第九章 压杆稳定答案
材料力学习题册答案第章压杆稳定
第九章压杆稳定之阳早格格创做一、采用题1、一理念匀称直杆受轴背压力P=P Q时处于直线仄稳状态.正在其受到一微弱横背搞扰力后爆收微弱蜿蜒变形,若此时排除搞扰力,则压杆<A).A、蜿蜒变形消得,回复直线形状;B、蜿蜒变形缩小,不克不迭回复直线形状;C、微直状态稳定;D、蜿蜒变形继启删大.2、一细少压杆当轴背力P=P Q时爆收得稳而处于微直仄稳状态,此时若排除压力P,则压杆的微直变形<C)A、实足消得B、有所慢战C、脆持稳定D、继启删大3、压杆属于细少杆,中少杆仍旧短细杆,是根据压杆的<D)去推断的.A、少度B、横截里尺寸C、临界应力D、柔度4、压杆的柔度集结天反映了压杆的< A )对付临界应力的效率.A、少度,拘束条件,截里尺寸战形状;B、资料,少度战拘束条件;C、资料,拘束条件,截里尺寸战形状;D、资料,少度,截里尺寸战形状;5、图示四根压杆的资料与横截里均相共,试推断哪一根最简单得稳.问案:<a )6、二端铰支的圆截里压杆,少1m,直径50mm.其柔度为 ( C >A.60;B.;C.80;D.507、正在横截里积等其余条件均相共的条件下,压杆采与图<D)所示截里形状,其宁静性最佳.8、细少压杆的<A),则其临界应力σ越大.A、弹性模量E越大或者柔度λ越小;B、弹性模量E越大或者柔度λ越大;C、弹性模量E越小或者柔度λ越大;D、弹性模量E越小或者柔度λ越小;9、欧推公式适用的条件是,压杆的柔度<C)AC10、正在资料相共的条件下,随着柔度的删大<C)A、细少杆的临界应力是减小的,中少杆不是;B、中少杆的临界应力是减小的,细少杆不是;C、细少杆战中少杆的临界应力均是减小的;D、细少杆战中少杆的临界应力均不是减小的;11、二根资料战柔度皆相共的压杆<A)A. 临界应力一定相等,临界压力纷歧定相等;B. 临界应力纷歧定相等,临界压力一定相等;C. 临界应力战临界压力一定相等;D. 临界应力战临界压力纷歧定相等;12、正在下列有闭压杆临界应力σe的论断中,<D)是精确的.A、细少杆的σe值与杆的资料无闭;B、中少杆的σe 值与杆的柔度无闭;C、中少杆的σe值与杆的资料无闭;D、细短杆的σe 值与杆的柔度无闭;13、细少杆启受轴背压力P的效率,其临界压力与<C )无闭.A、杆的材量B、杆的少度C、杆启受压力的大小D、杆的横截里形状战尺寸二、估计题1、有一少l=300 mm,截里宽b=6 mm、下h=10 mm的压杆.二端铰交,压杆资料为Q235钢,E=200 GPa,试估计压杆的临界应力战临界力.解:<1)供惯性半径i对付于矩形截里,如果得稳必正在刚刚度较小的仄里内爆收,故应供最小惯性半径<2)供柔度λλ=μl/i,μ=1,故λ=1×300/1.732=519>λp=100<3)用欧推公式估计临界应力<4)估计临界力F cr =σcr ×A =65.8×6×10=3948 N=3.95 kN2、一根二端铰支钢杆,所受最大压力KN P 8.47=.其直径mm d 45=,少度mm l 703=.钢材的E =210GPa ,p σ=280MPa ,2.432=λ.估计临界压力的公式有:(a> 欧推公式;(b> 直线公式cr σλ(MPa>.试 <1)推断此压杆的典型;<2)供此杆的临界压力;解:<1) 1=μ8621==PE σπλ5.624===d lilμμλ由于12λλλ<<,是中柔度杆. <2)cr σλMPa3、活塞杆<可瞅成是一端牢固、一端自由),用硅钢造成,其直径d=40mm ,中伸部分的最大少度l =1m ,弹性模量E=210Gpa ,1001=λ.试<1)推断此压杆的典型;<2)决定活塞杆的临界载荷. 解:瞅成是一端牢固、一端自由.此时2=μ,而,所以,.故属于大柔度杆-用大柔度杆临界应力公式估计.4、托架如图所示,正在横杆端面D 处受到P=30kN 的力效率.已知斜撑杆AB 二端柱形拘束<柱形较销钉笔直于托架仄里),为空心圆截里,中径D=50mm 、内径d=36mm ,资料为A3钢,E=210GPa 、p σ=200MPa 、s σ.若宁静仄安系数n w =2,试校杆AB 解 应用仄稳条件可有A3压杆的处事仄安系数BA压杆的处事仄安系数小于确定的宁静仄安系数,故不妨仄安处事.5、如图所示的结构中,梁AB为No.14一般热轧工字钢,CD为圆截里直杆,其直径为d=20mm,二者资料均为Q235、D.强度仄安.解:正在给定的结构中公有二个构件:梁AB,启受推伸与蜿蜒的推拢效率,属于强度问题;杆CD,启受压缩荷载,属宁静问题.现分别校核如下.(1> 大梁AB的强度校核.大梁AB正在截里C处的直矩最大,该处横截里为伤害截里,其上的直矩战轴力分别为由型钢表查得14号一般热轧工字钢的由此得到(2> 校核压杆CD的宁静性.由仄稳圆程供得压杆CD的轴背压力为果为是圆截里杆,故惯性半径为那标明,压杆CD为细少杆,故需采与式(9-7>估计其临界应力,有于是,压杆的处事仄安果数为那一截止证明,压杆的宁静性是仄安的.上述二项估计截止标明,所有结构的强度战宁静性皆是仄安的.6、一强度等第为TC13的圆紧木,少6m ,中径为300mm ,其强度许用应力为10MPa.现将圆木用去当做起沉机用的扒杆,试估计圆木所能启受的许可压力值.解:正在图示仄里内,若扒杆正在轴背压力的效率下得稳,则杆的轴线将直成半个正弦波,少度系数可与为1μ=.