(推荐)热力学公式汇总

(推荐)热力学公式汇总
(推荐)热力学公式汇总

物理化学主要公式及使用条件

第一章 气体的pVT 关系 主要公式及使用条件

1. 理想气体状态方程式

nRT RT M m pV ==)/(

或 RT n V p pV ==)/(m

式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。 m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。 R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。

此式适用于理想气体,近似地适用于低压的真实气体。

2. 气体混合物 (1) 组成

摩尔分数 y B (或x B ) = ∑A

A B /n n

体积分数

/y B m,B B *

=V ?∑*

A

V

y A

m ,A

式中∑A

A n 为混合气体总的物质的量。A m,*

V 表示在一定T ,p 下纯气体A 的摩尔

体积。∑*A

A m ,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。

(2) 摩尔质量

∑∑∑===B

B

B

B B B

B mix //n M n m M y M

式中 ∑=B

B m m 为混合气体的总质量,∑=B

B n n 为混合气体总的物质的量。上

述各式适用于任意的气体混合物。

(3)

V V p p n n y ///B B B B *

=== 式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的

分压力。*B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。

3. 道尔顿定律

p B = y B p ,∑=B

B p p

上式适用于任意气体。对于理想气体

V RT n p /B B =

4. 阿马加分体积定律

V RT n V /B B =*

此式只适用于理想气体。

第二章 热力学第一定律 主要公式及使用条件

1. 热力学第一定律的数学表示式

W Q U +=?

或 'amb δδδd δdU Q W Q p V W =+=-+

规定系统吸热为正,放热为负。系统得功为正,对环境作功为负。式中 p amb 为环境的压力,W ’为非体积功。上式适用于封闭体系的一切过程。

2. 焓的定义式

3. 焓变

(1) )(pV U H ?+?=?

式中)(pV ?为pV 乘积的增量,只有在恒压下)()(12V V p pV -=?在数值上等于体积功。

(2) 2

,m 1d p H nC T ?=?

此式适用于理想气体单纯pVT 变化的一切过程,或真实气体的恒压变温过程,或

pV

U H +=

纯的液体、固体物质压力变化不大的变温过程。

4. 热力学能(又称内能)变

此式适用于理想气体单纯pVT 变化的一切过程。

5. 恒容热和恒压热

V Q U =? (d 0,'0)V W == p Q H =? (d 0,'0)p W ==

6. 热容的定义式 (1)定压热容和定容热容

δ/d (/)p p p C Q T H T ==??

δ/d (/)V V V C Q T U T ==??

(2)摩尔定压热容和摩尔定容热容

,m m /(/)p p p C C n H T ==??

,m m /(/)V V V C C n U T ==??

上式分别适用于无相变变化、无化学变化、非体积功为零的恒压和恒容过程。 (3)质量定压热容(比定压热容)

式中m 和M 分别为物质的质量和摩尔质量。 (4) ,m ,m p V C C R -= 此式只适用于理想气体。 7. 摩尔蒸发焓与温度的关系

2

1

vap m 2vap m 1vap ,m ()()d T p T

H T H T C T ?=?+??

或 vap m vap ,m (/)p p H T C ???=?

式中 vap ,m p C ? = ,m p C (g) —,m p C (l),上式适用于恒压蒸发过程。

8. 体积功

,m

//p p p c C m C

M

==2

,m 1

d V U nC T

?=?

(1)定义式

V p W d amb -=?

或 V p W d amb ∑-=

(2) )()(1221T T nR V V p W --=--= 适用于理想气体恒压过程。 (3) )(21amb V V p W --= 适用于恒外压过程。 (4) )/ln()/ln(d 12122

1p p nRT V V nRT V p W V V =-=-=? 适用于理想气体恒温可

逆过程。

(5) ,m 21()V W U nC T T =?=- 适用于,m V C 为常数的理想气体绝热过程。

9. 理想气体可逆绝热过程方程

,m

2121(/)

(/)1V C R T T V V = ,m

2121(/)

(/)1p C R T T p p -=

1)/)(/(1212=r V V p p

上式中,,m ,m /p V C C γ=称为热容比(以前称为绝热指数),适用于,m V C 为常数,理想气体可逆绝热过程p ,V ,T 的计算。

10. 反应进度

B B /νξn ?=

上式是用于反应开始时的反应进度为零的情况,B,0B B n n n -=?,B,0n 为反应前B 的物质的量。B ν为B 的反应计量系数,其量纲为一。ξ的量纲为mol 。

11. 标准摩尔反应焓

θθθ

r m B f m B c m (B,)(B,)H H H νβνβ?=?=-?∑∑

式中θf m (B,)H β?及θ

c m (B,)H β?分别为相态为β的物质B 的标准摩尔生成焓和标

准摩尔燃烧焓。上式适用于ξ=1 mol ,在标准状态下的反应。

12. θ

m r H ?与温度的关系

2

1

θθr m

2r m

1r ,m ()()d T p T H

T H

T C T ?=?+??

式中 r ,m ,m B (B)p p C C ν?=∑,适用于恒压反应。

13. 节流膨胀系数的定义式

J T (/)H T p μ-=??

T J -μ又称为焦耳-汤姆逊系数。

第三章 热力学第二定律 主要公式及使用条件

1. 热机效率

1211211/)(/)(/T T T Q Q Q Q W -=+=-=η

式中1Q 和2Q 分别为工质在循环过程中从高温热源T 1吸收的热量和向低温热源T 2放出的热。W 为在循环过程中热机中的工质对环境所作的功。此式适用于在任意两个不同温度的热源之间一切可逆循环过程。

2. 卡诺定理的重要结论

2211//T Q T Q +?

?

?=<可逆循环不可逆循环,,00 任意可逆循环的热温商之和为零,不可逆循环的热温商之和必小于零。

3. 熵的定义

4. 克劳修斯不等式

d S {

//Q T Q T =>δ, δ, 可逆

不可逆

r d δ

/S Q T =

5.熵判据

amb sy s iso S S S ?+?=?{

0, 0, >=不可逆

可逆

式中iso, sys 和amb 分别代表隔离系统、系统和环境。在隔离系统中,不可逆过程即自发过程。可逆,即系统内部及系统与环境之间皆处于平衡态。在隔离系统中,一切自动进行的过程,都是向熵增大的方向进行,这称之为熵增原理。此式只适用于隔离系统。

6. 环境的熵变

7. 熵变计算的主要公式

2

22r

1

11δd d d d Q U p V H V p S T T T

+-?===?

?? 对于封闭系统,一切0=W δ的可逆过程的S ?计算式,皆可由上式导出 (1)

,m 2121ln(/)ln(/)V S nC T T nR V V ?=+ ,m 2112ln(/)ln(/)p S nC T T nR p p ?=+ ,m 21,m 21ln(/)ln(/)V p S nC p p nC V V ?=+

上式只适用于封闭系统、理想气体、,m V C 为常数,只有pVT 变化的一切过程 (2) T 2112ln(/)ln(/)S nR V V nR p p ?==

此式使用于n 一定、理想气体、恒温过程或始末态温度相等的过程。 (3) ,m 21ln(/)p S nC T T ?=

此式使用于n 一定、,m p C 为常数、任意物质的恒压过程或始末态压力相等的过程。

8. 相变过程的熵变

此式使用于物质的量n 一定,在α和β两相平衡时衡T ,p 下的可逆相变化。

amb

y s amb amb amb //S T Q T Q s -==?T

H S /β

αβα?=?

