基本不等式经典例题(含知识点和例题详细解析) (1)

合集下载

最新基本不等式经典例题(含知识点和例题详细解析)-(1)

最新基本不等式经典例题(含知识点和例题详细解析)-(1)

基本不等式专题知识点:1. (1)若R b a ∈,,则ab b a 222≥+(2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”) 若0x <,则12x x+≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x x x x+≥+≥+≤即或 (当且仅当b a =时取“=”)4.若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注意:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用 应用一:求最值 例:求下列函数的值域(1)y =3x 2+12x 2(2)y =x +1x解:(1)y =3x 2+12x 2≥23x 2·12x 2= 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x ≥2x ·1x=2;当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧技巧一:凑项例 已知54x <,求函数14245y x x =-+-的最大值。

高中数学基本不等式知识点归纳及练习题范文.doc

高中数学基本不等式知识点归纳及练习题范文.doc
解:令 ,则
因 ,但 解得 不在区间 ,故等号不成立,考虑单调性。
因为 在区间 单调递增,所以在其子区间 为单调递增函数,故 。
所以,所求函数的值域为 。
分析:“和”到“积”是一个缩小的过程,而且 定值,因此考虑利用均值定理求最小值,
解: 都是正数, ≥
当 时等号成立,由 及 得 即当 时, 的最小值是6.
∴ ≤3 ,ab≤18,∴y≥
点评:①本题考查不等式 的应用、不等式的解法及运算能力;②如何由已知不等式 出发求得 的范围,关键是寻找到 之间的关系,由此想到不等式 ,这样将已知条件转换为含 的不等式,进而解得 的范围.
变式:1.已知a>0,b>0,ab-(a+b)=1,求a+b的最小值。
2.若直角三角形周长为1,求它的面积最大值。
练习.求下列函数的最小值,并求取得最小值时,x的值.
(1) (2) (3)
2.已知 ,求函数 的最大值.;3. ,求函数 的最大值.
条件求最值
1.若实数满足 ,则 的最小值是.
变式:若 ,求 的最小值.并求x,y的值
技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。。
变式: 求函数 的最大值。
解析:注意到 与 的和为定值。
又 ,所以
当且仅当 = ,即 时取等号。 故 。
评注:本题将解析式两边平方构造出“和为定值”,为利用基本不等式创造了条件。
总之,我们利用基本不等式求最值时,一定要注意“一正二定三相等”,同时还要注意一些变形技巧,积极创造条件利用基本不等式。
分析:不等式右边数字8,使我们联想到左边因式分别使用基本不等式可得三个“2”连乘,又 ,可由此变形入手。
解法一:若利用算术平均与平方平均之间的不等关系, ≤ ,本题很简单

高中数学基本不等式知识点归纳及练习题

高中数学基本不等式知识点归纳及练习题

高中数学基本不等式的巧用1.基本不等式:ab ≤a +b 2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R );(2)b a +a b ≥2(a ,b 同号);(3)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ); (4)a 2+b 22≥⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ). 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数大于或等于它的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大)一个技巧运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2ab 逆用就是22⎛⎭⎪⎫a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等. 两个变形 (1)a 2+b 22≥⎝⎛⎭⎪⎫a +b 22≥ab (a ,b ∈R ,当且仅当a =b 时取等号);(2)a 2+b 22≥a +b 2≥ab ≥21a +1b(a >0,b >0,当且仅当a =b 时取等号).这两个不等式链用处很大,注意掌握它们. 三个注意(1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.(3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致.应用一:求最值 例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。

基本不等式知识点汇总与例题讲解(题型超全)

基本不等式知识点汇总与例题讲解(题型超全)

