特高压直流输电

合集下载

特高压交直流输电与特高压电气设备培训知识

特高压交直流输电与特高压电气设备培训知识

特高压交直流输电与特高压电气设备培训知识1. 特高压交直流输电简介特高压交直流输电是指采用特高压输电技术,通过直流或交流方式进行电力传输的一种方式。

与传统的输电方式相比,特高压交直流输电具有输电损耗小、输电距离远、占地面积小等优势,被广泛应用于电力传输领域。

特高压交直流输电的实现离不开特高压电气设备的支持与配合。

2. 特高压电气设备概述特高压电气设备是指用于特高压输电系统中的各种电气设备,包括变压器、断路器、隔离开关、母线、电缆等。

这些设备在特高压输电系统中发挥着重要的作用,保障电力传输的稳定性、安全性和可靠性。

2.1 变压器特高压变压器是特高压输电系统中的核心设备之一。

它起到将输电线路上的电能进行变压和调节的作用,实现电能的高效传输和分配。

特高压变压器具有额定电压高、容量大、工作稳定等特点,是特高压输电系统中不可或缺的设备。

2.2 断路器和隔离开关特高压断路器和隔离开关是特高压输电线路中的重要保护装置。

断路器主要用于短路故障的处理,隔离开关则用于将线路切断,以便进行维护和检修工作。

特高压断路器和隔离开关的设计和制造要求严格,能够在高电压、大电流环境下工作,确保系统的安全运行。

2.3 母线和电缆特高压输电系统中的母线和电缆用于将变电站产生的电能输送到各个负载点。

母线是一种金属导体,承担着电能传输的任务;电缆则是一种绝缘导体,用于将电能从母线输送到负载点。

特高压输电系统中的母线和电缆需要具备良好的导电性能和绝缘性能,以保证电能的传输效果和质量。

3. 特高压交直流输电技术培训为了提高特高压交直流输电技术的应用水平,必须进行相关的培训工作,在电力行业中培养专业人才。

特高压交直流输电技术培训主要包括以下几个方面的知识和技能:3.1 特高压交直流输电基础知识特高压交直流输电基础知识包括特高压输电系统的工作原理、输电线路的结构和组成、特高压电气设备的分类和功能等内容。

学员需要了解特高压交直流输电的基本概念和原理,掌握特高压电气设备的基本知识。

特高压直流输电技术

特高压直流输电技术
建设 费用 通道清理费用上涨 后交流架空线路 通道清理费用上涨 后直流架空线路 交流架空线路 直流架空线路

换流站国产化水平 提高后直流架空线 路
换流站建设费用
变电站建设费用
14
0 线路等价距离 线路等价距离 输电距离
-800kV DC
8
(二)直流输电技术的分类 • 按工程结构分类
分类I(按换流站数量分类) • 两端直流输电(或“点对点直流输电”) • 多端直流输电 分类II(按线路长度分类) • 长距离直流输电 • 背靠背直流输电 分类III(按电压等级分类) • (超)高压直流输电 • 特高压直流输电
由地下电缆向大城市供电;
交流系统互联或者配电网增容时,作为限 制短路容量的措施之一;
配合新能源输电。
13
交直流等价距离

直流输电的经济性及交直流经济比较:直流输电两侧换流站费用高, ¥1000元/kW;直流线路相对便宜: ¥250万—¥480万/km;与交流 输电的等价距离:600-800km。 换流站设备价格问题:整体成降价趋势: 输送距离超过一定值时, 交流需要增加中间站,加串补。线路的建设费用问题,整体趋势是 上涨,国外由于线路走廊需要征地,费用更高,等价距离更短。
特高压直流输电技术
1
直流输电技术基本原理
(一)直流输电技术的原理
(二)直流输电技术的分类
(三)直流输电技术的特点
2
(一)直流输电技术的原理
直流电概念(相对于交流大小和方向随时间周期变化) 直流输电工程是以直流电的方式实现电能传输的工程。直流电 必须经过换流(整流和逆变)实现直流电变交流电,然后与交流系 统连接。 直流输电工程构成(换流站、直流线路、接地极、通信与远动)

中国特高压输电技术的介绍。

中国特高压输电技术的介绍。

中国特高压输电技术的介绍。

中国特高压输电技术是指运用直流输电技术,使用特定的设备和技术,将电力从远距离、大功率传输到需要的地区,实现能源的高效利用,降低输电损耗。

中国特高压输电技术的起源可以追溯到1980 年代初期。

当时,中国的电力需求快速增长,但电力供应网络却很脆弱。

为了解决这个问题,中国开始进行研究和开发特高压输电技术,以提高能源的传输效率和可靠性。

中国特高压输电技术的主要特点包括:
1. 直流输电技术:与传统的交流输电技术相比,直流输电技术在电线损耗、输电距离和电力质量等方面具有明显优势。

因此,中国特高压输电技术采用了直流输电技术。

2. 高电压电流:特高压输电技术是指输电电压大于800 千伏的输电技术。

由于输电大电流、高电压,需要特别耐久、高强度的输电杆。

中国特高压输电杆采用高端钢材和先进的生产技术,保证了输电线路的稳定性和耐久性。

3. 高效输电:中国特高压输电技术能够在远距离、大功率传输时最大限度地降低损耗,同时能够有效地控制电力质量,并能够实现无功补偿和自动控制等功能,提高电力的利用效率。