9. 热力学第三定律

或 0)0K ,(m =*完美晶体S

上式中符号*代表纯物质。上述两式只适用于完美晶体。

10. 标准摩反应熵

)

B (B

m B m r ∑=?θθνS S

2r m 2r m 1r ,m 1

()()(/)d p S T S T C T T θθ

?=?+??

上式中r ,m p C ?=B ,m B

(B)p C ν∑,适用于在标准状态下,反应进度为1 mol 时,任一

化学反应在任一温度下,标准摩尔反应熵的计算。

11. 亥姆霍兹函数的定义

12. r d δ'T A W = 此式只适用n 一定的恒温恒容可逆过程。

13. 亥姆霍兹函数判据

V T A ,??

??=<平衡

自发,0,0 只有在恒温恒容,且不做非体积功的条件下,才可用A ?作为过程的判据。

14. 吉布斯函数的定义

15. ,r d δ'T P G W =

此式适用恒温恒压的可逆过程。

16. 吉布斯函数判据

0)(lim m =*

→完美晶体S T 0TS

U A -=TS

H G -=

?

??=<平衡自发,,00 只有在恒温恒压,且不做非体积功的条件下,才可用G ?作为过程的判据。

17. 热力学基本方程式

d d d d d d d d d d d d U T S p V H T S V p

A S T p V G S T V p

=-=+=--=-+

热力学基本方程适用于封闭的热力学平衡系统所进行的一切可逆过程。说的更详细些,它们不仅适用于一定量的单相纯物质,或组成恒定的多组分系统发生单纯p , V, T 变化的过程。也可适用于相平衡或化学平衡的系统,由一平衡状态变为另一平衡态的过程。

18. 克拉佩龙方程

m m d /d /()

p T H T V β

βαα=?? 此方程适用于纯物质的α相和β相的两相平衡。

19. 克劳修斯-克拉佩龙方程

2vap 21vap m 12d ln(/[])(/)d ln(/)(/)(1/1/)

p p H RT T p p H R T T =?=?-

此式适用于气-液(或气-固)两相平衡;气体可视为理想气体;(l)m *V 与(g)m *

V 相

比可忽略不计,在21T T -的温度范围内摩尔蒸发焓可视为常数。 对于气-固平衡,上式vap m H ?则应改为固体的摩尔升华焓。

20. ))(/Δ(/ln(m fus m fus )1212p p H ΔV T T -=

式中fus 代表固态物质的熔化。m fus ΔV 和m fus H Δ为常数的固-液两相平衡才可用此式计算外压对熔点的T 的影响。

,T p

G ?

第四章 多组分系统热力学 主要公式及其适用条件

1. 偏摩尔量:

定义:

C

n p,T,n X X ?

???

????=B B (1)

其中X 为广延量,如V ﹑U ﹑S ......

全微分式:d ??????

=++ ? ?

??????∑B B B B B

d d d p,n T,n X X X T p X n T p (2)

总和: ∑=B

B B X n X (3)

2. 吉布斯-杜亥姆方程

在T ﹑p 一定条件下,0d B

B B =∑X n , 或 0d B

B B =∑X x 。

此处,x B 指B 的摩尔分数,X B 指B 的偏摩尔量。

3. 偏摩尔量间的关系

广延热力学量间原有的关系,在它们取了偏摩尔量后,依然存在。 例:H = U + PV T H B = U B + PV B ; A = U - TS T A B = U B - TS B ;

G = H – TS T G B = H B - TS B ;…

...S T G ;S T G ;V p G V p G n p,p n T,T

B B B B B

B -=???

?????-=???

????=???? ?????=?

??? ?

???

4. 化学势

定义 C

n p,T,n G G μB B ?

???

????==B

5. 单相多组分系统的热力学公式

∑+-=B

B

B d d d d n μV p S T U

∑++=B

B

B d d d d n μp V S T H ∑+-=B

B

B d d d d n μV p T S -A

∑++=B

B

B d d d d n μp V T S -G

C

C

C

C

B

B

B

B

B n p,T,n V,T,n p,S,n V,S,n G n A n H n

U μ?

??? ?????

??? ?????

??? ?????

??? ????==

==

但按定义,只有 C

B

n p,T,n G ?

??? ????才是偏摩尔量,其余3个均不是偏摩尔量。

6. 化学势判据

d T = 0 , d p = 0 δW ’= 0 的条件下,

??

?

??≤α=<∑∑平衡自发,,00α

0 )()d (αB

B

B

n

μ 其中,∑α

指有多相共存,)(αB μ指 α相内的B 物质。

7. 纯理想气体B 在温度T ﹑压力p 时的化学势

=+00pg)g)ln(

)*p μ(μ(RT p

pg 表示理想气体,* 表示纯态,(g)0

μ为气体的标准化学势。真实气体标准态与

理想气体标准态均规定为纯理想气体状态,其压力为标准压力 0

p = 100 kPa 。

8. 理想气体混合物中任一组分B 的化学势

)ln(

(g (pg)0B

B B p p RT )μμ+=

其中,总

p y p B B =为B 的分压。

9. 纯真实气体B 在压力为p 时的化学势

*

m =++-?000

(g)(g)ln()[(g)]d p

*p RT μμRT V p p p

其中,(g)*

m V 为纯真实气体的摩尔体积。低压下,真实气体近似为理想气体,故

积分项为零。

10. 真实气体混合物中任一组分B 的化学势

?-++=p

p p RT

V p p RT μμ0B 0B 0

B

B d ](g)[)ln((g)(g)总

其中,V B (g)为真实气体混合物中组分B 在该温度及总压B p 下的偏摩尔体积。低压下,真实气体混合物近似为理想气体混合物,故积分项为零。

11. 拉乌尔定律与亨利定律(对非电解质溶液)

拉乌尔定律: A *

A A x p p =

其中,*

A p 为纯溶剂A 之饱和蒸气压,A p 为稀溶液中溶剂A 的饱和蒸气分压,x A 为稀溶液中A 的摩尔分数。

亨利定律: B B B B B B B c k b k x k p c,b,x,===

其中,B p 为稀溶液中挥发性溶质在气相中的平衡分压,B B B c,b ,x ,k k ,k 及为用不同单位表示浓度时,不同的亨利常数。

12. 理想液态混合物

定义:其任一组分在全部组成范围内都符合拉乌尔定律的液态混合物。

B

B B x p p *=

其中,0≤x B ≤1 , B 为任一组分。

13. 理想液态混合物中任一组分B 的化学势

)ln((l)(l)B *

B B x RT μμ+=

其中,(l)*

B μ为纯液体B 在温度T ﹑压力p 下的化学势。

若纯液体B 在温度T ﹑压力0p 下标准化学势为(l)0

B μ,则有:

m =+≈?*

00

B

B

B B (l)(l)(l)d (l)0

p

*,p μμV p μ 其中,m B (l)

*

,V 为纯液态B 在温度T 下的摩尔体积。

14. 理想液态混合物的混合性质

① 0Δmix =V ; ② 0Δmix =H ; ③ B

=-∑∑mix B B

B B

Δ()ln()S n R

x

x ;