于是,其柔度为根据80λ=,供得木压杆的宁静果数为 进而可得圆木所能启受的许可压力为62[][]0.398(1010)(0.3)281.34F A ϕσπ==⨯⨯⨯⨯=(kN>如果扒杆的上端正在笔直于纸里的目标并不所有拘束,则杆正在笔直于纸里的仄里内得稳时,只可视为下端牢固而上端自由,即2μ=.于是有供得62[][]0.109(1010)(0.3)774F A ϕσπ==⨯⨯⨯⨯=(kN>隐然,圆木动做扒杆使用时,所能启受的许可压力应为77 kN ,而不是281.3 kN.7、 如图所示,一端牢固另一端自由的细少压杆,其杆少l = 2m ,截里形状为矩形,b = 20 mm 、h = 45 mm ,资料的弹性模量E = 200GPa .试估计该压杆的临界力.若把截里改为b = h =30 mm ,而脆持少度稳定,则该压杆的临界力又为多大?解:<一)、当b=20mm 、h=45mm 时 <1)估计压杆的柔度22000692.82012li μλ⨯===>123c λ=(所以是大柔度杆,可应用欧推公式> (2>估计截里的惯性矩由前述可知,该压杆必正在xy 仄里内得稳,故估计惯性矩 <3)估计临界力μ=2,果此临界力为<二)、当截里改为b = h = 30mm 时<1)估计压杆的柔度所以是大柔度杆,可应用欧推公式>(2>估计截里的惯性矩 代进欧推公式,可得从以上二种情况分解,其横截里里积相等,支启条件也相共,然而是,估计得到的临界力后者大于前者.可睹正在资料用量相共的条件下,采用妥当的截里形式不妨普及细少压杆的临界力.8、 图所示为二端铰支的圆形截里受压杆,用Q235钢造成,资料模量E=200Gpa ,伸服面应力σs =240MPa d=40mm ,试分别估计底下二种<1)杆少l =1.5m ;<2)杆少l =0.5m. 解:<1)估计杆少l 二端铰支果此 μ=1惯性半径(所以是大柔度杆,可应用欧推公式> <2)估计杆少lμ=1,i =10mm压杆为中细杆,其临界力为感动土木0906班王锦涛、刘元章共教! 申明:所有资料为自己支集整治,仅限部分教习使用,勿搞商业用途. 申明:所有资料为自己支集整治,仅限部分教习使用,勿搞商业用途.。
材料力学简明教程(景荣春)课后答案第九章
解 设各杆与铅垂线夹角为 θ ,则由平衡的各杆的受力
130
3FN cosθ = F , FN =
设钢管材料为 Q235,则
F F 2 .5 5 F = ⋅ = = 0.417 F 3 cos θ 3 2 12
= 269 > λp D2 + d 2 30 2 + 22 2 × 10 −3 π 2 EI π 3 E (D 4 − d 4 ) π 3 × 210 × 10 9 × (30 2 − 22 2 )× 10 −12 Fcr = = = = 9.37 kN 2 64 × 2.5 2 (μl )2 64(μl ) Fcr F 1 1 9.37 × 10 3 [F ] = = × = × = 7.49 kN 0.417 0.417 [n]st 0.417 3 i = =
2
127
比值差不多时较有利。 9-8 从稳定性的角度考虑,一般压杆截面的周边取圆形较为合理,但可以是空心或实 心的。如规定压杆横截面面积相同,则: (1) 从强度方面看,它们有无区别?为什么? (2) 从稳定性方面看,哪一种截面形式较为合理?为什么? (3) 如果空心圆形截面较合理的话,是否其内、外半径越大越好? 答 (1) 从强度方面看,它们无区别。因为 σ = F / A 。 (2) 从稳定性方面看,空心截面形式较为合理,因空心截面惯性矩较大。 (3) 如果空心圆形截面较合理的话,其内、外半径不是越大越好,因为在面积一定的情 况下,内、外半径太大了会造成薄壁失稳。 9-9 如何进行压杆的合理设计? 答 (1) 选择合理的截面形状; (2) 改变压杆的约束条件; (3)合理选择材料。 9-10 满足强度条件的等截面压杆是否满足稳定性条件?满足稳定性条件的压杆是否 满足强度条件?为什么? 答 (1) 因为强度条件是 σ < [σ ] =
第九章--压杆的稳定
Pcr
cr
A
a
b
d
4
2
380133N
丝杠的工作稳定安全系数为:
nst
Pcr P
380133 80000
4.75
4 [nst ]
校核结果可知,此千斤顶丝杠是稳定的
例9-5 简易起重机起重臂OA长l=2.7m,由外径D=8cm,内 径d=7cm的无缝钢管制成,材料Q235钢,规定的稳定安全 系数[nst]=3,试确定起重臂的安全载荷。
对于柱屈曲(压杆稳定):
y M ( y) EI
力学上 ——载荷在横向干扰力产生的变形上引起 了弯矩
数学上 ——是一个求解微分方程的问题
3、杆端约束情况的简化 (1)柱形铰约束 (2)焊接或铆接
(3)螺母和丝杠连接
l0 / d0 1.5时,可简化为铰支座;l0 / d0 3时,简化为固定端;
cr
S
cr ab
③临界应力总图
P
2E
cr
2
s s a
b
P 2E
P
L
i
2.抛物线型经验公式
①P < < s 时: cr a1b12
我国建筑业常用:
cr
s
1
c
2
对于A3钢、A5钢和16锰钢: 0.43,c
c 时,由此式求临界应力
2E 0.56 S
②s < 时: cr s
(2)计算最小刚度平面内的临界力和临界应力。 截面的惯性矩为:
Iy
20 123 12
2880cm4
相应惯性半径:
iy
Iz 3.46cm A
其柔度为:
l
iy
0.5 400 3.46
9压杆稳定
第九章压杆稳定
一、选择题(将正确答案的序号填入划线内) 确的答案是 。
