热力学公式汇总
热力学公式总结
![热力学公式总结](https://img.taocdn.com/s3/m/baf8143ba2161479171128ea.png)
第一章 气体的pVT 关系 主要公式及使用条件1. 理想气体状态方程式nRT RT M m pV ==)/(或 RT n V p pV ==)/(m式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。
m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。
R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。
此式适用于理想气体,近似地适用于低压的真实气体。
2. 气体混合物 (1) 组成摩尔分数 y B (或x B ) = ∑AA B /n n体积分数 /y B m,B B *=V ϕ∑*AVy Am ,A式中∑AA n 为混合气体总的物质的量。
Am,*V表示在一定T ,p 下纯气体A 的摩尔体积。
∑*AA m ,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。
(2) 摩尔质量∑∑∑===BBBB B BB mix //n M n m M y M式中 ∑=BB m m 为混合气体的总质量,∑=BB n n 为混合气体总的物质的量。
上述各式适用于任意的气体混合物。
(3) V V p p n n y ///B B B B *===式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。
*B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。
3. 道尔顿定律p B = y B p ,∑=BB p p上式适用于任意气体。
对于理想气体V RT n p /B B =4. 阿马加分体积定律*/B B V n RT p =此式只适用于理想气体。
第二章 热力学第一定律 主要公式及使用条件1. 热力学第一定律的数学表示式W Q U +=∆或 'a m bδδδd δd U Q W Q p V W=+=-+ 规定系统吸热为正,放热为负。
系统得功为正,对环境作功为负。
热力学公式总结
![热力学公式总结](https://img.taocdn.com/s3/m/fb44d12edf80d4d8d15abe23482fb4daa58d1d11.png)
H U pV
(1)
H U (pV )
式中 (pV ) 为 pV 乘积的增量, 惟独在恒压下
(pV)
p(V 2
V 1
)
在数值上等于体
积功。
(2)
H 2 nC d T
1
p,m
此式合用于理想气体单纯 pVT 变化的一切过程,或者真实气体的恒压变温过程,
或者纯的液体、固体物质压力变化不大的变温过程。
U 2 nC d T 此式合用于理想气体单纯pVT 变化的1 一切V ,m过程。
(1) 组成
摩尔分数
yB (或者
xB) =
n/ B
n A
A
体积分数
y V /
B
B
m,B
y V A m ,A
A
式中
n
为混合气体总的物质的量。
V
m,A
表示在一定
T,p 下纯气体
A 的摩
A
A
尔体积。 y V 为在一定 T,p 下混合之前各纯组分体积的总和。 A m ,A A
(2) 摩尔质量
式中 m m
V* (l) 与V* (g)
m
m
相
比可忽稍不计,在T1
_
T 2
的温度范围内摩尔蒸发焓可视为常数。
对于气- 固平衡,上式编 H 则应改为固体的摩尔升华焓。
vap m
定义:
=
(? (?
)
)
其中 X 为广延量,如 V ﹑ U ﹑ S......
全微分式: d
=
(|(
? ?
))|
+
? (|( ?
))|
+
(1) (2)
(3)
高中物理中的热学中的重要公式
![高中物理中的热学中的重要公式](https://img.taocdn.com/s3/m/25780f750a4c2e3f5727a5e9856a561252d321fa.png)
高中物理中的热学中的重要公式热学是物理学的一个重要分支,研究热量和能量转换的规律。
在学习热学的过程中,经常会用到一些重要的公式,这些公式具有很强的实用性和指导意义。
本文将介绍高中物理中热学中的几个重要公式。
一、热量Q计算公式热量是物体与外界交换能量的形式,可以通过温度变化来计算。
根据热力学的基本原理,热量的计算公式为:Q = mcΔT其中,Q表示热量,单位是焦耳(J);m表示物体的质量,单位是千克(kg);c表示物体的比热容,单位是焦耳/千克·摄氏度(J/(kg·°C));ΔT表示温度的变化量,单位是摄氏度(°C)。
这个公式可以用于计算材料在温度变化过程中的热量变化,比如热传导、热辐射等。
二、热传导的热流量计算公式热传导是热能在固体、液体或气体中通过分子间的传递而引起的热平衡现象。
