MATLAB中FFT的使用方法(频谱分析)

合集下载

matlab的fft函数用法

matlab的fft函数用法

matlab的fft函数用法MATLAB中的fft函数用于计算快速傅里叶变换(FFT)。

FFT是一种将信号从时域转换为频域的方法,常用于信号处理、图像处理等领域。

在本文中,我将一步一步回答有关MATLAB中fft函数的使用方法。

一、基本语法在MATLAB中,fft函数的基本语法如下:Y = fft(X)其中,X是要进行FFT的向量或矩阵,输出结果Y是X的离散傅里叶变换的向量或矩阵。

二、一维FFT首先我们来看一维FFT的使用方法。

假设有一个长度为N的一维向量x,我们将对其进行FFT变换并得到变换结果y。

1. 创建输入向量首先,我们需要创建一个长度为N的向量x,作为FFT的输入。

可以通过以下代码实现:N = 1024; % 向量长度x = randn(N, 1); % 创建长度为N的随机向量2. 进行FFT变换接下来,我们使用fft函数对向量x进行FFT变换,代码如下:y = fft(x);3. 可视化结果为了更好地理解和分析FFT结果,通常会对结果进行可视化。

我们可以使用MATLAB的绘图函数来绘制FFT结果的幅度和相位谱。

例如,可以使用如下代码绘制幅度谱:f = (0:N-1)./N; % 频率轴amp = abs(y); % 幅度谱figure;plot(f, amp);xlabel('Frequency (Hz)');ylabel('Amplitude');title('Amplitude Spectrum');同样,可以使用如下代码绘制相位谱:phase = angle(y); % 相位谱figure;plot(f, phase);xlabel('Frequency (Hz)');ylabel('Phase');title('Phase Spectrum');三、二维FFT除了一维FFT,MATLAB中的fft函数还支持二维FFT。

利用Matlab进行频谱分析的方法

利用Matlab进行频谱分析的方法

利用Matlab进行频谱分析的方法引言频谱分析是信号处理和电子工程领域中一项重要的技术,用于分析信号在频率域上的特征和频率成分。

在实际应用中,频谱分析广泛应用于音频处理、图像处理、通信系统等领域。

Matlab是一种强大的工具,可以提供许多功能用于频谱分析。

本文将介绍利用Matlab进行频谱分析的方法和一些常用的工具。

一、Matlab中的FFT函数Matlab中的FFT(快速傅里叶变换)函数是一种常用的频谱分析工具。

通过使用FFT函数,我们可以将时域信号转换为频域信号,并得到信号的频谱特征。

FFT 函数的使用方法如下:```Y = fft(X);```其中,X是输入信号,Y是输出的频域信号。

通过该函数,我们可以得到输入信号的幅度谱和相位谱。

二、频谱图的绘制在进行频谱分析时,频谱图是一种直观和易于理解的展示形式。

Matlab中可以使用plot函数绘制频谱图。

首先,我们需要获取频域信号的幅度谱。

然后,使用plot函数将频率与幅度谱进行绘制。

下面是一个示例:```X = 1:1000; % 时间序列Y = sin(2*pi*10*X) + sin(2*pi*50*X); % 输入信号Fs = 1000; % 采样率N = length(Y); % 信号长度Y_FFT = abs(fft(Y)); % 计算频域信号的幅度谱f = (0:N-1)*(Fs/N); % 频率坐标plot(f, Y_FFT);```通过上述代码,我们可以得到输入信号在频谱上的特征,并将其可视化为频谱图。

三、频谱分析的应用举例频谱分析可以应用于许多实际问题中。

下面将介绍两个常见的应用举例:语音信号分析和图像处理。

1. 语音信号分析语音信号分析是频谱分析的一个重要应用领域。

通过对语音信号进行频谱分析,我们可以探索声波的频率特性和信号的频率成分。

在Matlab中,可以使用wavread 函数读取音频文件,并进行频谱分析。

下面是一个示例:```[waveform, Fs] = wavread('speech.wav'); % 读取音频文件N = length(waveform); % 信号长度waveform_FFT = abs(fft(waveform)); % 计算频域信号的幅度谱f = (0:N-1)*(Fs/N); % 频率坐标plot(f, waveform_FFT);```通过上述代码,我们可以获取语音信号的频谱特征,并将其可视化为频谱图。

实验三用FFT对信号进行频谱分析和MATLAB程序

实验三用FFT对信号进行频谱分析和MATLAB程序

实验三用FFT对信号进行频谱分析和MATLAB程序实验三中使用FFT对信号进行频谱分析的目的是通过将时域信号转换为频域信号,来获取信号的频谱信息。

MATLAB提供了方便易用的函数来实现FFT。

首先,我们需要了解FFT的原理。

FFT(快速傅里叶变换)是一种快速计算离散傅里叶变换(DFT)的算法,用于将离散的时间域信号转换为连续的频域信号。

FFT算法的主要思想是将问题划分为多个规模较小的子问题,并利用DFT的对称性质进行递归计算。

FFT算法能够帮助我们高效地进行频谱分析。

下面是一个使用MATLAB进行频谱分析的示例程序:```matlab%生成一个10秒钟的正弦波信号,频率为1Hz,采样率为100Hzfs = 100; % 采样率t = 0:1/fs:10-1/fs; % 时间范围f=1;%正弦波频率x = sin(2*pi*f*t);%进行FFT计算N = length(x); % 信号长度X = fft(x); % FFT计算magX = abs(X)/N; % 幅值谱frequencies = (0:N-1)*(fs/N); % 频率范围%绘制频谱图figure;plot(frequencies, magX);xlabel('频率(Hz)');ylabel('振幅');title('信号频谱');```上述代码生成了一个10秒钟的正弦波信号,频率为1 Hz,采样率为100 Hz。