基本不等式知识点总结与例题讲解一、本节知识点 (1)基本不等式.(2)利用基本不等式求最值.(3)基本不等式的拓展——三个正数的基本不等式. 二、本节题型(1)利用基本不等式求最值. (2)利用基本不等式证明不等式. (3)基本不等式的实际应用. (4)与基本不等式有关的恒成立问题. 三、知识点讲解知识点 基本不等式(均值不等式) 一般地,∈∀b a ,R ,有22b a +≥ab 2.当且仅当b a =时,等号成立.特别地,当0,0>>b a 时,分别用b a ,代替上式中的b a ,,可得2ba +≥ab . 当且仅当b a =时,等号成立. 通常称不等式2b a +≥ab 为基本不等式(也叫均值不等式),其中2ba +叫做正数b a ,的算术平均数,ab 叫做正数b a ,的几何平均数.基本不等式表明: 两个正数的算术平均数不小于它们的几何平均数.注意 重要不等式22b a +≥ab 2与基本不等式2ba +≥ab 成立的条件是不一样的.前者b a ,为任意实数,后者b a ,只能是正数.但两个不等式中等号成立的条件都是b a =.基本不等式的变形(1)b a +≥ab 2,ab ≤22⎪⎭⎫⎝⎛+b a .其中∈b a ,R +,当且仅当b a =时,等号成立.(2)当0>a 时,a a 1+≥2,当且仅当a a 1=,即1=a 时,等号成立; 当0<a 时,aa 1+≤2-,当且仅当1-=a 时,等号成立.实际上,当0<a 时,()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+--=+a a a a 11. ∵()⎪⎭⎫ ⎝⎛-+-a a 1≥2,∴()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+--a a 1≤2-,即a a 1+≤2-.当且仅当a a 1-=-,即1-=a (0<a )时,等号成立. (3)当b a ,同号时,b a a b +≥2,当且仅当b a =时,等号成立;当b a ,异号时,baa b +≤2-,当且仅当b a -=时,等号成立.(4)不等式链: ba 112+≤ab ≤2ba +≤222b a +(0,0>>b a ,当且仅当b a =时,等号成立.)其中,ba 112+,ab ,2b a +,222b a +分别叫做正数b a ,的调和平均数、几何平均数、算术平均数、平方平均数. 知识点 利用基本不等式求最值设0,0>>y x ,则有(1)若S y x =+(和为定值),则当y x =时,积xy 取得最大值42S ;(∵∈∀y x , R +,有xy ≤22Sy x =+,∴xy ≤42S .) 和定积最大.(2)若P xy =(积为定值),则当y x =时,和y x +取得最小值P 2. (∵∈∀y x , R +,有y x +≥xy 2,∴y x +≥P 2.)积定和最小.说明 上述结论可简记为: 和定积最大,积定和最小.即两个正数的和为定值时,可求出其积的最大值;两个正数的积为定值时,可求出其和的最小值.利用基本不等式求最值时,必须满足三个条件,即:一正、二定、三相等. 一正: 各项都必须为正数;二定: 和或积为定值.当和为定值时,积有最大值,当积为定值时,和有最小值; 三相等: 等号能取到,即取得最值的条件能满足.(1)对于函数()x x x f 4+=,当0>x 时,xx 4+≥44242==⋅x x ,即()x f ≥4,当x x 4=,即2=x 时,等号成立;当0<x 时,()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+--=+x x x x 44≤4-,()x f ≤4-,当2-=x 时,等号成立.由此可见,对于函数()xx x f 4+=,0>x 和0<x 的最值情况是不一样的. (2)当230<<x 时,求()x x 23-的最大值时,x 23-与x 的和不是定值,无法利用基本不等式求最值,此时可对原式进行等价变形,变形为()()x x x x 2232123⋅-=-,即可求出其最大值.∵()()x x x x 2232123⋅-=-≤89232122232122=⎪⎭⎫ ⎝⎛⨯=⎪⎭⎫ ⎝⎛+-⨯x x∴()x x 23-的最大值为89,当且仅当x x 223=-,即43=x 时,取得最大值.(3)求21222+++x x 的最小值时,虽然22+x 与212+x 都是正数,且乘积为定值1,但是当=+22x 212+x 时,有122=+x ,显然是不成立的,所以此时不能用基本不等式求其最小值.知识点 基本不等式的拓展——三个正数的基本不等式一般地,∈∀c b a ,,R +,有3cb a ++≥3abc . 当且仅当c b a ==时,等号成立.上面的不等式表明:三个正数的算术平均数不小于它们的几何平均数.设0,0,0>>>z y x ,则有(1)若M xyz =,则当z y x ==时,和z y x ++取得最小值为33M ;(2)若N z y x =++,则当z y x ==时,积xyz 取得最大值273N .关于三个正数的不等式链若c b a ,,均为正数,则有cb a 1113++≤3abc ≤3c b a ++≤3222c b a ++.当且仅当c b a ==时,等号成立.n 个正数的基本不等式对于n 个正数n a a a a ,,,,321 ,则有na a a a n++++ 321≥n n a a a a 321.当且仅当n a a a a ==== 321时,等号成立.上面的不等式表明: 对于n 个正数(n ≥2)的算术平均数不小于它们的几何平均数.四、例题讲解例1. 若0,0>>b a ,证明: ba 112+≤ab ≤2b a +≤222b a +.分析: 本题即要求证明两个正数的不等式链. 证明: ∵0,0>>b a∴()ab b a b a 22-+=-≥0∴b a +≥ab 2 ∴ab ≤2ba +(当且仅当b a =时,等号成立) ∴211b a +≥abab b a 1111==⋅∴ba 112+≤ab (当且仅当b a =时,等号成立).∵22b a +≥ab 2∴2222b a b a +++≥ab 222b a ++ ∴()222b a +≥()2b a +∴()2224⎪⎭⎫ ⎝⎛+=+b a b a ≤()2422222b a b a +=+,即22⎪⎭⎫ ⎝⎛+b a ≤222b a +. ∴根据正数可开方性得:22⎪⎭⎫ ⎝⎛+b a ≤222b a +. ∴2ba +≤222b a +(当且仅当b a =时,等号成立).综上所述,ba 112+≤ab ≤2ba +≤222b a +.例2. 函数xx y 41+-=(0>x )的最小值为_________,此时=x _________. 解: ∵0>x∴1441-+=+-=xx x x y ≥3142142=-=-⋅x x ,即y ≥3.当且仅当xx 4=,即2=x 时,取等号. ∴当2=x 时,函数x x y 41+-=(0>x )取得最小值3.例3. 已知3>a ,求34-+a a 的最小值.分析: 当利用基本不等式求最值时,若两项的乘积为定值(常数),可求出两项和的最小值.当然,某些式子需要进行适当的变形,但要注意三个必须满足的条件:一正、二定、三相等.解: ∵3>a ,∴03>-a .∴334334+-+-=-+a a a a ≥()733432=+-⋅-a a ,当且仅当343-=-a a ,即5=a 时,等号成立. ∴34-+a a 的最小值为7. 例4. 已知1>x ,且1=-y x ,则yx 1+的最小值是_________. 解: ∵1=-y x ,∴1+=y x .∵1>x ,∴01>+y ,∴0>y . ∴11111++=++=+y y y y y x ≥3112=+⋅yy . 当且仅当yy 1=,即1=y 时,等号成立. ∴yx 1+的最小值是3. 另解: ∵1=-y x ,∴1-=x y .∵1>x ,∴01>-=x y ∴1111111+-+-=-+=+x x x x y x ≥()311112=+-⋅-x x . 当且仅当111-=-x x ,即2=x 时,等号成立. ∴yx 1+的最小值是3. 例5. 已知0,0>>y x ,且12=+y x ,求yx 11+的最小值. 解: ∵12=+y x ,0,0>>y x∴y x x y y y x x y x y x ++=+++=+232211≥223223+=⋅+yx x y . 当且仅当yxx y =2,且12=+y x ,即221,12-=-=y x 时,等号成立.∴yx11+的最小值为223+.点评 本题若由()y x y x y x 21111+⎪⎭⎫ ⎝⎛+=+≥2422112=⋅⋅xy yx ,得y x 11+的最小值为24,则结论是错误的,错因是连续使用基本不等式时,忽视了等号成立的条件一致性.所以有下面的警示.易错警示 连续两次(多次)使用基本不等式时,应注意保证等号成立的条件是否相同. 例6. 已知0,0>>y x ,且191=+yx ,求y x +的最小值. 解: ∵0,0>>y x ,191=+yx ∴()x y y x x y y x y x y x y x ++=+++=⎪⎭⎫⎝⎛++=+91099191≥169210=⋅+x y y x . 当且仅当x y y x =9,且191=+yx ,即12,4==y x 时,等号成立. ∴y x +的最小值为16.另解(消元法): ∵191=+yx ,∴9-=y yx∵0,0>>y x ,∴09>-y y,∴9>y . ∴999919999+-+-+=+-+-=+-=+y y y y y y y y y x 99910-+-+=y y ≥()16999210=-⋅-+y y . 当且仅当999-=-y y ,且9-=y y x ,即12,4==y x 时,等号成立. ∴y x +的最小值为16.例7. 若正数y x ,满足xy y x 53=+,则y x 43+的最小值是 【 】(A )524 (B )528 (C )5 (D )6解: ∵xy y x 53=+,∴15351=+xy . ∵y x ,均为正数∴()x y y x x y y x x y y x y x 5125351351254595353514343++=+++=⎪⎭⎫ ⎝⎛++=+ ≥5562513512532513=⨯+=⋅+x y y x . 当且仅当x y y x 51253=,且xy y x 53=+,即21,1==y x 时,等号成立. ∴y x 43+的最小值是5. ∴选择答案【 C 】.例8.(1)已知45>x ,求代数式54124-+-x x 的最小值; (2)已知45<x ,求代数式54124-+-x x 的最大值.分析: 本题考查利用基本不等式求代数式的最值.注意三个必须满足的条件:一正、二定、三相等.解:(1)∵45>x ,∴054>-x . ∴35415454124+-+-=-+-x x x x ≥()53541542=+-⋅-x x . 当且仅当54154-=-x x ,即23=x 时,等号成立. ∴代数式54124-+-x x 的最小值为5;(2)∵45<x ,∴054<-x .∴34514535415454124+⎥⎦⎤⎢⎣⎡-+--=+-+-=-+-x x x x x x ≤()1323451452=+-=+-⋅--xx 当且仅当x x 45145-=-,即1=x 时,等号成立,54124-+-x x 取得最大值1.例9. 已知实数0,0>>b a ,且11111=+++b a ,则b a 2+的最小值是【 】 (A )23 (B )22 (C )3 (D )2解: ∵11111=+++b a ∴()()11111=+++++b a a b ,整理得:1=ab .∵0,0>>b a∴b a 2+≥221222222=⨯==⋅ab b a . 当且仅当b a 2=,即22,2==b a 时,等号成立. ∴b a 2+的最小值是22. ∴选择答案【 B 】.另解: ()()31212-+++=+b a b a .∵0,0>>b a ,11111=+++b a ∴()()[]()132112111111131212⨯-+++++++=⎪⎭⎫ ⎝⎛+++-+++=+a b b a b a b a b a ()11211+++++=a b b a ≥()22112112=++⋅++a b b a . 当且仅当()11211++=++a b b a ,且11111=+++b a ,即22,2==b a 时,等号成立. ∴b a 2+的最小值是22.例10. 设0,0>>y x ,且53=+y x ,则yx 311++的最小值为 【 】 (A )23(B )2 (C )32 (D )3 解: ∵53=+y x∴()813=++y x ,∴()18813=++yx .∵0,0>>y x ∴()()()8318819833118813311+++++=⎪⎭⎫ ⎝⎛++⎥⎦⎤⎢⎣⎡++=++x y y x y x y x y x ()()4318819++++=x y y x ≥()()234383243188192=+⨯=++⋅+x y y x . 当且仅当()()18819+=+x y y x ,且53=+y x ,即4,31==y x 时,等号成立. ∴y x 311++的最小值为23. ∴选择答案【 A 】.另解: ∵53=+y x ,∴x y 35-=.∵0,0>>y x ,∴⎩⎨⎧>->0350x x ,解之得:350<<x .∴x 的取值范围为⎪⎭⎫⎝⎛35,0.()()52383518353113112++-=-+=-++=++x x x x x x y x . 设()31631352322+⎪⎭⎫ ⎝⎛--=++-=x x x x f ∵⎪⎭⎫ ⎝⎛∈35,0x ,∴()⎥⎦⎤⎝⎛∈316,0x f . ∴当31=x 时,233168311min ==⎪⎭⎫⎝⎛++y x . ∴选择答案【 A 】.例11. 代数式11072+++x x x (1->x )的最小值为 【 】(A )2 (B )7 (C )9 (D )10分析: 形如edx c bx ax +++2的式子可化为()()t x f n x mf ++的形式. 解: 可设()()n x m x x x ++++=++1110722. ∴()1071222++=+++++x x n m x m x∴⎩⎨⎧=++=+10172n m m ,解之得:⎩⎨⎧==45n m . ∴()()415110722++++=++x x x x . ∴()()514114151110722++++=+++++=+++x x x x x x x x ∵1->x ,∴01>+x ∴5141++++x x ≥()951412=++⋅+x x . 当且仅当141+=+x x ,即1=x 时,等号成立. ∴代数式11072+++x x x (1->x )的最小值为9. ∴选择答案【 C 】.另解: ()()()[]()[]1411115211072+++++=+++=+++x x x x x x x x x ()()5141141512++++=+++++=x x x x x . ∵1->x ,∴01>+x∴5141++++x x ≥()951412=++⋅+x x . 当且仅当141+=+x x ,即1=x 时,等号成立,91107min2=⎪⎭⎫ ⎝⎛+++x x x . ∴选择答案【 C 】.例12. 求函数222163x x y ++=的最小值. 解: ∵022>+x∴()62162321632222-+++=++=xx x x y ≥()638621623222-=-+⋅+x x . 当且仅当()2221623x x +=+,即2334-±=x 时,等号成立.638min -=y . 例13. 已知函数()xa x x f +=4(0,0>>a x )在3=x 时取得最小值,则=a ______. 