④ S T G mix mix ΔΔ-=

15. 理想稀溶液

① 溶剂的化学势:

m =++?0A A A A (l)(l)ln()(l)d 0

p

*

,p μμRT x V p

当p 与0

p 相差不大时,最后一项可忽略。

② 溶质B 的化学势:

)ln(

ln(

(g)ln(

(g))ln(

(g)(g)(0

B

B 0B

B B 0

B 0B

B B B b b RT )p b k RT μ)

p b k RT μp p RT μμμb,b,++=+=+==溶质)

我们定义:

?∞+=+p

p b,b,0

p

V μ)p b k RT μd ln(

(g)B 0

B

0B 0B

(溶质)(溶质)

同理,有:

??∞∞+=++=+p

p x,x,p

p c,c 0

0p V μp

k RT μp

V μ)p c k RT μd (溶质)(溶质)

d (溶质)(溶质)B 0B 0

B 0B B 0

B

00

B ,0B

)ln(

(g)ln(

(g)

???∞∞∞

++=++=++=p

p x,p

p c,p

p b,0

p

V x RT μ

p V c c RT μp V b b RT μμd ()ln()(d )()ln()(d )()ln(B B 0

B

B 0

B 0

B B 0B 0

B

B 溶质)溶质溶质溶质溶质(溶质)(溶质)

注:(1)当p 与0p 相差不大时,最后一项积分均可忽略。

(2)溶质B 的标准态为0

p 下B 的浓度分别为...x ,c c ,b b 1B 0B 0B === ,

时,B 仍然遵循亨利定律时的假想状态。此时,其化学势分别为)(0

B ,溶质b μ﹑)(0B ,溶质c μ﹑)(0B ,溶质

x μ。

16. 分配定律

在一定温度与压力下,当溶质B 在两种共存的不互溶的液体α﹑β间达到平衡时,若B 在α﹑β两相分子形式相同,且形成理想稀溶液,则B 在两相中浓度之比为一常数,即分配系数。

ααββ==

B B B B ()

()

()

()

b c K ,K b c

17. 稀溶液的依数性(公式不用记)

① 溶剂蒸气压下降:

B *

A A Δx p p = ② 凝固点降低:(条件:溶质不与溶剂形成固态溶液,仅溶剂以纯固体析出)

A m,fus A

f f B

f f ΔH ΔM )R(T k b k T 2*==

③ 沸点升高:(条件:溶质不挥发)

A

m,vap A

b b B b b ΔΔH M )R(T k b k T 2*==

④ 渗透压: Π=B V n RT

18. 逸度与逸度因子

气体B 的逸度~

p B ,是在温度T ﹑总压力总p 下,满足关系式:

)ln(

(g)(g)0B

B B p p RT μμ~

+=

的物理量,它具有压力单位。其计算式为:

}

d ](g)[exp{B B B p p RT V p p p

0~

总1

-=?

逸度因子(即逸度系数)为气体B 的逸度与其分压力之比:

B

B

B p p ~

=

? 理想气体逸度因子恒等于1 。

19. 活度与活度因子

对真实液态混合物中溶剂:

B B *

B B *B B ln (l)ln (l)(l)f x RT μa RT μμ+=+= ,且有:1lim B

1

B =→f x ,其中a B 为

组分B 的活度,f B 为组分B 的活度因子。

若B 挥发,而在与溶液平衡的气相中B 的分压为B p ,则有

B

B

B B

B B

x

p p

x

a f

*=

=

,且 *p p a B B

B =

对温度T 压力p 下,真实溶液中溶质B 的化学势,有:

第一章 化学热力学基础 公式总结

第一章 化学热力学基础 公式总结 1.体积功 We = -Pe △V 2.热力学第一定律的数学表达式 △U = Q + W 3.n mol 理想气体的定温膨胀过程 .定温可逆时: Wmax=-Wmin= 4.焓定义式 H = U + PV 在封闭体系中,W ′= 0,体系发生一定容过程 Qv = △U 在封闭体系中,W ′= 0,体系发生一定压过程 Qp = H2 – H1 = △H 5.摩尔热容 Cm ( J·K-1·mol-1 ): 定容热容 CV (适用条件 :封闭体系、无相变、无化学变化、 W ′=0 定容过程 适用对象 : 任意的气体、液体、固体物质 ) 定压热容 Cp ?=?2 1 ,T T m p dT nC H (适用条件 :封闭体系、无相变、无化学变化、 W ′=0 的定压过程 适用对象 : 任意的气体、液体、固体物质 ) 单原子理想气体: Cv,m = 1.5R , Cp,m = 2.5R 双原子理想气体: Cv,m = 2.5R , Cp,m = 3.5R 多原子理想气体: Cv,m = 3R , Cp,m = 4R 1 221ln ln P P nRT V V nRT =n C C m = ?=?2 1 ,T T m V dT nC U

Cp,m = Cv,m + R 6.理想气体热力学过程ΔU 、ΔH 、Q 、W 和ΔS 的总结 7.定义:△fHm θ(kJ·mol-1)-- 标准摩尔生成焓 △H —焓变; △rHm —反应的摩尔焓变 △rHm θ—298K 时反应的标准摩尔焓变; △fHm θ(B)—298K 时物质B 的标准摩尔生成焓; △cHm θ(B) —298K 时物质B 的标准摩尔燃烧焓。 8.热效应的计算 由物质的标准摩尔生成焓计算反应的标准摩尔焓变 △rH θm = ∑νB △fH θm ,B 由物质的标准摩尔燃烧焓计算反应的标准摩尔焓变 △rH θm = -∑νB △cH θm ,B 9.Kirchhoff (基尔霍夫) 方程 △rHm (T2) = △rHm (T1) + 如果 ΔCp 为常数,则 △rHm (T2) = △rHm (T1) + △Cp ( T2 - T1) 10.热机的效率为 对于卡诺热机 12 11Q Q Q Q W R +=- =η dT C p T T ? ?2 1 1 2 1211Q Q Q Q Q Q W +=+=-=η121T T T -=

热力学公式汇总

物理化学主要公式及使用条件 第一章 气体的 pVT 关系 主要公式及使用条件 1. 理想气体状态方程式 pV (m/M )RT nRT 或 pV m p (V /n ) RT 式中p , V , T 及n 单位分别为Pa, m 3, K 及mol 。 V m V /n 称为气体的摩尔体 积,其单位为m 3?mol -1。R=8.314510 J mol -1 K 1,称为摩尔气体常数。 此式适用于理想气体,近似地适用于低压的真实气体。 2. 气体混合物 ( 1) 组成 摩尔分数 式中 n A 为混合气体总的物质的 量。 V m ,A 表示在一定T , p 下纯气体A 的摩 A 尔体积。 y A V mA 为在一定T , p 下混合之前各纯组分体积的总和。 A ( 2) 摩尔质量 述各式适用于任意的气体混合物 (3) y B n B /n p B / p V B /V 式中P B 为气体B ,在混合的T , V 条件下,单独存在时所产生的压力,称为 B 的分压力。V B 为B 气体在混合气体的T , p 下,单独存在时所占的体积。 y B (或 x B ) = n B / n A A 体积分数 B y B V m,B / yAV m,A A y B M B m/n M B / n B B B B 式中 m m B 为混合气体的总质量, n B n B 为混合气体总的物质的量。上 M mix B