(A )增加一倍;(B )为原来的四倍;(C )为原来的四分之一;(D )为原来的二分这一 4、在稳定性计算中,若用欧拉公式算得压杆的临界压力为cr P ,而实际上压杆属于中柔度杆,则 。
A 、并不影响压杆的临界压力值;
B 实际的临界压力>cr P ,是偏于安全的;
C 、实际的临界压力<cr P ,是偏于不安全的;
D 、实际的临界压力>cr P ,是偏于不安全的。
二、填空题 1、反映临界应力与柔度之间的函数关系的曲线称为 。
从中可以看出λ值越小,
三、计算题
1、细长压杆如图示,GPa E 200=,在主视图(a )的平面内弯曲时,两端可视为铰支,在俯视图(b )的平面内弯曲时,两端可视为固定,试求此杆的临界载荷
P
2. 如图所示结构,杆AB 的抗弯截面模量3
102cm z W =,材料的许用应力[]180M P a σ=。
圆截面杆CD ,其直径d=40mm ,材料的弹性模量200G P a E =,比例极限200M P a p
σ
=。
C 、
D 处为球铰约束,稳定的安全系数4st n =;若已知:9kN /m q =,试校核此结构是
否安全。
刘鸿文《材料力学》复习笔记和课后习题(含考研真题)详解(压杆稳定)【圣才出品】
所示。
表 9-1-2
3 / 63
圣才电子书 十万种考研考证电子书、题库视频学习平台
(2)关于欧拉公式的讨论 ①相当长度 μl 的物理意义 压杆失稳时,挠曲线上两拐点间的长度就是压杆的相当长度 μl,它是各种支承条件下, 细长压杆失稳时,挠曲线中相当于半波正弦曲线的一段长度。 ②横截面对某一形心主惯性轴的惯性矩 I 杆端在各个方向的约束情况相同(如球形铰等),则 I 应取最小的形心主惯性矩;杆端 在各个方向的约束情况不同(如柱形铰),应分别计算杆在不同方向失稳时的临界压力,I 为其相应中性轴的惯性矩。 三、欧拉公式的适用范围及临界应力总图 1.相关概念
图 9-1-1
选取坐标系如图 9-1-1 所示,距原点为 x 的任意截面的挠度为 w,则弯矩 M=-Fw。
根据压杆变形后的平衡状态,得到杆的挠曲线近似微分方程
d2w dx2
M EI
2 / 63
圣才电子书 十万种考研考证电子书、题库视频学习平台
通过对该方程的求解可得到使压杆保持微小弯曲平衡的最小压力,即两端铰支细长压杆 临界力为
π 2 EI Fcr l 2
上述计算公式称为两端铰支压杆的欧拉公式。
2.欧拉公式的普遍形式
Fcr
π 2 EI
l 2
式中,μl 为相当长度;μ 为长度因数,与压杆的约束情况有关;I 为横截面对某一形心
主惯性轴的惯性矩。
(1)各种支承情况下等截面细长压杆的长度因数及临界压力的欧拉公式,如表 9-1-2
对比项目 平衡状态
应力 平衡方程 极限承载能力
强度问题 直线平衡状态不变
达到限值 变形前的形状、尺寸
实验确定
稳定问题 平衡形式发生变化
可能小于限值 变形后的形状、尺寸
2020年材料力学习题册答案-第9章 压杆稳定
作者:非成败作品编号:92032155GZ5702241547853215475102时间:2020.12.13第九章压杆稳定一、选择题1、一理想均匀直杆受轴向压力P=P Q时处于直线平衡状态。
在其受到一微小横向干扰力后发生微小弯曲变形,若此时解除干扰力,则压杆( A )。
A、弯曲变形消失,恢复直线形状;B、弯曲变形减少,不能恢复直线形状;C、微弯状态不变;D、弯曲变形继续增大。
2、一细长压杆当轴向力P=P Q时发生失稳而处于微弯平衡状态,此时若解除压力P,则压杆的微弯变形( C )A、完全消失B、有所缓和C、保持不变D、继续增大3、压杆属于细长杆,中长杆还是短粗杆,是根据压杆的( D )来判断的。
A、长度B、横截面尺寸C、临界应力D、柔度4、压杆的柔度集中地反映了压杆的( A )对临界应力的影响。
A、长度,约束条件,截面尺寸和形状;B、材料,长度和约束条件;C、材料,约束条件,截面尺寸和形状;D、材料,长度,截面尺寸和形状;5、图示四根压杆的材料与横截面均相同,试判断哪一根最容易失稳。
答案:( a )6、两端铰支的圆截面压杆,长1m,直径50mm。
其柔度为 ( C )A.60;B.66.7;C.80;D.507、在横截面积等其它条件均相同的条件下,压杆采用图( D )所示截面形状,其稳定性最好。
8、细长压杆的( A ),则其临界应力σ越大。
A 、弹性模量E 越大或柔度λ越小;B 、弹性模量E 越大或柔度λ越大;C 、弹性模量E 越小或柔度λ越大;D 、弹性模量E 越小或柔度λ越小; 9、欧拉公式适用的条件是,压杆的柔度( C )A 、λ≤、λ≤C 、λ≥π D、λ≥10、在材料相同的条件下,随着柔度的增大( C )A 、细长杆的临界应力是减小的,中长杆不是;B 、中长杆的临界应力是减小的,细长杆不是;C 、细长杆和中长杆的临界应力均是减小的;D 、细长杆和中长杆的临界应力均不是减小的; 11、两根材料和柔度都相同的压杆( A )A. 临界应力一定相等,临界压力不一定相等;B. 临界应力不一定相等,临界压力一定相等;C. 临界应力和临界压力一定相等;D. 临界应力和临界压力不一定相等;12、在下列有关压杆临界应力σe 的结论中,( D )是正确的。
《材料力学》第9章压杆稳定习题解
v
MM
e'kkx
esin
(1coskx)
v
PP
crcr
M
e
边界条件:③xL;v0:0(1coskL)
P
cr
,1coskL0
Mቤተ መጻሕፍቲ ባይዱ
'esin
④x0v0:0kkLsinkL0
P
cr
以上两式均要求:kL2n,(n0,1,3,......)