热传导的热流量可以通过以下的公式来计算:Q = kAΔT/Δx其中,Q表示热流量,单位是焦耳/秒(J/s);k表示物体的导热系数,单位是焦耳/(米·秒·摄氏度)(J/(m·s·°C));A表示传热面积,单位是平方米(m^2);ΔT表示温度差,单位是摄氏度(°C);Δx表示热传导的长度,单位是米(m)。
这个公式可以用于计算热传导过程中的热流量,比如导热管、导热材料等。
三、热辐射能量计算公式热辐射是物体由于内部热运动而释放能量的过程,主要通过电磁辐射方式传递。
热辐射的能量可以通过以下的公式计算:P = εσAT^4其中,P表示辐射功率,单位是瓦特(W);ε表示物体的发射率,取值范围在0和1之间,无单位;σ表示斯特藩-玻尔兹曼常数,约为5.67×10^-8W/(m^2·K^4);A表示物体的表面积,单位是平方米(m^2);T表示物体的绝对温度,单位是开尔文(K)。
这个公式可以用于计算热电设备、辐射热传输等,也可以用于估计天体的表面温度。
热学公式
![热学公式](https://img.taocdn.com/s3/m/32cb62bbf121dd36a32d82f1.png)
1、热力学第零定律在不受外界影响的条件下,两个热力学系统同时与第三个热力学系统处于热平衡,则两个热力学系统也必定处于热平衡。
2、在宏观上,温度是决定一系统是否与其它系统处于热平衡的物理量。
一切互为热平衡的系统都具有相同的温度值。
开氏温标 理想气体定律:P tr 为气体温度计在水的三相点时的压强。
热力学温度与摄氏温度的关系: t = T- 273.15物态或状态方程 1、玻意耳定律P V = C (当T 不变) 2、盖吕萨克定律V = V 0(1 + αV t ) (P 不变) 气体膨胀系数αV 3、查理定律P = P 0( 1 + αP t ) (V 不变) 气体压强系数 αP①该三条定律近似地适用于所有气体,只要温度不太低,则气体愈稀薄(低压气体),以上三式就能愈准确地描述气体状态的变化;②在气体无限稀薄的极限下,所有气体的αV 、αP 趋于共同的极限α ,其数值约为1/273。
αV =αP = 1/T 0=1/273 理想气体物态方程 1、同一成份(A )同一状态之间关系(门捷列夫-克拉珀龙方程)PV = ν RT =(M/M mol )RT γ为混合气体的总摩尔数γ1+γ2 (B )同一系统不同平衡态之间关系: P 1V 1 / T 1 = P 2V 2 / T 2 2、道尔顿分压定律混合气体总压强等于各种组分的分压强之和。
P = P 1+P 2+……+P n3、几种成份:P = P 1 + P 2 + ...... + P n = ( ν1 + ν2 + ......+ νn )RT/ VR = 8.31 J mol -1 K -1称为普适气体常量。
阿伏伽德罗常数:N A = 6.02× 10 23 mol -1理想气体的微观模型无外场时,分子在各处出现的概率相同 N 个分子给予器壁的压强n :分子数密度分子热运动平均平动动能 压强公式:trX XK X T 16.273)(=0()PV T P Rγ=()273.16limtr P trP T P K P →=⋅单位时间内碰在单位面积器壁上平均分子数理想气体物态方程的另一种形式k = R/N A = 1.38×10-23 J K -1温度的微观意义 温度是平衡态系统的微观粒子热运动程度强弱的量度。
热力学公式汇总
![热力学公式汇总](https://img.taocdn.com/s3/m/fb33f21aba0d4a7303763acc.png)
物理化学主要公式与使用条件第一章代体pw关系主要公式与使用条件1.理想代体状态方程式pV = (m/M)RT = nRT或P V m=p(V/n) = RT式中p, K T与卫单位分别为m3, K与mol。
V m=V/n称为气体摩尔体积,其单位为n? • mol^o 08.314510 J・mol" • K'1,称为摩尔气体常数。
此式适用于理想气体,近似地适用于低压真实气体。
2・气体混合物(1)组成摩尔分数〃(或%)=如/工"AA体积分数% =九叫3/工)"也A式中I>A为混合气体总物质量C旷m人表示在一定T, Q下纯气体A摩尔A体积。
工为在一定T, p下混合之前各纯组分体积总和。
A(2)摩尔质量B B B式中〃匸为叫为混合气体总质量,”=工如为混合气体总物质量。
上述B B各式适用于任意气体混合物。
1 / 20(3) )'B =H B/H =P B//?=V B/V式中炷为气体B,在混合T, U条件下,单独存在时所产生压力,称为B 分压力。
心为B气体在混合气体7;p下,单独存在时所占体积。
3・道尔顿定律P B =Y B P, P = X /?BB上式适用于任意气体。
对于理想气体P B=%RGV4・阿马加分体积定律V;=n ti RT/V此式只适用于理想气体。
第二章热力学第一定律主要公式与使用条件1.热力学第一定律数学表示式△U=Q+W或=50 + 8W = 6C-p amb dV+6W规定系统吸热为正,放热为负。
系统得功为正,对环境作功为负。
式中Panxb 为环境压力,"为非体积功。
上式适用于封闭体系一切过程。
2.熔定义式H=U + pV3・熔变(1)式中△(/")为/川乘积增量,只有在恒压下在数值上等于体积功。