4. 环保节能:相比传统的火力发电等能源开采方式,特高压输电技术能够将电力资源更加充分地利用,降低了能源消耗和环境污染,实现了可持续发展。

5. 安全可靠:中国特高压输电技术采用了多重保护机制和安全控制措施,确保了输电线路的安全可靠和主动控制。

总之,中国特高压输电技术是一项具有战略意义的技术,为国家的能源保障和经济发展作出了重要贡献。

通过持续的技术创新和升级,特高压输电技术将继续为中国和全球能源领域的发展做出重要贡献。

特高压直流输电的技术特点和工程应用

特高压直流输电的技术特点和工程应用
特高压直流输电的技术特点和 工程应用
汇报人:
单击输入目录标题 特高压直流输电的技术特点 特高压直流输电的工程应用
特高压直流输电的技术挑战与解决方案
特高压直流输电的未来发展与趋势
添加章节标题
特高压直流输电的技术特点
电压等级与电流模式
电压等级:特高压直流输电 的电压等级通常为±800kV 或更高,能够实现远距离大 容量的电力传输。
添加标题
未来发展趋势:随 着技术的不断进步, 新型材料和制造技 术的应用前景广阔, 未来特高压直流输 电设备将更加高效、
环保、安全。
添加标题
面临的挑战:虽然 新型材料和制造技 术的应用前景广阔, 但也面临着一些挑 战,如技术研发、 设备成本等问题, 需要不断进行研究
和探索。
添加标题
特高压直流输电在新能源领域的应用前景
电流模式:特高压直流输电 采用单极或双极直流输电模 式,通过大地或海底电缆等 实现电力传输。
换流技术及其工作原理
换流技术:采用晶闸管换流器实现直流输电的转换 工作原理:通过控制晶闸管的触发角,实现直流电压的变换和传输 换流器类型:三相桥式、六相桥式、十二相桥式等 换流站设备:换流变压器、平波电抗器、滤波器等
新能源发展对特高压直流输电的需 求
特高压直流输电在新能源领域的技 术挑战与解决方案添加标题添加标题添加标题添加标题
特高压直流输电在新能源领域的应 用现状
特高压直流输电在新能源领域的未 来发展趋势与展望
THANK YOU
汇报人:
容量还将进一步增大。
单击添加标题
智能化和自动化技术的应用: 随着智能化和自动化技术的 不断发展,特高压直流输电 技术也将不断引入这些技术, 提高输电系统的智能化和自 动化水平,提高输电效率和

特高压直流输电技术及其应用

特高压直流输电技术及其应用

特高压直流输电技术及其应用一、概述特高压直流输电技术是一种高效能、低损耗、远距离长输、抗干扰能力强且可靠性高的电力输电技术。

特高压直流输电技术的应用不仅可以改善电网的无功角,提高稳定性,而且还可以优化电网的结构布局,提高电能利用率。

二、技术原理特高压直流输电技术是利用电力电子器件对交流电进行整流、变换、滤波处理后,形成直流电,再通过输电线路对直流电进行传输的一项新技术。

特高压直流输电系统主要由换流站、高压直流输电线路和终端换流站等组成。

电源通过换流站的交流侧接入,变为直流电后经过高压直流输电线路输送到接收站,再通过终端换流站变为交流电接入电网。

三、优点1. 低损耗:采用直流输电可避免交流输电过程中会产生的电抗、电流互感等损失。

2. 远距离高效能输电:直流输电线路作为可替代交流输电的新型电网架构,其输送长度远高于交流输电,可在远距离长距离输送电力。

3. 抗干扰能力强:特高压直流输电技术在功率变化、相位跳跃、短时间过载、负载波动以及输电线路受到外来干扰等情况下仍能保证良好的电能传输和供应。

4. 可靠性高:通过对换流站、输电线路、终端换流站等设备进行可靠性设计,并采取智能化技术,可确保特高压直流输电系统的稳定性和安全性。

四、应用1. 遥远地区电力输送:特高压直流输电技术能够长距离超远距离输送电力,为遥远地区的电力需求提供解决方案,并充分利用负载率,实现对电力资源的优化利用。

2. 解决电网瓶颈问题:特高压直流输电技术具有抗干扰能力强和输电长度远的特点,可以有效解决传统交流输电在电网瓶颈问题上的限制。

3. 可再生能源输送:随着可再生能源发电技术的不断发展,特高压直流输电技术可以用于传输风力发电、太阳能发电等可再生能源的电力。

4. 铝、铜资源集中地输电:利用特高压直流输电技术,可以将铝、铜等原材料在世界范围内集中输电,进一步实现资源优化布局。

五、发展前景特高压直流输电技术是未来电力送输的主要方向。

作为一项领先的电力技术,其优越的性能和可靠性,将推动电力输送的新型模式。

特高压直流输电

特高压直流输电

特高压直流输电理论绪论一·直流输电的发展概况世界上最早的直流输电是用直流发电机直接向直流负荷供电。

1882年,法国物理学家德普勒用装设在米斯巴赫煤矿中的直流发电机,以1,5~2.0kv电压,沿着57km 的电报线路,把电力送到在慕尼黑举办的国际展览会伤,完成了有史以来的第一次直流输电试验。

1912年采用直流发电机串联的方法,将直流输电的电压,功率和距离分别提高到125kv,20mw和225km。

由于直流电源和负荷均采用串联方法,运行方式复杂,可靠性差,因此直流输电在当时没有得到进一步的发展。

随着三相交流发电机,感应电动机和变压器的迅速发展,直流输电很快被交流输电所取代。

直到20世纪50年代大功率汞弧阀的问世。

直流输电技术才真正在工程中得到应用。

直流输电独特的优点:利用其迅速而精确地调节能力可以提高与之并联的交流线路的稳定性和传输容量,将其作为大区电网件的联络线能迅速提高互联系统运行的可靠性和灵活性等。

电网的发展目标:百万伏级交流和±800KV级直流系统构成的特高压电网的发展目标二.特高压直流输电关键技术1,在1400~1500Km的距离输送大量的电力,从经济和环境等角度考虑,高于±660kv的特高压直流是优选的输电方式。

2.±800kv直流输电系统的设计,建设和运行在技术上是完全可行的,但应开展一些工程研究以进一步优化系统的性能和经济指标。

3.基于目前的技术及可预见的发展,±1000kv的高压直流输电系统在理论上是可行的,但必须进行大量的研究开发工作。

4.目前看来,发展±1200kv直流输电系统是不切合实际的,即便将来通过大量深入细致的研究工作会有更好的设计,但仍然需有重大技术突破,才有可能进行较为经济的设计,,前景难以预测。