叮叮小文库3. 道尔顿定律 p B = y B p, p P B B 上式适用于任意气体。对于理想气体 P B n B RT/V 4. 阿马加分体积定律 V B ri B RT/V 此式只适用于理想气体。 第二章热力学第一定律 主要公式及使用条件 1. 热力学第一定律的数学表示式 U Q W 或dU 8Q SW 9Q P amb dV SW' 规定系统吸热为正,放热为负。系统得功为正,对环境作功为负。式中P amb为环境的压力,W为非体积功。上式适用于封闭体系的一切过程。 2. 焓的定义式 H U pV 3. 焓变 (1)H U (PV) 式中(pV)为pV乘积的增量,只有在恒压下(pV) P(V2v1)在数值上等于体积功。 2 (2)H 1n C p,m dT 此式适用于理想气体单纯pVT变化的一切过程,或真实气体的恒压变温过程,

工程热力学的公式大全

5.梅耶公式: R c c v p =- R c c v p 0''ρ=- 0R MR Mc Mc v p ==- 6.比热比: v p v p v p Mc Mc c c c c ===''κ 1-= κκR c v 1 -=κnR c p 外储存能: 1. 宏观动能: 221mc E k = 2. 重力位能: mgz E p = 式中 g —重力加速度。 系统总储存能: 1.p k E E U E ++= 或mgz mc U E ++ =221 2.gz c u e ++=221 3.U E = 或u e =(没有宏观运动,并且高度为零) 热力学能变化: 1.dT c du v =,?=?2 1dT c u v 适用于理想气体一切过程或者实际气体定容过程 2.)(12T T c u v -=? 适用于理想气体一切过程或者实际气体定容过程(用定值比热计算) 3.102000121221t c t c dt c dt c dt c u t vm t vm t v t v t t v ?-?=-==???? 适用于理想气体一切过程或者实际气体定容过程(用平均比热计算)

4.把()T f c v =的经验公式代入?=?2 1dT c u v 积分。 适用于理想气体一切过程或者实际气体定容过程(用真实比热公式计算) 5.∑∑====+++=n i i i n i i n u m U U U U U 1121Λ 由理想气体组成的混合气体的热力学能等于各组成气体热力学能之和,各组成气体热力学能又可表示为单位质量热力学能与其质量的乘积。 6.?-=?21pdv q u 适用于任何工质,可逆过程。 7.q u =? 适用于任何工质,可逆定容过程 8.?=?21pdv u 适用于任何工质,可逆绝热过程。 9.0=?U 适用于闭口系统任何工质绝热、对外不作功的热力过程等热力学能或理想气体定温过程。 10.W Q U -=? 适用于mkg 质量工质,开口、闭口,任何工质,可逆、不可逆过程。 11.w q u -=? 适用于1kg 质量工质,开口、闭口,任何工质,可逆、不可逆过程 12.pdv q du -=δ 适用于微元,任何工质可逆过程 13.pv h u ?-?=? 热力学能的变化等于焓的变化与流动功的差值。 焓的变化: 1.pV U H += 适用于m 千克工质 2.pv u h += 适用于1千克工质 3.()T f RT u h =+= 适用于理想气体 4.dT c dh p =,dT c h p ?=?2 1 适用于理想气体的一切热力过程或者实际气体的定压过程

工程热力学的公式大全

5.梅耶公式: R c c v p =- R c c v p 0''ρ=- 0R MR Mc Mc v p ==- 6.比热比: v p v p v p Mc Mc c c c c = = = ''κ 1-= κκR c v 1 -=κnR c p 外储存能: 1. 宏观动能: 2 2 1mc E k = 2. 重力位能: mgz E p = 式中 g —重力加速度。 系统总储存能: 1.p k E E U E ++= 或mgz mc U E ++=2 21 2.gz c u e ++=22 1 3.U E = 或 u e =(没有宏观运动,并且高度为零) 热力学能变化: 1.dT c du v =,?=?2 1dT c u v 适用于理想气体一切过程或者实际气体定容过程 2.)(12T T c u v -=? 适用于理想气体一切过程或者实际气体定容过程(用定值比热计算) 3.10 20 121 2 2 1 t c t c dt c dt c dt c u t vm t vm t v t v t t v ?-?=-==???? 适用于理想气体一切过程或者实际气体定容过程(用平均比热计算)

4.把 ()T f c v =的经验公式代入?=?2 1 dT c u v 积分。 适用于理想气体一切过程或者实际气体定容过程(用真实比热公式计算) 5.∑∑====+++=n i i i n i i n u m U U U U U 1 1 21 由理想气体组成的混合气体的热力学能等于各组成气体热力学能之和,各组成气体热力学能又可表示为单位质量热力学能与其质量的乘积。 6.?-=?2 1pdv q u 适用于任何工质,可逆过程。 7.q u =? 适用于任何工质,可逆定容过程 8.?=?21 pdv u 适用于任何工质,可逆绝热过程。 9.0=?U 适用于闭口系统任何工质绝热、对外不作功的热力过程等热力学能或理想气体定温过程。 10.W Q U -=? 适用于mkg 质量工质,开口、闭口,任何工质,可逆、不可逆过程。 11.w q u -=? 适用于1kg 质量工质,开口、闭口,任何工质,可逆、不可逆过程 12.pdv q du -=δ 适用于微元,任何工质可逆过程 13.pv h u ?-?=? 热力学能的变化等于焓的变化与流动功的差值。 焓的变化: 1.pV U H += 适用于m 千克工质 2.pv u h += 适用于1千克工质 3.()T f RT u h =+= 适用于理想气体 4.dT c dh p =,dT c h p ?=?2 1 适用于理想气体的一切热力过程或者实际气体的定压过程

热力学公式总结

第一章气体的pVT关系 主要公式及使用条件 1. 理想气体状态方程式 pV =(m/M )RT =nRT 或pV m = p(V/n) = RT 式中p, V, T及n单位分别为Pa, m3, K及mol。V m =V /n称为气体的摩尔体 积,其单位为m3.mol-1。R=8.314510 J mol-1-K-1,称为摩尔气体常数。 此式适用丁理想气体,近似地适用丁低压的真实气体。 2. 气体混合物 (1)组成 摩尔分数y B (或X B) = n B/,n A A 体积分数 B = y B V m,B y A V "m,A 式中£ n A为混合气体总的物质的量。V*m,A表示在一定T, p下纯气体A的摩A 尔体积。z y A V%A为在一定T, p下混合之前各纯组分体积的总和。A (2)摩尔质量 M mix = Y B M B=m/n = L M B/' n B B B B 式中m=£m B为混合气体的总质量,n=£n B为混合气体总的物质的量。上述各式适用丁任意的气体混合物。 (3)y B =n B / n = P B / p = V;/V 式中p B为气体B,在混合的T, V条件下,单独存在时所产生的压力,称为 B 的分压力。V B*为B气体在混合气体的T, p下,单独存在时所占的体积。 3. 道尔顿定律 p B = y B p, p = % P B B 上式适用丁任意气体。对丁理想气体 P B =A B RT/V 4. 阿马加分体积定律 ..*