(2) ^H=\~nC pm dT此式适用于理想气体单纯pW变化一切过程,或真实气体恒压变温过程, 或纯液体、固体物质压力变化不大变温过程。
热学公式整理
![热学公式整理](https://img.taocdn.com/s3/m/f546b70ca22d7375a417866fb84ae45c3b35c2f0.png)
热学公式整理
以下是一些常用的热学公式整理:
1. 热传导公式:Q = k * A * ΔT / L
其中,Q表示传热量,k表示热传导系数,A表示传热面积,ΔT表示温度差,L表示传热距离。
2. 热辐射公式:Q = σ * A * ε * T^4
其中,Q表示辐射热能,σ表示斯特藩-玻尔兹曼常数,A表
示辐射面积,ε表示表面发射率,T表示绝对温度。
3. 热膨胀公式:ΔL = α * L * ΔT
其中,ΔL表示长度变化,α表示线膨胀系数,L表示原长度,ΔT表示温度变化。
4. 热容公式:Q = mcΔT
其中,Q表示吸热量或放热量,m表示物体质量,c表示比
热容,ΔT表示温度变化。
5. 热力学第一定律:ΔU = Q - W
其中,ΔU表示内能变化,Q表示吸热量,W表示功。
6. 熵变公式:ΔS = Q / T
其中,ΔS表示熵变,Q表示吸热量或放热量,T表示温度。
热力学四个基本公式
![热力学四个基本公式](https://img.taocdn.com/s3/m/141daa60bdd126fff705cc1755270722192e5985.png)
热力学四个基本公式热力学是研究物质能量和能量转换规律的科学,它是物理学的一个重要分支,涉及到许多基本公式。
下面将介绍热力学的四个基本公式。
1.热力学第一定律热力学第一定律,也被称为能量守恒定律,它表明能量是守恒的。
根据能量守恒定律,一个系统的能量改变等于系统所接收的热能和做功的和。
这个定律可以用以下公式表示:ΔU=Q-W其中,ΔU表示系统内能的变化,Q表示系统所接收的热能,W表示系统所做的功。
正负号的选择取决于能量的流向,当热能从系统流出或者系统做功时,取负号,反之则取正号。
2.热力学第二定律热力学第二定律描述了能量转换的方向,它基于熵的概念,熵反映了系统的无序程度。
热力学第二定律可以用以下两个常见的公式表示:第一种是克劳修斯不等式:ΔS≥Q/T其中,ΔS表示系统和环境熵的改变,Q表示系统所接收的热能,T表示系统的温度。
根据不等式,当系统吸收热量时,系统和环境的总熵会增加,只有当系统处于绝对零度时(T=0K),熵不会改变。
第二种是熵增原理:ΔS≥0熵增原理表明,孤立系统的熵(无序程度)不会减少,即系统总是倾向于变得更加无序。
3.卡诺循环效率公式卡诺循环是一种理想化的热机循环,它表明了热机的最高效率。
卡诺循环效率公式可以用以下公式表示:η=1-(Tc/Th)其中,η表示卡诺循环的效率,Tc表示冷源的温度,Th表示热源的温度。
根据公式,卡诺循环的效率取决于热源和冷源的温度差,温差越大,效率越高。
4.熵变公式熵变是指系统的熵发生的变化,可以用以下公式表示:ΔS=Sf-Si其中,ΔS表示熵变,Sf表示系统的最终熵,Si表示系统的初始熵。
根据公式,如果ΔS大于零,表示系统的无序程度增加,反之,如果ΔS小于零,则表示系统的无序程度减少。
除了上述的四个基本公式,热力学还有许多重要的公式和定律,例如理想气体状态方程、介导平衡等等。
这些公式和定律是热力学研究的基石,通过它们可以更好地理解物质能量和能量转换的规律。
热力学公式总结
![热力学公式总结](https://img.taocdn.com/s3/m/2885318e65ce050877321330.png)
第一章气体的pVT关系主要公式及使用条件1.理想气体状态方程式pV (m/ M )RT nRT或pV p(V /n) RTm式中p,V,T 及n 单位分别为Pa,m3,K 及mol。
3,K 及mol。
V m V / n 称为气体的摩尔体3 积,其单位为m-1·mol 。
R=8.314510 J m·ol-1·K -1 ,称为摩尔气体常数。
此式适用于理想气体,近似地适用于低压的真实气体。
2.气体混合物(1)组成摩尔分数y B (或x B) = n B / nAA体积分数 B y V /m, BBy A V m,AA式中n为混合气体总的物质的量。
V m,A 表示在一定T,p 下纯气体 A 的摩AA尔体积。
y A V 为在一定T,p下混合之前各纯组分体积的总和。
m, A y A V 为在一定T,p下混合之前各纯组分体积的总和。
A(2)摩尔质量M m ix y M m/ n M / nB B B BB B B式中m m 为混合气体的总质量,B n n 为混合气体总的物质的量。
上BB B述各式适用于任意的气体混合物。
(3)y n / n p / p V /VB B B B式中p B 为气体B,在混合的T,V 条件下,单独存在时所产生的压力,称为 B的分压力。
VB为B 气体在混合气体的T,p 下,单独存在时所占的体积。
3.道尔顿定律p B = y B p,p pBB上式适用于任意气体。