对±800kv高压直流输电工程关键技术问题的研究已经取得了一系列重大突破:1,特高压直流输电电压等级的研究。

±800千伏特高压直流输电原理

±800千伏特高压直流输电原理

近年来,随着能源互联网的不断发展,±800千伏特高压直流输电技术备受关注。

本文将从深度和广度两个方面,全面评估这一技术,并撰写一篇有价值的文章,以便读者更加深入地理解这一主题。

一、技术原理1.1 ±800千伏特高压直流输电的基本概念在电力输电领域,直流输电和交流输电各有优势和劣势。

直流输电具有输电损耗小、输电距离远等优点,因此被广泛应用于大距离、大功率的电力输送。

而±800千伏特高压直流输电技术,作为直流输电的一种重要形式,其基本原理在于通过将正负极之间的电压差维持在±800千伏,实现远距离、大容量的电力输送。

1.2 输电线路的构成和特点在±800千伏特高压直流输电技术中,输电线路是其核心组成部分。

该技术的输电线路通常由直流电源、换流站、传输线路、换流站和接收端设备组成。

其中,直流电源部分包括换流变压器、滤波器等设备,而传输线路则采用高压直流输电线路,这些设备共同构成了±800千伏特高压直流输电系统。

二、技术应用2.1 ±800千伏特高压直流输电在国内外的应用目前,±800千伏特高压直流输电技术已经在国内外得到了广泛应用。

在我国,±800千伏特高压直流输电已经在西北等地区实现了大规模的应用,为区域间的大容量输电提供了有效的技术支持;在国际上,类似的技术也被广泛应用于远距离、大容量的国际输电项目中,为全球能源互联网建设提供了有力的技术支撑。

2.2 技术的优势和挑战在实际应用中,±800千伏特高压直流输电技术具有诸多优势,如输电损耗小、占地面积少、造价低等,但同时也面临着技术难度大、设备成本高等挑战。

在实际应用中需要充分权衡其优势和挑战,以实现最佳的技术应用效果。

三、个人观点±800千伏特高压直流输电技术作为直流输电的一种重要形式,其在能源互联网建设中具有重要意义。

我认为,随着我国能源互联网的不断发展,±800千伏特高压直流输电技术将在未来得到更加广泛的应用,并为我国电力系统的高效、安全运行做出更大的贡献。

特高压直流的优缺点

特高压直流的优缺点
型的交流和直流避雷器等。 因此换流站的造价比同样规模的交流 变电站的造价要高出数倍。 由于设备多,换流站的损耗和运行费 用也相应增加,同时换流站的运行和维 护也较复杂。
特高压直流输电的优缺点
2.消耗无功功率多
换流器在实现有功功率的交-直、直-交转换的 同时,需要从交流系统吸收无功功率。
一般,整流器消耗无功功率为所传输直流功率 的30%~ 50%,逆变器消耗无功功率为所传输直流 功率的40%~ 60%。
特高压直流输电的优缺点
特高压直流输电的优缺点
特高压直流输电的优缺点
特高压直流输电设备
特高压直流输电的优缺点
特高压直流输电优点
优点
技术
经济
自主创新
特高压直流输电的优缺点
特高压直流输电优点
解决 遮断容量 不足
同步运行 稳定性
技术性能
节省 输电走廊
非同步 联网
调节快速 运行可靠
故障时 自防护能力
1.同步运行稳定性
“远距离大容量”
功角特性方程
特高压直流输电 的优缺点
特高压直流输电概述 特高压直流输电设备 特高压直流输电的优缺点
特高压直流输电的优缺点
特高压直流输电概述
特高压直流输电(UHVDC)是指±800kV以上 电压等级的直流输电技术。
我国已投运的特高压直流输电工程有向家坝—上 海±800kV直流输电工程和云南—广东±800kV直流 输电工程。
特高压直流输电的优缺点
6.有利于节省输电走廊
输电走廊是制约我国发展远距离输电的 瓶颈。
目前我国电网跨区域输电主要依靠 500kV 交直流线路,单回特高压线路的走廊 宽度约为 500 千伏的 2 倍,但其输送功率是 500 kV线路的4~5 倍。

高压直流输电技术在特高压输电中的应用

高压直流输电技术在特高压输电中的应用

高压直流输电技术在特高压输电中的应用随着电力需求的不断增长以及可再生能源的快速发展,特高压输电技术越来越成为解决能源传输难题的重要手段。

而其中,高压直流输电技术则因其具有较大的输电功率、较远的传输距离和较小的损耗等优势而备受关注。

本文将探讨高压直流输电技术在特高压输电中的应用。

一、高压直流输电技术的基本原理高压直流(High Voltage Direct Current,简称HVDC)输电技术是指利用直流电流进行能量传输的一种输电方式。

与交流输电相比,HVDC技术具有以下优势:首先,HVDC输电系统中的直流电流不会遭受交流电损耗,因此损耗相对较小;其次,HVDC可以实现双向输电,即使在电站出现故障时,也能够将电流倒送回电网,从而保证电力稳定供应;此外,HVDC技术还可以通过增加输电电压,实现长距离的电力传输。

在HVDC输电系统中,主要包括换流站、输电线路和换流器等关键设备。

换流站起到将交流电能转换为直流电能的作用,同时它还能够将直流电能反向转换为交流电能,从而实现电力的双向传输。

输电线路则用于传输直流电能,其中直流电压达到极高水平,这就是所谓的特高压输电。

二、高压直流输电技术在特高压输电中的应用案例1. 青藏特高压直流工程青藏特高压直流工程是我国电力系统中的一项旗舰工程,该工程采用特高压直流输电技术,将青海、甘肃、宁夏等内陆地区的清洁能源输送到东海沿线的江苏、上海等发电集中地区。

该工程的特点是输电距离较长,同时输电功率也相对较大。

通过采用HVDC技术,青藏特高压直流工程在输电损耗上实现了较大的节约,并极大提升了电力系统的可靠性。

2. 某国特高压直流示范工程某国特高压直流示范工程是该国电力系统中的一项重要工程,该工程采用特高压直流输电技术,连接该国东北地区的火力发电厂与南方地区的大型工业城市。