通过调用MATLAB的fft函数计算信号的FFT,然后计算每个频率分量的幅值谱,并绘制出信号频谱图。

在频谱图中,横轴表示频率,纵轴表示振幅。

该实验需要注意以下几点:1.信号的采样率要与信号中最高频率成一定比例,以避免采样率不足导致的伪频谱。

2.FFT计算结果是一个复数数组,我们一般只关注其幅值谱。

3.频率范围是0到采样率之间的频率。

实验三的报告可以包含以下内容:1.实验目的和背景介绍。

matlab fft计算空间频谱例子

matlab fft计算空间频谱例子

一、概述在信号处理和图像处理领域,计算空间频谱是一项非常重要的任务。

通过计算空间频谱,我们可以了解信号或图像在不同频率下的分布情况,从而对其进行分析和处理。

而在Matlab中,fft(快速傅里叶变换)则是计算空间频谱的常用工具之一。

本文将以一个实际例子来介绍如何使用Matlab进行fft计算空间频谱。

二、实例背景假设我们有一个一维的音频信号,我们希望了解该信号在频域上的分布情况。

通过计算其空间频谱,我们可以观察到该信号在不同频率下的能量分布情况,并且进一步分析和处理该信号。

三、Matlab fft计算空间频谱步骤1.准备数据我们需要准备待分析的音频信号数据。

在Matlab中,我们可以使用以下命令生成一个包含随机信号的向量:```Matlabx = randn(1,1024);```这里生成了一个包含1024个随机数的向量x,代表了我们所要分析的音频信号。

2.进行fft计算接下来,我们可以使用Matlab中的fft函数对信号进行fft计算,得到其频谱。

具体的计算步骤如下:```MatlabN = length(x); 获取信号长度Y = fft(x); 对信号进行fft计算P2 = abs(Y/N); 计算双边频谱P1 = P2(1:N/2+1); 获取单边频谱P1(2:end-1) = 2*P1(2:end-1); 根据频谱长度修正幅值f = xxx*(0:(N/2))/N; 生成频率向量```在这段代码中,我们首先获取了信号长度N,然后对信号进行fft计算得到频谱Y。