解: ∵0,0>>a x ∴()xa x x f +=4≥a x a x 442=⋅. 当且仅当x a x =4,即2a x =时,等号成立,函数()x f 取得最小值a 4. ∴32=a ,解之得:36=a . 实际上,函数()⎪⎪⎪⎪⎭⎫ ⎝⎛+=+=x a x x a x x f 444(0,0>>a x ),当24a a x ==时,函数()x f 取得最小值.所以32=a ,从而求得36=a . 例14. 设正实数y x ,满足xy y x =+2,若y x m m 222+<+恒成立,则实数m 的取值范围是_____________.分析: 利用基本不等式可求出y x 2+的最小值.要使y x m m 222+<+恒成立,只需()min 222y x m m +<+即可.解: ∵y x ,为正实数,xy y x =+2∴1212=+=+x y xy y x ∴()y x x y y x x y y x y x y x ++=+++=+⎪⎭⎫ ⎝⎛+=+442422122≥8424=⋅+y x x y 当且仅当yx x y =4,即2,4==y x 时,等号成立.∴()82min =+y x .∵y x m m 222+<+恒成立∴只需()min 222y x m m +<+即可∴822<+m m ,解之得:24<<-m .∴实数m 的取值范围是()2,4-.例15. 已知()()x x x f 22-=(10<<x ),求()x f 的最大值.分析: 当两个正数的和为定值S 时,这两个正数的乘积在两个正数相等时取得最大值,简称为:和定积最大.本题中,观察到()2222=-+x x 为定值,故考虑用基本不等式求函数()x f 的最大值,但要对原解析式解析等价变形.解: ∵10<<x ,∴022>-x∴()()()x x x x x f 2222122-⋅=-=≤211212222212=⨯=⎪⎭⎫ ⎝⎛-+⨯x x . 当且仅当x x 222-=,即21=x 时,等号成立. ∴()x f 的最大值为21. 另解: ∵10<<x ,∴022>-x∴()()()x x x x x f -⋅=-=1222≤2121221222=⎪⎭⎫ ⎝⎛⨯=⎪⎭⎫ ⎝⎛-+⨯x x . 当且仅当x x -=1,即21=x 时,等号成立. ∴()x f 的最大值为21. 例16. 求代数式12-x x (1<x )的最大值. 分析: 形如edx c bx ax +++2的式子可化为()()t x f n x mf ++的形式. 解: ∵1<x ,∴01>-x .∴()()21111111*********+-+-=-++=-+-+=-+-=-x x x x x x x x x x x ()2111+⎥⎦⎤⎢⎣⎡-+--=x x ≤()02221112=+-=+-⋅--x x 当且仅当xx -=-111,即0=x 时,等号成立. ∴代数式12-x x (1<x )的最大值为0. 注意 使用基本不等式法求最值时,一定要满足三个条件:一定、二正、三相等. 例17. 已知210<<x ,求()x x y 2121-=的最大值. 解: ∵210<<x ,∴021>-x . ∴()()x x x x y 212412121-⋅=-=≤161214122124122=⎪⎭⎫ ⎝⎛⨯=⎪⎭⎫ ⎝⎛-+⨯x x . 当且仅当x x 212-=,即41=x 时,等号成立. ∴161max =y . 例18. 设210<<m ,若m m 2121-+≥k 恒成立,则k 的最大值为_________. 分析: 只需min2121⎪⎭⎫ ⎝⎛-+m m ≥k 即可,这样问题就转化为求m m 2121-+的最小值的问题.解: ()()m m m m m m m m 211212212121-=-+-=-+. ∵210<<m ,∴021>-m ∴()()m m m m 212211211-⋅=-≥84121122122112=⨯=⎪⎭⎫ ⎝⎛-+⨯m m . 当且仅当m m 212-=,即41=m 时,等号成立.(注意,当210<<m 时,()0212>-m m ) ∴mm 2121-+的最小值为8.∵mm 2121-+≥k 恒成立 ∴k ≤8,k 的最大值为8. 另解: ∵210<<m ,∴021>-m ∴()[]221214221212122121+-+-+=⎪⎭⎫ ⎝⎛-+-+=-+m m m m m m m m m m m m m m 212144-+-+=≥82121424=-⋅-+m m m m . 当且仅当m m m m 21214-=-,即41=m 时,等号成立. ∴mm 2121-+的最小值为8. ∵mm 2121-+≥k 恒成立 ∴k ≤8,k 的最大值为8.例19. 若对任意0>x ,132++x x x ≤a 恒成立,则实数a 的取值范围是_________. 解: ∵0>x ∴311132++=++x x x x x ≤513213121=+=+⋅xx 当且仅当xx 1=,即1=x 时,等号成立. ∴5113max 2=⎪⎭⎫ ⎝⎛++x x x . ∵对任意0>x ,132++x x x ≤a 恒成立 ∴a ≥max213⎪⎭⎫ ⎝⎛++x x x . ∴a ≥51,即实数a 的取值范围是⎪⎭⎫⎢⎣⎡+∞,51. 例20. 已知0,0>>y x ,y x xy 2+=,若xy ≥2-m 恒成立,则实数m 的最大值是__________.分析: 可求出m 的取值范围,根据范围确定其最大值.这种方法叫做不等分析法.解: ∵y x xy 2+= ∴1122=+=+yx xy y x . ∵0,0>>y x ∴xyy x 22122=⋅≤112=+y x ∴xy8≤1,∴xy ≥8. 当且仅当y x 12=,即2,4==y x 时,等号成立.()8min =xy . ∵xy ≥2-m 恒成立∴2-m ≤()min xy ,即2-m ≤8,解之得:m ≤10.∴实数m 的最大值是10.例21. 若不等式xa x 29+≥1+a (常数0>a )对一切正实数x 恒成立,求实数a 的取值范围.解: ∵0>x ,0>a ∴xa x 29+≥a x a x 6922=⋅. 当且仅当x a x 29=,即3a x =时,等号成立. ∴a x a x 69min 2=⎪⎭⎫ ⎝⎛+. ∵xa x 29+≥1+a 对一切正实数x 恒成立 ∴只需min 29⎪⎭⎫ ⎝⎛+x a x ≥1+a 即可 ∴a 6≥1+a ,解之得:a ≥51.∴实数a 的取值范围是⎪⎭⎫⎢⎣⎡+∞,51. 方法总结 解决与不等式恒成立有关的问题,把参数从不等式中分离出来,使不等式的一端是含有参数的代数式,另一端是一个具体的函数,这样就把问题转化为只有一端是参数的不等式的形式,便于问题的解决.例22. 已知b a ,是正实数,且032=-+ab b a ,则ab 的最小值是_________,b a +的最小值是_________.解: ∵032=-+ab b a∴ab b a 32=+,∴13132=+ba . ∵b a ,是正实数 ∴()b a a b b a a b b a b a b a 332131332323132++=+++=+⎪⎭⎫ ⎝⎛+=+ ≥322133221+=⋅+b a a b . 当且仅当ba ab 332=,即312,322+=+=b a 时,等号成立. ∴b a +的最小值为3221+. ∵b a ,是正实数,13132=+b a ∴ab b a 92231322=⋅≤13132=+ba ∴ab ≥98. 当且仅当b a 3132=,即32,34==b a 时,等号成立. ∴ab 的最小值是98. 例23. 已知0,0>>y x ,且32=+y x ,则xy 的最大值是_________,xy y x +3的最小值是_________.解: ∵0,0>>y x ,32=+y x ∴xy y x 2222=⋅≤32=+y x∴xy ≤89,当且仅当y x 2=,即43,23==y x 时,等号成立. ∴xy 的最大值是89. ∵32=+y x ,∴1323=+y x . ∴37322323131323313++=+++=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=+=+x y y x x y y x y x y x y x xy y x ≥37623732237322+=+=+⋅x y y x . 当且仅当xy y x 32=,即106318,5363-=-=y x 时取等号. ∴xyy x +3的最小值是3762+. 例24. 要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是,平方米10元,则该容器的最低总造价是 【 】(A )80元 (B )120元 (C )160元 (D )240元 解: 由题意可知:该容器的底面积为4 m 2,设底面长为x m,则底面宽为x 4m,容器的总造价为y 元.则有804204102420+⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⨯⨯+⨯=x x x x y ≥160804220=+⋅⨯x x (元) 当且仅当xx 4=,即2=x 时,等号成立. ∴该容器的最低总造价是160元.∴选择答案【 C 】.例25. 设0,0>>y x ,52=+y x ,则()()xy y x 121++的最小值为_________.解: ∵52=+y x∴()()⎪⎪⎭⎫ ⎝⎛+=+=+=+++=++xy xy xy xy xy xy xyy x xy xy y x 326262122121. ≥34322=⋅⨯xy xy . 当且仅当xy xy 3=,且52=+y x ,即1,3==y x 或23,2==y x 时,等号成立. ∴()()xy y x 121++的最小值为34.注意 注意与下面的例25做比较.例26. 设0,>b a ,且1=+b a ,则abab 1+的最小值为_________. 分析: 利用基本不等式求最值时,一定要满足三个条件:一定、二正、三相等. ∵0,>b a ,∴ab ab 1+≥212=⋅ab ab . 当且仅当ab ab 1=时,等号成立,此时⎪⎩⎪⎨⎧=+=11b a ab ab 无实数解. ∴上面的等号是取不到的,即abab 1+的最小值不是2. 解: ∵0,>b a ,且1=+b a ∴ab ≤212=+b a ,∴ab <0≤41. 设t ab =,则⎥⎦⎤ ⎝⎛∈41,0t . ∵t t y 1+=在⎥⎦⎤ ⎝⎛∈41,0t 上单调递减 ∴4174414114141min =+=+=⎪⎭⎫ ⎝⎛=f y . ∴ab ab 1+的最小值为417. 例27. 设20<<x ,求代数式224x x -的最大值.解: ∵20<<x∴02>-x ∴()()x x x x x x -⋅=-=-2222242≤2222=-+⨯x x 当且仅当x x -=2,即1=x 时,等号成立.∴代数式224x x -的最大值2.例28. 已知0,0,0>>>z y x ,求证:⎪⎭⎫⎝⎛+x z x y ⎪⎭⎫ ⎝⎛+y z y x ⎪⎭⎫ ⎝⎛+z y z x ≥8. 证明: ∵0,0,0>>>z y x ∴x z x y +≥02>x yz ,y z y x +≥02>yxz ,z y z x +≥02>z xy . 当且仅当z y x ==时,上面三个等号同时成立.∴⎪⎭⎫ ⎝⎛+x z x y ⎪⎭⎫ ⎝⎛+y z y x ⎪⎭⎫ ⎝⎛+z y z x ≥888==⋅⋅xyzxyz xyz xy xz yz . 当且仅当z y x ==时,等号成立.例29. 已知0,0,0>>>c b a ,且1=++c b a .求证:cb a 111++≥9. 证明: ∵0,0,0>>>c b a ,1=++c b a ∴cc b a b c b a a c b a c b a ++++++++=++111 ⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++=c b b c c a a c b a a b 3 ≥922232223=+++=⋅+⋅+⋅+cb bc c a a c b a a b 当且仅当c b a ==时,等号成立.例30. 已知正数b a ,满足4=+b a ,求3111+++b a 的最小值. 解: ∵4=+b a ∴()()831=+++b a .∵b a ,均为正数∴()()[]31813111+++=+++b a b a ⎪⎭⎫ ⎝⎛+++++++=⎪⎭⎫ ⎝⎛+++113311813111a b b a b a ⎪⎭⎫ ⎝⎛++++++=13318141a b b a ≥21133128141=++⋅++⨯+a b b a . 当且仅当1331++=++a b b a ,即1,3==b a 时,等号成立. ∴3111+++b a 的最小值为21. 例31. 若实数2,1>>b a ,且满足062=-+b a ,则2211-+-b a 的最小值为______. 解: ∵062=-+b a∴()()2212=-+-b a .∵2,1>>b a ,∴02,01>->-b a . ∴()()[]212212211-+-=-+-b a b a ⎪⎭⎫ ⎝⎛-+-2211b a()()⎥⎦⎤⎢⎣⎡--+--+=⎥⎦⎤⎢⎣⎡+--+--+=12214212212214221a b b a a b b a≥()4122142212=--⋅--⨯+a b b a . 当且仅当()12214--=--a b b a ,即3,23==b a 时,等号成立. ∴2211-+-b a 的最小值为4. 例32. 已知0,0>>y x ,且21131=++y x ,则y x +的最小值为 【 】 (A )5 (B )6 (C )7 (D )8 (参见例9)解: ()33-++=+y x y x .∵0,0>>y x ,且21131=++y x∴()⎪⎭⎫⎝⎛++=-++=+y x y x y x 131233()[]33-++y x ⎪⎭⎫ ⎝⎛++++=-⎪⎭⎫ ⎝⎛+++++=y x x yy x x y 3321313312≥533221=+⋅+⨯+yx x y . 当且仅当yx x y 33+=+,即4,1==y x 时,等号成立. ∴y x +的最小值为5. ∴选择答案【 A 】.另解: ∵21131=++y x ,∴31211+-=x y . 整理得:()()2141412132++=+++=++=x x x x x y . ∵0,0>>y x ∴1141214++++=+++=+x x x x y x ≥()511412=++⋅+x x . 当且仅当141+=+x x ,即1=x (此时4=y )时,等号成立. ∴y x +的最小值为5. ∴选择答案【 A 】.点评 在利用基本不等式求最值时,根据需要有时要对关键条件进行变形,或对要求最值的代数式进行变形,以使和为定值或积为定值. 例33. 已知0>>y x ,求()y x y x -+42的最小值.分析: 注意到()x y x y =-+,所以()y x y -<0≤()4222x y x y =⎥⎦⎤⎢⎣⎡-+,这样就消去了字母y ,因此()y x y x -+42≥2216x x +≥4.当且仅当2216,xx y x y =-=时,等号成立.解: ∵0>>y x∴()y x y -<0≤()4222x y x y =⎥⎦⎤⎢⎣⎡-+(当且仅当y x y -=时,等号成立) ∴()[]42maxx y x y =-,()22min16444x x y x y ==⎥⎦⎤⎢⎣⎡-. ∴()y x y x -+42≥2216xx +≥816222=⋅x x .当且仅当2216x x =,y x y -=,即1,2==y x 时,等号成立. ∴()y x y x -+42的最小值是8.另解: ∵0>>y x ,∴()0>-y x y .