该工程采用了高压直流输电技术,将大量电力从东北输送到南方,有效缓解了南方电力供应压力。

同时,该工程还采用了光伏发电技术,使得该国的可再生能源得以更好地利用。

±800千伏特高压直流输电原理

±800千伏特高压直流输电原理

±800千伏特高压直流输电原理
一、直流输电系统
直流输电系统是特高压直流输电的核心组成部分,主要由换流站、输电线路和控制系统等组成。

二、换流站设备
换流站设备是直流输电系统的关键设备,包括换流变压器、换流阀、直流滤波器、无功补偿装置等。

换流阀是换流站的核心设备,通过控制换流阀的开通和关断,可以实现直流电和交流电的转换。

三、输电线路
特高压直流输电的输电线路采用架空线路或电缆线路,具有传输距离远、输送容量大、电压等级高、输电效率高等优点。

四、控制系统
控制系统是直流输电系统的核心,它包括调节器、保护装置、测量装置等。

控制系统通过对输电线路的电压、电流等参数进行监测和控制,保证输电系统的稳定运行。

五、电力电子技术
特高压直流输电采用了大量的电力电子技术,包括脉宽调制技术、同步开关技术等。

这些技术的应用可以实现电力的高效传输和系统的稳定控制。

六、电磁环境
特高压直流输电的电磁环境影响较小,因为其采用直流输电方式,没有交流输电的谐波和无功功率等问题。

但是,在换流过程中会产生
一定的电磁噪声,需要采取措施进行降噪处理。

七、经济效益
特高压直流输电具有传输距离远、输送容量大等优点,可以大幅度降低电力传输的成本,提高能源利用效率。

同时,特高压直流输电还可以实现不同地区之间的电力互济,提高电力系统的整体效益。

特高压直流的优缺点

特高压直流的优缺点
详细描述
特高压直流输电的线路走廊较窄,能够减少土地资源的占用。同时,这种输电方 式在运行过程中产生的电磁辐射较小,对环境的影响也较小。
运行方式灵活
总结词
特高压直流输电系统具有灵活的运行方式,能够实现快速调 节和优化资源配置。
详细描述
特高压直流输电系统可以根据电力需求的变化进行快速调节 ,实现电力资源的优化配置。同时,这种输电方式还可以通 过多回线路并联运行,提高电网的稳定性和可靠性。
提高稳定性
控制系统升级
升级特高压直流的控制系统,提高其快速响应和抗干扰能力,确保输电的稳定性和可靠性。
加强运维管理
建立完善的运维管理制度和流程,加强设备的日常检查和维护,确保特高压直流输电系统的长期稳定运行。
感谢您的观看
THANKS
城市供电
• 城市供电:在城市供电领域,特高压直流输电技术有助于提 高供电的可靠性和稳定性。它能够降低因输电线路故障导致 的停电风险,保障城市居民和企业的正常用电需求。此外, 特高压直流输电还有助于优化城市电网结构,提升电网运行 效率。
04
未来发展
技术创新
持续研发
特高压直流技术仍需在材料、设 备、控制等方面进行持续研发, 以提升其性能和稳定性。
03
应用场景
跨区域输电
• 跨区域输电:特高压直流输电技术适用于大容量、远距离的电 力传输,尤其在跨区域输电场景中表现出色。它能有效地将电 能从发电丰富的地区输送到需求大的地区,优化资源配置,缓 解区域间的电力供需矛盾。
分布式能源并网
• 分布式能源并网:特高压直流输电技术能够实现分布式能源的高效并网。通过特高压直流输电,各种可再生能源(如风能、 太阳能)可以方便地接入电网,提高能源利用效率和可再生能源的消纳能力。

国外特高压直流输电的发展历程

国外特高压直流输电的发展历程
5. 2000年代:欧洲各国开始加大对特高压直流输电的研发和建设力度,以实现跨国电力 交流和能源互联互通。
6. 2010年代至今:特高压直流输电技术得到了全球范围内的广泛应用和推广,许多国家 都在积极推进特高压直流输电项目的建设,以提高电力传输效率和可靠性。
国外特高压直流输电的发展历程
目前,国外特高压直流输电技术已经取得了显著的进展,建设了许多大规模的特高压直流 输电工程,实现了远距离、大容量的电力传输。这些工程不仅提高了电力传输效率,还促进 了能源互联互通和跨国电力交流,为全球能源转型和可持续发展做出了重要贡献。
国外特高压直流输电的发展历程
特高压直流输电(Ultra High Voltage Direct Current, UHVDC)是一种高压、大容量的 输电技术,能够实现远距离、大容量的电力传输。以下是国外特高压直流输电的发展历程:
1. 1954年:瑞典首次建成了全球第一条特高压直流输电线路,将水力发电站的电力输送到 离发电站较远的城。
2. 1975年:美国建成了第一条跨越国家的特高压直流输电线路,连接了加拿大和美国。
3. 1989年:德国建成了第一条海底特高压直流输电线路,将德国北部的风能输送到南部。
国外特高压直流输电的发展历程
4. 1990年代:日本、韩国、中国等亚洲国家开始大规模建设特高压直流输电项目,以满 足快速发展的电力需求。

特高压直流输电技术现状及在我国的应用前景

特高压直流输电技术现状及在我国的应用前景

近年来,特高压直流输电技术取得了丰硕的研究成果。在理论成果方面,研 究者们针对特高压直流输电系统的运行特性、稳定性分析、优化控制等方面进行 了深入探讨,提出了一系列新的理论和方法。在应用实践方面,特高压直流输电 技术已经在国内外多条电力工程中得到了广泛应用,如中国的三峡工程、巴西的 美丽山二期工程等,取得了良好的运行效果和社会效益。
特高压直流输电技术现状及在我国 的应用前景
目录
01 一、特高压直流输电 技术现状
02
二、特高压直流输电 技术特点
03
三、特高压直流输电 技术应用前景
04 四、特高压直流输电 技术在我国的应用
05 五、结论
06 参考内容
随着全球能源结构的调整和电力市场的不断发展,特高压直流输电技术成为 了电力行业的重要研究方向。特高压直流输电具有输电距离远、容量大、损耗低 等特点,对于实现能源资源的优化配置和能源供应的安全性、可靠性具有重要意 义。本次演示将介绍特高压直流输电技术的现状及在我国的应用前景。
二、特高压直流输电技术特点
特高压直流输电技术具有以下特点:
1、输电距离远:特高压直流输电的电压等级较高,一般为1000kV及以上, 使得电能能够远距离传输,大大扩展了电力系统的覆盖范围。
2、容量大:特高压直流输电工程的输送容量较大,一般在1000万至2000万 千瓦之间,甚至更高,使得大规模能源资源的优化配置成为可能。
1、能源传输:特高压直流输电技术的远距离输送特点使得不同地区的能源 资源能够得到优化配置。例如,可将中西部地区的丰富能源通过特高压直流输电 线路输送到东部地区,满足东部地区经济社会发展的紧急救援:在自然灾害或其他紧急情况下,特高压直流输电技术可以迅 速恢复受灾地区的电力供应。例如,通过特高压直流输电线路向受灾地区输送电 力资源,保障灾区人民的基本生活需求和应急救援工作的正常进行。