我们计算了双边频谱P2,并根据频谱长度修正了其幅值。

我们生成了频率向量f,用于后续频谱可视化。

3.频谱可视化我们可以使用Matlab中的plot函数对频谱进行可视化展示,从而更直观地了解信号在频域上的分布情况。

```Matlabplot(f,P1)title('单边幅频特性')xlabel('频率(Hz)')ylabel('|P1(f)|')```通过以上步骤,我们就可以得到该音频信号在频域上的分布情况,并且可以通过频谱图来进一步分析和处理该信号。

MATLAB信号频谱分析FFT详解

MATLAB信号频谱分析FFT详解

MATLAB信号频谱分析FFT详解FFT(快速傅里叶变换)是一种常用的信号频谱分析方法,它可以将信号从时域转换到频域,以便更好地分析信号中不同频率成分的特征。

在MATLAB中,使用fft函数可以方便地进行信号频谱分析。

首先,我们先介绍一下傅里叶变换的基本概念。

傅里叶变换是一种将信号分解成不同频率成分的技术。

对于任意一个周期信号x(t),其傅里叶变换X(f)可以表示为:X(f) = ∫(x(t)e^(-j2πft))dt其中,X(f)表示信号在频率域上的幅度和相位信息,f表示频率。

傅里叶变换可以将信号从时域转换到频域,以便更好地分析信号的频率特征。

而FFT(快速傅里叶变换)是一种计算傅里叶变换的高效算法,它通过分治法将傅里叶变换的计算复杂度从O(N^2)降低到O(NlogN),提高了计算效率。

在MATLAB中,fft函数可以方便地计算信号的傅里叶变换。

使用FFT进行信号频谱分析的步骤如下:1. 构造信号:首先,我们需要构造一个信号用于分析。

可以使用MATLAB中的一些函数生成各种信号,比如sin、cos、square等。

2. 采样信号:信号通常是连续的,为了进行FFT分析,我们需要将信号离散化,即进行采样。

使用MATLAB中的linspace函数可以生成一定长度的离散信号。

3. 计算FFT:使用MATLAB中的fft函数可以方便地计算信号的FFT。

fft函数的输入参数是离散信号的向量,返回结果是信号在频率域上的复数值。

4. 频率换算:信号在频域上的复数值其实是以采样频率为单位的。

为了更好地观察频率成分,我们通常将其转换为以Hz为单位的频率。

可以使用MATLAB中的linspace函数生成一个对应频率的向量。

5. 幅度谱计算:频域上的复数值可以由实部和虚部表示,我们一般更关注其幅度,即信号的相对强度。

可以使用abs函数计算出频域上的幅度谱。

6. 相位谱计算:除了幅度谱,信号在频域上的相位信息也是重要的。

用FFT对信号作频谱分析Matlab程序

用FFT对信号作频谱分析Matlab程序

对以下序列进行FFT 分析x 1(n)=R 4(n)x 2(n)=x 3(n)=x1n=[ones(1,4)]; %产生R4(n)序列向量X1k8=fft(x1n,8); %计算x1n 的8点DFTX1k16=fft(x1n,16); %计算x1n 的16点DFT%以下绘制幅频特性曲线N=8;f=2/N*(0:N-1); (不懂)figure(1);subplot(1,2,1);stem(f,abs(X1k8),'r','、'); %绘制8点DFT 的幅频特性图,abs 求得Fourier 变换后的振幅title('(1a) 8点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度');N=16;f=2/N*(0:N-1);subplot(1,2,2);stem(f,abs(X1k16),'、'); %绘制8点DFT 的幅频特性图title('(1b) 16点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度');%x2n 与 x3nM=8;xa=1:(M/2); xb=(M/2):-1:1; %从M/2到1每次递减1x2n=[xa,xb]; %产生长度为8的三角波序列x2(n)x3n=[xb,xa];X2k8=fft(x2n,8);X2k16=fft(x2n,16);X3k8=fft(x3n,8);X3k16=fft(x3n,16);figure(2);N=8;f=2/N*(0:N-1);subplot(2,2,1);stem(f,abs(X2k8),'r','、'); %绘制8点DFT 的幅频特性图n+1 0≤n ≤3 8-n 4≤n ≤7 0 其它n 4-n 0≤n ≤3 n-3 4≤n ≤70 其它ntitle('(2a) 8点DFT[x_2(n)]');xlabel('ω/π');ylabel('幅度'); subplot(2,2,3);stem(f,abs(X3k8),'r','、'); %绘制8点DFT的幅频特性图title('(3a) 8点DFT[x_3(n)]');xlabel('ω/π');ylabel('幅度');N=16;f=2/N*(0:N-1);subplot(2,2,2);stem(f,abs(X2k16),'、'); %绘制8点DFT的幅频特性图title('(2b) 16点DFT[x_2(n)]');xlabel('ω/π');ylabel('幅度'); subplot(2,2,4);stem(f,abs(X3k16),'、'); %绘制8点DFT的幅频特性图title('(3b) 16点DFT[x_3(n)]');xlabel('ω/π');ylabel('幅度');%x4n 与 x5nN=8;n=0:N-1;x4n=cos(pi*n/4);x5n=cos(pi*n/4)+cos(pi*n/8);X4k8=fft(x4n,8);X4k16=fft(x4n,16);X5k8=fft(x5n,8);X5k16=fft(x5n,16);figure(3);N=8;f=2/N*(0:N-1);subplot(2,2,1);stem(f,abs(X4k8),'r','、'); %绘制8点DFT的幅频特性图title('(4a) 8点DFT[x_4(n)]');xlabel('ω/π');ylabel('幅度'); subplot(2,2,3);stem(f,abs(X5k8),'r','、'); %绘制8点DFT的幅频特性图title('(5a) 8点DFT[x_5(n)]');xlabel('ω/π');ylabel('幅度');N=16;f=2/N*(0:N-1);subplot(2,2,2);stem(f,abs(X4k16),'、'); %绘制8点DFT的幅频特性图title('(4b) 16点DFT[x_4(n)]');xlabel('ω/π');ylabel('幅度'); subplot(2,2,4);stem(f,abs(X5k16),'、'); %绘制8点DFT的幅频特性图title('(5b) 16点DFT[x_5(n)]');xlabel('ω/π');ylabel('幅度');%x8nFs=64; T=1/Fs;N=16;n=0:N-1; %对于N=16的情况nT = n*T;x8n=cos(8*pi*nT)+cos(16*pi*nT)+cos(20*pi*nT)X8k16=fft(x8n,16);N=16;f=2/N*(0:N-1);figure(4);subplot(2,2,1);stem(f,abs(X8k16),'、'); %绘制8点DFT的幅频特性图title('(6a) 16点DFT[x_8(n)]');xlabel('ω/π');ylabel('幅度');N=32;n=0:N-1; %对于N=16的情况nT = n*T;x8n=cos(8*pi*nT)+cos(16*pi*nT)+cos(20*pi*nT)X8k32=fft(x8n,32);N=32;f=2/N*(0:N-1);subplot(2,2,2);stem(f,abs(X8k32),'、'); %绘制8点DFT的幅频特性图title('(6b) 32点DFT[x_8(n)]');xlabel('ω/π');ylabel('幅度'); N=64;n=0:N-1; %对于N=16的情况nT = n*T;x8n=cos(8*pi*nT)+cos(16*pi*nT)+cos(20*pi*nT)X8k64=fft(x8n,64);N=64;f=2/N*(0:N-1);subplot(2,2,3);stem(f,abs(X8k64),'、'); %绘制8点DFT的幅频特性图title('(6c) 64点DFT[x_8(n)]');xlabel('ω/π');ylabel('幅度');。