对于理想气体p B n B RT/V4.阿马加分体积定律*/V n RT pB B此式只适用于理想气体。
第二章热力学第一定律主要公式及使用条件1.热力学第一定律的数学表示式U Q W或'd UδQδWδQ p d VδWa m b规定系统吸热为正,放热为负。
系统得功为正,对环境作功为负。
式中p amb为环境的压力,W?为非体积功。
上式适用于封闭体系的一切过程。
2.焓的定义式H U pV3.焓变(1)H U(pV)式中(pV)为pV乘积的增量,只有在恒压下()()pV p V2V在数值上等于体1积功。
热力学公式总结
![热力学公式总结](https://img.taocdn.com/s3/m/285ba7e6dc3383c4bb4cf7ec4afe04a1b071b0d3.png)
热力学公式总结
一、热力学第一定律
热力学第一定律,也被称为能量守恒定律,表明在一个封闭系统中,能量不能被创造或毁灭,只能从一种形式转化为另一种形式。
公式如下:
ΔU = Q + W
其中,ΔU表示系统内能的改变,Q表示系统吸收或释放的热量,W表示系统对外界所做的功。
二、热力学第二定律
热力学第二定律表明,热量不能自发地从低温物体传递到高温物体,而不引起其他变化。
公式如下:
dS/dt ≥ 0
其中,S表示系统的熵,dS/dt表示熵的变化率。
如果dS/dt大于0,则表
示熵增加,如果dS/dt等于0,则表示熵不变。
三、理想气体状态方程
理想气体状态方程表示理想气体的压力、体积和温度之间的关系。
公式如下:PV = nRT
其中,P表示气体的压力,V表示气体的体积,n表示气体的摩尔数,R表
示气体常数,T表示气体的温度(以开尔文为单位)。
四、热力学第三定律
热力学第三定律表明,绝对零度不能通过有限的降温过程达到。
公式如下:ΔS(T→0) = 0
其中,ΔS表示系统熵的变化,T表示温度。
这个公式表明在绝对零度时,
系统的熵为零。
热力学计算公式整理
![热力学计算公式整理](https://img.taocdn.com/s3/m/205539fdc67da26925c52cc58bd63186bceb9284.png)
热力学计算公式整理热力学是研究物质的热与能的转化关系的学科,是广泛应用于化学、物理、工程等领域的重要理论基础。
在热力学计算中,有一系列公式被广泛应用于热力学参数的计算和分析。
1.热力学基本方程:对于一个热力学系统,其内部能量U可以由其热力学状态变量来表示,常用的基本方程有:U=TS-PV+μN其中,U为内部能量,T为温度,S为熵,P为压力,V为体积,μ为化学势,N为摩尔数。
2.热力学函数的计算:(1)焓(H)的计算公式:H=U+PV其中,H为焓,U为内部能量,P为压力,V为体积。
(2)外界对系统做的功(W)计算公式:W=-∫PdV其中,W为功,P为压力,V为体积,积分为从初态到末态的过程。
(3)熵(S)的计算公式:dS=dQ/T其中,S为熵,dS为熵的微分,dQ为系统的热量变化,T为温度。
(4) Helmholtz自由能(A)的计算公式:A=U-TS其中,A为Helmholtz自由能,U为内部能量,T为温度,S为熵。
(5) Gibbs自由能(G)的计算公式:G=U-TS+PV其中,G为Gibbs自由能,U为内部能量,T为温度,S为熵,P为压力,V为体积。
3.热力学热力学参数的计算:(1)热容的计算公式:Cv=(∂U/∂T)V其中,Cv为定容热容,∂U/∂T为导数,V为体积。
Cp=(∂H/∂T)P其中,Cp为定压热容,∂H/∂T为导数,P为压力。
(2)趋近于绝对零度时的熵变ΔS的计算公式:ΔS = Cvln(T2/T1) + Rln(V2/V1)其中,ΔS为熵的变化,Cv为定容热容,T2和T1为温度的变化,R 为气体常数,V2和V1为体积的变化。
(3)等温过程中的吸热计算公式:q=ΔH=nCpΔT其中,q为吸热,ΔH为焓的变化,n为物质的摩尔数,Cp为定压热容,ΔT为温度的变化。
(4)等温过程中的做功计算公式:w=-ΔG=PΔV其中,w为做功,ΔG为Gibbs自由能的变化,P为压力,ΔV为体积的变化。
高中物理公式及知识点汇总-热学
![高中物理公式及知识点汇总-热学](https://img.taocdn.com/s3/m/a13cdb0b5b8102d276a20029bd64783e09127dc3.png)
高中物理公式及知识点汇总-热学高中物理中,热学是一个重要的领域,涉及到热传导、热膨胀、热力学等内容。
下面我将为大家整理出一些常见的物理公式和知识点。
热力学1. 热力学第一定律(能量守恒定律):ΔU = Q - W其中,ΔU表示系统内能的变化,Q表示系统吸收的热量,W表示系统对外做功。
2. 内能的计算公式:ΔU = nCΔT其中,ΔU表示内能的变化,n表示物质的摩尔数,C表示摩尔定容热容,ΔT表示温度的变化。
3. 理想气体状态方程:PV = nRT其中,P表示气体的压强,V表示气体的体积,n表示气体的摩尔数,R表示气体常数,T表示气体的温度。
4. 热力学第二定律(克劳修斯表述):热量不会自发地从低温物体传递到高温物体。
