。已知载荷F=12kN,其
外径D=45mm,内径d=36 mm,稳定安全系数nst=2.5。斜撑杆材料是Q235钢,弹性模 量E=210 GPa, σp=200 MPa, σs=235 MPa,
1m A
1m B
F 解:(a) 受力分析。以梁AC为研究对象,由静力
1.减小压杆的支承长度;因为临界应力与杆长平方成反比,因此可以显著地提高压杆承 载能力。 2. 改变压杆两端的约束;使长度系数减小,相应地减小柔度,从而增大临界应力。 3. 选择合理的截面形状;可以在不增加截面面积的情况下,增加横截面的惯性矩I, 从而减小压杆柔度,起到提高压杆稳定性的作用。图10.10是起重臂合理截面。
工程力学压杆稳定ppt课件
Fcr 0.7l
F 0.5l
l l
一端固定,一端铰支 EI 2
Fcr (0.7l) 2
.
两端固定 EI 2
Fcr (0.5l) 2
不同约束情况下,细长杆的临 界压力欧拉公式可统一写成:
EI 2 Fcr (l )2
:长度系数 l:相当长度
.
两端铰支 一端固定,一端自由 一端固定,一端铰支 两端固定
[FN]156k N [F]52[FN]62.4k N
.
二、压杆稳定计算 ––– 折减系数法
工程中为了简便起见,对压杆的稳定计 算还常采用折减系数法。即将材料的压缩许 用应力[ ]乘上一个小于1的折减系数 作为 压杆的许用临界应力,即:
[ cr] = [ ]
< 1,称为折减系数
[ cr ] [ ]
L
v F v 0
EI
记k 2 F EI
F
x vM F x
y
v + k2v = 0
––– 二阶常系数齐次线性微分方程
.
通解: v = c1sinkx + c2coskx 边界条件:
x = 0 v( 0 ) = 0 x = l v( l ) = 0 v(0) = c1sin(k* 0) + c2cos(k* 0) = c2 = 0 v = c1sinkx v(l) = c1sinkl = 0
F:工作压力
Fcr:临界压力
nst:额定安全系数
nst
Fcr F
n
nFcr:工作安(实 全际 系安 数全 ) 系数
F
.
稳定计算的一般步骤:
① 分别计算各个弯曲平面内的柔度 y 、 z ,从而得到 max;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压杆应在刚度较小的平面内失稳,故取 Imin Iy 64.4104 mm4
由表9-1 查得μ=1。 将有关数据代入式(9-2)即得该杆的临界力:
Pcr
2EI (l)2
3.142 210 109 64.4 104 1012 (1 3.0)2
148.2kN
3、压杆临界应力
压杆在临界力作用下横截面上的平均压应力即为临界应力,通常用 cr 表示。在临界力
Pcr
2EI
l 2
(9-2)
式中,l 为压杆的实际长度,μ 为长度系数,μl 为压杆的计算长度,其他参数同式(9-1)
例9-1 已知压杆由14号工字钢制成,其两端铰支。已知钢材的弹性模量E=210GPa,
杆长l=3000mm。试求该杆的临界力Pcr。
解:查型钢表得14号工字钢几何特性:
Iz 712104 mm4, Iy 64.4104 mm4, A 21.5102 mm2
2、压杆临界力 欧拉最早推导出两端铰支情况下的压杆临界力的计算公式,即欧拉公式:
Pcr
2EI
l2
(9-1)
式中,E 为材料的弹性模量,I 为压杆截面惯性矩,EI 为压杆抗弯刚度,l 为压杆的计算
长度。 压杆两端的约束条件对压杆的稳定临界力也有很大的影响。为了考虑这种影响,我们将
欧拉公式进行修正,使其适用于各种支承情况,修正的欧拉公式为:
作用下,压杆横截面上的平均压应力即为式(9-2)两端除以杆件的横截面面积A,即临界应
力为:
cr
Pcr A
2 EI (l)2 A
(9-3)
式中,令 i
I , i 称为截面的惯性半径。于是(9-3)式可写为 A
引入
cr
2E ( l )2
i
(9-4)
则有
l l
i
I
A
(9-5)
cr
பைடு நூலகம்
2E 2
(9-6)
式(9-6)是欧拉公式的另一种表达形式。实际上,临界应力应理解为是以应力表示的临 界力。