∵()[]22y x y x -+=≥()y x y -4(这里,ab ≤22⎪⎭⎫⎝⎛+b a )(当且仅当y x y -=时,等号成立) ∴()y x y x -+42≥()()y x y y x y -+-44≥()()8442=-⋅-y x y y x y .(当且仅当()()y x y y x y -=-44,即()1=-y x y 时,等号成立)当且仅当()1,=--=y x y y x y ,即1,2==y x 时,等号成立. ∴()y x y x -+42的最小值是8.例34. 若b a >,且2=ab ,求证:ba b a -+22≥4.证明: ∵b a >,∴0>-b a .∵2=ab∴()ba b a b a ab b a b a b a -+-=-+-=-+42222≥()442=-⋅-b a b a .当且仅当ba b a -=-4,即13,13-=+=b a 或13,13--=+-=b a 时,等号成立.∴ba b a -+22≥4.例35. 已知b a ,为正数,求证:b a 41+≥()ba ++21222. 证明: ∵b a ,为正数,∴02>+b a .∴()b a a b b a a b b a b a 86482241++=+++=+⎪⎭⎫ ⎝⎛+ ≥()()21222232246826+=+=+=⋅+baa b . 当且仅当baa b 8=,即a b 22=时,等号成立. ∴b a 41+≥()ba ++21222.(这里,02>+b a ) ★例36. 若10<<x ,0,0>>b a .求证:xb x a -+122≥()2b a +. 分析: 注意到()11=-+x x 这一隐含条件. 证明: ∵10<<x ,∴01>-x .∴()[]()2222222211111b x x a x x b a x b x a x x x b x a +-+-+=⎪⎭⎫ ⎝⎛-+-+=-+ ≥()()22222222112b a ab b a xx a x x b b a +=++=-⋅-++. 当且仅当()x x a x x b -=-1122,即b a ax +=时,等号成立. ∴xb x a -+122≥()2b a +. 例37. 已知c b a ,,均为正数.求证:ccb a b bc a a a c b 33222332-++-++-+≥3. 证明: ∵c b a ,,均为正数∴ccb a b bc a a a c b 33222332-++-++-+ 33223332213231232132-⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=-++-++-+=c b b c c a a c b a a b cb c a b c b a a c a b≥336332232332222=-=-⋅+⋅+⋅cb bc c a a c b a a b . 当且仅当cbb c c a a c b a a b 3223,33,22===,即c b a 32==时,等号成立. ∴c c b a b b c a a a c b 33222332-++-++-+≥3. 例38. 已知0,0>>y x ,y yx x -=-812,则y x +2的最小值为 【 】 (A )2 (B )22 (C )23 (D )4分析: 注意到02>+y x ,根据题目所给条件的特点可先求出()[]min22y x +,然后开方即可得到()min 2y x +,而()()⎪⎭⎫ ⎝⎛++=+y x y x y x 81222.解: ∵y yx x -=-812,∴y x y x 812+=+.∵0,0>>y x ,∴02>+y x .∴()()y x y x +=+222⎪⎭⎫ ⎝⎛+y x 81x y y x x y y x ++=+++=16108162 ≥1816210=⋅+xyy x . 当且仅当xyy x =16,即22,22==y x (x y 4=)时,等号成立. ∴()22y x +的最小值为18. ∴y x +2的最小值为2318=. ∴选择答案【 C 】.例39. 已知0,0>>b a ,且8=+b a ,则ba ab43+的最大值是_________. 解: ∵0,0>>b a ,8=+b a∴()a b b a a b b a b a b a b a ab b a b a ab 452414424148131434343++=+++=⎪⎭⎫ ⎝⎛++=+=+=+ ≤38924452442524==+=⋅+abb a . 当且仅当a b b a 4=,即38,316==b a 时,等号成立. ∴b a ab 43+的最大值是38. 例40. 已知93,0,0=++>>xy y x y x ,则y x 3+的最小值为_________. 解: ∵93=++xy y x ,∴39+-=x xy . ∵0,0>>y x ∴()()633633336336333933-+++=-++=+++-+=+-+=+x x x x x x x x x x y x ≥()6612633632=-=-+⋅+x x . 当且仅当3363+=+x x ,即1,3==y x 时,等号成立. ∴y x 3+的最小值为 6. 点评: 上面的方法为消去元y 后,利用基本不等式求得最值.例41. 已知x 为正实数,且1222=+y x ,求21y x +的最大值. 解: ∵x 为正实数∴()⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=+=+22122212112222222y x y x y x y x≤423221122221222=+⨯=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⨯y x .当且仅当22122y x +=,即22,23±==y x 时,等号成立. ∴21y x +的最大值为423. 另解: ∵1222=+y x ,∴2222=+y x .∵x 为正实数∴()()()22222221222122111y x y x y x y x +=+⋅=+=+ ≤()4232122221222212222222=+⨯=++⨯=⎥⎦⎤⎢⎣⎡++⨯y x y x . 当且仅当2212y x +=,即22,23±==y x 时,等号成立. ∴21y x +的最大值为423. 例42. 求函数131-++-=x x x y 的最大值.解: 设1-=x t ,则t ≥0,∴12+=t x . ∴41312++=-++-=t t tx x x y .当0=t ,即1=x 时,0=y ; 当0>t ,即1>x 时,141++=t t y ≤511421=+⋅tt . 当且仅当tt 4=,即5,2==x t 时,取等号. ∴当1>x 时,函数131-++-=x x x y 的最大值为51.综上所述,函数131-++-=x x x y 的最大值为51.例43. 设正实数z y x ,,满足04322=-+-z y xy x ,则当zxy取得最大值时,代数式zy x 212-+的最大值为 【 】 (A )0 (B )1 (C )49(D )3 解: ∵04322=-+-z y xy x ,∴2243y xy x z +-=.∵z y x ,,为正实数 ∴341431432222-+=+-=+-=x y y x xy y xy x y xy x xy z xy ≤13421=-⋅xy y x .当且仅当xyy x 4=,即y x 2=时,等号成立,此时22y z =. ∴1112122122212222+⎪⎭⎫⎝⎛--=+-=-+=-+y y y y y y z y x ≤1 ∴当1=y 时,zy x 212-+的最大值为1. ∴选择答案【 B 】.例44. 若正数y x ,满足3039422=++xy y x ,则xy 的最大值是 【 】(A )34 (B )35 (C )2 (D )45解: ∵xy y x 39422++≥xy xy xy xy y x 153123322=+=+⋅⋅∴xy 15≤30,∴xy ≤2. ∴xy 的最大值是2. ∴选择答案【 C 】.例45. 设0,0>>b a ,且ba kb a +++11≥0恒成立,则实数k 的最小值等于 【 】 (A )0 (B )4 (C )4- (D )2-解: ∵ba kb a +++11≥0恒成立∴k ≥()abb a 2+-恒成立.(这里,注意0>+b a )只需k ≥()max2⎥⎦⎤⎢⎣⎡+-ab b a 即可,此时()ab b a 2+取得最小值. ∵0,0>>b a ∴()abb a 2+≥()4422==ababab ab ,当且仅当b a =时,等号成立. ∴()abb a 2+-≤4-,∴()4max2-=⎥⎦⎤⎢⎣⎡+-ab b a ∴k ≥4-,即k 的最小值为4-. ∴选择答案【 C 】.例46. 设c b a >>,且c b b a -+-11≥ca m-恒成立,求m 的取值范围; 解: ∵c b a >>,∴0,0,0>->->-c a c b b a .∵c b b a -+-11≥ca m-恒成立 ∴c b ca b a c a --+--≥m 恒成立,只需m ≤min⎪⎭⎫ ⎝⎛--+--c b c a b a c a 即可.∵cb ba b a c b c b c b b a b a c b b a c b c a b a c a --+--+=--+-+--+-=--+--2 ≥422=--⋅--+cb ba b a c b ∴当且仅当b c a 2=+时,等号成立,4min=⎪⎭⎫⎝⎛--+--c b c a b a c a . ∴m ≤4.∴m 的取值范围是(]4,∞-.例47. 对于任意∈x R ,不等式031222>++-x a x 恒成立,求实数a 的取值范围. 解: ∵031222>++-x a x 恒成立∴13222++<x x a 恒成立,只需<a min 22132⎪⎭⎫ ⎝⎛++x x 即可.()⎪⎪⎪⎪⎭⎫⎝⎛+++=+++=+++=++12112111*********2222222x x x x x x x x . 设t x =+12,则[)+∞∈,1t ,⎪⎪⎪⎪⎭⎫ ⎝⎛+=++t t x x 21213222. ∵[)+∞∈,1t ,且()⎪⎪⎪⎪⎭⎫ ⎝⎛+=t t t f 212在⎪⎪⎭⎫⎢⎣⎡+∞,22上单调递增 ∴()()321121min=⎪⎭⎫ ⎝⎛+==f t f ,即3132min22=⎪⎭⎫ ⎝⎛++x x . ∴3<a ,即实数a 的取值范围是()3,∞-.注意 本题不能用基本不等式求最值.当111222+=+x x 时,方程无解.例48. 设0,0>>b a ,5=+b a ,则31+++b a 的最大值为_________. 解: ∵()()()()()31293124312+++=+++++=+++b a b a b a b a≤()()18319=++++a a . 当且仅当31+=+b a ,即23,27==b a 时,取等号. ∴()231+++b a 的最大值为18.∵031>+++b a∴31+++b a 的最大值为2318=.例49. 已知3,2>>y x ,()()432=--y x ,则y x +的最小值是 【 】(A )7 (B )9 (C )5 (D )11解: ∵3,2>>y x ,∴03,02>->-y x .∵()()432=--y x ∴()()232-+-y x ≥()()2432==--y x∴25-+y x ≥2,∴y x +≥9. ∴y x +的最小值是9.∴选择答案【 B 】.另解: ∵3,2>>y x ,∴03,02>->-y x .∵()()432=--y x∴()()532+-+-=+y x y x ≥()()95425322=+⨯=+--y x .∴y x +的最小值是9.∴选择答案【 B 】. 例50. 若关于x 的不等式ax x -+4≥5在()+∞∈,a x 上恒成立,则实数a 的最小值为_________.解: ∵()+∞∈,a x ,∴0>-a x .∵ax x -+4≥5恒成立 ∴只需min 4⎪⎭⎫ ⎝⎛-+a x x ≥5即可. ∵a ax a x a x x +-+-=-+44≥()a a a x a x +=+-⋅-442 当且仅当ax a x -=-4,即2+=a x 时,等号成立. ∴a a x x +=⎪⎭⎫ ⎝⎛-+44min ∴a +4≥5,解之得:a ≥1.∴实数a 的最小值为1.例51. 已知0,0>>y x ,且121=+yx ,则y x xy ++的最小值为_________. 解: ∵121=+yx ∴xy y x =+2∴y x y x y x y x xy 232+=+++=++.∵0,0>>y x ∴⎪⎭⎫ ⎝⎛+=+y x y x 2123()y xx y y x x yy x 627462323++=+++=+≥3476227+=⋅+y xx y. 当且仅当y x x y 62=,即23,3323+=+=y x 时,等号成立.∴y x 23+,即y x xy ++的最小值为347+.例52. 已知0,0>>y x ,且053=+-+xy y x ,求xy 的最小值.解: ∵053=+-+xy y x∴xy y x 35=++.∵0,0>>y x∴5++y x ≥52+xy ,即xy 3≥52+xy ∴523--xy xy ≥0 ∴()()531-+xy xy ≥0解之得:xy ≥35.∴xy ≥925,当且仅当35==y x 时,等号成立.∴xy 的最小值为925.例53. 已知z y x ,,为正数,则222z y x yzxy +++的最大值为【 】 (A )1 (B )2 (C )22(D )2解: ∵z y x ,,为正数 ∴⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++=+++222222222z y y x yz xy z y x yz xy ≤yz xy yz xy 222222⨯+⨯+ ()22212==++=yz xy yzxy . 当且仅当y z x 22==时,等号成立. ∴222z y x yz xy +++的最大值为22. ∴选择答案【 C 】.例54. 设0>>b a ,则()b a a ab a -++112的最小值是 【 】 (A )1 (B )2 (C )3 (D )4解: ∵0>>b a ,∴0>-b a .∴()()()()ab ab b a a b a a b a a ab ab ab a b a a ab a 11111122++-+-=-+++-=-++ ≥()()41212=⋅+-⋅-abab b a a b a a . 当且仅当()()abab b a a b a a 1,1=-=-,即22,2==b a 时,等号成立. ∴()b a a ab a -++112的最小值是4. ∴选择答案【 D 】.例55. 设y x ,都是正数,且()1=+-y x xy .(1)求xy 的最小值;(2)求y x +的最小值.分析: 关于(1)的解决,参见例52.解:(1)∵()1=+-y x xy ∴xy y x =++1. ∵y x ,都是正数 ∴y x ++1≥xy 21+,即xy ≥xy 21+. ∴12--xy xy ≥0. 解之得:xy ≥21+. ∴xy ≥()223212+=+. 当且仅当21+==y x 时,等号成立. ∴xy 的最小值为223+;(2)由(1)知:xy y x =++1. ∵y x ,都是正数∴xy ≤()4222y x y x +=⎪⎭⎫ ⎝⎛+. (当且仅当21+==y x 时取等号) ∴()42y x +≥y x ++1,()()142-+-+y x y x ≥0. ∴()()442-+-+y x y x ≥0. 解之得:y x +≥222+. 当且仅当21+==y x 时,等号成立. ∴y x +的最小值为222+.。