5. 熵的变化与热量传递的关系:ΔS = Qrev/T其中,ΔS表示熵的变化,Qrev表示可逆过程中的吸收的热量,T表示温度。
热传导1. 热传导的热流量公式:Q/t = kAΔT/L其中,Q/t表示单位时间内传导的热量,k表示热传导系数,A 表示传热面积,ΔT表示温度差,L表示传热长度。
2. 热传导的热阻公式:R = L/ (kA)其中,R表示热阻,L表示传热长度,k表示热传导系数,A 表示传热面积。
3. 热传导的导热方程:∂Q/∂t = -k∇²T其中,∂Q/∂t表示单位时间内通过单位面积的热流量,k为热传导系数,∇²T表示温度在空间中的二阶偏导数。
热膨胀1. 线膨胀的计算公式:ΔL = αL₀ΔT其中,ΔL表示长度的变化,α表示线膨胀系数,L₀表示初始长度,ΔT表示温度的变化。
2. 面膨胀的计算公式:ΔA = 2αA₀ΔT其中,ΔA表示面积的变化,α表示面膨胀系数,A₀表示初始面积,ΔT表示温度的变化。
3. 体膨胀的计算公式:ΔV = βV₀ΔT其中,ΔV表示体积的变化,β表示体膨胀系数,V₀表示初始体积,ΔT表示温度的变化。
热辐射1. 斯特藩—玻尔兹曼定律:P = εσA(T² - T₀²)其中,P表示单位时间内通过单位面积的辐射功率,ε表示发射率,σ为斯特藩—玻尔兹曼常数,A表示面积,T为温度,T₀为参考温度。
工程热力学的公式大全
![工程热力学的公式大全](https://img.taocdn.com/s3/m/ad72e74adf80d4d8d15abe23482fb4daa58d1d3b.png)
工程热力学的公式大全1.热力学第一定律:ΔU=Q-W其中,ΔU代表内能的变化,Q代表系统吸收的热量,W代表系统对外界做功。
2.热力学第二定律:dS≥δQ/T其中,dS代表系统的熵变,δQ代表系统吸收的热量,T代表系统的绝对温度。
该定律表明在孤立系统中熵永不减少。
3.等容过程(内能不变):Q=ΔU在等容过程中,系统发生的任何热量变化都会完全转化为内能的变化。
4.等压过程(体积不变):W=PΔV在等压过程中,系统对外界所做的功等于系统内能的变化。
5.等温过程(温度不变):W = Q = nRT ln(V2/V1)在等温过程中,系统对外界所做的功等于系统从初始状态到最终状态所吸收的热量。
6.等熵过程(熵不变):Q=-W在等熵过程中,热量变化与对外界的功相等,系统的熵保持不变。
7.热机效率:η=1-(T2/T1)其中,η代表热机的效率,T2和T1分别代表工作物质的工作温度和热源的温度。
8.热泵效率:η=1-(T1/T2)其中,η代表热泵的效率,T1和T2分别代表热源的温度和工作物质的工作温度。
9.卡诺循环热机的效率上限:η=1-(T2/T1)卡诺循环是具有最高效率的热力循环,其效率仅取决于热源和冷源的温度。
10.纯物质气体的理想气体状态方程:PV=nRT其中,P代表压力,V代表体积,n代表物质的摩尔数,R为气体常数,T代表温度。
11.热力学温标:T(K)=T(°C)+273.15将摄氏温度转化为开尔文温标。
这只是一部分常用的工程热力学公式,还有其他更多的公式和关系式在工程热力学中发挥重要作用。
理解和应用这些公式可以帮助我们分析和解决实际工程问题,提高能源利用效率,促进工程技术的发展。
热力学公式总结
![热力学公式总结](https://img.taocdn.com/s3/m/d4ebafd0b14e852458fb5738.png)
第一章 气体的pVT 关系 主要公式及使用条件1. 理想气体状态方程式nRT RT M m pV ==)/(或 RT n V p pV ==)/(m式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。
m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。
R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。
此式适用于理想气体,近似地适用于低压的真实气体。
2. 气体混合物 (1) 组成摩尔分数 y B (或x B ) = ∑AA B /n n体积分数 /y B m,B B *=V ϕ∑*AV y A m ,A式中∑AA n 为混合气体总的物质的量。
Am,*V表示在一定T ,p 下纯气体A 的摩尔体积。
∑*AA m ,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。
(2) 摩尔质量∑∑∑===BBBB B BB mix //n M n m M y M式中 ∑=BB m m 为混合气体的总质量,∑=BB n n 为混合气体总的物质的量。
上述各式适用于任意的气体混合物。
(3)V V p p n n y ///B B B B *=== 式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。
*B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。
3. 道尔顿定律p B = y B p ,∑=BB p p上式适用于任意气体。