matlab中fft的用法

matlab中fft的用法

matlab中fft的用法
在MATLAB中,FFT(Fast Fourier Transform)是一种常用的快速傅里叶变换算法,用于计算离散时间信号的频谱。

FFT是一种高效算法,可以快速计算信号在时域和频域之间的转换。

下面是在MATLAB中使用FFT的一些基本步骤:
1. 定义信号:首先需要定义一个离散时间信号。

可以使用向量或矩阵来表示信号。

2. 计算FFT:使用fft函数来计算信号的FFT。

例如,可以输入以下命令来计算信号x的FFT:
```matlab
y = fft(x);
```
3. 显示频谱:使用plot函数来显示FFT计算得到的频谱。

例如,可以输入以下命令来显示信号x的频谱:
```matlab
plot(abs(y));
```
4. 进行傅里叶变换:如果需要对信号进行傅里叶变换,可以使用fft2函数来计算二维FFT。

例如,可以输入以下命令来计算图像x的傅里叶变换:
```matlab
Y = fft2(x);
```
5. 进行逆傅里叶变换:如果需要对信号进行逆傅里叶变换,可以使用ifft函数来计算。

例如,可以输入以下命令来对信号x进行逆傅里叶变换:
```matlab
x_inv = ifft(Y);
```
以上是在MATLAB中使用FFT的基本步骤。

需要注意的是,在进行FFT计算时,需要将信号转换为复数形式。

此外,在进行傅里叶变换时,需要将信号转换为二维形式。

应用MATLAB对信号进行频谱分析

应用MATLAB对信号进行频谱分析

应用MATLAB对信号进行频谱分析信号的频谱分析是一种重要的信号处理方法,可以帮助我们深入了解信号的频域特性。

MATLAB作为一种强大的科学计算软件,提供了丰富的工具和函数来进行频谱分析。

在MATLAB中,频谱分析可以使用多种方法来实现,包括离散傅立叶变换(DFT)、快速傅立叶变换(FFT)等。

下面将介绍几种常用的频谱分析方法及其在MATLAB中的应用。

1.离散傅立叶变换(DFT)离散傅立叶变换是将信号从时域转换到频域的一种方法。

在MATLAB 中,可以使用fft函数进行离散傅立叶变换。

例如,假设我们有一个长度为N的信号x,可以通过以下代码进行频谱分析:```matlabN = length(x);X = fft(x);fs = 1000; % 采样频率f = fs*(0:(N/2))/N;P = abs(X/N).^2;plot(f,P(1:N/2+1))```以上代码将信号x进行离散傅立叶变换,并计算频谱的幅度谱(P),然后根据采样频率和信号长度计算频率轴。

最后使用plot函数绘制频谱图。

2.快速傅立叶变换(FFT)快速傅立叶变换是一种高效的离散傅立叶变换算法,可以在较短的时间内计算出频谱。

在MATLAB中,fft函数实际上就是使用了快速傅立叶变换算法。

以下是使用FFT进行频谱分析的示例代码:```matlabN = length(x);X = fft(x);fs = 1000; % 采样频率f = fs*(0:(N/2))/N;P = abs(X/N).^2;plot(f,P(1:N/2+1))```3.窗函数窗函数可以改善频谱分析的效果,常见的窗函数有矩形窗、汉宁窗、汉明窗等。

在MATLAB中,可以使用window函数生成窗函数,然后将窗函数和信号进行乘积运算,再进行频谱分析。

以下是使用汉宁窗进行频谱分析的示例代码:```matlabN = length(x);window = hann(N);xw = x.*window';X = fft(xw);fs = 1000; % 采样频率f = fs*(0:(N/2))/N;P = abs(X/N).^2;plot(f,P(1:N/2+1))```以上代码通过生成一个汉宁窗,并将窗函数与信号进行乘积运算得到xw,然后将xw进行频谱分析。

MATLAB 频谱分析(FFT FT定义法)

MATLAB 频谱分析(FFT FT定义法)
X1=x1(:,1);%双声道降维
X2=zeros(N/16,1);%只采样64点
for n=1:N/16
for m=1:length(X1)/2 %数据量太大显示太慢只取一半作分析
X2(n,1)=X2(n,1)+X1(m,1)*exp(-j*n*m);%将w与n同步以便于计算存储,w,n关系也可以变
subplot(244);
plot(f(1:N/2),ph(1:N/2));
xlabel('频率/Hz'),ylabel('相角'),title('录音信号相位谱');
%%%%%%%%%%%%%%%%%%录音信号FFT后频谱
subplot(245);
plot(y1)%采样后信号的FFT频谱图
title('录音信号FFT频谱图')
%%%%%%%%%%%%%%%%%%录音信号FFT后幅度
subplot(246);
plot(f(1,N/2)abs(y1(N/2)))%采样后信号的FFT幅度谱,不指定横坐标无意义请注意
title('录音信号FFT幅度谱')
%%%%%%%%%%%%%%%%%%%录音信号随频率变化的相位
ph=2*angle(y1(1:N/2));
ph=ph*180/pi;
subplot(247);
plot(f(1:N/2),ph(1:N/2));
xlabel('频率/Hz'),ylabel('相角'),title('录音信号FFT相位谱');
%%%%%%%%%%%%%%%%%%%由定义得出的FT

如何在Matlab中进行信号频谱分析

如何在Matlab中进行信号频谱分析

如何在Matlab中进行信号频谱分析一、引言信号频谱分析是一种重要的信号处理技术,它可以帮助我们理解信号的频率特性和频谱分布。

在Matlab中,有多种方法可以用来进行信号频谱分析,本文将介绍其中几种常用的方法。

二、时域分析1. 快速傅里叶变换(FFT)快速傅里叶变换(FFT)是最常用的频谱分析工具之一。

在Matlab中,可以使用fft函数对信号进行FFT分析。

首先,将信号数据传入fft函数,然后对结果进行处理,得到信号的频谱图。

通过分析频谱图,我们可以了解信号的频率成分和频谱分布。

2. 窗函数窗函数可以帮助我们减小信号分析过程中的泄漏效应。

在Matlab中,可以使用hamming、hanning等函数生成窗函数。

通过将窗函数乘以信号数据,可以减小频谱中的泄漏效应,得到更准确的频谱图。

三、频域分析1. 功率谱密度(PSD)估计功率谱密度(PSD)估计是一种常见的频域分析方法,用来估计信号在不同频率上的功率分布。

在Matlab中,可以使用pwelch函数进行PSD估计。

pwelch函数需要输入信号数据和采样频率,然后输出信号的功率谱密度图。

2. 自相关函数自相关函数可以帮助我们了解信号的周期性。

在Matlab中,可以使用xcorr函数计算信号的自相关函数。

xcorr函数需要输入信号数据,然后输出信号的自相关函数图。

四、频谱图绘制与分析在进行信号频谱分析后,我们需要将分析结果进行可视化。

在Matlab中,可以使用plot函数绘制频谱图。

通过观察频谱图,我们可以进一步分析信号的频率成分和频谱特性。

可以注意以下几点:1. 频谱图的横轴表示频率,纵轴表示幅度。

通过观察频谱图的峰值位置和幅度大小,可以了解信号中频率成分的分布情况。