5
2
L
。故有:
k
2
2
(0.5L)
2
P
cr
EI
其最小解是:kL2,或
Pcr
2
EI
min
2
(2.l)
?为什么?并由此判断压杆长因数是否可能大于2。
2
螺旋千斤顶(图c)的底座对丝杆(起顶杆)的稳定性有无影响?校核丝杆稳定性时,
把它看作下端固定(固定于底座上)、上端自由、长度为l的压杆是否偏于安全?
解:临界力与压杆两端的支承情况有关。因为(a)的下支座不同于(b)的下支座,所以它们的
度系数。
(a)l155m
(b)l0.774.9m
(c)l0.594.5m
(d)l224m
(e)l188m
(f)l0.753.5m(下段);l0.552.5m(上段)
故图e所示杆
F最小,图f所示杆Fcr最大。
cr
[习题9-3]图a,b所示的两细长杆均与基础刚性连接,但第一根杆(图a)的基础放在弹性
地基上,第二根杆(图b)的基础放在刚性地基上。试问两杆的临界力是否均为
失稳时整体在面内弯曲,则1,2两杆组成一组合截面。
(c)两根立柱一起作为下端固定而上端自由的体系在面外失稳
压杆稳定习题及答案
压杆稳定习题及答案【篇一:材料力学习题册答案-第9章压杆稳定】xt>一、选择题1、一理想均匀直杆受轴向压力p=pq时处于直线平衡状态。
在其受到一微小横向干扰力后发生微小弯曲变形,若此时解除干扰力,则压杆( a )。
a、弯曲变形消失,恢复直线形状;b、弯曲变形减少,不能恢复直线形状; c、微弯状态不变; d、弯曲变形继续增大。
2、一细长压杆当轴向力p=pq时发生失稳而处于微弯平衡状态,此时若解除压力p,则压杆的微弯变形( c )a、完全消失b、有所缓和c、保持不变d、继续增大 3、压杆属于细长杆,中长杆还是短粗杆,是根据压杆的( d)来判断的。
a、长度b、横截面尺寸c、临界应力d、柔度 4、压杆的柔度集中地反映了压杆的( a)对临界应力的影响。
a、长度,约束条件,截面尺寸和形状;b、材料,长度和约束条件;c、材料,约束条件,截面尺寸和形状;d、材料,长度,截面尺寸和形状; 5、图示四根压杆的材料与横截面均相同,试判断哪一根最容易失稳。
答案:( a )6、两端铰支的圆截面压杆,长1m,直径50mm。
其柔度为 ( c )a.60;b.66.7;c.80;d.50 7、在横截面积等其它条件均相同的条件下,压杆采用图( d )所示截面形状,其稳定性最好。
≤?≥?- 1 -10、在材料相同的条件下,随着柔度的增大( c)a、细长杆的临界应力是减小的,中长杆不是;b、中长杆的临界应力是减小的,细长杆不是; c、细长杆和中长杆的临界应力均是减小的; d、细长杆和中长杆的临界应力均不是减小的; 11、两根材料和柔度都相同的压杆( a )a. 临界应力一定相等,临界压力不一定相等;b. 临界应力不一定相等,临界压力一定相等;c. 临界应力和临界压力一定相等;d. 临界应力和临界压力不一定相等;a、杆的材质b、杆的长度c、杆承受压力的大小d、杆的横截面形状和尺寸二、计算题1、有一长l=300 mm,截面宽b=6 mm、高h=10 mm的压杆。
第九章 压杆稳定习题e
第九章压杆稳定 姓名 班级 学号一、 填空和选择1.理想均匀直杆与轴向力F=F cr 时处于直线平衡状态,当其受到一微小横向干扰力后发生微小弯曲变形,假设此时解除干扰力,那么压杆〔 〕A 弯曲变形消失,恢复直线形状;B 弯曲变形减小,不能恢复直线形状;C 微弯变形状态不变;D 弯曲变形继续增大2. 压杆的柔度集中地反映了压杆的〔 〕对临界应力的影响A 长度、约束条件、截面形状和尺寸;B 材料、长度和约束条件;C 材料、约束条件、截面形状和尺寸;D 材料、长度、截面形状和尺寸3.两端铰支圆截面细长压杆,在某一截面上开一个小孔,关于小孔对杆承载能力的影响,以下论述正确的选项是〔 〕A 对强度和稳定承载能力都有较大消弱;B 对强度有较大消弱,对稳定承载能力消弱极微C 对强度无消弱,对稳定承载能力有较大消弱;D 对强度和稳定承载能力都不会消弱4.细长杆在图示约束情况下,其长度因素μ的大小在〔 〕范围内。
(A) μ>2; (B) 2>μ>0.7; (C) 0.7>μ>0.5; (D) μ<0.7。
题 4 图 题5 图5. 上端自由、下端固定的压杆,横截面为80*80*5号等边角钢,失稳时截面会绕轴 弯曲。
(A) z 或y 轴; (B)zc 或yc 轴;(C) y0轴; (D) z0轴。