V B = n B RT / p 此式只适用丁理想气体。 第二章热力学第一定律 主要公式及使用条件 1.热力学第一定律的数学表示式 U =Q W 或 d U = a Q+a W =a Q-a 网V ' W 规定系统吸热为正,放热为负。系统得功为正,对环境作功为负。式中P amb为环境的压力,W'为非体积功。上式适用丁封闭体系的一切过程。 2.焰的定义式 H =U pV 3.焰变 (1) H = U (pV) 式中以P V)为P V乘积的增量,只有在包压下A(P V) = P。-V1)在数值上等丁体积功。 2 (2) H = 1 nC p,m dT 此式适用丁理想气体单纯pVT变化的一切过程,或真实气体的包压变温过程,或纯的液体、固体物质压力变化不大的变温过程。 4.热力学能(乂称内能)变 2 U = 1 nC v,m dT 此式适用丁理想气体单纯pVT变化的一切过程。 5.包容热和包压热 Qv = U ( dV = 0W =' 0 Q p = H (d p =0,W' =0) 6.热容的定义式 (1)定压热容和定容热容 C p = aQp/dT =(州 /钉)p C v =8Q V /dT =(印 /可)V (2) 摩尔定压热容和摩尔定容热容

(完整word版)统计热力学--小结与习题

第9章 统计热力学初步小结与练习 核心内容:配分函数(q )及其与热力学函数(U,S …)之间的关系 主要内容:各种运动形式的q 及由q 求U,S …的计算公式 一、内容提要 1、微观粒子的运动形式和能级公式 n e r t εεεεεε++++=v 式中,ε:粒子的总能量,t ε:粒子整体的平动能,r ε:转动能,v ε:振动能, e ε:电子运动能,n ε:核运动能。 (1)三维平动子 )(8222222 2c n b n a n m h z y x t ++=ε 式中,h :普朗克常数;m :粒子的质量;a ,b ,c :容器的三个边长,n x ,n y ,n z 分别为x ,y ,z 轴方向的平动量子数,取值1,2,3……。 对立方容器 )(82 223 22z y x t n n n mV h ++= ε 基态n x = 1,n y = 1,n z = 1,简并度10,=t g ,而其他能级的简并度要具体情况具体分析,如3 2286mV h t =ε的能级,其简并度g = 3。 (2)刚性转子 双原子分子 )1(822+= J J I h r πε

式中,J :转动量子数,取值0,1,2……,I :转动惯量,20R I μ=, μ:分子的折合质量,2 12 1m m m m += μ,0R :分子的平衡键长,能级r ε的 简并度 g r = 2J+1 (3)一维谐振子 νυεh )2 1(v += 式中,ν:分子的振动频率,υ:振动量子数,取值0,1,2……,各能级都是非简并的,g v = 1 对三维谐振子, νυυυεh z y x )2 3 (v +++= 2 )2)(1(v ++=s s g , 其中s=υx + υy + υz (4)运动自由度:描述粒子的空间位置所必须的独立坐标的数目。 2、能级分布的微态数和Boltzmann 分布 (1)能级分布的微态数 能级分布:N 个粒子分布在各个能级上的粒子数,叫做能级 分布数,每一套能级分布数称为一种分布。 微态数:实现一种分布的方式数。 定域子系统能级分布微态数 ∏=i i n i D n g N W i !!

工程热力学公式大全

第一章基本概念 1.基本概念 热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。 边界:分隔系统与外界的分界面,称为边界。 外界:边界以外与系统相互作用的物体,称为外界或环境。 闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。 开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。绝热系统:系统与外界之间没有热量传递,称为绝热系统。 孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。 单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。 复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。 单元系:由一种化学成分组成的系统称为单元系。多元系:由两种以上不同化学成分组成的系统称为多元系。 均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。 非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。 热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。 平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。 状态参数:描述工质状态特性的各种物理量称为工质的状态参数。如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。 基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。 温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。 热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。 相对压力:相对于大气环境所测得的压力。如工程上常用测压仪表测定系统中工质的压力即为相 对压力。 比容:单位质量工质所具有的容积,称为工质的比容。 密度:单位容积的工质所具有的质量,称为工质的密度。 强度性参数:系统中单元体的参数值与整个系统的参数值相同,与质量多少无关,没有可加性,如温度、压力等。在热力过程中,强度性参数起着推动力作用,称为广义力或势。 广延性参数:整个系统的某广延性参数值等于系统中各单元体该广延性参数值之和,如系统的容积、内能、焓、熵等。在热力过程中,广延性参数的变化起着类似力学中位移的作用,称为广义位移。 准静态过程:过程进行得非常缓慢,使过程中系统内部被破坏了的平衡有足够的时间恢复到新的 平衡态,从而使过程的每一瞬间系统内部的状态都非常接近平衡状态,整个过程可看作是由一系列非常接近平衡态的状态所组成,并称之为准静态过程。 可逆过程:当系统进行正、反两个过程后,系统与外界均能完全回复到初始状态,这样的过程称为可逆过程。 膨胀功:由于系统容积发生变化(增大或缩小)而通过界面向外界传递的机械功称为膨胀功,也称容积功。 热量:通过热力系边界所传递的除功之外的能量。热力循环:工质从某一初态开始,经历一系列状态变化,最后又回复到初始状态的全部过程称为热力循环,简称循环。 2.常用公式 状态参数:1 2 1 2 x x dx- = ? ?=0 dx 状态参数是状态的函数,对应一定的状态,状态参数都有唯一确定的数值,工质在热力过程中发生状态变化时,由初状态经过不同路径,最后到达

热力学第二定律 概念及公式总结

热力学第二定律 一、 自发反应-不可逆性(自发反应乃是热力学的不可逆过程) 一个自发反应发生之后,不可能使系统和环境都恢复到原来的状态而不留下任何影响,也就是说自发反应是有方向性的,是不可逆的。 二、 热力学第二定律 1. 热力学的两种说法: Clausius:不可能把热从低温物体传到高温物体,而不引起其它变化 Kelvin :不可能从单一热源取出热使之完全变为功,而不发生其他的变化 2. 文字表述: 第二类永动机是不可能造成的(单一热源吸热,并将所吸收的热完全转化为功) 功 热 【功完全转化为热,热不完全转化为功】 (无条件,无痕迹,不引起环境的改变) 可逆性:系统和环境同时复原 3. 自发过程:(无需依靠消耗环境的作用就能自动进行的过程) 特征:(1)自发过程单方面趋于平衡;(2)均不可逆性;(3)对环境做功,可从自发过程获得可用功 三、 卡诺定理(在相同高温热源和低温热源之间工作的热机) ηη≤ηη (不可逆热机的效率小于可逆热机) 所有工作于同温热源与同温冷源之间的可逆机,其热机效率都相同,且与工作物质无关 四、 熵的概念 1. 在卡诺循环中,得到热效应与温度的商值加和等于零:ηηηη+η ηηη=η 任意可逆过程的热温商的值决定于始终状态,而与可逆途径无关 热温商具有状态函数的性质 :周而复始 数值还原 从物理学概念,对任意一个循环过程,若一个物理量的改变值的总和为0,则该物理量为状态函数 2. 热温商:热量与温度的商 3. 熵:热力学状态函数 熵的变化值可用可逆过程的热温商值来衡量 ηη :起始的商 ηη :终态的熵 ηη=(ηηη)η (数值上相等) 4. 熵的性质: (1)熵是状态函数,是体系自身的性质 是系统的状态函数,是容量性质 (2)熵是一个广度性质的函数,总的熵的变化量等于各部分熵的变化量之和 (3)只有可逆过程的热温商之和等于熵变 (4)可逆过程热温商不是熵,只是过程中熵函数变化值的度量 (5)可用克劳修斯不等式来判别过程的可逆性 (6)在绝热过程中,若过程是可逆的,则系统的熵不变 (7)在任何一个隔离系统中,若进行了不可逆过程,系统的熵就要增大,所以在隔离系统中,一切能自动进行的过程都引起熵的增大。若系统已处于平衡状态,则其中的任何过程一定是可逆的。 五、克劳修斯不等式与熵增加原理 不可逆过程中,熵的变化量大于热温商 ηηη→η?(∑ηηηηηηη)η>0 1. 某一过程发生后,体系的热温商小于过程的熵变,过程有可能进行不可逆过程 2. 某一过程发生后,热温商等于熵变,则该过程是可逆过程