2. 根据信号的特点,选择合适的分析方法和参数。

不同的信号可能需要采用不同的分析方法和参数,才能得到准确的频谱分布。

五、实例分析为了更好地理解如何在Matlab中进行信号频谱分析,以下是一个简单的实例分析。

MATLAB关于FFT频谱分析的程序

MATLAB关于FFT频谱分析的程序

MATLAB关于FFT频谱分析的程序```Matlab%定义信号参数fs = 1000; % 采样频率t = 0:1/fs:1-1/fs; % 时间向量f1=10;%第一个频率成分f2=100;%第二个频率成分x = sin(2*pi*f1*t) + sin(2*pi*f2*t); % 信号%计算信号的FFTN = length(x); % 信号长度X = fft(x); % FFT变换X_mag = abs(X(1:N/2))/N; % 取FFT结果的一半并除以信号长度得到幅度谱f = (0:N/2-1)*fs/N; % 计算频率向量%绘制频谱figure;plot(f, X_mag);xlabel('Frequency (Hz)');ylabel('Magnitude');title('FFT Spectrum Analysis');grid on;```在上述程序中,我们首先定义了信号的参数,例如采样频率(fs)、时间向量(t)和信号的频率成分(f1和f2)。

然后,我们使用这些参数生成信号(x),该信号是由两个不同频率的正弦波叠加而成。

接下来,我们计算信号的FFT(通过调用fft函数),并使用abs函数取FFT结果的绝对值。

我们还将FFT结果的一半(因为FFT结果是对称的,前一半包含了频谱信息)除以信号长度,得到幅度谱(X_mag)。

频率向量(f)通过简单计算得到。

使用上述程序,我们可以计算并绘制任意信号的频谱。

只需修改信号的参数、生成信号的代码和绘图设置,就可以适应不同的应用需求。

除了上述示例程序,MATLAB还提供了许多其他函数和工具,用于更详细的频谱分析,如频谱图的平滑、窗函数的应用、频谱峰值的查找等。

读者可以根据自己的需求进一步研究和探索MATLAB的频谱分析功能。

用MATLAB进行FFT频谱分析

用MATLAB进行FFT频谱分析

用MATLAB进行FFT频谱分析假设一信号:()()292.7/2cos1.0996.2/2sin1.06.0+++=ttRππ画出其频谱图。

分析:首先,连续周期信号截断对频谱的影响。

DFT变换频谱泄漏的根本原因是信号的截断。

即时域加窗,对应为频域卷积,因此,窗函数的主瓣宽度等就会影响到频谱。

实验表明,连续周期信号截断时持续时间与信号周期呈整数倍关系时,利用DFT变换可以得到精确的模拟信号频谱。

举一个简单的例子:()ππ2.0100cos+=tY其周期为。

截断时不同的持续时间影响如图一.1:(对应程序)140.0160.0180.02截断时,时间间期为周期整数倍,频谱图0.0250.0320406080100截断时,时间间期不为周期整数倍,频谱图图错误!文档中没有指定样式的文字。

.1其次,采样频率的确定。

根据Shannon 采样定理,采样带限信号采样频率为截止频率的两倍以上,给定信号的采样频率应>1/,取16。

再次,DFT 算法包括时域采样和频域采样两步,频域采样长度M 和时域采样长度N 的关系要符合M ≧N 时,从频谱X(k)才可完全重建原信号。

实验中信号R 经采样后的离散信号不是周期信号,但是它又是一个无限长的信号,因此处理时时域窗函数尽量取得宽一些已接近实际信号。

实验结果如图一.2:其中,0点位置的冲激项为直流分量造成(对应程序为)0204060801001201401601802000.40.50.60.70.800.050.10.150.20.250.30.350.40.450.550100150图 错误!文档中没有指定样式的文字。

.2♣ARMA (Auto Recursive Moving Average )模型:将平稳随机信号x(n)看作是零均值,方差为σu 2的白噪声u(n)经过线性非移变系统H(z)后的输出,模型的传递函数为()()()∑∑=-=-+==Pk kk Qr r rza zb z A z B z H 111用差分方程表示为()()()∑∑==-+--=Qr r P k k r n u b k n x a n x 01AR (Auto Recursive )自回归模型,即ARMA 模型中系数b 只有在r=0的情况下为1,其余都是零,获得一个全极点模型:()()()∑=-+==Pk kk za z A z B z H 111差分方程表示为:()()()n u k n x a n x Pk k +--=∑=1AR 模型的功率谱估计为:()()()Ω-ΩΩ=j j uj x e A e A eS 12σ程序:%%------------------------------------------------------------------------%%功能:利用MATLAB 的FFT 函数做双正弦信号频谱分析 %%------------------------------------------------------------------------ fs=16; t=0:1/fs:200;x6=+sin(2*pi*t/*+cos(2*pi*t/+2)*;subplot(2,1,1);plot(t,x6);N=length(t);subplot(212);plot((-N/2:N/2-1)*fs/N,abs(fftshift(fft(x6,N)))) %绘制信号的频谱,横轴对应实际频率axis([0 0 160]);例子:%%------------------------------------------------------------------------%%功能:连续周期信号截断对频谱的影响%%------------------------------------------------------------------------fs=8000;n1=;n=0:1/fs:n1;n=n(1,1:end-1);N=length(n);y=cos(100*pi*n+*pi);subplot(2,2,1);plot(n,y);title('函数y=cos(100{\pi}t+{\pi})');subplot(2,2,2);stem((-N/2:N/2-1)*fs/N,abs(fftshift(fft(y,N))));axis([0 1000 0 100]);grid on;title('截断时,时间间期为周期整数倍,频谱图');n1=;n=0:1/fs:n1;n=n(1,1:end-1);N=length(n);y=cos(100*pi*n+*pi);subplot(2,2,3);plot(n,y);title('函数y=cos(100{\pi}t+{\pi})');subplot(2,2,4);stem((-N/2:N/2-1)*fs/N,abs(fftshift(fft(y,N))));axis([0 1000 0 100]);grid on;title('截断时,时间间期不为周期整数倍,频谱图');。

基于MATLAB的信号的频谱分析

基于MATLAB的信号的频谱分析

基于MATLAB的信号的频谱分析信号频谱分析是一种将时域信号转换为频域信号的方法。

频谱分析可以帮助我们了解信号的频率成分、频率特性以及频率分布情况。

MATLAB 是一种强大的信号处理工具,提供了丰富的函数和工具用于频谱分析。

在MATLAB中,频谱分析主要通过使用FFT(快速傅里叶变换)来实现。

FFT可以将时域信号转换为频率域信号,它是一种高效的计算算法,可以快速计算信号的频谱。

首先,我们需要先读取信号数据并将其转换为MATLAB中的矩阵数据形式。

可以使用`load`函数读取信号数据,然后将其存储为一个向量或矩阵。