特高压交直流输电的优缺点对比

特高压交直流输电的优缺点对比

特高压交直流输电的优缺点对比一、直流输电技术的优点1.经济方面:(1)线路造价低。

对于架空输电线,交流用三根导线,而直流一般用两根,采用大地或海水作回路时只要一根,能节省大量的线路建设费用。

对于电缆,由于绝缘介质的直流强度远高于交流强度,如通常的油浸纸电缆,直流的允许工作电压约为交流的3倍,直流电缆的投资少得多。

(2)年电能损失小。

直流架空输电线只用两根,导线电阻损耗比交流输电小;没有感抗和容抗的无功损耗;没有集肤效应,导线的截面利用充分。

另外,直流架空线路的“空间电荷效应”使其电晕损耗和无线电干扰都比交流线路小。

所以,直流架空输电线路在线路建设初投资和年运行费用上均较交流经济。

2.技术方面:(1)不存在系统稳定问题,可实现电网的非同期互联。

由此可见,在一定输电电压下,交流输电容许输送功率和距离受到网络结构和参数的限制,还须采取提高稳定性的措施,增加了费用。

而用直流输电系统连接两个交流系统,由于直流线路没有电抗,不存在上述稳定问题。

因此,直流输电的输送容量和距离不受同步运行稳定性的限制,还可连接两个不同频率的系统,实现非同期联网,提高系统的稳定性。

(2)限制短路电流。

如用交流输电线连接两个交流系统,短路容量增大,甚至需要更换断路器或增设限流装置。

然而用直流输电线路连接两个交流系统,直流系统的“定电流控制’,将快速把短路电流限制在额定功率附近,短路容量不因互联而增大。

(3)调节快速,运行可靠。

直流输电通过可控硅换流器能快速调整有功功率,实现“潮流翻转”(功率流动方向的改变),在正常时能保证稳定输出,在事故情况下,可实现健全系统对故障系统的紧急支援,也能实现振荡阻尼和次同步振荡的抑制。

在交直流线路并列运行时,如果交流线路发生短路,可短暂增大直流输送功率以减少发电机转子加速,提高系统的可靠性。

(4)没有电容充电电流。

直流线路稳态时无电容电流,沿线电压分布平稳,无空、轻载时交流长线受端及中部发生电压异常升高的现象,也不需要并联电抗补偿。

特高压直流输电

特高压直流输电

将电能从大型火力、水力等发电厂输送到远方负荷中心地区时会遇到远距离输电问题。

要实现远距离的大功率传输,需采用超高压或特高压输电技术。

在特高压输电技术中有交流和直流两种方案,可根据技术经济条件和自身特点加以选择。

特高压交流输电是目前国内外最基本的远距离输电方式,而特高压直流输电不存在同步稳定性问题,是大区域电网互联的理想方式。

下面我将结合自己所学知识与查阅的资料对特高压直流输电进行概括的阐述。

直流输电是指将送端系统的正弦交流电在送端换流站升压整流后通过直流线路传输到受端换流站,受端换流站将直流逆变成正弦的工频交流电后降压和受端系统相连。

而对于换流站,它的核心元件是换流器,,由1 个或数个换流单元串联而成,电路均采用三相换流桥,材料多采用可控硅阀。

它的基本工作原理是,控制调节装置通过控制桥阀的触发时刻,可改变触发相位,进而调节直流电压瞬时值、电阻上的直流电流、直流输送功率。

同时,相同的触发脉冲控制每个桥阀的所有可控硅元件。

当三相电源为对称正弦波的情况下,线电压由负到正的过零点时,脉冲触发桥阀,同时阀两端电压变正,阀立即开通。

6 个脉冲发生器分别完成对单桥换流器的6 个桥阀的触发,恰好交流正弦波电源经过1 个周期,线电压又达到下一个过零点进行第二个触发周期。

一般,工程上为了获得脉波更小的直流输电电压,通常采用12脉的双桥换流器。

与交流输电相比,直流输电技术具有以下特点:输电功率大小、方向可以快速控制调节;直流输电系统的接入不会增加原有系统的短路容量;利用直流调制可以提高系统的稳定水平;直流的一个极发生故障,另一个极可以继续运行,且可以利用其过负荷能力减少单极故障下的树洞功率损失;另外直流架空线路走廊宽度约为相同电压等级交流输线路走廊宽度的一半。

而对于特高压直流输电,它不但具有常规直流输电的特点,而且还能够很好的解决我国一些现存的问题:1、我国一次能源分布很不均衡, 水利资源2/ 3分布在西南地区, 煤矿资源2/ 3 分布在陕西、山西及内蒙古西部。

特高压直流输电技术

特高压直流输电技术

交流系统互联或者配电网增容时,作为 限制短路容量的措施之一;
配合新能源输电。
32
三、特高压直流输电技术应用与实践
(一)直流工程建设选择 (二)我国特高压直流技术实践成就
33
(一)直流工程建设选择
直流工程要因地制宜:

不同电压等级、不同频率的两个交流系统联网,或者两个弱交 流系统联网,推荐直流工程(背靠背)。
1888年三相交流电的出现是电工技术发展的一个重要里程碑,交流电 网建设得到迅速发展,并很快占据了主导地位。
能方便而又经济地升高或降低电压,使远距离输电成为可能。 三相交流发电机和电动机结构简单,价格低,容量又可设计得很大。 三相交流电气设备效率高,运行维护简单。
4
(一)直流输电的兴起
交流输电在发展过程中也遇到了问题,
5
(二)直流输电的发展
瑞典哥特兰岛直流工程是世 界上首个商用高压直流输电 工程,直流电压100kV、功率 20MW。
高压直流输 电技术 三相交流变 压器 特高压直流 输电技术
直流发电机
电磁感应 定律
汞弧阀
晶闸管阀
1831年
1870年
1891年
1954年
2010年
6
(二)直流输电的发展
汞弧阀
制造技术复杂、价格昂 贵、逆弧故障率高、可 靠性较低、运行维护不 便
临沂 重庆
绍兴 泰州 武汉 新余 成都
±800 ±800
±800 ±800 ±800 ±800 ±1100
760 760
760 760 760 760 1050
1200 2300
2000 1600 1450 1400 2687
22
二、直流输电技术基本原理