6. 图示为支撑情况不同的圆截面细长杆,各杆的直径和材料相同, 的柔度最大,数值为 ; 的柔度最小,数值为 ; 的临界力最大,数值为 ; 的临界力最小,数值为 ;7. 两根细长压杆的长度、横截面面积、约束状态以及材料均相同,假设横截面形状分为正方形和圆形,那么截面形状为 的柔度大,截面形状为 的临界力大。
8. 以下关于压杆临界应力cr σ的结论中,〔 〕是正确的。
A 细长杆的cr σ与杆的材料无关;B 中长杆的cr σ与杆的柔度无关C 中长杆的cr σ与杆的材料无关;D 短粗杆的cr σ与杆的柔度无关二、 图示两端铰支压杆,用两根8号槽钢〔Q235钢〕按图示方式组合而成,试确定两根槽钢间距为多少时组合杆的临界力最大,并计算此临界力。
《材料力学》第9章压杆稳定习题解[整理]
第九章 压杆稳定 习题解[习题9-1] 在§9-2中已对两端球形铰支的等截面细长压杆,按图a 所示坐标系及挠度曲线形状,导出了临界应力公式。
试分析当分别取图b,c,d 所示坐标系及挠曲22l EIP cr π=线形状时,压杆在作用下的挠曲线微分方程是否与图a 情况下的相同,由此所得公cr F cr F 式又是否相同。
解: 挠曲线微分方程与坐标系的y 轴正向规定有关,与挠曲线的位置无关。
因为(b )图与(a )图具有相同的坐标系,所以它们的挠曲线微分方程相同,都是。
(c )、(d)的坐标系相同,它们具有相同的挠曲线微分方程:)("x M EIw -=,显然,这微分方程与(a )的微分方程不同。
)("x M EIw =临界力只与压杆的抗弯刚度、长度与两端的支承情况有关,与坐标系的选取、挠曲线的位置等因素无关。
因此,以上四种情形的临界力具有相同的公式,即:。
22l EIP cr π=[习题9-2] 图示各杆材料和截面均相同,试问杆能承受的压力哪根最大,哪根最小(图f 所示杆在中间支承处不能转动)?解:压杆能承受的临界压力为:。
由这公式可知,对于材料和截面相同的压22).(l EI P cr μπ=杆,它们能承受的压力与 原压相的相当长度的平方成反比,其中,为与约束情况有l μμ关的长度系数。
(a )ml 551=⨯=μ(b )ml 9.477.0=⨯=μ(c )ml 5.495.0=⨯=μ(d )ml 422=⨯=μ(e )ml 881=⨯=μ(f )(下段);(上段)m l 5.357.0=⨯=μm l 5.255.0=⨯=μ故图e 所示杆最小,图f 所示杆最大。
cr F cr F[习题9-3] 图a,b 所示的两细长杆均与基础刚性连接,但第一根杆(图a )的基础放在弹性地基上,第二根杆(图b )的基础放在刚性地基上。
试问两杆的临界力是否均为2min2).2(l EI P cr π=为什么并由此判断压杆长因数是否可能大于2。
材料力学习题册答案-第9章压杆稳定
材料力学习题册答案-第9章压杆稳定第九章压杆稳定一、选择题1、一理想均匀直杆受轴向压力P=P Q 时处于直线平衡状态。
在其受到一微小横向干扰力后发生微小弯曲变形,若此时解除干扰力,则压杆( A )。
A 、弯曲变形消失,恢复直线形状;B 、弯曲变形减少,不能恢复直线形状;C 、微弯状态不变;D 、弯曲变形继续增大。
2、一细长压杆当轴向力P=P Q 时发生失稳而处于微弯平衡状态,此时若解除压力P ,则压杆的微弯变形( C )A 、完全消失B 、有所缓和C 、保持不变D 、继续增大3、压杆属于细长杆,中长杆还是短粗杆,是根据压杆的( D )来判断的。
A 、长度B 、横截面尺寸C 、临界应力D 、柔度4、压杆的柔度集中地反映了压杆的( A )对临界应力的影响。
A 、长度,约束条件,截面尺寸和形状;B 、材料,长度和约束条件;C 、材料,约束条件,截面尺寸和形状;D 、材料,长度,截面尺寸和形状;5、图示四根压杆的材料与横截面均相同,试判断哪一根最容易失稳。
答案:( a )6、两端铰支的圆截面压杆,长1m ,直径50mm 。
其柔度为 ( C )A.60;B.66.7; C .80; D.50 7、在横截面积等其它条件均相同的条件下,压杆采用图( D )所示截面形状,其稳定性最好。
8、细长压杆的( A ),则其临界应力σ越大。
A 、弹性模量E 越大或柔度λ越小;B 、弹性模量E 越大或柔度λ越大;C 、弹性模量E 越小或柔度λ越大;D 、弹性模量E 越小或柔度λ越小;9、欧拉公式适用的条件是,压杆的柔度( C )A 、λ≤ PEπσ B 、λ≤sEπσC 、λ≥ P Eπσ D 、λ≥sEπσ10、在材料相同的条件下,随着柔度的增大( C )A 、细长杆的临界应力是减小的,中长杆不是;B 、中长杆的临界应力是减小的,细长杆不是;C 、细长杆和中长杆的临界应力均是减小的;D 、细长杆和中长杆的临界应力均不是减小的; 11、两根材料和柔度都相同的压杆( A )A. 临界应力一定相等,临界压力不一定相等;B. 临界应力不一定相等,临界压力一定相等;C. 临界应力和临界压力一定相等;D. 临界应力和临界压力不一定相等;12、在下列有关压杆临界应力σe 的结论中,( D )是正确的。