高中数学基本不等式及其应用知识归纳+经典例题+变式+习题巩固(带解析)

高中数学基本不等式及其应用知识归纳+经典例题+变式+习题巩固(带解析)

基本不等式及其应用一、知识梳理1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号.(3)其中a +b2称为正数a ,b a ,b 的几何平均数.2.两个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号. (2)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. 3.利用基本不等式求最值 已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 24(简记:和定积最大).1.b a +ab≥2(a ,b 同号),当且仅当a =b 时取等号. 2.ab ≤⎝⎛⎭⎫a +b 22≤a 2+b 22. 3.21a +1b ≤ab ≤a +b2≤a 2+b 22(a >0,b >0). 4.应用基本不等式求最值要注意:“一定,二正,三相等”,忽略某个条件,就会出错. 5.在利用不等式求最值时,一定要尽量避免多次使用基本不等式.若必须多次使用,则一定要保证它们等号成立的条件一致.二、基础演练1.若x >0,y >0,且x +y =18,则xy 的最大值为( ) A.9 B.18 C.36 D.81答案 A解析 因为x +y =18,所以xy ≤x +y 2=9,当且仅当x =y =9时,等号成立.2.(2021·滨州三校联考)若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a 等于( )A.1+2B.1+3C.3D.4答案 C解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2(x -2)×1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3,故选C.3.(2018·天津卷)已知a ,b ∈R ,且a -3b +6=0,则2a +18b 的最小值为________.答案 14解析 由题设知a -3b =-6,又2a>0,8b>0,所以2a+18b ≥22a·18b =2·2a -3b 2=14,当且仅当2a =18b ,即a =-3,b =1时取等号.故2a +18b 的最小值为14.三、典型例题与变式训练考点一 利用基本不等式求最值 角度1 配凑法求最值【例1】 (1)(2021·乐山模拟)设0<x <32,则函数y =4x (3-2x )的最大值为________.(2)已知x <54,则f (x )=4x -2+14x -5的最大值为________.(3)已知函数f (x )=-x 2x +1(x <-1),则( )A.f (x )有最小值4B.f (x )有最小值-4C.f (x )有最大值4D.f (x )有最大值-4答案 (1)92(2)1 (3)A解析 (1)y =4x (3-2x )=2[2x (3-2x )]≤2⎣⎡⎦⎤2x +(3-2x )22=92, 当且仅当2x =3-2x ,即x =34时,等号成立.∵34∈⎝⎛⎭⎫0,32,∴函数y =4x (3-2x )⎝⎛⎭⎫0<x <32的最大值为92. (2)因为x <54,所以5-4x >0,则f (x )=4x -5+14x -5+3=-⎝⎛⎭⎫5-4x +15-4x +3≤-2(5-4x )·15-4x+3=-2+3=1,当且仅当5-4x =15-4x ,即x =1时,取等号.故f (x )=4x -2+14x -5的最大值为1.(3)f (x )=-x 2x +1=-x 2-1+1x +1=-⎝⎛⎭⎫x -1+1x +1=-⎝⎛⎭⎫x +1+1x +1-2=-(x +1)+1-(x +1)+2.因为x <-1,所以x +1<0,-(x +1)>0,所以f (x )≥21+2=4, 当且仅当-(x +1)=1-(x +1),即x =-2时,等号成立.故f (x )有最小值4.角度2 常数代换法求最值【例2】(2021·武汉模拟)已知正数m ,n 满足m +2n =8,则2m +1n 的最小值为________,等号成立时m ,n 满足的等量关系是________. 答案 1 m =2n解析 因为m +2n =8,所以2m +1n =⎝⎛⎭⎫2m +1n ×m +2n 8=18⎝⎛⎭⎫4+4n m +m n ≥18⎝⎛⎭⎫4+24n m ×m n =18(4+4)=1,当且仅当4n m =mn ,即m =4,n =2时等号成立.角度3 消元法求最值【例3】(2020·江苏卷)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是________. 答案 45解析 由题意知y ≠0.由5x 2y 2+y 4=1,可得x 2=1-y 45y 2,所以x 2+y 2=1-y 45y 2+y 2=1+4y 45y 2=15⎝⎛⎭⎫1y 2+4y 2≥15×21y 2×4y 2=45,当且仅当1y 2=4y 2,即y =±22时取等号.所以x 2+y 2的最小值为45. 感悟升华 利用基本不等式求最值的方法(1)知和求积的最值:“和为定值,积有最大值”.但应注意以下两点: ①具备条件——正数;②验证等号成立.(2)知积求和的最值:“积为定值,和有最小值”,直接应用基本不等式求解,但要注意利用基本不等式求最值的条件.(3)构造不等式求最值:在求解含有两个变量的代数式的最值问题时,通常采用“变量替换”或“常数1”的替换,构造不等式求解.【训练1】 已知实数x ,y >0,且x 2-xy =2,则x +6x +1x -y 的最小值为( )A.6B.62C.3D.32答案 A 解析 由x ,y >0,x 2-xy =2得x -y =2x ,则1x -y =x 2,所以x +6x +1x -y =x +6x +x2=3⎝⎛⎭⎫x 2+2x ≥3×2x 2×2x=6, 当且仅当x 2=2x ,即x =2,y =1时等号成立,所以x +6x +1x -y 的最小值为6.考点二 基本不等式的综合应用【例4】 (1) (多选题)(2021·烟台模拟)下列说法正确的是( ) A.若x ,y >0,x +y =2,则2x +2y 的最大值为4 B.若x <12,则函数y =2x +12x -1的最大值为-1C.若x ,y >0,x +y +xy =3,则xy 的最小值为1D.函数y =1sin 2x +4cos 2x的最小值为9(2)已知不等式(x +y )⎝⎛⎭⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( ) A.2B.4C.6D.8答案 (1)BD (2)B解析 (1)对于A ,取x =32,y =12,可得2x +2y =32>4,A 错误;对于B ,y =2x +12x -1=-⎝⎛⎭⎫1-2x +11-2x +1≤-2+1=-1,当且仅当x =0时等号成立,B 正确;对于C ,易知x =2,y =13满足等式x +y +xy =3,此时xy =23<1,C 错误;对于D ,y =1sin 2x +4cos 2x =⎝⎛⎭⎫1sin 2x +4cos 2x (sin 2x +cos 2x )=cos 2x sin 2x +4sin 2x cos 2x +5≥24+5=9.当且仅当cos 2x =23,sin 2x =13时等号成立,D 正确.故选BD.(2)已知不等式(x +y )⎝⎛⎭⎫1x +a y ≥9对任意正实数x ,y 恒成立,只要求(x +y )⎝⎛⎭⎫1x +ay 的最小值大于或等于9,∵1+a +y x +axy ≥a +2a +1,当且仅当y =ax 时,等号成立,∴a +2a +1≥9,∴a ≥2或a ≤-4(舍去),∴a ≥4, 即正实数a 的最小值为4,故选B.感悟升华 1.当基本不等式与其他知识相结合时,往往是提供一个应用基本不等式的条件,然后利用常数代换法求最值.2.求参数的值或范围时,要观察题目的特点,利用基本不等式确定相关成立的条件,从而得到参数的值或范围.【训练2】 (1)在△ABC 中,A =π6,△ABC 的面积为2,则2sin C sin C +2sin B +sin Bsin C 的最小值为( )A.32B.334C.32D.53(2) 已知x >0,y >0,x +3y +xy =9,求x +3y 的最小值.答案 (1)C解析 (1)由△ABC 的面积为2,所以S △ABC =12bc sin A =12bc sin π6=2,得bc =8,在△ABC 中,由正弦定理得2sin C sin C +2sin B +sin B sin C =2c c +2b +bc=2·8b8b +2b +b 8b =168+2b 2+b 28=84+b 2+b 2+48-12≥284+b2·b 2+48-12=2-12=32, 当且仅当b =2,c =4时,等号成立,故选C.四、练习巩固 一、选择题1.若3x +2y =2,则8x +4y 的最小值为( ) A.4 B.42C.2D.22答案 A解析 因为3x +2y =2,所以8x +4y ≥28x ·4y =223x+2y=4,当且仅当3x +2y =2且3x =2y ,即x =13,y =12时等号成立.故选A.2.已知x >0,y >0,且1x +1+1y =12,则x +y 的最小值为( )A.3B.5C.7D.9答案 C解析 ∵x >0,y >0,且1x +1+1y =12,∴x +1+y =2⎝⎛⎭⎫1x +1+1y (x +1+y )=2⎝ ⎛⎭⎪⎫1+1+y x +1+x +1y ≥2⎝ ⎛⎭⎪⎫2+2y x +1·x +1y =8,当且仅当y x +1=x +1y ,即x =3,y =4时取等号,∴x +y ≥7,故x +y 的最小值为7.3.若实数x ,y 满足x 2+y 2+xy =1,则x +y 的最大值是( )A.6B.233C.4D.23答案 B解析 x 2+y 2+xy =1⇒(x +y )2-xy =1, ∵xy ≤⎝⎛⎭⎫x +y 22,当且仅当x =y 时取等号, ∴(x +y )2-⎝⎛⎭⎫x +y 22≤1,即34(x +y )2≤1,∴-233≤x +y ≤233, ∴x +y 的最大值是233.故选B.4.(2021·沈阳一模)若log 2x +log 4y =1,则x 2+y 的最小值为( ) A.2 B.23C.4D.22答案 C解析 因为log 2x +log 4y =log 4x 2+log 4y =log 4(x 2y )=1,所以x 2y =4(x >0,y >0),则x 2+y ≥2x 2y =4,当且仅当x 2=y =2时等号成立,即x 2+y 的最小值为4.故选C.5.(2020·重庆联考)对任意m ,n ∈(0,+∞),都有m 2-amn +2n 2≥0,则实数a 的最大值为( ) A.2 B.22C.4D.92答案 B解析 ∵对任意m ,n ∈(0,+∞),都有m 2-amn +2n 2≥0, ∴m 2+2n 2≥amn ,即a ≤m 2+2n 2mn =m n +2n m 恒成立,∵m n +2n m≥2m n ·2n m =22,当且仅当m n =2nm即m =2n 时取等号,∴a ≤22,故a 的最大值为22,故选B.6.(2020·山东名校联考)正实数a ,b 满足a +3b -6=0,则1a +1+43b +2的最小值为( )A.13B.1C.2D.59答案 B解析 由题意可得a +3b =6,所以1a +1+43b +2=19[(a +1)+(3b +2)]⎝⎛⎭⎫1a +1+43b +2=19⎣⎢⎡⎦⎥⎤5+3b +2a +1+4(a +1)3b +2≥1,当且仅当⎩⎪⎨⎪⎧2(a +1)=3b +2,a +3b =6,即a =2,b =43时等号成立.故1a +1+43b +2的最小值为1,选B.二、填空题7.若直线x a +yb =1(a >0,b >0)过点(1,2),则2a +b 的最小值为________.答案 8解析 由题设可得1a +2b =1,∵a >0,b >0,∴2a +b =(2a +b )⎝⎛⎭⎫1a +2b =4+b a +4ab≥4+2b a ·4ab=8⎝⎛⎭⎫当且仅当b a =4ab ,即b =2a =4时,等号成立.故2a +b 的最小值为8. 8.已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________. 答案 6解析 法一(换元消元法)由已知得x +3y =9-xy ,因为x >0,y >0,所以x +3y ≥23xy ,所以3xy ≤⎝⎛⎭⎫x +3y 22, 当且仅当x =3y ,即x =3,y =1时取等号,即(x +3y )2+12(x +3y )-108≥0, 令x +3y =t ,则t >0且t 2+12t -108≥0,得t ≥6,即x +3y 的最小值为6. 法二 (代入消元法)由x +3y +xy =9,得x =9-3y 1+y,所以x +3y =9-3y 1+y +3y =9+3y 21+y =3(1+y )2-6(1+y )+121+y=3(1+y )+121+y-6≥23(1+y )·121+y-6=12-6=6,当且仅当3(1+y )=121+y ,即y =1,x =3时取等号,所以x +3y 的最小值为6.9.(2020·天津卷)已知a >0,b >0,且ab =1,则12a +12b +8a +b 的最小值为__________.答案 4解析 因为a >0,b >0,ab =1,所以原式=ab 2a +ab 2b +8a +b =a +b 2+8a +b≥2a +b 2·8a +b=4,当且仅当a +b 2=8a +b ,即a +b =4时,等号成立.故12a +12b +8a +b 的最小值为4.10.函数y =x 2+2x -1(x >1)的最小值为________.答案 23+2解析 ∵x >1,∴x -1>0,∴y =x 2+2x -1=(x 2-2x +1)+(2x -2)+3x -1=(x -1)2+2(x -1)+3x -1=(x -1)+3x -1+2≥23+2.当且仅当x -1=3x -1,即x =3+1时,等号成立.11.若a ,b ∈R ,ab >0,则a 4+4b 4+1ab 的最小值为________.答案 4解析 ∵a ,b ∈R ,ab >0,∴a 4+4b 4+1ab ≥4a 2b 2+1ab =4ab +1ab ≥24ab ·1ab=4,当且仅当⎩⎪⎨⎪⎧a 2=2b 2,4ab =1ab ,即⎩⎨⎧a 2=22,b 2=24时取得等号. 12.已知函数f (x )=x 2+ax +11x +1(a ∈R ),若对于任意的x ∈N *,f (x )≥3恒成立,则a 的取值范围是________. 答案 ⎣⎡⎭⎫-83,+∞ 解析 对任意x ∈N *,f (x )≥3,即x 2+ax +11x +1≥3恒成立,即a ≥-⎝⎛⎭⎫x +8x +3. 设g (x )=x +8x ,x ∈N *,则g (x )=x +8x ≥42,当且仅当x =22时等号成立,又g (2)=6,g (3)=173,∵g (2)>g (3),∴g (x )min =173.∴-⎝⎛⎭⎫x +8x +3≤-83, ∴a ≥-83,故a 的取值范围是⎣⎡⎭⎫-83,+∞.。