对于理想气体V RT n p /B B =4. 阿马加分体积定律*/B B V n RT p =此式只适用于理想气体。
第二章 热力学第一定律 主要公式及使用条件1. 热力学第一定律的数学表示式W Q U +=∆或 'amb δδδd δdU Q W Q p V W =+=-+规定系统吸热为正,放热为负。
系统得功为正,对环境作功为负。
高中热学公式
![高中热学公式](https://img.taocdn.com/s3/m/b29c9c75cc175527072208d6.png)
二、热学:
1、热力学第一定律: W + Q = ∆E
符号法则: 体积增大,气体对外做功,W 为“一”;体积减小,外界对气体做功,W 为“+”。
气体从外界吸热,Q 为“+”;气体对外界放热,Q 为“-”。
温度升高,内能增量∆E 是取“+”;温度降低,内能减少,∆E 取“一”。
三种特殊情况: (1) 等温变化 ∆E=0, 即 W+Q=0
(2) 绝热膨胀或压缩:Q=0即 W=∆E
(3)等容变化:W=0 ,Q=∆E
2 理想气体状态方程:
(1)适用条件:一定质量的理想气体,三个状态参量同时发生变化。
(2) 公式: PV T P V T PV T
111222==或恒量 (3) 含密度式:
P T P T 1112
22ρρ= *3、 克拉白龙方程: PV=n RT=M RT μ (R 为普适气体恒量,n 为摩尔数)
4 、 理想气体三个实验定律:
(1) 玻马—定律:m 一定,T 不变
P 1V 1 = P 2V 2 或 PV = 恒量
(2)查里定律: m 一定,V 不变 P T P T 1122= 或 P T =恒量 或 P t = P 0 (1+t 273) (3) 盖·吕萨克定律:m 一定,T 不变 V T V T V T V t 112===或恒量或V 0 (1+t 273
)
注意:计算时公式两边T必须统一为热力学单位,其它两边单位相同即可。
Welcome !!! 欢迎您的下载,资料仅供参考!。
热力学公式
![热力学公式](https://img.taocdn.com/s3/m/5a9763225901020207409c50.png)
1. 理想气体状态方程式nRT RT M m pV ==)/(或 RT n V p pV ==)/(m式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。
m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。
R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。
此式适用于理想气体,近似地适用于低压的真实气体。
2. 气体混合物 (1) 组成摩尔分数 y B (或x B ) = ∑AA B /n n体积分数 /y B m,B B *=V ϕ∑*AVy Am ,A式中∑AA n 为混合气体总的物质的量。
Am,*V表示在一定T ,p 下纯气体A 的摩尔体积。
∑*AA m ,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。
(2) 摩尔质量∑∑∑===BBBB B BB mix //n M n m M y M式中 ∑=BB m m 为混合气体的总质量,∑=BB n n 为混合气体总的物质的量。
上述各式适用于任意的气体混合物。
(3) V V p p n n y ///B B B B *===式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。
*B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。
3. 道尔顿定律p B = y B p ,∑=BB p p上式适用于任意气体。
对于理想气体V RT n p /B B =4. 阿马加分体积定律V RT n V /B B =*此式只适用于理想气体。
1. 热力学第一定律的数学表示式W Q U +=∆或 'amb δδδd δdU Q W Q p V W =+=-+规定系统吸热为正,放热为负。
系统得功为正,对环境作功为负。
式中 p amb 为环境的压力,W ’为非体积功。
上式适用于封闭体系的一切过程。
2. 焓的定义式3. 焓变(1) )(pV U H ∆+∆=∆式中)(pV ∆为pV 乘积的增量,只有在恒压下)()(12V V p pV -=∆在数值上等于体积功。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理化学主要公式及使用条件第一章 气体的pVT 关系 主要公式及使用条件1. 理想气体状态方程式nRT RT M m pV ==)/(或 RT n V p pV ==)/(m式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。
m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。