材料力学孙训芳版解答第9章_压杆稳定
Q
&
VLQ
NO
&
FRV NO
0 )
0 )
FRV NO
0 )
FRV NO
NO Q
NO
N
O
N
O
) (, O
)
(, O
)FU
(,
O
P
D O u ( *3D
H
D O '7 O
, $L $L u u u u P
,
>,
$
D
u @
D
>
,
, $
u
@
u u
u
G PP E PP Q
&'
%& %&
)&'
)
0%
)
P ) P
$
&
%
G' E
V
0% :
) u u EK
) EK
d
VV Q
)
d
V VEK Q
u u u u u
1 N1
N1
N1
$% $%
7&
>V @ 03D
,,
¦0&
)$% VLQ $ u
u
&
)$% N1
M >V FU @ u >V @ 03D
$
V $%
材料力学第9章 压杆稳定(土木)
2.1922年冬天下大雪,美国华盛 . 年冬天下大雪, 年冬天下大雪 顿尼克尔卜克尔剧院由于屋顶结 构中的一根压杆超载失稳,造成 构中的一根压杆超载失稳, 一根压杆超载失稳 剧院倒塌, 余人。 剧院倒塌,死98人,伤100余人。 人 余人
3.2000年10月25日 . 年 月 日 上午10时 分 上午 时30分,在南京 电视台演播中心演播厅 屋顶的浇筑混凝土施工 顶的浇筑混凝土施工 中,因脚手架失稳,造 脚手架失稳, 成演播厅屋顶模板倒塌, 成演播厅屋顶模板倒塌, 死5人,伤35人。 人 人
欧拉公式与精确解曲线 精确解曲线
F =1.152F 时,
cr
δ ≈ 0.3l
理想受压直杆 非理想受压直杆
y
适用条件: 适用条件: •理想压杆(轴线为直线,压力与 理想压杆(轴线为直线, 理想压杆 轴线重合,材料均匀) 轴线重合,材料均匀) •线弹性,小变形 线弹性, 线弹性 •两端为铰支座 两端为铰支座
hb3 Iz = = 32cm 4 12
µl
iz =
Iz 32 = = 1.155cm A 4× 6
x
h
µ z = 0.5,
0.5 × 2 λz = = = 86.6 −2 iz 1.155 ×10
A3钢的λs= 61.6, λs<λ< λp,属于中 钢的 , 长压杆稳定问题。 长压杆稳定问题。 由表9-2查得 由表 查得: 查得
挠曲线的近似微分方程 挠曲线的近似微分方程
d w M =− dx EI
2
2
d w Fw =− 2 dx EI
引入记号
2
F w′′ + w = 0 EI
F k = EI
2
w′′ + k w = 0
工程力学:压杆稳定 习题与答案
一、单选题1、压杆一般分为三种类型,它们是按压杆的()。
A.惯性半径分B.杆长分C.柔度分D.杆端约束情况分正确答案:C2、细长压杆,若其长度系数增加一倍,则()。
A.Pcr增加一倍B.Pcr增加到原来的4倍C.Pcr为原来的二分之一倍D.Pcr为原来的四分之一倍正确答案:D3、下列结论中正确的是()。
①若压杆中的实际应力不大于该压杆的临界应力,则杆件不会失稳;②受压杆件的破坏均由失稳引起;③压杆临界应力的大小可以反映压杆稳定性的好坏;④若压杆中的实际应力大于scr=πE2/λ2,则压杆必定破坏。
A.①+②B.②+④C.①+③D.②+③正确答案:C4、压杆临界力的大小()。
A.与压杆所承受的轴向压力大小有关B.与压杆的柔度大小有关C.与压杆材料无关D.与压杆的柔度大小无关正确答案:B5、两端铰支的圆截面压杆,若λp=100,则压杆的长度与横截面直径之比l/d在时,才能应用欧拉公式()。
A.25B.50C.400D.200正确答案:A6、若两根细长压杆的惯性半径i相等,当()相同时,它们的柔度相等。
①杆长;②约束类型;③弹性模量;④外部载荷A.①+②B.①+②+③C.①+②+④D.①+②+③+④正确答案:A7、a、b两根都是大柔度杆,材料、杆长和横截面形状大小都相同,杆端约束不同。
其中a为两端铰支,b为一端固定,一端自由。
那么两杆临界力之比应为()。
A.4B.1/4C.2D.1/2正确答案:A8、提高水稻抗倒伏性能的可能措施包括()。