热力学基础计算的题目-问题详解

《热力学基础》计算题答案全 1. 温度为25℃、压强为1 atm 的1 mol 刚性双原子分子理想气体,经等温过程体积膨胀至原来的3倍. (普适气体常量R =8.31 1 --??K mol J 1,ln 3=1.0986) (1) 计算这个过程中气体对外所作的功. (2) 假若气体经绝热过程体积膨胀为原来的3倍,那么气体对外作的功又是多少? 解:(1) 等温过程气体对外作功为 ??=== 000333ln d d V V V V RT V V RT V p W 2分 =8.31×298×1.0986 J = 2.72×103 J 2分 (2) 绝热过程气体对外作功为 V V V p V p W V V V V d d 0 0003003??-==γγ RT V p 1 311131001--=--=--γγγγ 2分 =2.20×103 J 2分 2.一定量的单原子分子理想气体,从初态A 出发,沿图示直线过程变到另一状态B ,又经过等容、等压两过程回到状态A . (1) 求A →B ,B →C ,C →A 各过程中系统 对外所作的功W ,内能的增量E 以及所吸收的 热量Q . (2) 整个循环过程中系统对外所作的总功以及从外界吸收的总热量(过程吸热的代数和). 解:(1) A →B : ))((2 11A B A B V V p p W -+= =200 J . ΔE 1=νC V (T B -T A )=3(p B V B -p A V A ) /2=750 J Q =W 1+ΔE 1=950 J . 3分 1 2 3 1 2 O V (10-3 m 3) 5 A B C

热力学基础计算题

《热力学基础》计算题 1. 温度为25℃、压强为1 atm 的1 mol 刚性双原子分子理想气体,经等温过程体积膨胀 至原来的3倍. (普适气体常量R =8.31 1 --??K mol J 1,ln 3=1.0986) (1) 计算这个过程中气体对外所作的功. (2) 假若气体经绝热过程体积膨胀为原来的3倍,那么气体对外作的功又是多少? 解:(1) 等温过程气体对外作功为 ??=== 0000333ln d d V V V V RT V V RT V p W 2分 =8.31×298×1.0986 J = 2.72×103 J 2分 (2) 绝热过程气体对外作功为 V V V p V p W V V V V d d 0 0003003??-== γγ RT V p 1 311131001--=--=--γγγ γ 2分 =2.20×103 J 2分 2.一定量的单原子分子理想气体,从初态A 出发,沿图示直线过程变到另一状态B ,又经过等容、 等压两过程回到状态A . (1) 求A →B ,B →C ,C →A 各过程中系统对外所作的功W ,内能的增量?E 以及所吸收的热量Q . (2) 整个循环过程中系统对外所作的总功以及从外界吸收的总热量(过程吸热的代数和). 解:(1) A →B : ))((211A B A B V V p p W -+==200 J . ΔE 1=ν C V (T B -T A )=3(p B V B -p A V A ) /2=750 J Q =W 1+ΔE 1=950 J . 3分 B → C : W 2 =0 ΔE 2 =ν C V (T C -T B )=3( p C V C -p B V B ) /2 =-600 J . Q 2 =W 2+ΔE 2=-600 J . 2分 C →A : W 3 = p A (V A -V C )=-100 J . 150)(2 3)(3-=-=-=?C C A A C A V V p V p T T C E ν J . Q 3 =W 3+ΔE 3=-250 J 3分 (2) W = W 1 +W 2 +W 3=100 J . Q = Q 1 +Q 2 +Q 3 =100 J 2分 3) 5

热力学公式汇总

物理化学主要公式及使用条件 第一章 气体的pVT 关系 主要公式及使用条件 1. 理想气体状态方程式 nRT RT M m pV ==)/( 或 RT n V p pV ==)/(m 式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。 m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。 R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。 此式适用于理想气体,近似地适用于低压的真实气体。 2. 气体混合物 (1) 组成 摩尔分数 y B (或x B ) = ∑A A B /n n 体积分数 /y B m,B B * =V ?∑*A V y A m ,A 式中∑A A n 为混合气体总的物质的量。A m,* V 表示在一定T ,p 下纯气体A 的摩 尔体积。∑*A A m ,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。 (2) 摩尔质量 ∑∑∑===B B B B B B B mix //n M n m M y M 式中 ∑=B B m m 为混合气体的总质量,∑=B B n n 为混合气体总的物质的量。上 述各式适用于任意的气体混合物。 (3) V V p p n n y ///B B B B * ===

式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。* B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。 3. 道尔顿定律 p B = y B p ,∑=B B p p 上式适用于任意气体。对于理想气体 V RT n p /B B = 4. 阿马加分体积定律 V RT n V /B B =* 此式只适用于理想气体。 第二章 热力学第一定律 主要公式及使用条件 1. 热力学第一定律的数学表示式 W Q U +=? 或 'amb δδδd δdU Q W Q p V W =+=-+ 规定系统吸热为正,放热为负。系统得功为正,对环境作功为负。式中 p amb 为环境的压力,W ’为非体积功。上式适用于封闭体系的一切过程。 2. 焓的定义式 3. 焓变 pV U H +=