R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。
此式适用于理想气体,近似地适用于低压的真实气体。
2. 气体混合物 (1) 组成摩尔分数 y B (或x B ) = ∑AA B /n n体积分数 /y B m,B B *=V ϕ∑*AV y A m ,A式中∑AA n 为混合气体总的物质的量。
Am,*V表示在一定T ,p 下纯气体A 的摩尔体积。
∑*AA m ,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。
(2) 摩尔质量∑∑∑===BBBB B BB mix //n M n m M y M式中 ∑=BB m m 为混合气体的总质量,∑=BB n n 为混合气体总的物质的量。
上述各式适用于任意的气体混合物。
(3)V V p p n n y ///B B B B *===式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。
*B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。
3. 道尔顿定律p B = y B p ,∑=BB p p上式适用于任意气体。
对于理想气体V RT n p /B B =4. 阿马加分体积定律V RT n V /B B =*此式只适用于理想气体。
第二章 热力学第一定律 主要公式及使用条件1. 热力学第一定律的数学表示式W Q U +=∆或 'amb δδδd δdU Q W Q p V W =+=-+规定系统吸热为正,放热为负。
系统得功为正,对环境作功为负。
式中 p amb 为环境的压力,W ’为非体积功。
上式适用于封闭体系的一切过程。
2. 焓的定义式3. 焓变pVU H +=(1) )(pV U H ∆+∆=∆式中)(pV ∆为pV 乘积的增量,只有在恒压下)()(12V V p pV -=∆在数值上等于体积功。
(2) 2,m 1d p H nC T ∆=⎰此式适用于理想气体单纯pVT 变化的一切过程,或真实气体的恒压变温过程,或纯的液体、固体物质压力变化不大的变温过程。
4. 热力学能(又称内能)变此式适用于理想气体单纯pVT 变化的一切过程。
5. 恒容热和恒压热V Q U =∆ (d 0,'0)V W == p Q H =∆ (d 0,'0)p W ==6. 热容的定义式 (1)定压热容和定容热容δ/d (/)p p p C Q T H T ==∂∂δ/d (/)V V V C Q T U T ==∂∂(2)摩尔定压热容和摩尔定容热容,m m /(/)p p p C C n H T ==∂∂,m m /(/)V V V C C n U T ==∂∂上式分别适用于无相变变化、无化学变化、非体积功为零的恒压和恒容过程。
(3)质量定压热容(比定压热容)式中m 和M 分别为物质的质量和摩尔质量。
,m//p p p c C m CM==2,m 1d V U nC T∆=⎰(4) ,m ,m p V C C R -= 此式只适用于理想气体。
7. 摩尔蒸发焓与温度的关系21vap m 2vap m 1vap ,m ()()d T p TH T H T C T ∆=∆+∆⎰或 vap m vap ,m (/)p p H T C ∂∆∂=∆式中 vap ,m p C ∆ = ,m p C (g) —,m p C (l),上式适用于恒压蒸发过程。
8. 体积功 (1)定义式V p W d amb -=∂或 V p W d amb ∑-=(2) )()(1221T T nR V V p W --=--= 适用于理想气体恒压过程。
(3) )(21amb V V p W --= 适用于恒外压过程。
(4) )/ln()/ln(d 121221p p nRT V V nRT V p W V V =-=-=⎰ 适用于理想气体恒温可逆过程。
(5) ,m 21()V W U nC T T =∆=- 适用于,m V C 为常数的理想气体绝热过程。
9. 理想气体可逆绝热过程方程,m2121(/)(/)1V C R T T V V =,m2121(/)(/)1p C R T T p p -=1)/)(/(1212=r V V p p上式中,,m ,m /p V C C γ=称为热容比(以前称为绝热指数),适用于,m V C 为常数,理想气体可逆绝热过程p ,V ,T 的计算。
10. 反应进度B B /νξn ∆=上式是用于反应开始时的反应进度为零的情况,B,0B B n n n -=∆,B,0n 为反应前B 的物质的量。
B ν为B 的反应计量系数,其量纲为一。
ξ的量纲为mol 。
11. 标准摩尔反应焓θθθr m B f m B c m (B,)(B,)H H H νβνβ∆=∆=-∆∑∑式中θf m (B,)H β∆及θc m (B,)H β∆分别为相态为β的物质B 的标准摩尔生成焓和标准摩尔燃烧焓。
上式适用于ξ=1 mol ,在标准状态下的反应。