高一基本不等式及其应用知识点+例题+练习 含答案

高一基本不等式及其应用知识点+例题+练习 含答案

1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ). (2)b a +ab ≥2(a ,b 同号). (3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R ).(4)a 2+b 22≥⎝⎛⎭⎫a +b 22 (a ,b ∈R ). 以上不等式等号成立的条件均为a =b . 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为两个正数的几何平均数不大于它们的算术平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值p 24.(简记:和定积最大)【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)函数y =x +1x 的最小值是2.( × )(2)函数f (x )=cos x +4cos x ,x ∈(0,π2)的最小值等于4.( × ) (3)“x >0且y >0”是“x y +yx ≥2”的充要条件.( × )(4)若a >0,则a 3+1a2的最小值为2a .( × )(5)不等式a 2+b 2≥2ab 与a +b2≥ab 有相同的成立条件.( × )1.(教材改编)设x >0,y >0,且x +y =18,则xy 的最大值为________. 答案 81解析 ∵x >0,y >0,∴x +y2≥xy ,即xy ≤(x +y2)2=81,当且仅当x =y =9时,(xy )max =81.2.若实数x ,y 满足x >y >0,且log 2x +log 2y =1,则x 2+y 2x -y 的最小值为________.答案 4解析 由log 2x +log 2y =1得xy =2,又x >y >0,所以x -y >0,x 2+y 2x -y =(x -y )2+2xy x -y =x -y +4x -y ≥2(x -y )·4x -y =4,当且仅当x -y =2,即x =1+3,y =3-1时取等号,所以x 2+y 2x -y的最小值为4.3.若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a =________.答案 3解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2(x -2)×1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3. 4.(教材改编)若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________ m 2. 答案 25解析 设矩形的一边为x m , 则另一边为12×(20-2x )=(10-x )m ,∴y =x (10-x )≤[x +(10-x )2]2=25,当且仅当x =10-x ,即x =5时,y max =25.5.(教材改编)已知x ,y ∈R +,且x +4y =1,则xy 的最大值为________. 答案116解析 1=x +4y ≥24xy =4xy ,∴xy ≤(14)2=116,当且仅当x =4y =12,即⎩⎨⎧x =12y =18时,(xy )max =116.题型一 利用基本不等式求最值命题点1 配凑法求最值例1 (1)已知x <54,则f (x )=4x -2+14x -5的最大值为________.(2)函数y =x 2+2x -1(x >1)的最小值为________.(3)函数y =x -1x +3+x -1的最大值为________.答案 (1)1 (2)23+2 (3)15解析 (1)因为x <54,所以5-4x >0,则f (x )=4x -2+14x -5=-(5-4x +15-4x )+3≤-2+3=1.当且仅当5-4x =15-4x ,即x =1时,等号成立.故f (x )=4x -2+14x -5的最大值为1.(2)y =x 2+2x -1=(x 2-2x +1)+(2x -2)+3x -1=(x -1)2+2(x -1)+3x -1=(x -1)+3x -1+2≥23+2.当且仅当(x -1)=3(x -1),即x =3+1时,等号成立.(3)令t =x -1≥0,则x =t 2+1,所以y =t t 2+1+3+t =tt 2+t +4.当t =0,即x =1时,y =0; 当t >0,即x >1时,y =1t +4t+1,因为t +4t ≥24=4(当且仅当t =2时取等号),所以y =1t +4t+1≤15,即y 的最大值为15(当t =2,即x =5时y 取得最大值).思维升华 (1)应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件.(2)在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.命题点2 常数代换或消元法求最值例2 (1)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是________. (2)(高考改编题)设a +b =2,b >0,则12|a |+|a |b 取最小值时,a 的值为________.答案 (1)5 (2)-2解析 (1)方法一 由x +3y =5xy 可得15y +35x=1,∴3x +4y =(3x +4y )(15y +35x )=95+45+3x 5y +12y 5x ≥135+125=5. (当且仅当3x 5y =12y 5x ,即x =1,y =12时,等号成立),∴3x +4y 的最小值是5. 方法二 由x +3y =5xy 得x =3y5y -1, ∵x >0,y >0,∴y >15,∴3x +4y =9y5y -1+4y =13(y -15)+95+45-4y5y -1+4y=135+95·15y -15+4(y -15)≥135+23625=5, 当且仅当y =12时等号成立,∴(3x +4y )min =5.(2)∵a +b =2,∴12|a |+|a |b =24|a |+|a |b =a +b 4|a |+|a |b =a 4|a |+b 4|a |+|a |b ≥a 4|a |+2b 4|a |×|a |b =a4|a |+1, 当且仅当b 4|a |=|a |b 时等号成立.又a +b =2,b >0, ∴当b =-2a ,a =-2时,12|a |+|a |b取得最小值. 思维升华 条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数“1”代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.(1)已知x ,y ∈(0,+∞),2x -3=(12)y ,若1x +m y(m >0)的最小值为3,则m =________.(2)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________. 答案 (1)4 (2)6解析 (1)由2x -3=(12)y 得x +y =3,1x +m y =13(x +y )(1x +m y ) =13(1+m +y x +mx y ) ≥13(1+m +2m ), (当且仅当y x =mxy 时取等号)∴13(1+m +2m )=3, 解得m =4.(2)由已知得x =9-3y1+y .方法一 (消元法) ∵x >0,y >0,∴y <3, ∴x +3y =9-3y 1+y +3y =3y 2+91+y=3(1+y )2-6(1+y )+121+y =121+y +(3y +3)-6≥2121+y·(3y +3)-6=6, 当且仅当121+y =3y +3,即y =1,x =3时,(x +3y )min =6. 方法二 ∵x >0,y >0,9-(x +3y )=xy =13x ·(3y )≤13·(x +3y 2)2,当且仅当x =3y 时等号成立. 设x +3y =t >0,则t 2+12t -108≥0, ∴(t -6)(t +18)≥0,又∵t >0,∴t ≥6.故当x =3,y =1时,(x +3y )min =6.题型二 基本不等式与学科知识的综合命题点1 用基本不等式求解与其他知识结合的最值问题例3 (1)已知直线ax +by +c -1=0(b ,c >0)经过圆x 2+y 2-2y -5=0的圆心,则4b +1c 的最小值是________.(2)已知a >0,b >0,a ,b 的等比中项是1,且m =b +1a ,n =a +1b ,则m +n 的最小值是________.答案 (1)9 (2)4解析 (1)圆x 2+y 2-2y -5=0化成标准方程, 得x 2+(y -1)2=6, 所以圆心为C (0,1).因为直线ax +by +c -1=0经过圆心C , 所以a ×0+b ×1+c -1=0,即b +c =1. 因此4b +1c =(b +c )(4b +1c )=4c b +bc +5.因为b ,c >0, 所以4c b +b c≥24c b ·bc=4. 当且仅当4c b =bc时等号成立.由此可得b =2c ,且b +c =1,即b =23,c =13时,4b +1c 取得最小值9.(2)由题意知:ab =1,∴m =b +1a =2b ,n =a +1b=2a ,∴m +n =2(a +b )≥4ab =4,当且仅当a =b =1时,等号成立. 命题点2 求参数的值或取值范围例4 已知a >0,b >0,若不等式3a +1b ≥ma +3b 恒成立,则m 的最大值为________.答案 12解析 由3a +1b ≥ma +3b得m ≤(a +3b )(3a +1b )=9b a +ab+6.又9b a +ab +6≥29+6=12, ∴m ≤12,∴m 的最大值为12.思维升华 (1)应用基本不等式判断不等式是否成立:对所给不等式(或式子)变形,然后利用基本不等式求解.(2)条件不等式的最值问题:通过条件转化成能利用基本不等式的形式求解.(3)求参数的值或范围:观察题目特点,利用基本不等式确定相关成立条件,从而得参数的值或范围.(1)已知各项均为正数的等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +4n的最小值为________.(2)已知函数f (x )=x 2+ax +11x +1(a ∈R ),若对于任意x ∈N *,f (x )≥3恒成立,则a 的取值范围是________________________________________________________________________. 答案 (1)32 (2)[-83,+∞)解析 (1)由各项均为正数的等比数列{a n }满足a 7=a 6+2a 5,可得a 1q 6=a 1q 5+2a 1q 4, 所以q 2-q -2=0, 解得q =2或q =-1(舍去). 因为a m a n =4a 1,所以q m +n -2=16, 所以2m +n -2=24,所以m +n =6. 所以1m +4n =16(m +n )(1m +4n )=16(5+n m +4m n ) ≥16(5+2n m ·4m n )=32. 当且仅当n m =4mn 时,等号成立,故1m +4n 的最小值等于32. (2)对任意x ∈N *,f (x )≥3恒成立,即x 2+ax +11x +1≥3恒成立,即知a ≥-(x +8x )+3.设g (x )=x +8x ,x ∈N *,则g (2)=6,g (3)=173.∵g (2)>g (3),∴g (x )min =173.∴-(x +8x )+3≤-83, ∴a ≥-83,故a 的取值范围是[-83,+∞).题型三 不等式的实际应用例5 运货卡车以每小时x 千米的速度匀速行驶130千米,按交通法规限制50≤x ≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油(2+x 2360)升,司机的工资是每小时14元.(1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值. 解 (1)设所用时间为t =130x(h),y =130x ×2×(2+x 2360)+14×130x,x ∈[50,100].所以,这次行车总费用y 关于x 的表达式是y =130×18x +2×130360x ,x ∈[50,100].(或y =2 340x +1318x ,x ∈[50,100]).(2)y =130×18x +2×130360x ≥2610,当且仅当130×18x =2×130360x ,即x =1810,等号成立.故当x =1810千米/时时,这次行车的总费用最低,最低费用的值为2610元. 思维升华 (1)设变量时一般要把求最大值或最小值的变量定义为函数. (2)根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值. (3)在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.某工厂某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为C (x ),当年产量不足80千件时,C (x )=13x 2+10x (万元).当年产量不小于80千件时,C (x )=51x +10 000x -1 450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润L (x )(万元)关于年产量x (千件)的函数解析式;(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大? 解 (1)当0<x <80时,L (x )=1 000x ×0.05-(13x 2+10x )-250=-13x 2+40x -250.当x ≥80时,L (x )=1 000x ×0.05-(51x +10 000x-1 450)-250 =1 200-(x +10 000x).∴L (x )=⎩⎨⎧-13x 2+40x -250(0<x <80),1 200-(x +10 000x)(x ≥80).(2)当0<x <80时,L (x )=-13x 2+40x -250.对称轴为x =60,即当x =60时,L (x )最大=950(万元). 当x ≥80时,L (x )=1 200-(x +10 000x )≤1 200-210 000=1 000(万元),当且仅当x =100时,L (x )最大=1 000(万元), 综上所述,当x =100时,年获利最大.9.忽视最值取得的条件致误典例 (1)已知x >0,y >0,且1x +2y =1,则x +y 的最小值是________.(2)函数y =1-2x -3x(x <0)的最小值为________.易错分析 (1)多次使用基本不等式,忽略等号成立的条件.如:1=1x +2y ≥22xy,∴xy ≥22,∴x +y ≥2xy ≥42,得(x +y )min =4 2.(2)没有注意到x <0这个条件误用基本不等式得2x +3x ≥2 6. 解析 (1)∵x >0,y >0, ∴x +y =(x +y )(1x +2y) =3+y x +2x y≥3+22(当且仅当y =2x 时取等号), ∴当x =2+1,y =2+2时,(x +y )min =3+2 2.(2)∵x <0,∴y =1-2x -3x =1+(-2x )+(-3x)≥1+2 (-2x )·3-x=1+26,当且仅当x =-62时取等号,故y 的最小值为1+2 6. 答案 (1)3+22 (2)1+2 6温馨提醒 (1)利用基本不等式求最值,一定要注意应用条件;(2)尽量避免多次使用基本不等式,若必须多次使用,一定要保证等号成立的条件一致.[方法与技巧]1.基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,常常用于比较数(式)的大小或证明不等式,解决问题的关键是分析不等式两边的结构特点,选择好利用基本不等式的切入点.2.对于基本不等式,不仅要记住原始形式,而且还要掌握它的几种变形形式及公式的逆用等,例如:ab ≤(a +b 2)2≤a 2+b 22,ab ≤a +b 2≤ a 2+b 22(a >0,b >0)等,同时还要注意不等式成立的条件和等号成立的条件.3.对使用基本不等式时等号取不到的情况,可考虑使用函数y =x +m x(m >0)的单调性. [失误与防范]1.使用基本不等式求最值,“一正”“二定”“三相等”三个条件缺一不可.2.连续使用基本不等式求最值要求每次等号成立的条件一致.A 组 专项基础训练(时间:30分钟)1.下列不等式一定成立的是________.①lg(x 2+14)>lg x (x >0); ②sin x +1sin x≥2(x ≠k π,k ∈Z ); ③x 2+1≥2|x |(x ∈R );④1x 2+1>1(x ∈R ). 答案 ③解析 当x >0时,x 2+14≥2·x ·12=x , 所以lg(x 2+14)≥lg x (x >0), 故①不正确;运用基本不等式时需保证“一正”“二定“三相等”,而当x ≠k π,k ∈Z 时,sin x 的正负不定,故②不正确;由基本不等式可知,③正确;当x =0时,有1x 2+1=1,故④不正确. 2.设非零实数a ,b ,则“a 2+b 2≥2ab ”是“a b +b a≥2成立”的__________条件. 答案 必要不充分解析 因为a ,b ∈R 时,都有a 2+b 2-2ab =(a -b )2≥0,即a 2+b 2≥2ab ,而a b +b a≥2⇔ab >0, 所以“a 2+b 2≥2ab ”是“a b +b a≥2成立”的必要不充分条件. 3.已知a >0,b >0,a +b =2,则y =1a +4b的最小值是________. 答案 92解析 依题意,得1a +4b =12(1a +4b)·(a +b )=12[5+(b a +4a b )]≥12(5+2b a ·4a b )=92, 当且仅当⎩⎪⎨⎪⎧ a +b =2,b a =4a b ,a >0,b >0,即a =23,b =43时取等号, 即1a +4b 的最小值是92. 4.(2014·重庆改编)若log 4(3a +4b )=log 2ab ,则a +b 的最小值是________.答案 7+4 3解析 由题意得⎩⎪⎨⎪⎧ ab >0,ab ≥0,3a +4b >0,所以⎩⎨⎧a >0,b >0. 又log 4(3a +4b )=log 2ab ,所以log 4(3a +4b )=log 4ab ,所以3a +4b =ab ,故4a +3b=1. 所以a +b =(a +b )(4a +3b )=7+3a b +4b a≥7+23a b ·4b a =7+43, 当且仅当3a b =4b a时取等号. 5.已知正数x ,y 满足x +2y -xy =0,则x +2y 的最小值为________.答案 8解析 由x +2y -xy =0,得2x +1y=1,且x >0,y >0. ∴x +2y =(x +2y )×(2x +1y )=4y x +x y+4≥4+4=8. 6.规定记号“⊗”表示一种运算,即a ⊗b =ab +a +b (a 、b 为正实数).若1⊗k =3,则k 的值为________,此时函数f (x )=k ⊗x x的最小值为________. 答案 1 3解析 1⊗k =k +1+k =3,即k +k -2=0,∴k =1或k =-2(舍去).∴k =1.f (x )=1⊗x x =x +x +1x =1+x +1x≥1+2=3, 当且仅当x =1x ,即x =1时等号成立. 7.已知x >0,y >0,且4xy -x -2y =4,则xy 的最小值为________.答案 2解析 ∵x >0,y >0,x +2y ≥22xy ,∴4xy -(x +2y )≤4xy -22xy ,∴4≤4xy -22xy , 即(2xy -2)(2xy +1)≥0,∴2xy ≥2,∴xy ≥2.8.若正数a ,b 满足1a +1b =1,则1a -1+9b -1的最小值是________. 答案 6解析 ∵正数a ,b 满足1a +1b =1,∴b =a a -1>0,解得a >1.同理可得b >1,所以1a -1+9b -1=1a -1+9a a -1-1=1a -1+9(a -1)≥21a -1·9(a -1)=6,当且仅当1a -1=9(a -1),即a =43时等号成立,所以最小值为6.9.若当x >-3时,不等式a ≤x +2x +3恒成立,则a 的取值范围是________. 答案 (-∞,22-3]解析 设f (x )=x +2x +3=(x +3)+2x +3-3, 因为x >-3,所以x +3>0,故f (x )≥2(x +3)×2x +3-3=22-3, 当且仅当x =2-3时等号成立,所以a 的取值范围是(-∞,22-3].10.若关于x 的方程9x +(4+a )3x +4=0有解,则实数a 的取值范围是________. 答案 (-∞,-8]解析 分离变量得-(4+a )=3x +43x ≥4,得a ≤-8. 11.(2015·南通二模)已知x >0,y >0,且2x +5y =20.(1)求u =lg x +lg y 的最大值;(2)求1x +1y的最小值. 解 (1)∵x >0,y >0,∴由基本不等式,得2x +5y ≥210xy .∵2x +5y =20,∴210xy ≤20,xy ≤10,当且仅当2x =5y 时,等号成立.因此有⎩⎪⎨⎪⎧ 2x +5y =20,2x =5y ,解得⎩⎪⎨⎪⎧x =5,y =2,此时xy 有最大值10.∴u =lg x +lg y =lg(xy )≤lg 10=1.∴当x =5,y =2时,u =lg x +lg y 有最大值1.(2)∵x >0,y >0,∴1x +1y =⎝⎛⎭⎫1x +1y ·2x +5y 20=120⎝⎛⎭⎫7+5y x +2x y ≥120⎝⎛⎭⎫7+2 5y x ·2x y =7+21020, 当且仅当5y x =2x y 时,等号成立. 由⎩⎪⎨⎪⎧ 2x +5y =20,5y x =2x y ,解得⎩⎪⎨⎪⎧ x =1010-203,y =20-4103.∴1x +1y 的最小值为7+21020. B 组 专项能力提升(时间:20分钟)12.设x ,y 均为正实数,且32+x +32+y=1,则xy 的最小值为________. 答案 16解析 由32+x +32+y=1得xy =8+x +y , ∵x ,y 均为正实数,∴xy =8+x +y ≥8+2xy (当且仅当x =y 时等号成立),即xy -2xy -8≥0,解得xy ≥4,即xy ≥16,∴xy 的最小值为16.13.已知m >0,a 1>a 2>0,则使得m 2+1m≥|a i x -2|(i =1,2)恒成立的x 的取值范围是________________________________________________________________________.答案 [0,4a 1] 解析 因为m 2+1m =m +1m≥2(当且仅当m =1时等号成立), 所以要使不等式恒成立,则2≥|a i x -2|(i =1,2)恒成立,即-2≤a i x -2≤2,所以0≤a i x ≤4,因为a 1>a 2>0, 所以⎩⎨⎧ 0≤x ≤4a 1,0≤x ≤4a 2,即0≤x ≤4a 1, 所以使不等式恒成立的x 的取值范围是[0,4a 1]. 14.已知x ,y ∈R 且满足x 2+2xy +4y 2=6,则z =x 2+4y 2的取值范围为________. 答案 [4,12]解析 ∵2xy =6-(x 2+4y 2),而2xy ≤x 2+4y 22, ∴6-(x 2+4y 2)≤x 2+4y 22, ∴x 2+4y 2≥4(当且仅当x =2y 时取等号).又∵(x +2y )2=6+2xy ≥0,即2xy ≥-6,∴z =x 2+4y 2=6-2xy ≤12(当且仅当x =-2y 时取等号).综上可知4≤x 2+4y 2≤12.15.设a >0,b >0,若3是3a 与3b 的等比中项,则1a +1b的最小值为________. 答案 4解析 由题意知3a ·3b =3,即3a +b =3,∴a +b =1,∵a >0,b >0,∴1a +1b =⎝⎛⎭⎫1a +1b (a +b ) =2+b a +a b ≥2+2b a ·a b=4, 当且仅当a =b =12时,等号成立. 16.经市场调查,某旅游城市在过去的一个月内(以30天计),第t 天(1≤t ≤30,t ∈N *)的旅游人数f (t )(万人)近似地满足f (t )=4+1t,而人均消费g (t )(元)近似地满足g (t )=120-|t -20|. (1)求该城市的旅游日收益W (t )(万元)与时间t (1≤t ≤30,t ∈N *)的函数关系式;(2)求该城市旅游日收益的最小值.解 (1)W (t )=f (t )g (t )=(4+1t)(120-|t -20|) =⎩⎨⎧ 401+4t +100t , 1≤t ≤20,559+140t-4t , 20<t ≤30. (2)当t ∈[1,20]时,401+4t +100t ≥401+24t ·100t=441(t =5时取最小值). 当t ∈(20,30]时,因为W (t )=559+140t-4t 递减,所以t=30时,W(t)有最小值W(30)=4432,3所以t∈[1,30]时,W(t)的最小值为441万元.。