热力学公式

电熔镁砂热回收热量引用计算公式说明 本课题主要研究熔坨高温回收利用,众所周知,物体能量传递主要以热传导、对流换热、辐射三种方式进行传递。本课题主要涉及到熔坨自身热传导,气体对物体表面对流换热传导过程。物体能量主要是以物体温度作为表征,其中还有化学能、汽化热能等其它不以温度为表征的能量。在本课题能量传递过程中共涉及到熔坨非稳态导热过程,空气与熔坨间的对流放热过程,热空气与矿石原料对流换热过程和矿石原料加热过程, 一、在热工过程热平衡计算中应用了热力学第一定律(即能量 守恒定律),其表达式根据能量守恒定律得知,熔坨的放 出热量等于空气的得热;热空气放热等于矿石原料的热量 (其中含有矿石原料的分解热),并考虑到系统的热损失。 二、在热量传递过程采用熔坨非稳态热传导(熔坨自身传热) 放热和矿石原料非稳态传到加热计算;空气与熔坨和热空 气加热矿石原料的对流换热计算公式(即牛顿冷却或加热 公式)。 三、任何物质在高于绝对零度的温度下,必然具有热能,其能 量值与物质的比热容、物质质量、物质所具有的温度有关。 据此计算熔坨的总能量,整个放热期间终了时刻的能量。 整个吸热过程终了时刻物质所具有的热能(含化学分解热 能)。根据能量传递过程中的热量计算工序所要求的矿石 原料加热量 四、根据应用能量守恒定律、非稳态传导和对流换热过程的计 算得知。该项目可回收熔坨加工过程中的热能。 本课题采用热力学公式如下: 一、热力学第一定律(能量守恒定律) 基本表达式 Q=⊿U+AW (Kcal) Q-----------热量(Kcal)吸热取正值,反之取负值 ⊿U--------系统的内能变化(Kcal) A-----------功热当量1/427(Kcal /kgf*m) W------------物体的膨胀功 kgf*m 二、物体具有的能量 根据任何高于绝对零度物体下所具有的能量得到如下公式: 1、公式Q=Cp*M*T 或 Q=Cp*ρ*V*T (KJ) 该计算公式表征任何高于绝对零度物体下所具有的能量。

热力学公式

1. 理想气体状态方程式 nRT RT M m pV ==)/( 或 RT n V p pV ==)/(m 式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。 m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。 R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。 此式适用于理想气体,近似地适用于低压的真实气体。 2. 气体混合物 (1) 组成 摩尔分数 y B (或x B ) = ∑A A B /n n 体积分数 / y B m,B B * =V ?∑* A V y A m,A 式中∑A A n 为混合气体总的物质的量。A m,* V 表示在一定T ,p 下纯气体A 的摩 尔体积。∑*A A m,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。 (2) 摩尔质量 ∑∑∑===B B B B B B B mix //n M n m M y M 式中 ∑=B B m m 为混合气体的总质量,∑=B B n n 为混合气体总的物质的量。上 述各式适用于任意的气体混合物。 (3) V V p p n n y ///B B B B * === 式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。* B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。 3. 道尔顿定律 p B = y B p ,∑=B B p p 上式适用于任意气体。对于理想气体

V RT n p /B B = 4. 阿马加分体积定律 V RT n V /B B =* 此式只适用于理想气体。 1. 热力学第一定律的数学表示式 W Q U +=? 或 'a m b δδδ d δd U Q W Q p V W =+=-+ 规定系统吸热为正,放热为负。系统得功为正,对环境作功为负。式中 p amb 为环境的压力,W ?为非体积功。上式适用于封闭体系的一切过程。 2. 焓的定义式 3. 焓变 (1) )(pV U H ?+?=? 式中)(pV ?为pV 乘积的增量,只有在恒压下)()(12V V p pV -=?在数值上等于体积功。 (2) 2 ,m 1 d p H nC T ?= ? 此式适用于理想气体单纯pVT 变化的一切过程,或真实气体的恒压变温过程,或纯的液体、固体物质压力变化不大的变温过程。 4. 热力学能(又称内能)变 此式适用于理想气体单纯pVT 变化的一切过程。 5. 恒容热和恒压热 V Q U =? (d 0,'0V W == p Q H =? (d 0,'0)p W == pV U H +=2 ,m 1 d V U nC T ?=?

换热器热力学平均温差计算方法

换热器热力学平均温差计算方法 1引言 换热器是工业领域中应用十分广泛的热量交换设备,在换热器的热工计算中,常常利用 传热方程和传热系数方程联立求解传热量、传热面积、分离换热系数和污垢热阻等参数 [1, 2]。温差计算经常采用对数平均温差法(LMTD)和效能-传热单元数法(-NTU),二者原理相同。不过,使用LMTD方法需要满足一定的前提条件;如果不满足这些条件,可能会导致计算误差。刘凤珍对低温工况下结霜翅片管换热器热质传递进行分析,从能量角度出发,由换热器的对数平均温差引出对数平均焓差,改进了传统的基于对数平均温差的结霜翅片管换 热器传热、传质模型[3]。Shao和Granryd通过实验和理论分析认为,由于R32∕R134a混合物温度和焓值为非线性关系,采用LMTD法会造成计算误差;当混合物的组分不同时,所 计算的换热系数可能偏大,也可能偏小[4],他们认为,采用壁温法可使计算结果更精确。 王丰利用回热度对燃气轮机内流体的对数平均温差和换热面积进行计算[5]。Ziegler定义了温度梯度、驱动平均温差、热力学平均温差,认为判定换热效率用热力学平均温差,用对数 平均温差判定传热成本的投入,而算术平均温差最易计算;当温度梯度足够大时,对数平均 温差、算术平均温差和热力学平均温差几乎相等[6]。孙中宁、孙桂初等也对传热温差的计 算方法进行了分析,通过对各种计算方法之间的误差进行比较,指出了LMTD法的局限性 和应用时需要注意的问题[7, 8]。 Ram在对LMTD 法进行分析的基础上,提出了一种LMTDnew的对数平均温差近似算法,减小了计算误差[9]。本文在已有工作的基础上,分别采用LMTD和测壁温两种方法,计算了逆流换热器的传热系数,对两种方法进行比较,并在实验的基础上,进一步分析了二者的不同之处。 2平均温差的计算方法 在换热设备的热工计算中,经常用到对数平均温差和算术平均温差。 对数平均ia?i Δ∕-Δ< AZ- =T-Sr In Δ/ 算术平均??: % =l(?∕ι+?∕?ι) 对数平均温差在一定条件下可由积分平均温差表示[10],即:

热力学基本概念和公式

第一章热力学基本概念 一、基本概念 热机:可把热能转化为机械能的机器统称为热力发动机,简称热机。工质:实现热能与机械能相互转换的媒介物质即称为工质。 热力系统:用界面将所要研究的对象与周围环境分割开来,这种人为分割的研究对象,称为热力系统。 边界:系统与外界得分界面。 外界:边界以外的物体。 开口系统:与外界有物质交换的系统,控制体(控制容积)。 闭口系统:与外界没有物质的交换,控制质量。 绝热系统:与外界没有热量的交换。 孤立系统:与外界没有任何形式的物质和能量的交换的系统。 状态:系统中某瞬间表现的工质热力性质的总状况。 平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变,系统内外同时建立热和力的平衡,这时系统的状态就称为热力平衡状态。 状态参数:温度、压力、比容(密度)、内能、熵、焓。 强度性参数:与系统内物质的数量无关,没有可加性。 广延性参数:与系统同内物质的数量有关,具有可加性。 准静态过程:过程进行的非常缓慢,使过程中系统内部被破坏了的平衡有足够的时间恢复到新的平衡态,从而使过程的每一瞬间系统内部的状态都非常接近于平衡状态。