例9-2 试计算例9.1中压杆的临界应力。
解 (1) 计算回转半径 i :
Iz 712104 mm4, Iy 64.4104 mm4, A 21.5102 mm2
i
I A
64.4 104 21.5102
17.3mm
(2) 两端简支情况下压杆的临界应力:
l 3000 173.4
i 17.3
cr
2E ( )2
3.142 210 109 173.42
68.9MPa
4、欧拉公式的适用条件
前面已述及欧拉公式适用于弹性稳定问题,即当 cr p (材料比例极限应力)时才成
立,由此可得的适用条件为:
如果没有考虑到压杆的稳定问题,仅按照强度破坏来计算压杆的承载力, 可能会造成严重的损失。1907年北美洲加拿大魁北克圣劳伦斯河上的一座548m 的铁桥,在施工的过程中由于悬臂桁架中一根受压弦杆突然失稳屈曲而倒塌; 2001年上海龙门起重机安装过程中由于刚性牛腿的受力失稳发生倒塌事故,造 成36人死亡,直接经济损失8000多万元。因此,压杆的稳定性对各类结构都是 非常重要的,要保证压杆的正常工作,还必须对它进行稳定性计算。
压杆的临界应力。
5、临界应力总图 综上所述,压杆按照其柔度的不同,可以分为三类,计算各自临界应力的方法也不相
同。当 ≥ p 时,压杆为细长杆(大柔度杆),其临界应力用欧拉公式来计算;当 s < < p 时,压杆为中长杆(中柔度杆),其临界应力用直线经验公式来计算; s 时,压杆为短
粗杆(小柔度杆),其临界应力等于杆受压时的极限应力。如果把压杆的临界应力根据其柔 度不同而分别计算的情况,用一个简图来表示,该图形就称为压杆的临界应力总图。图 9-2 即为某塑性材料的临界应力总图。
第一节 概述
工程中把承受轴向压力的直杆称为压杆。以前,我们从强度观点出发, 认为压杆在其横截面上只产生压应力,当压应力超过材料的极限应力时, 压杆才因抗压强度不足而破坏。这种观点对于始终能够保持其原有直线形 状的短粗压杆来说,可以认为是正确的,这时对它只进行强度计算也是合 适的,但是,对于细长的压杆,在轴向力的作用下,往往在因强度不足而 破坏之前,就因它不再保持原有直线状态下的平衡而骤然屈曲破坏,因而 它不再是强度问题,而是压杆能不能保持直线状态下的平衡问题,在工程 实践中把这类问题称为压杆的稳定性问题。
cr
2E 2
p
令
p
2E p
则
p
(9-7) (9-8)
式(9-8)是欧拉公式适用范围的柔度表达形式,表明只有当压杆的实际柔度 p 时,才能
用欧拉公式来计算其临界应力和临界力。显然, p 是应用欧拉公式的最小柔度。压杆的实
际柔度 λ 随压杆的几何形状尺寸和杆端约束条件变化,但 p 是仅由材料性质确定的值。
第二节 临界力和临界应力 1、影响临界力的因素 实践表明,影响细长压杆临界力的主要因素是材料的特性、截面几何形状和杆件的长度, 以及压杆两端的约束条件。 (1)材料的特性 对于两个截面几何形状及杆件长度相同的木杆和钢杆,受轴向压力 作用,木杆会先失稳,即木杆的临界力比钢杆的小,说明弹性模量 E 小的材料,其临界力也 小。 (2)截面几何形状 当截面尺寸相同,而截面形状不同时,其临界力也会不相同。影 响临界力的截面参数是截面惯性矩,惯性矩越大,杆件就越不容易失稳,说明截面的惯性矩 大,临界力也大。 (3)杆件的长度 其他条件相同时,长杆比短杆更易失去稳定,故临界力要小些。 (4)压杆两端的约束条件 对同一根细长压杆,两端的约束越强,压杆的轴心受压承 载力越大,因而,压杆两端的约束条件对压杆的稳定临界力也有很大的影响。当其他条件相 同时,一端固定、而一端铰支的压杆比两端铰支的更不容易失稳,说明两端支承越牢固,压 杆的临界力就越大。
不同材料的 p 可按式(9-7)计算。以 Q235 钢为例,取其E=200 GPa, p =200 MPa,
代入式(9-7)得
p
2E
3.14
p
200 103 100
200
即由 Q235 钢制成的压杆,只有当实际柔度λ ≥100 时,欧拉公式才适用。
当 λ≥ p 时的压杆称为细长杆或大柔度杆。可见,欧拉公式只能用来计算细长杆的临界力, 而对 λ < p 的其它类型的压杆,欧拉公式是不适用的,这时可用如下的直线经验公式确定