```matlabdata = load('signal_data.txt');```接下来,我们可以使用`fft`函数对信号进行频谱分析。

`fft`函数会返回一个复数向量,表示信号在频率域的频率分量。

```matlabfs = 1000; % 采样频率N = length(data); % 信号长度frequencies = (0:N-1)*(fs/N); % 计算频率坐标轴spectrum = fft(data); % 进行FFT变换```在以上代码中,我们先计算了信号的采样频率`fs`和信号的长度`N`。

然后使用这些参数计算频率坐标轴`frequencies`。

最后使用`fft`函数对信号进行FFT变换,得到信号的频谱`spectrum`。

为了得到信号的幅度谱图,我们可以使用`abs`函数计算复数向量的绝对值。

```matlabamplitude_spectrum = abs(spectrum);```接下来,我们可以绘制信号的幅度谱图。

使用`plot`函数可以绘制信号在频率域的幅度分布图。

```matlabfigure;plot(frequencies, amplitude_spectrum);xlabel('Frequency (Hz)');ylabel('Amplitude');title('Amplitude Spectrum');```此外,我们还可以绘制信号的功率谱图。

FFT在matlab中的使用方法

FFT在matlab中的使用方法

FFT在matlab中的使用方法一、FFT的物理意义FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域。

有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了。

这就是很多信号分析采用FFT变换的原因。

另外,FFT可以将一个信号的频谱提取出来,这在频谱分析方面也是经常用的。

虽然很多人都知道FFT是什么,可以用来做什么,怎么去做,但是却不知道FFT 之后的结果是什意思、如何决定要使用多少点来做FFT。

一个模拟信号,经过ADC采样之后,就变成了数字信号。

采样定理告诉我们,采样频率要大于信号频率的两倍,这些我就不在此罗嗦了。

采样得到的数字信号,就可以做FFT变换了。

N 个采样点,经过FFT之后,就可以得到N个点的FFT结果。

为了方便进行FFT运算,通常N取2的整数次方。

二、计算序列的FFT变换求序列{2,3,3,2}的DFT变换。

>> N=4;>> n=0:N-1;>> xn=[2 3 3 2];>> xk=fft(xn)运算结果如下:xk =10.0000 + 0.0000i -1.0000 - 1.0000i 0.0000 + 0.0000i -1.0000 + 1.0000i带入公式检验:X [ k ] = ∑ n = 0 N − 1 X [ n ] W N n k X[k]=\sum_{n=0}^{N-1}X[n]W_N^{nk} X[k]=n=0∑N−1X[n]WNnkX [ 0 ] = 2 W 4 0 + 3 W 4 0 + 3 W 4 0 + 2 W 4 0 = 10X[0]=2W_4^{0}+3W_4^{0}+3W_4^{0}+2W_4^{0}=10 X[0]=2W40 +3W40+3W40+2W40=10X [ 1 ] = 2 W 4 0 + 3 W 4 1 + 3 W 4 2 + 2 W 4 3 = − 1 − i X[1]=2W_4^{0}+3W_4^{1}+3W_4^{2}+2W_4^{3}=-1-iX[1]=2W40+3W41+3W42+2W43=−1−iX [ 2 ] = 2 W 4 0 + 3 W 4 2 + 3 W 4 4 + 2 W 4 6 = 0X[2]=2W_4^{0}+3W_4^{2}+3W_4^{4}+2W_4^{6}=0 X[2]=2W40+3W42+3W44+2W46=0X [ 3 ] = 2 W 4 0 + 3 W 4 3 + 3 W 4 6 + 2 W 4 9 = − 1 + i X[3]=2W_4^{0}+3W_4^{3}+3W_4^{6}+2W_4^{9}=-1+iX[3]=2W40+3W43+3W46+2W49=−1+i公式运算结果与matlab仿真结果一致。

MATLAB信号频谱分析FFT详解

MATLAB信号频谱分析FFT详解

MATLAB信号频谱分析FFT详解做OFDM通信少不了频谱分析,基带信号DA后的频谱,以及基带数字上变频后的DA信号都要频谱分析。

我觉得其实做任何工程都是这样,先规定实施方案,然后仿真成功,再实际开发,不过也可以一边开发,一边仿真,开发结果要与仿真预期结果一致。

所以分析与仿真工具MATLAB就很重要了,既可以仿真,又可以通过示波器或其他方法把实际信号采下来分析。

matlab使用FFT函数分析信号频谱一般我使用的FFT分析频谱流程如下:其中有3个注意的点:1.FFT的结果看的是频谱,所以怎么把横坐标的值从原来的FFT点数0:N-1转换为频率值呢?首先要引出频谱分辨率的概念,即分辨两个不同频率信号的最小间隔,FFT结果相邻点间的间隔。

因为N点FFT对应采样率为fs的序列,其频率分辨率为,其中Ts为采样周期,T为整个序列的时间长度。

有关频率分辨率的就不多说了。

所以我们横坐标转换为:f = (0:length(y)-1)*Fs/length(y);2.直接FFT的结果里怎么又多余的信号频率(镜像频率)图2?DFT具有对称性,因为其是周期序列DFS在一个周期内的点,时域序列是有限长实序列,DFT的结果的实部周期偶对称,虚部周期奇对称,也就是模值周期偶对称,相位周期奇对称。

其实从奈奎斯特定律也可以看出,fs>=2f,fs的采样率最多也就显示fs/2的真实频率(感性理解哈哈)。

所以程序处理方式就是周期延拓后取-N/2:N/2-1.用到函数fftshift(),结果如图3.如注释所述:%该变换还会生成尖峰的镜像副本,该副本对应于信号的负频率。

%为了更好地以可视化方式呈现周期性,可以使用 fftshift 函数对变换执行以零为中心的循环平移。

其实这和设计数字滤波器IIR与FIR也一样,采样率为fs的信号,设计的滤波器的通带阻代也限制在0-fs/2内。

3.程序中的信号幅度值都是1,500点的FFT画出来的幅度值怎么变成了250,应该是1吧?是的,应该是1。

matlab fft谱分析实验报告

matlab fft谱分析实验报告

Matlab FFT 谱分析实验报告介绍本实验报告旨在通过使用Matlab进行FFT(快速傅里叶变换)谱分析,详细介绍该方法的步骤和应用。

FFT是一种常用的信号处理技术,可将时域信号转换为频域信号,并提供了对信号频谱特征进行分析的能力。

实验步骤以下是进行FFT谱分析的步骤:1. 导入信号数据首先,我们需要将待分析的信号数据导入Matlab中。

可以使用load函数加载存储信号数据的文件,或者直接在脚本中定义信号数据。

2. 对信号数据进行预处理在进行FFT谱分析之前,通常需要对信号数据进行预处理。

这可能包括去除噪声、滤波等操作。

在本实验中,我们将假设信号数据已经经过了必要的预处理步骤。

3. 执行FFT变换使用fft函数对信号数据执行FFT变换。

该函数将信号从时域转换为频域,并返回频谱数据。

4. 计算频谱幅度通过对FFT变换结果应用幅度函数,可以计算出信号在不同频率下的幅度。

这将揭示信号中包含的主要频率分量。