基本不等式及其应用(优秀经典专题及答案详解)

基本不等式及其应用(优秀经典专题及答案详解)

(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b .知识点二几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R);(2)b a +a b ≥2(a ,b 同号);(3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R);(4)⎝⎛⎭⎫a +b 22≤a 2+b 22(a ,b ∈R);(5)2ab a +b ≤ab ≤a +b 2≤ a 2+b 22(a >0,b >0).知识点三算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.知识点四利用基本不等式求最值问题已知x >0,y >0,则(1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小).(2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 24(简记:和定积最大).【特别提醒】1.此结论应用的前提是“一正”“二定”“三相等”.“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指等号成立.2.连续使用基本不等式时,牢记等号要同时成立. 考点一利用基本不等式求最值【典例1】(江西临川一中2019届模拟)已知x <54,则f (x )=4x -2+14x -5的最大值为_______ 【答案】1【解析】因为x <54,所以5-4x >0, 则f (x )=4x -2+14x -5=-⎝⎛⎭⎫5-4x +15-4x +3≤-2+3=1.当且仅当5-4x =15-4x ,即x =1时,取等号. 故f (x )=4x -2+14x -5的最大值为1. 【方法技巧】【方法技巧】1.通过拼凑法利用基本不等式求最值的实质及关键点通过拼凑法利用基本不等式求最值的实质及关键点拼凑法就是将相关代数式进行适当的变形,通过添项、拆项等方法凑成和为定值或积为定值的形式,然后利用基本不等式求解最值的方法.拼凑法的实质是代数式的灵活变形,拼系数、凑常数是关键.2.通过常数代换法利用基本不等式求解最值的基本步骤通过常数代换法利用基本不等式求解最值的基本步骤(1)根据已知条件或其变形确定定值(常数);(2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积为定值的形式;的表达式与所求最值的表达式相乘或相除,进而构造和或积为定值的形式;(4)利用基本不等式求解最值.利用基本不等式求解最值.【变式1】(山东潍坊一中2019届模拟)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________.【答案】6【解析】由已知得x +3y =9-xy ,因为x >0,y >0,所以x +3y ≥23xy ,所以3xy ≤⎝⎛⎭⎫x +3y 22,当且仅当x =3y ,即x =3,y =1时取等号,即(x +3y )2+12(x +3y )-108≥0. 令x +3y =t ,则t >0且t 2+12t -108≥0,得t ≥6,即x +3y 的最小值为6.【方法技巧】通过消元法利用基本不等式求最值的策略【方法技巧】通过消元法利用基本不等式求最值的策略当所求最值的代数式中的变量比较多时,通常是考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”,最后利用基本不等式求最值.,最后利用基本不等式求最值.考点二 利用基本不等式解决实际问题【典例2】【2019年高考北京卷理数】年高考北京卷理数】李明自主创业,李明自主创业,李明自主创业,在网上经营一家水果店,在网上经营一家水果店,在网上经营一家水果店,销售的水果中有草莓、销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.【答案】①130 ;②15.【解析】(1)x=10,顾客一次购买草莓和西瓜各一盒,需要支付60+80-10=130元.(2)设顾客一次购买水果的促销前总价为y 元,120y <元时,李明得到的金额为80%y ⨯,符合要求.120y ≥元时,有()80%70%y x y -⨯≥⨯恒成立,即()87,8yy x y x -≥≤,即min 158y x ⎛⎫≤= ⎪⎝⎭元,所以x 的最大值为15。