特高压直流输电技术现状及在我国的应用前景

特高压直流输电技术现状及在我国的应用前景

特高压直流输电技术现状及在我国的应用前景一、本文概述随着全球能源互联网的构建和我国能源结构的转型,特高压直流输电技术作为一种高效、远距离的电力传输方式,在我国能源战略中扮演着越来越重要的角色。

本文旨在全面概述特高压直流输电技术的现状,包括其技术原理、发展历程、主要优势及存在的问题,并深入分析该技术在我国的应用前景。

我们将探讨特高压直流输电在解决能源分布不均、优化能源结构、提高能源利用效率以及推动新能源发展等方面的应用潜力,以期为我国能源互联网的建设和可持续发展提供有益的参考。

二、特高压直流输电技术的现状特高压直流输电技术是目前全球范围内最为先进的输电技术之一,其在全球范围内的研究和应用日益广泛。

在我国,特高压直流输电技术的发展更是取得了举世瞩目的成就。

目前,我国已经建成了多条特高压直流输电线路,包括±800千伏、±1100千伏等多个电压等级,总输电容量和输电距离均处于世界领先地位。

技术成熟度高:经过多年的研究和实践,特高压直流输电技术已经形成了完整的技术体系和成熟的技术路线,为我国电力工业的发展提供了强大的技术支持。

设备国产化率高:我国在特高压直流输电设备的研发和生产方面已经取得了重要突破,国产化率不断提升,有效降低了建设和运维成本,提高了电网的安全性和稳定性。

运行经验丰富:我国特高压直流输电线路已经稳定运行多年,积累了丰富的运行经验。

通过对运行过程中出现的各种问题和故障进行及时的分析和处理,不断完善和优化输电系统的运行策略,确保了电网的安全稳定运行。

应用范围广泛:特高压直流输电技术的应用范围涵盖了远距离大容量输电、跨区电网互联、新能源接入等多个领域,为我国能源结构的优化和电力市场的开放提供了有力支撑。

特高压直流输电技术在我国已经取得了显著的进展和成果,为我国电力工业的发展注入了强大的动力。

未来,随着新能源的快速发展和电力市场的逐步开放,特高压直流输电技术将在我国发挥更加重要的作用。

特高压直流输电原理

特高压直流输电原理

特高压直流输电原理
特高压直流输电原理是一种高效、稳定的电力输送方式,它通过直流电流的方式将电能从发电站输送到远距离的用电地点。

与传统的交流输电方式相比,特高压直流输电具有更高的输电效率、更小的能量损失和更远的输电距离。

特高压直流输电的原理是利用直流电流的特性,通过高压直流输电线路将电能从发电站输送到远距离的用电地点。

在特高压直流输电线路中,电流是以直流的形式流动的,因此不会出现交流输电中的电流损耗和电磁干扰等问题。

同时,特高压直流输电线路的电压非常高,可以达到数百万伏特,这样可以大大减少输电线路的电阻和电感,从而减小能量损失。

特高压直流输电线路的建设需要使用特殊的输电设备,包括高压直流输电变压器、直流输电线路、直流断路器等。

其中,高压直流输电变压器是特高压直流输电的核心设备,它可以将发电站产生的低电压直流电能转换成高电压直流电能,以便在输电线路中传输。

直流输电线路则是特高压直流输电的主要组成部分,它由多根高压直流电缆组成,可以将电能从发电站输送到远距离的用电地点。

直流断路器则是特高压直流输电线路的保护设备,可以在输电线路出现故障时及时切断电流,保护输电线路和设备的安全。

特高压直流输电原理是一种高效、稳定的电力输送方式,它可以大大提高电力输送的效率和稳定性,减少能量损失和环境污染,是未
来电力输送的重要发展方向。

特高压直流输电原理

特高压直流输电原理

特高压直流输电原理
特高压直流输电原理是电力行业的一大重要技术。

它主要是指采用硅
控直流输电技术,将高压变流站变为直流,以直流的形式将电力输送
至远方的变电站,最后在交流电网中再次将其变为交流电。

以下是特高压直流输电原理的具体步骤:
1、电能转换
首先,特高压直流输电需要将变电站产生的三相交流电能转化为直流。

因为只有高压直流电能才能在长距离输电过程中最大限度地减少电力
损耗,而三相交流电则不具备这样的能力。

2、电压升高
其次,特高压直流输电需要通过变压器将直流电压升高。

只有电压达
到了一定的高度,才能够实现长距离输电,同时在输电中也能更好地
抵抗电力损失。

3、送电线路
特高压直流输电最核心的部分是送电线路。

这些线路通常是由架空导线、地线、绝缘子、集电轨等组成,它们能够在长距离输电过程中承
受电力负载,同时通过地线将电力回馈到发电站。

4、交流阀站
在特高压直流输电过程中,一些交流阀站也是不可或缺的。

这些站点通常是电力传输中转站,能够将直流电信号转换为交流电。

此外,它们还能够控制电压和功率的流动,以提高电力输送的效率。

总之,特高压直流输电原理的核心是通过硅控直流输电技术将交流电转化为直流电,通过变压器将电压升高,通过送电线路将电力输送至远方的站点。

在这个过程中,需要将直流电信号转化为交流电,同时在输电过程中进行控制和管理,这样才能更好地提高电力输送的效率和质量。

特高压直流输电原理

特高压直流输电原理

特高压直流输电原理特高压直流输电(Ultra High Voltage Direct Current Transmission,简称UHVDC)是一种利用直流电进行能量传输的技术,它具有输电距离远、输电损耗小、占地面积少等优点,被广泛应用于长距离大容量的电力输送。