5. 绘制频谱图通过使用Matlab的绘图功能,可以将频谱数据可视化为频谱图。

频谱图可以帮助我们更好地理解信号的频谱分布情况。

6. 分析结果根据频谱图,我们可以观察信号的主要频率成分以及它们的幅度。

这有助于我们了解信号的频域特征,并可以用于识别信号中的噪声或其他异常。

实验应用FFT谱分析在许多领域中都有广泛的应用。

以下是一些常见的应用领域:1. 信号处理FFT谱分析可用于处理和分析各种类型的信号,例如音频信号、生物医学信号和电力信号等。

通过分析信号的频谱特征,我们可以提取出信号中的重要信息。

2. 通信系统在通信系统中,FFT谱分析可以用于频谱分配、频谱监测和信号调制等方面。

通过分析信号的频谱特征,我们可以更好地设计和优化通信系统。

3. 振动分析FFT谱分析可用于振动分析领域,用于分析和诊断机械系统的振动特征。

通过分析振动信号的频谱,可以检测到机械系统中的故障和异常。

4. 音频处理在音频处理中,FFT谱分析可用于音频信号的频谱分析、音频合成和音频特征提取等方面。

MATLAB中FFT的使用方法

MATLAB中FFT的使用方法

MATLAB中FFT的使用方法傅里叶变换(Fourier Transform)是信号处理领域中一种重要的数学工具,它可以将时域中的信号转化为频域中的信号。

在实际应用中,MATLAB提供了快速傅里叶变换(Fast Fourier Transform,FFT)函数,方便用户进行频域分析。

FFT函数一般形式为:Y = fft(X)其中,X为输入的信号向量,Y为输出的频域信号向量。

下面我们将详细介绍FFT函数的使用方法。

1.单通道信号FFT分析首先,我们来看一个简单的例子,假设我们有一个长度为N的输入信号向量X:X = [x1, x2, ..., xn]通过调用FFT函数,可以得到该信号的频域表示:Y = fft(X)其中,Y的长度与X相同。

现在我们可以进行一些相关操作:(1)频谱幅度谱:使用abs函数获取频谱的幅度谱:Y_amp = abs(Y)(2)频谱相位谱:使用angle函数获取频谱的相位谱:Y_phase = angle(Y)(3)频谱图:使用plot函数绘制频谱图:plot(Y_amp)以上操作将得到输入信号的频谱图。

2.多通道信号FFT分析当我们有多个通道的信号时,我们可以使用FFT函数进行每个通道的频域分析。

假设我们有一个包含M个通道的信号矩阵X:X = [x1, x2, ..., xm;y1, y2, ..., ym;...zn, z2, ..., zm]其中,X的大小为M×N。

同样,我们可以调用FFT函数得到每个通道的频域表示:Y = fft(X)此时,Y也是一个大小为M×N的矩阵。

如果我们只对一些通道的频域信号感兴趣,可以通过索引访问相关通道的频域信号:Y_channel1 = Y(1, :)以上操作将得到第一个通道的频域信号。

3.FFT频域滤波使用FFT函数进行频域滤波是FFT的常见应用之一、我们可以通过将一些频率分量置0,以实现对特定频率信号的抑制。

假设我们有一个输入信号向量X,在频域中,我们想要对特定频率范围进行滤波,可以通过以下步骤实现:(1)调用FFT函数得到输入信号的频域表示:Y = fft(X)(2)获取频域信号的幅度谱:Y_amp = abs(Y)(3)根据频率范围确定需要置0的频率分量:low_freq = 100; % 最低频率high_freq = 500; % 最高频率(4)将指定频率范围内的幅度谱置0:Y_amp_filtered = Y_amp;Y_amp_filtered(low_freq:high_freq) = 0;(5)恢复滤波后的频域信号:Y_filtered = Y_amp_filtered .* exp(1j * angle(Y));(6)通过调用ifft函数,得到滤波后的时域信号:X_filtered = ifft(Y_filtered)通过以上步骤,我们可以实现对频域信号的滤波操作。

matlabfft函数用法

matlabfft函数用法

matlabfft函数用法FFT(Fast Fourier Transform)在Matlab中是一个非常常用的函数,用于对一个离散时间域信号进行频域分析。

在Matlab中,fft函数用于执行快速傅里叶变换。

下面将详细介绍Matlab中fft函数的用法。

1.FFT函数的语法:Y = fft(X)Y = fft(X,n)Y = fft(X,n,dim)其中,X表示输入的离散时间域信号,可以是一个向量或一个矩阵;n是可选参数,表示指定的FFT长度,默认为输入信号的长度;dim是可选参数,表示指定进行FFT的维度,默认为第一个非单例维。

2.FFT函数的输出:FFT函数的输出为一个复数矩阵,表示输入信号的频域表示。

输出矩阵的大小与输入信号的维度一致。

3.FFT函数的常用参数:-X:表示输入的离散时间域信号,可以是一个向量或一个矩阵。

- n:可选参数,表示指定的FFT长度,默认为输入信号的长度。

当输入信号的长度大于n时,fft函数会对输入信号进行截取;当输入信号的长度小于n时,fft函数会进行零填充。

- dim:可选参数,表示指定进行FFT的维度,默认为第一个非单例维。

-Y:输出的复数矩阵,表示输入信号的频域表示。

4.FFT函数的应用:FFT函数可用于频谱分析、滤波、信号压缩、波形合成等多个领域。

-频谱分析:通过FFT函数,可以将时域的信号转换为频域的信号,进而对信号的频谱进行分析。

可以通过查看频谱图,了解信号的频率成分和能量分布情况,从而判断信号的特性。

-滤波:在频域进行滤波是一种常用的滤波方法。

将信号转换到频域后,可以通过挑选特定的频率成分,来实现滤波操作。

例如,可以通过将除了感兴趣频率范围内的成分都置零,实现低通滤波或高通滤波。

-压缩信号:FFT可以用于对信号进行压缩。

通过去除信号中能量较低的频率成分,可以实现信号的压缩,减小信号所需存储的空间。

-波形合成:FFT函数可以将不同频率的信号成分合成一个复合波形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

说明:以下资源来源于《数字信号处理的MATLAB实现》万永革主编一.调用方法X=FFT(x);X=FFT(x,N);x=IFFT(X);x=IFFT(X,N)用MATLAB进行谱分析时注意:(1)函数FFT返回值的数据结构具有对称性。

例:N=8;n=0:N-1;xn=[4 3 2 6 7 8 9 0];Xk=fft(xn)→Xk =39.0000 -10.7782 + 6.2929i 0 - 5.0000i 4.7782 - 7.7071i 5.0000 4.7782 + 7.7071i 0 + 5.0000i -10.7782 - 6.2929iXk与xn的维数相同,共有8个元素。

Xk的第一个数对应于直流分量,即频率值为0。

(2)做FFT分析时,幅值大小与FFT选择的点数有关,但不影响分析结果。

在IFFT时已经做了处理。

要得到真实的振幅值的大小,只要将得到的变换后结果乘以2除以N即可。

二.FFT应用举例例1:x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t)。

采样频率fs=100Hz,分别绘制N=128、1024点幅频图。