可逆过程:当系统进行正反两个过程后,系统与外界都能完全回复到出示状态。 膨胀功:由于系统容积发生变化(增大或者缩小)而通过系统边界向外界传递的机械功。(对外做功为正,外界对系统做功为负)。 热量:通过系统边界向外传递的热量。 热力循环:工质从某一初态开始,经历一系列中间过程,最后又回到初始状态。 二、基本公式 ??=-=0 2 1 1 2 dx x x dx 理想气体状态方程式: RT pV m = 循环热效率 1 q w net t = η 制冷系数 net w q 2 = ε 第二章 热力学第一定律 一、基本概念 热力学第一定律:能量既不能被创造,也不能被消灭,它只能从一种形式转换成另一种形式,或从一个系统转移到另一个系统,而其总量保持恒定。

热力学公式总结(新)

第一章 气体的pVT 关系 主要公式及使用条件 1. 理想气体状态方程式 nRT RT M m pV ==)/( 或 RT n V p pV ==)/(m 式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。 m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。 R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。 此式适用于理想气体,近似地适用于低压的真实气体。 2. 气体混合物 (1) 组成 摩尔分数 y B (或x B ) = ∑A A B /n n 体积分数 /y B m,B B * =V ?∑*A V y A m ,A 式中∑A A n 为混合气体总的物质的量。A m,* V 表示在一定T ,p 下纯气体A 的摩 尔体积。∑*A A m ,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。 (2) 摩尔质量 ∑∑∑===B B B B B B B mix //n M n m M y M 式中 ∑=B B m m 为混合气体的总质量,∑=B B n n 为混合气体总的物质的量。上 述各式适用于任意的气体混合物。 (3) V V p p n n y ///B B B B * === 式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。* B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。 3. 道尔顿定律 p B = y B p ,∑=B B p p 上式适用于任意气体。对于理想气体

V RT n p /B B = 4. 阿马加分体积定律 */B B V n RT p = 此式只适用于理想气体。 第二章 热力学第一定律 主要公式及使用条件 1. 热力学第一定律的数学表示式 W Q U +=? 或 'amb δδδd δdU Q W Q p V W =+=-+ 规定系统吸热为正,放热为负。系统得功为正,对环境作功为负。式中 p amb 为环境的压力,W ’为非体积功。上式适用于封闭体系的一切过程。 2. 焓的定义式 3. 焓变 (1) )(pV U H ?+?=? 式中)(pV ?为pV 乘积的增量,只有在恒压下)()(12V V p pV -=?在数值上等于体积功。 (2) 2 ,m 1d p H nC T ?=? 此式适用于理想气体单纯pVT 变化的一切过程,或真实气体的恒压变温过程,或纯的液体、固体物质压力变化不大的变温过程。 4. 热力学能(又称内能)变 此式适用于理想气体单纯pVT 变化的一切过程。 5. 恒容热和恒压热 V Q U =? (d 0,'0)V W == p Q H =? (d 0,'0)p W == 6. 热容的定义式 (1)定压热容和定容热容 pV U H +=2 ,m 1 d V U nC T ?=?

第二章 热力学第一定律主要公式及其适用条件

第二章 热力学第一定律 主要公式及使用条件 1. 热力学第一定律的数学表示式 W Q U +=? 或 'a m b δδδd δd U Q W Q p V W =+=-+ 规定系统吸热为正,放热为负。系统得功为正,对环境作功为负。式中 p amb 为环境的压力,W ’为非体积功。上式适用于封闭体系的一切过程。 2. 焓的定义式 3. 焓变 (1) )(pV U H ?+?=? 式中)(pV ?为pV 乘积的增量,只有在恒压下)()(12V V p pV -=?在数值上等于体积功。 (2) 2 ,m 1d p H nC T ?=? 此式适用于理想气体单纯pVT 变化的一切过程,或真实气体的恒压变温过程,或纯的液体、固体物质压力变化不大的变温过程。 4. 热力学能(又称内能)变 此式适用于理想气体单纯pVT 变化的一切过程。 5. 恒容热和恒压热 V Q U =? (d 0,'0 V W == p Q H =? (d 0,'0)p W == 6. 热容的定义式 (1)定压热容和定容热容 pV U H +=2,m 1d V U nC T ?=?

δ/d (/)p p p C Q T H T ==?? δ/d (/)V V V C Q T U T ==?? (2)摩尔定压热容和摩尔定容热容 ,m m /(/)p p p C C n H T ==?? ,m m /(/)V V V C C n U T ==?? 上式分别适用于无相变变化、无化学变化、非体积功为零的恒压和恒容过程。 (3)质量定压热容(比定压热容) 式中m 和M 分别为物质的质量和摩尔质量。 (4) ,m ,m p V C C R -= 此式只适用于理想气体。 (5)摩尔定压热容与温度的关系 23,m p C a bT cT dT =+++ 式中a , b , c 及d 对指定气体皆为常数。 (6)平均摩尔定压热容 21,m ,m 21d /()T p p T C T T T C =-? 7. 摩尔蒸发焓与温度的关系 2 1vap m 2vap m 1vap ,m ()()d T p T H T H T C T ?=?+?? 或 v a p m v a p (/)p p H T C ???=? 式中 vap ,m p C ? = ,m p C (g) —,m p C (l),上式适用于恒压蒸发过程。 8. 体积功 (1)定义式 V p W d amb -=? 或 V p W d a m b ∑-= (2) )()(1221T T nR V V p W --=--= 适用于理想气体恒 ,m //p p p c C m C M ==

换热器热力学平均温差计算方法

换热器热力学平均温差计算方法 1·引言 换热器是工业领域中应用十分广泛的热量交换设备,在换热器的热工计算中,常常利用传热方程和传热系数方程联立求解传热量、传热面积、分离换热系数和污垢热阻等参数[1,2]。温差计算经常采用对数平均温差法(LMTD)和效能-传热单元数法(ε-NTU),二者原理相同。不过,使用LMTD方法需要满足一定的前提条件;如果不满足这些条件,可能会导致计算误差。凤珍对低温工况下结霜翅片管换热器热质传递进行分析,从能量角度出发,由换热器的对数平均温差引出对数平均焓差,改进了传统的基于对数平均温差的结霜翅片管换热器传热、传质模型[3]。Shao和Granryd通过实验和理论分析认为,由于R32/R134a混合物温度和焓值为非线性关系,采用LMTD法会造成计算误差;当混合物的组分不同时,所计算的换热系数可能偏大,也可能偏小[4],他们认为,采用壁温法可使计算结果更精确。王丰利用回热度对燃气轮机流体的对数平均温差和换热面积进行计算[5]。Ziegler定义了温度梯度、驱动平均温差、热力学平均温差,认为判定换热效率用热力学平均温差,用对数平均温差判定传热成本的投入,而算术平均温差最易计算;当温度梯度足够大时,对数平均温差、算术平均温差和热力学平均温差几乎相等[6]。中宁、桂初等也对传热温差的计算方法进行了分析,通过对各种计算方法之间的误差进行比较,指出了LMTD法的局限性和应用时需要注意的问题[7,8]。Ram在对LMTD法进行分析的基础上,提出了一种LMTDnew的对数平均温差近似算法,减小了计算误差[9]。本文在已有工作的基础上,分别采用LMTD和测壁温两种方法,计算了逆流换热器的传热系数,对两种方法进行比较,并在实验的基础上,进一步分析了二者的不同之处。 2·平均温差的计算方法 在换热设备的热工计算中,经常用到对数平均温差和算术平均温差。 对数平均温差在一定条件下可由积分平均温差表示[10],即:

相关文档
最新文档