特高压直流输电原理是指利用特定的电气设备和技术手段,将交流电转换为直流电进行输送的过程。

首先,特高压直流输电原理的核心是换流器。

换流器是将交流电转换为直流电或直流电转换为交流电的设备,它由整流器和逆变器两部分组成。

整流器将交流电转换为直流电,逆变器将直流电转换为交流电。

通过换流器的工作,特高压直流输电系统可以实现双向能量传输,使得输电线路可以同时进行正向和反向的功率传输。

其次,特高压直流输电原理涉及到输电线路的设计。

特高压直流输电系统通常采用两根电极线路,即正极线路和负极线路。

这两根电极线路之间的距离可以达到数百甚至上千公里,因此需要考虑输电线路的绝缘、支架、接地等设计,以确保输电线路的安全可靠运行。

另外,特高压直流输电原理还涉及到电力系统的稳定控制。

由于特高压直流输电系统的输电距离远、输电容量大,因此需要对电力系统进行精确的稳定控制。

这包括对电压、频率、功率等参数进行实时监测和调节,以确保特高压直流输电系统的稳定运行。

此外,特高压直流输电原理还需要考虑输电线路的电磁兼容性。

由于特高压直流输电系统在输电过程中会产生较强的电磁场,因此需要对输电线路周围的环境和设备进行电磁兼容性评估,以确保特高压直流输电系统不会对周围的设备和人员产生不利影响。

总的来说,特高压直流输电原理是一种复杂的电力传输技术,涉及到电气设备、输电线路、稳定控制、电磁兼容性等多个方面的内容。

通过对特高压直流输电原理的深入理解和研究,可以更好地推动特高压直流输电技术的发展,为电力系统的安全稳定运行提供有力支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

特高压直流输电的技术随着国民经济的持续、高速增长,电力需求日益旺盛,电力工业的发展速度加快。

2004年新增发电装机容量50 5GW,全国发电总装机容量达到440GW;2005年新增发电装机容量约70GW,全国发电总装机容量突破500GW;预计到2010年、2020年,全国发电总装机容量将分别达到700GW和1200GW。

新增电力装机有很大数量在西部大水电基地和北部的火电基地。

这些集中的大电站群装机容量大,距离负荷中心远。

如金沙江的溪洛渡、向家坝水电厂,总装机容量达到18.6GW,计划送电到距电厂1000~2000km的华中、华东地区;云南的水电有约20GW容量要送到1500km外的广东;筹划中的陕西、山西、宁夏、内蒙古的大火电基地将送电到华北、华中和华东的负荷中心,距离近的约1000km,远的超过2000km。

在这种背景下,要求输电工程具有更高的输电能力和输电效率,实现安全可靠、经济合理的大容量、远距离送电。

特高压直流输电是满足这种要求的关键技术之一。

1 特高压直流输电的技术特点特高压直流输电的电压等级概念与交流输电不一样。

对于交流输电来说,一般将220kV 及以下的电压等级称为高压,330~750kV的称为超高压,1000kV及以上的称为特高压。

直流输电则稍有不同,±100kV以上的统称为高压;±500kV和±600kV仍称为高压,一般不称为超高压;而超过±600kV的则称为特高压。

对于单项直流输电工程而言,通常根据其送电容量、送电距离等因素进行技术、经济方面的综合比较,对工程进行个性化设计而确定相应的直流电压等级。

我国对特高压直流输电的电压等级进行研究和论证时,考虑到我国对直流输电技术的研发水平和直流设备的研制能力,认为确定一个特高压直流电压水平是必要的,并把±800kV确定为我国特高压直流输电的标称电压。

这有利于我国特高压直流输电技术和设备制造的标准化、规范化、系列化开发,有利于进行我国特高压直流输电工程的规划、设计、实施和管理。

特高压直流输电技术不仅具有高压直流输电技术的所有特点,而且能将直流输电技术的优点更加充分发挥。

直流输电的优点和特点主要有[1]:①输送容量大。

现在世界上已建成多项送电3GW的高压直流输电工程。

②送电距离远。

世界上已有输送距离达1700km的高压直流输电工程。

我国的葛南(葛洲坝—上海南桥)直流输电工程输送距离为1052km,天广(天生桥—广东)、三常(三峡—常州)、三广(三峡—广东)、贵广(贵州—广东)等直流输电工程输送距离都接近1000km。

③输送功率的大小和方向可以快速控制和调节。

④直流输电的接入不会增加原有电力系统的短路电流容量,也不受系统稳定极限的限制。

⑤直流输电可以充分利用线路走廊资源,其线路走廊宽度约为交流输电线路的一半,且送电容量大,单位走廊宽度的送电功率约为交流的4倍。

如直流±500kV线路走廊宽度约为30m,送电容量达3GW;而交流500kV线路走廊宽度为55m,送电容量却只有1GW。

⑥直流电缆线路不受交流电缆线路那样的电容电流困扰,没有磁感应损耗和介质损耗,基本上只有芯线电阻损耗,绝缘水平相对较低。

⑦直流输电工程的一个极发生故障时,另一个极能继续运行,并通过发挥过负荷能力,可保持输送功率或减少输送功率的损失。

⑧直流系统本身配有调制功能,可以根据系统的要求做出反应,对机电振荡产生阻尼,阻尼低频振荡,提高电力系统暂态稳定水平。

⑨能够通过换流站配置的无功功率控制进行系统的交流电压调节。

⑩大电网之间通过直流输电互联(如背靠背方式),2个电网之间不会互相干扰和影响,必要时可以迅速进行功率交换。

特高压直流输电的特点:①电压高,高达±800kV。

对与电压有关的设备,如高压端(±800kV)的换流变压器及其套管、穿墙套管、避雷器等研发提出了高要求;对承受±800kV 的外绝缘,如支持瓷柱、线路绝缘子等需要进行新的研发。

②送电容量大。

规划的特高压直流输电工程的送电容量高达5GW和6.4GW,相应的直流额定电流将达到3125A和4000A。

③送电距离长,长达1500km,甚至超过2000km。

2 特高压直流输电面临的技术挑战特高压直流输电面临的技术挑战主要有[2]:(1)设备制造难度大。

±800kV特高压直流输电中换流变压器、换流变压器套管、穿墙套管、换流阀等特高压直流输电设备的设计制造难度加大。

(2)设备外绝缘要求高。

随着电压等级的提高,设备外绝缘能否到达要求令人担心。

特高压对线路绝缘子的绝缘要求很高,绝缘子在特高压情况下受直流积污效应的影响所能承受的电压与绝缘距离的关系较常规电压变化很大,可能存在拐点,即当电压达到一数值时,绝缘子长度的增加,所能承受的电压变化很小。