A.选用茎秆强壮品种B.选用节间较短的矮秆品种C.使用植物生长调节剂,以调控节间长度与株高等D.以上都是正确答案:D9、圆形压杆和矩形压杆在稳定性校核时有何区别()。
A.圆形压杆不需要考虑失稳方向性,而矩形压杆需要考虑B.圆形压杆需要考虑失稳方向性,而矩形压杆不需要考虑C.两者都不需要考虑D.两者都需要考虑正确答案:A10、压杆合理设计措施包括:①合理选用材料;②合理选择截面;③合理安排压杆约束与杆长()。
《压杆稳定》问答题
压杆稳定【例1】压杆的压力一旦达到临界压力值,试问压杆是否就丧失了承受荷载的能力?解:不是。
压杆的压力达到其临界压力值,压杆开始丧失稳定,将在微弯形态下保持平衡,即丧失了在直线形态下平衡的稳定性。
既能在微弯形态下保持平衡,说明压杆并不是完全丧失了承载能力,只能说压杆丧失了继续增大荷载的能力。
但当压杆的压力达到临界压力后,若稍微增大荷载,压杆的弯曲挠度将趋于无限,而导致压溃,丧失了承载能力。
且在杆系结构中,由于某一压杆达到临界压力,引起该杆弯曲。
若在增大荷载,将引起结构各杆内力的重新分配,从而导致结构的损坏,而丧失其承载能力。
因此,压杆的压力达到临界压力时,是其承受荷载的“极限”状态。
【例2】如何判别压杆在哪个平面内失稳?图示截面形状的压杆,设两端为球铰。
试问,失稳时其截面分别绕哪根轴转动?解:(1)压杆总是在柔度大的纵向平面内失稳。
(2)因两端为球铰,各方向的U=1,由柔度知九=巴i(a) i —i,在任意方向都可能失稳。
xy(b) ,i V i 失稳时截面将绕x 轴转动。
xy(c) i >i ,失稳时截面将绕y 轴转动。
xy【例3】细长压杆的材料宜用高强度钢还是普通钢?为什么?解:对于细长压杆,其临界压力与材料的强度指标无关,而与材料的弹性模量E 有关。
由于高强度钢与普通钢的E 大致相等,而其价格贵于普通钢,故细长压杆的材料宜用普通钢。
【例4】图示均为圆形截面的细长压杆(入三入p ),已知各杆所用的材料及直径d 均相同,长度如图。
当压力P 从零开始以相同的速率增加时,问哪个杆首先失稳?yx解:方法一:用公式P^n z EI/Wl)2计算,由于分子相同,则M越大,P]越小,杆件越先失稳。
方法二:运用公式PA=n2EA/入2,分子相同,而入=ul/i,i相同,故卩l越大,入ijij越大,p越小,杆件越先失稳。
ij综上可知,杆件是否先失稳,取决于卩1。
图中,杆A:ul=2Xa=2a杆B:ul=lX1.3a=1.3a杆C:ul=0.7X1.6a=1.12a由(ul)>(ul)>(ul)可知,杆A首先失稳。
刘鸿文《材料力学》(第5版)笔记和课后习题(含考研真题)详解-压杆稳定(圣才出品)
支 承
两端铰接 情 况 失 稳 时 挠 曲 线 的 形 状 欧 拉 公 式
表 9-2
一端固定一段 铰接
两端固定
一 端 固 定 一 端 两端固定但可沿
自由
横截面相对移动
3 / 44
圣才电子书 十万种考研考证电子书、题库视频学习平台
(2)柔度或长细比 临界应力可表示为
4 / 44
圣才电子书 十万种考研考证电子书、题库视频学习平台
式中,λ 为柔度或长细比,
,集中反应了压杆的长度、约束条件、截面尺寸
和形状等因素对临界应力 σcr 的影响。λ 越大,相应的 σcr 越小,压杆越容易失稳。 注意:若压杆在不同平面内失稳时的支承约束条件不同,应分别计算在各平面内失稳时
杆端在各个方向的约束情况相同(如球形铰等),则 I 应取最小的形心主惯性矩;杆端
在各个方向的约束情况不同(如柱形铰),应分别计算杆在不同方向失稳时的临界压力,I 为
其相应中性轴的惯性矩。
三、欧拉公式的适用范围及临界应力总图 1.相关概念 (1)临界应力:与临界压力 Fcr 对应的应力,用 σcr 表示,即
2.提高压杆稳定性的措施
影响压杆稳定的因素包括压杆的截面形状、长度和约束条件、材料的性质等。因而,提
6 / 44
圣才电子书 十万种考研考证电子书、题库视频学习平台
高压杆稳定性的措施主要包括以下三个方面: (1)选择合理的截面形状 截面的惯性矩 I 越大,或惯性半径 i 越大,稳定性越好。 ①在截面积相等的情况下,尽可能将材料放在离截面形心较远处,使 I 或 i 较大,如图
应力
达到限值
小于限值
压杆稳定答案
一、概念题
1.B; 2.A; 3.D; 4.D;5.C;6.B;7.D;8.A;9.A;10.C 11.(a) Fcr1 EI / l , (b) Fcr 2 EI /(l / 2) Fcr1 , 大 8 倍.
2 2 2 2
12.(1)考虑,杆横贯截面面积减少,正应力增加.(2)不考虑, 截面局部削弱不会影响整杆的 稳定.