12. θm r H ∆与温度的关系21θθr m 2r m 1r ,m ()()d T p T H T H T C T ∆=∆+∆⎰式中 r ,m ,m B (B)p p C C ν∆=∑,适用于恒压反应。
13. 节流膨胀系数的定义式J T (/)H T p μ-=∂∂T J -μ又称为焦耳-汤姆逊系数。
第三章 热力学第二定律 主要公式及使用条件1. 热机效率1211211/)(/)(/T T T Q Q Q Q W -=+=-=η式中1Q 和2Q 分别为工质在循环过程中从高温热源T 1吸收的热量和向低温热源T 2放出的热。
W 为在循环过程中热机中的工质对环境所作的功。
此式适用于在任意两个不同温度的热源之间一切可逆循环过程。
2. 卡诺定理的重要结论2211//T Q T Q +⎩⎨⎧=<可逆循环不可逆循环,,00任意可逆循环的热温商之和为零,不可逆循环的热温商之和必小于零。
3. 熵的定义4. 克劳修斯不等式d S {//Q T Q T =>δ, δ, 可逆不可逆5. 熵判据amb sy s iso S S S ∆+∆=∆{0, 0, >=不可逆可逆式中iso, sys 和amb 分别代表隔离系统、系统和环境。
在隔离系统中,不可逆过程即自发过程。
可逆,即系统内部及系统与环境之间皆处于平衡态。
在隔离系统中,一切自动进行的过程,都是向熵增大的方向进行,这称之为熵增原理。
此式只适用于隔离系统。
6. 环境的熵变7. 熵变计算的主要公式222r111δd d d d Q U p V H V p S T T T+-∆===⎰⎰⎰ r d δ/S Q T=amby s amb amb amb //S T Q T Q s -==∆对于封闭系统,一切0=W δ的可逆过程的S ∆计算式,皆可由上式导出 (1),m 2121ln(/)ln(/)V S nC T T nR V V ∆=+,m 2112ln(/)ln(/)p S nC T T nR p p ∆=+ ,m 21,m 21ln(/)ln(/)V p S nC p p nC V V ∆=+上式只适用于封闭系统、理想气体、,m V C 为常数,只有pVT 变化的一切过程 (2) T 2112ln(/)ln(/)S nR V V nR p p ∆==此式使用于n 一定、理想气体、恒温过程或始末态温度相等的过程。
(3) ,m 21ln(/)p S nC T T ∆=此式使用于n 一定、,m p C 为常数、任意物质的恒压过程或始末态压力相等的过程。
8. 相变过程的熵变此式使用于物质的量n 一定,在α和β两相平衡时衡T ,p 下的可逆相变化。
9. 热力学第三定律或0)0K ,(m =*完美晶体S 上式中符号*代表纯物质。
上述两式只适用于完美晶体。
10. 标准摩反应熵)B (Bm B m r ∑=∆θθνS S2r m 2r m 1r ,m 1()()(/)d p S T S T C T T θθ∆=∆+∆⎰0)(lim m =*→完美晶体S T 0TH S /βαβα∆=∆上式中r ,m p C ∆=B ,m B(B)p C ν∑,适用于在标准状态下,反应进度为1 mol 时,任一化学反应在任一温度下,标准摩尔反应熵的计算。
11. 亥姆霍兹函数的定义12. r d δ'T A W = 此式只适用n 一定的恒温恒容可逆过程。
13. 亥姆霍兹函数判据V T A ,∆⎩⎨⎧=<平衡自发,0,0 只有在恒温恒容,且不做非体积功的条件下,才可用A ∆作为过程的判据。
14. 吉布斯函数的定义15. ,r d δ'T P G W =此式适用恒温恒压的可逆过程。
16. 吉布斯函数判据⎩⎨⎧=<平衡自发,,00 只有在恒温恒压,且不做非体积功的条件下,才可用G ∆作为过程的判据。
17. 热力学基本方程式TSU A -=TSH G -=,T pG ∆d d d d d d d d d d d d U T S p V H T S V pA S T p V G S T V p=-=+=--=-+热力学基本方程适用于封闭的热力学平衡系统所进行的一切可逆过程。
说的更详细些,它们不仅适用于一定量的单相纯物质,或组成恒定的多组分系统发生单纯p , V, T 变化的过程。
也可适用于相平衡或化学平衡的系统,由一平衡状态变为另一平衡态的过程。
18. 克拉佩龙方程m m d /d /()p T H T V ββαα=∆∆ 此方程适用于纯物质的α相和β相的两相平衡。
19. 克劳修斯-克拉佩龙方程2vap 21vap m 12d ln(/[])(/)d ln(/)(/)(1/1/)p p H RT T p p H R T T =∆=∆-此式适用于气-液(或气-固)两相平衡;气体可视为理想气体;(l)m *V 与(g)m *V 相比可忽略不计,在21T T -的温度范围内摩尔蒸发焓可视为常数。
对于气-固平衡,上式vap m H ∆则应改为固体的摩尔升华焓。
20. ))(/Δ(/ln(m fus m fus )1212p p H ΔV T T -=式中fus 代表固态物质的熔化。
m fus ΔV 和m fus H Δ为常数的固-液两相平衡才可用此式计算外压对熔点的T 的影响。