换流站的开关场的外绝缘也要采取特殊办法。

采用合成绝缘材料代替瓷和玻璃是一个解决问题的办法。

设备所要求的空气净距更大。

另外由于我国特高压直流输电工程经过西部高海拔地区,还必须考虑高海拔对外绝缘的影响。

(3)换流站主接线的基本结构复杂。

±800kV特高压直流输电换流阀采用双12脉冲阀串接,晶闸管的数量大大增加。

换流变压器台数增加,一个换流站需要24台变压器,运行方式复杂,控制保护的要求高,设备布置难度大。

(4)电磁环境的要求更高。

电磁环境主要涉及可听噪声、无线电干扰、地面场强等方面。

(5)接地极入地的电流更大。

±800kV特高压直流输电单极运行时接地极入地的电流达3125A或4000A,如此大的入地电流会对周围环境造成很大的影响。

如对周围金属的腐蚀;对附近中性点接地变压器产生直流偏磁,引起变压器非正常发热、噪声增大;造成附近地面电位场强增加,对人畜造成威胁。

(6)极闭锁故障对电力系统的冲击。

因为特高压直流输电输电容量大,单极故障或双极故障将造成受电端系统供电容量的严重不足,这会对电力系统造成很大的冲击,如果交流系统不能承受,将造成电网崩溃,引起灾难性后果,因此对受电端交流系统提出了较高的要求。

3 特高压直流输电的应用前景特高压直流输电有利于实施“西电东送”战略,将应用于大型水电厂群、大型火电基地的电力外送,送电距离一般都在1000km以上。

我国拟建设的第一个特高压直流输电工程是云广(云南—广东)±800kV直流输电工程,以便将云南的电力外送。

云南的小湾水电厂装机4.2GW,附近的金安桥水电厂装机2.4GW。

云广直流工程为适应这2座水电站的电力外送,计划于2009年单极投运,2010年双极投运。

工程额定电压为±800kV,额定容量为5GW,额定电流为3125A,送电距离为1500km。

为了将金沙江的溪洛渡、向家坝水电厂的电力外送,规划了3回±800kV直流输电工程,其中1回送华中,距离约为1000km;其余2回送华东,每回输送容量为6.2~6.4GW,送电距离约2000km。

还有规划中的±800kV直流输电工程,将实现糯扎渡水电厂至广东、锦屏水电厂至江苏苏州、乌东德水电厂至福建泉州、白鹤滩水电厂至湖北东部等电力输送[3]。

大型火电基地用±800kV直流输电工程实现电力外送的项目有:内蒙古东部呼盟火电基地至东北沈阳、至华北、至山东,宁夏火电基地至华东,新疆哈密火电基地至华中等。

这些±800kV直流输电工程的送电容量规划为6.2~6.4GW,输电距离都超过1000km,有的甚至超过2000km。

世界上,印度和南非也有发展特高压直流输电的设想。

印度规划中的东北部至南部的±800kV直流输电工程的送电距离约为2000km,规划送电容量为6GW。

南非设想将刚果的水电用直流输电方式输送到南非,送电距离长达3000km,计划输送功率为3GW,电压等级为±750kV或±800kV。

4 特高压直流输电技术的应用研究4.1 特高压直流输电的基本参数直流电压、直流功率、直流电流、线路长度是直流输电工程的基本参数。

其中,直流功率W、直流电流I和直流电压U满足公式W=UI的关系。

基于提高送电容量、优化损耗和技术经济比较的综合考虑,我国的特高压直流电压等级定为±800kV。

额定电压是绝缘水平、环境影响(如电晕、电磁干扰和噪声等)、设备制造、工程设计、工程投资,以及工程建设难度的决定性因素。

直流额定功率的选择在考虑送电要求的前提下,要考虑直流系统当发生单极和双极闭锁故障时交流系统的稳定极限。

如果存在问题,要么减少直流输送功率,要么加强交流系统。

在额定电压下,直流电流的大小由直流功率决定,但也与晶闸管阀片通流能力有关。

直流功率选择5GW,直流电流为3125A,可以使用在±500kV、送电3GW直流工程中使用的直径为125mm(简称5in)阀片;直流功率选择为6.4GW,直流电流达到4000A,则需要开发直径为150mm(简称6in)的阀片。

输电线路长度是决定直流电压选择的关键因素之一。

输送距离越长(尤其是1500km以上),特高压直流输电在技术经济指标比较中的优势越明显,选择特高压直流输电方式越有必要。

4.2 换流站的主接线确定特高压直流输电换流站的主接线,首先要研究换流器的结构。

换流器结构可供选择的方案有4种:(1)方案1。

每极单12脉冲阀组结构(见图1)。

与±500kV通用结构相同,结构简单、设备少、占地面积小。

但由于换流变压器的质量、尺寸过大,运输到现场较困难。

图1 单12脉冲阀组结构图(2)方案2。

每极2组12脉冲阀组串接(见图2)。

结构较复杂、设备多,换流变压器的数量加倍。

但换流变压器的质量和尺寸能满足运输要求,当一个阀组出现故障时只须将其旁路,其他阀组照样可正常运行,提高了可用率(需配旁路开关)。

图2 双12脉冲阀组串接结构图(3)方案3。

每极12脉冲阀组并联(见图3)。

可以减少单阀组通流能力,但结构复杂、设备多,换流阀和平波电抗器的数量是单阀组的2倍。

图3 双12脉冲阀组并联结构图(4)方案4。

一端采用每极双阀组结构,另一端采用每极单阀组结构,以适应不同的运输条件,并发挥各自的优势。

从我国目前特高压直流输电工程的情况分析,方案2是优先选择方案有条件的工程可采用方案4。

当换流器采用每极2组12脉冲阀组串接(或称双12脉冲阀组串接)结构时,可以有不同的双12脉冲阀组组合形式,如(±400kV)+(±400kV);(±500kV)+(±300kV);(±600kV)+(±200kV)。

不同的组合形式对主设备的要求和运行方式有所不同,要综合各方面因素进行比较和优化选择。

4.3 换流站的主设备(1) 换流变压器。

相关文档
最新文档