clf;fs=100;N=128; %采样频率和数据点数n=0:N-1;t=n/fs; %时间序列x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %信号y=fft(x,N); %对信号进行快速Fourier变换mag=abs(y); %求得Fourier变换后的振幅f=n*fs/N; %频率序列subplot(2,2,1),plot(f,mag); %绘出随频率变化的振幅xlabel('频率/Hz');ylabel('振幅');title('N=128');grid on;subplot(2,2,2),plot(f(1:N/2),mag(1:N/2)); %绘出Nyquist频率之前随频率变化的振幅xlabel('频率/Hz');ylabel('振幅');title('N=128');grid on;%对信号采样数据为1024点的处理fs=100;N=1024;n=0:N-1;t=n/fs;x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %信号y=fft(x,N); %对信号进行快速Fourier变换mag=abs(y); %求取Fourier变换的振幅f=n*fs/N;subplot(2,2,3),plot(f,mag); %绘出随频率变化的振幅xlabel('频率/Hz');ylabel('振幅');title('N=1024');grid on;subplot(2,2,4)plot(f(1:N/2),mag(1:N/2)); %绘出Nyquist频率之前随频率变化的振幅xlabel('频率/Hz');ylabel('振幅');title('N=1024');grid on;运行结果:fs=100Hz,Nyquist频率为fs/2=50Hz。

整个频谱图是以Nyquist频率为对称轴的。

并且可以明显识别出信号中含有两种频率成分:15Hz和40Hz。

由此可以知道FFT变换数据的对称性。

因此用FFT对信号做谱分析,只需考察0~Nyquist频率范围内的福频特性。

若没有给出采样频率和采样间隔,则分析通常对归一化频率0~1进行。

另外,振幅的大小与所用采样点数有关,采用128点和1024点的相同频率的振幅是有不同的表现值,但在同一幅图中,40Hz 与15Hz振动幅值之比均为4:1,与真实振幅0.5:2是一致的。

为了与真实振幅对应,需要将变换后结果乘以2除以N。

例2:x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t),fs=100Hz,绘制:(1)数据个数N=32,FFT所用的采样点数NFFT=32;(2)N=32,NFFT=128;(3)N=136,NFFT=128;(4)N=136,NFFT=512。

clf;fs=100; %采样频率Ndata=32; %数据长度N=32; �T的数据长度n=0:Ndata-1;t=n/fs; %数据对应的时间序列x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %时间域信号y=fft(x,N); %信号的Fourier变换mag=abs(y); %求取振幅f=(0:N-1)*fs/N; %真实频率subplot(2,2,1),plot(f(1:N/2),mag(1:N/2)*2/N); %绘出Nyquist频率之前的振幅xlabel('频率/Hz');ylabel('振幅');title('Ndata=32 Nfft=32');grid on;Ndata=32; %数据个数N=128; %T采用的数据长度n=0:Ndata-1;t=n/fs; %时间序列x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);y=fft(x,N);mag=abs(y);f=(0:N-1)*fs/N; %真实频率subplot(2,2,2),plot(f(1:N/2),mag(1:N/2)*2/N); %绘出Nyquist频率之前的振幅xlabel('频率/Hz');ylabel('振幅');title('Ndata=32 Nfft=128');grid on;Ndata=136; %数据个数N=128; �T采用的数据个数n=0:Ndata-1;t=n/fs; %时间序列x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);y=fft(x,N);mag=abs(y);f=(0:N-1)*fs/N; %真实频率subplot(2,2,3),plot(f(1:N/2),mag(1:N/2)*2/N); %绘出Nyquist频率之前的振幅xlabel('频率/Hz');ylabel('振幅');title('Ndata=136 Nfft=128');grid on;Ndata=136; %数据个数N=512; �T所用的数据个数n=0:Ndata-1;t=n/fs; %时间序列x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);y=fft(x,N);mag=abs(y);f=(0:N-1)*fs/N; %真实频率subplot(2,2,4),plot(f(1:N/2),mag(1:N/2)*2/N); %绘出Nyquist频率之前的振幅xlabel('频率/Hz');ylabel('振幅');title('Ndata=136 Nfft=512');grid on;结论:(1)当数据个数和FFT采用的数据个数均为32时,频率分辨率较低,但没有由于添零而导致的其他频率成分。

(2)由于在时间域内信号加零,致使振幅谱中出现很多其他成分,这是加零造成的。

其振幅由于加了多个零而明显减小。

(3)FFT程序将数据截断,这时分辨率较高。

(4)也是在数据的末尾补零,但由于含有信号的数据个数足够多,FFT振幅谱也基本不受影响。

对信号进行频谱分析时,数据样本应有足够的长度,一般FFT程序中所用数据点数与原含有信号数据点数相同,这样的频谱图具有较高的质量,可减小因补零或截断而产生的影响。

例3:x=cos(2*pi*0.24*n)+cos(2*pi*0.26*n)(1)数据点过少,几乎无法看出有关信号频谱的详细信息;(2)中间的图是将x(n)补90个零,幅度频谱的数据相当密,称为高密度频谱图。

但从图中很难看出信号的频谱成分。

(3)信号的有效数据很长,可以清楚地看出信号的频率成分,一个是0.24Hz,一个是0.26Hz,称为高分辨率频谱。

可见,采样数据过少,运用FFT变换不能分辨出其中的频率成分。

添加零后可增加频谱中的数据个数,谱的密度增高了,但仍不能分辨其中的频率成分,即谱的分辨率没有提高。

只有数据点数足够多时才能分辨其中的频率成分。

/s/blog_55a4cddc01012fqg.html傅立叶变换(FFT)举例(2007-07-28 16:34:54)转载▼分类:科研体会% 构造一个信号,基波频率50Hz,谐波频率120Hzt = 0:0.001:0.6;x = sin(2*pi*50*t)+sin(2*pi*120*t);% 再加入噪声信号y = x + 2*randn(size(t));plot(1000*t(1:50),y(1:50))title('Signal Corrupted with Zero-Mean Random Noise')xlabel('time (milliseconds)')Y = fft(y,512) % 傅立叶变换。

相关文档
最新文档