2 2
2
cos(arcctg (ctg 2 )))
8.所示结构中,AB 梁由两根相同的矩形截面梁组成, l =10cm, h =2cm, b =0.5cm,BC 杆也是矩形截面,l =50cm, h 3 cm, b
1 3
cm,是细长压杆,垂直于 AB 梁,梁与杆
[ ] 78 MPa。 规定稳定安全系数 nst 1.8 , 均为 Q23s 钢, E=206GPa, 许用应力 [ ] 157 MPa,
4 4 2 bh 3.33 107 (m3 ) Wy 6
max
M max 168.9 MPa> [ ] 2Wy
3)校核 AB 杆的剪应力强度 当 P 移至 AB 梁的两端点时,该简支梁有最大剪力,见图 13-2(c) 。
FQ max P 4.5kN
3 FQ max 33.75MPa [ ] 2 2bh 总之,由于 AB 梁抗弯强度不够,此结构不安全。
荷载 P 4.5kN 在梁上平ห้องสมุดไป่ตู้,试校核此结构是否安全。
图 13-2 解:1)校核 BC 杆的稳定性 易知 FP 在横梁上移至 B 处时,压杆承受最大压力, FN max P 在 xz 平面内,BC 杆两端铰支, 1 1
iy
Iy A
孙训方材料力学09压杆稳定
B
11
材 料 力 学 x
Fcr
Fcr M(x)=Fcr w m w B m x y
l m
m x
B y
m-m 截面的弯矩
M ( x) Fcr w
材 料 力 学
杆的挠曲线近似微分方程
EIw M ( x) Fcr w (a)
''
Fcr M(x)=Fcr w m x m
令 得
Fcr k EI
材 料 力 学
(2)横截面对某一形心主惯性轴的惯性矩 I
若杆端在各个方向的约束情况相同(如球形铰等),则 I 应取最小的形心主惯性矩. 取 Iy 、Iz 中小的一个计算临界力。 若杆端在各个方向的约束情况不同(如柱 形铰),应分别计算杆在不同方向失稳时的临 x y z
界压力。 I 为其相应中性轴的惯性矩。
π 2 EI Fcr ( l )2
l—相当长度
—长度因数
材 料 力 学
π 2 EI Fcr 2 ( l )
讨 论 (1)相当长度 l 的物理意义 压杆失稳时,挠曲线上两拐点间的长度就是压杆的相当 长度 l 。
l是各种支承条件下,细长压杆失稳时,挠曲线中相当
于半波正弦曲线的一段长度。
材 料 力 学
解:
E p π 100 σp
压杆 = 1
i
I A
π( D d ) 1 2 2 64 D d π( D 2 d 2 ) 4 4
4 4
lmin
l
i
4l D2 d 2
2
p 100
2
100 0.05 0.04 1.6m 41
y yl
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章 压杆稳定
1、图示铰接杆系ABC 由两根具有相同截面和同样材料的细长杆所组成。
若由于杆件在平面ABC 内失稳而引起破坏,试确定荷载F 为最大时的θ角(假设2
0π
θ≤
≤
解:由平衡条件
0=∑y F ,θcos F F NAB = 0=∑x F ,θsin F F NBC =
使F 为最大值条件使杆AB 、BC 的内力同
时达到各自的临界荷载。
设AC 间的距离为l ,AB 、BC 杆的临界荷载分别为
()
θθππcos sin 222
2F l EI l EI
F AB NAB ===
()
θθππsin cos 2222F l EI l EI
F BC NBC ===
由以上两式得 解得 4/πθ=。
2、一承受轴向压力的两端铰支的空心圆管,外径mm D 52=,内径
mm d 44=,mm l 950=。
材料的MPa b 1600=σ,
MPa p 1200=σ,GPa E 210=。
试求此杆的临界压力和临界应力。
解: 6.41101200102106
9
221=⨯⨯⨯==πσπλp E 支承可视为两端铰支,故 1=μ, 回转半径为
mm mm d D i 017.04/44524/2222=+=+=
斜撑杆得柔度
9.55017.0/95.01=⨯==l μλ
因1λλ>,为大柔度杆,故可用欧拉公式计算临界荷载,临界压力为cr F 和临界应力cr σ分别为:
()()
()KN N l EI F cr 40295.01044.0052.064
102102
4
4
922
2
=⨯-⨯
⨯⨯=
=π
πμπ
MPa A
F cr
cr 666==
σ 3、蒸汽机车的连杆如图所示,截面为工字型,材料为Q235钢,连杆所受最大轴向压力为kN 465。
连杆在xy 平面内发生弯曲,两端可视为铰支,在xz 平面内发生弯曲,两端可视为固定。
试确定工作安全系数。
解 连杆横截面的几何特性:
A =[14×9.6-(9.6-1.4)×8.5]cm 2=64.7cm 2 I y =407 cm 4 I z =1780 cm 4
cm
A I i cm A I i z z y y 24.57.64178051.27.64407======
Q235钢的
1
.5712
.12403043
.991020010200269221=-=-==⨯⨯⨯==b a E s p σλπσπλ
在xy 平面内弯曲时连杆的柔度
12.590524.0/1.31λλ<=⨯==z
z i ul
在xz 平面内弯曲时连杆的柔度
18.610251.0/1.35.0λλ<=⨯==y
y i ul
因2121 ,λλλλλλ>>>>z y
所以在计算两个方向上产生弯曲时的临界荷载,都要用经验公式,并且只须计算在柔度较大的方向上产生弯曲时的临界荷载
()()[]
kN N A b a F y cr 1520107.64108.6112.130446=⨯⨯⨯⨯-=-=-λ
工作安全系数
27.3465/1520/===F F n cr
4、油缸柱塞如图所示。
已知油压
MPa p 32=,柱塞直径
mm d 120=。
伸入油缸的最大行程mm L 1600=,材料为Q235钢,
GPa E 210=,两端可视为固定。
试确定工作安全系数。
解:柱塞受到得压力
()
kN N pA F 3624/12.0103226=⨯⨯⨯==π
由材料的力学性质决定的
8610280102106
9
221=⨯⨯⨯==πσπλp E
柱塞可以简化为一端固定,另一端自由的压杆,所以取长度系数2=μ,柱塞的柔度
1074
/12.06.12=⨯==
i ul λ 因1λλ>,故可用欧拉公式计算临界荷载,即
()()KN N l EI F cr 206064
6.12124.0102102
4
9222=⨯⨯⨯⨯⨯⨯==ππμπ 柱塞的工作安全因数
69.5362/2060/===F F n cr
5、由三根钢管构成的支架如图所示。
钢管的外径为mm 30,内径为
mm 22,长度为m 5.2,GPa E 210=。
在支架的顶点铰接,试求临
界压力。
解:结构的许可载荷是由三根杆的临界载荷确定的,由于结构对称,载荷也对称,所以三根杆的轴力相等。