《基本不等式》典型例题

《基本不等式》典型例题

高中数学必修五典题精讲典题精讲例1(1)已知0<x <31,求函数y=x(1-3x)的最大值; (2)求函数y=x+x1的值域. 思路分析:(1)由极值定理,可知需构造某个和为定值,可考虑把括号内外x 的系数变成互为相反数;(2)中,未指出x >0,因而不能直接使用基本不等式,需分x >0与x <0讨论.(1)解法一:∵0<x <31,∴1-3x >0. ∴y=x(1-3x)= 31·3x(1-3x)≤31[2)31(3x x -+]2=121,当且仅当3x=1-3x ,即x=61时,等号成立.∴x=61时,函数取得最大值121. 解法二:∵0<x <31,∴31-x >0. ∴y=x(1-3x)=3x(31-x)≤3[231x x -+]2=121,当且仅当x=31-x,即x=61时,等号成立. ∴x=61时,函数取得最大值121. (2)解:当x >0时,由基本不等式,得y=x+x1≥2x x 1•=2,当且仅当x=1时,等号成立. 当x <0时,y=x+x1=-[(-x)+)(1x -]. ∵-x >0,∴(-x)+)(1x -≥2,当且仅当-x=x-1,即x=-1时,等号成立. ∴y=x+x1≤-2. 综上,可知函数y=x+x 1的值域为(-∞,-2]∪[2,+∞). 绿色通道:利用基本不等式求积的最大值,关键是构造和为定值,为使基本不等式成立创造条件,同时要注意等号成立的条件是否具备.变式训练1当x >-1时,求f(x)=x+11+x 的最小值. 思路分析:x >-1⇒x+1>0,变x=x+1-1时x+1与11+x 的积为常数. 解:∵x >-1,∴x+1>0.∴f(x)=x+11+x =x+1+11+x -1≥2)1(1)1(+•+x x -1=1. 当且仅当x+1=11+x ,即x=0时,取得等号. ∴f(x)min =1.变式训练2求函数y=133224+++x x x 的最小值. 思路分析:从函数解析式的结构来看,它与基本不等式结构相差太大,而且利用前面求最值的方法不易求解,事实上,我们可以把分母视作一个整体,用它来表示分子,原式即可展开. 解:令t=x 2+1,则t≥1且x 2=t-1.∴y=133224+++x x x =1113)1(3)1(22++=++=+-+-t t t t t t t t . ∵t≥1,∴t+t 1≥2t t 1•=2,当且仅当t=t1,即t=1时,等号成立. ∴当x=0时,函数取得最小值3.例2已知x >0,y >0,且x 1+y9=1,求x+y 的最小值. 思路分析:要求x+y 的最小值,根据极值定理,应构建某个积为定值,这需要对条件进行必要的变形,下面给出三种解法,请仔细体会.解法一:利用“1的代换”, ∵x 1+y9=1, ∴x+y=(x+y)·(x 1+y9)=10+y x x y 9+. ∵x >0,y >0,∴y x x y 9+≥2yx x y 9•=6. 当且仅当yx x y 9=,即y=3x 时,取等号. 又x 1+y9=1,∴x=4,y=12. ∴当x=4,y=12时,x+y 取得最小值16.解法二:由x 1+y9=1,得x=9-y y . ∵x >0,y >0,∴y >9. x+y=9-y y +y=y+999-+-y y =y+99-y +1=(y-9)+99-y +10. ∵y >9,∴y-9>0. ∴999-+-y y ≥299)9(-•-y y =6. 当且仅当y-9=99-y ,即y=12时,取得等号,此时x=4.∴当x=4,y=12时,x+y 取得最小值16.解法三:由x 1+y9=1,得y+9x=xy, ∴(x-1)(y-9)=9.∴x+y=10+(x-1)+(y-9)≥10+2)9)(1(--y x =16,当且仅当x-1=y-9时取得等号.又x 1+y9=1, ∴x=4,y=12.∴当x=4,y=12时,x+y 取得最小值16.绿色通道:本题给出了三种解法,都用到了基本不等式,且都对式子进行了变形,配凑出基本不等式满足的条件,这是经常需要使用的方法,要学会观察,学会变形,另外解法二,通过消元,化二元问题为一元问题,要注意根据被代换的变量的范围对另外一个变量的范围的影响.黑色陷阱:本题容易犯这样的错误:x 1+y 9≥2xy 9①,即xy6≤1,∴xy ≥6. ∴x+y≥2xy ≥2×6=12②.∴x+y 的最小值是12. 产生不同结果的原因是不等式①等号成立的条件是x 1=y9,不等式②等号成立的条件是x=y.在同一个题目中连续运用了两次基本不等式,但是两个基本不等式等号成立的条件不同,会导致错误结论.变式训练已知正数a,b,x,y 满足a+b=10,yb x a +=1,x+y 的最小值为18,求a,b 的值.思路分析:本题属于“1”的代换问题.解:x+y=(x+y)(y b x a +)=a+x ay y bx ++b=10+xay y bx +. ∵x,y >0,a,b >0,∴x+y≥10+2ab =18,即ab =4.又a+b=10,∴⎩⎨⎧==8,2b a 或⎩⎨⎧==.2,8b a 例3求f(x)=3+lgx+x lg 4的最小值(0<x <1). 思路分析:∵0<x <1,∴lgx <0,xlg 4<0不满足各项必须是正数这一条件,不能直接应用基本不等式,正确的处理方法是加上负号变正数.解:∵0<x <1,∴lgx <0,x lg 4<0.∴-xlg 4>0. ∴(-lgx)+(-x lg 4)≥2)lg 4)(lg (xx --=4. ∴lgx+x lg 4≤-4.∴f(x)=3+lgx+xlg 4≤3-4=-1. 当且仅当lgx=x lg 4,即x=1001时取得等号. 则有f(x)=3+lgx+x lg 4 (0<x <1)的最小值为-1. 黑色陷阱:本题容易忽略0<x <1这一个条件.变式训练1已知x <45,求函数y=4x-2+541-x 的最大值. 思路分析:求和的最值,应凑积为定值.要注意条件x <45,则4x-5<0. 解:∵x <45,∴4x-5<0.y=4x-5+541-x +3=-[(5-4x)+x451-]+3 ≤-2xx 451)45(-•-+3=-2+3=1. 当且仅当5-4x=x451-,即x=1时等号成立. 所以当x=1时,函数的最大值是1.变式训练2当x <23时,求函数y=x+328-x 的最大值. 思路分析:本题是求两个式子和的最大值,但是x·328-x 并不是定值,也不能保证是正值,所以,必须使用一些技巧对原式变形.可以变为y=21(2x-3)+328-x +23=-(x x 238223-+-)+23,再求最值.解:y=21(2x-3)+328-x +23=-(x x 238223-+-)+23, ∵当x <23时,3-2x >0, ∴x x 238223-+-≥x x 2382232-•-=4,当且仅当x x 238223-=-,即x=-21时取等号. 于是y≤-4+23=25-,故函数有最大值25-. 例4如图3-4-1,动物园要围成相同的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.图3-4-1(1)现有可围36 m 长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?(2)若使每间虎笼面积为24 m 2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋总长度最小?思路分析:设每间虎笼长为x m ,宽为y m ,则(1)是在4x+6y=36的前提下求xy 的最大值;而(2)则是在xy=24的前提下来求4x+6y 的最小值.解:(1)设每间虎笼长为x m ,宽为y m ,则由条件,知4x+6y=36,即2x+3y=18.设每间虎笼的面积为S ,则S=xy.方法一:由于2x+3y≥2y x 32⨯=2xy 6,∴2xy 6≤18,得xy≤227,即S≤227.当且仅当2x=3y 时等号成立.由⎩⎨⎧=+=,1832,22y x y x 解得⎩⎨⎧==.3,5.4y x 故每间虎笼长为4.5 m ,宽为3 m 时,可使面积最大. 方法二:由2x+3y=18,得x=9-23y. ∵x >0,∴0<y <6. S=xy=(9-23y)y=23 (6-y)y. ∵0<y <6,∴6-y >0.∴S≤23[2)6(y y +-]2=227. 当且仅当6-y=y,即y=3时,等号成立,此时x=4.5.故每间虎笼长4.5 m,宽3 m 时,可使面积最大.(2)由条件知S=xy=24.设钢筋网总长为l,则l=4x+6y.方法一:∵2x+3y≥2y x 32•=2xy 6=24,∴l=4x+6y=2(2x+3y)≥48,当且仅当2x=3y 时,等号成立.由⎩⎨⎧==,24,32xy y x 解得⎩⎨⎧==.4,6y x 故每间虎笼长6 m ,宽4 m 时,可使钢筋网总长最小. 方法二:由xy=24,得x=y 24. ∴l=4x+6y=y 96+6y=6(y 16+y)≥6×2y y⨯16=48,当且仅当y 16=y ,即y=4时,等号成立,此时x=6. 故每间虎笼长6 m,宽4 m 时,可使钢筋总长最小.绿色通道:在使用基本不等式求函数的最大值或最小值时,要注意:(1)x,y 都是正数;(2)积xy (或x+y )为定值;(3)x 与y 必须能够相等,特别情况下,还要根据条件构造满足上述三个条件的结论.变式训练某工厂拟建一座平面图为矩形且面积为200 平方米的三级污水处理池(平面图如图3-4-2所示),由于地形限制,长、宽都不能超过16米,如果池外周壁建造单价为每米400元,中间两道隔墙建造单价为每米248元,池底建造单价为每平方米80元,池壁的厚度忽略不计,试设计污水处理池的长和宽,使总造价最低,并求出最低造价.图3-4-2 思路分析:在利用均值不等式求最值时,必须考虑等号成立的条件,若等号不能成立,通常要用函数的单调性进行求解.解:设污水处理池的长为x 米,则宽为x 200米(0<x≤16,0<x200≤16),∴12.5≤x≤16. 于是总造价Q(x)=400(2x+2×x 200)+248×2×x 200+80×200. =800(x+x324)+16 000≥800×2x x 324•+16 000=44 800, 当且仅当x=x324 (x >0),即x=18时等号成立,而18∉[12.5,16],∴Q(x)>44 800. 下面研究Q(x)在[12.5,16]上的单调性.对任意12.5≤x 1<x 2≤16,则x 2-x 1>0,x 1x 2<162<324.Q(x 2)-Q(x 1)=800[(x 2-x 1)+324(1211x x -)] =800×212112)324)((x x x x x x --<0, ∴Q(x 2)>Q(x 1).∴Q(x)在[12.5,16]上是减函数.∴Q(x)≥Q(16)=45 000.答:当污水处理池的长为16米,宽为12.5米时,总造价最低,最低造价为45 000元.问题探究问题某人要买房,随着楼层的升高,上下楼耗费的精力增多,因此不满意度升高.当住第n 层楼时,上下楼造成的不满意度为n.但高处空气清新,嘈杂音较小,环境较为安静,因此随着楼层的升高,环境不满意度降低.设住第n 层楼时,环境不满意程度为n8.则此人应选第几楼,会有一个最佳满意度. 导思:本问题实际是求n 为何值时,不满意度最小的问题,先要根据问题列出一个关于楼层的函数式,再根据基本不等式求解即可.探究:设此人应选第n 层楼,此时的不满意程度为y.由题意知y=n+n8. ∵n+n8≥2248=⨯n n ,当且仅当n=n8,即n=22时取等号. 但考虑到n ∈N *,∴n≈2×1.414=2.828≈3,即此人应选3楼,不满意度最低.。

(完整版)基本不等式及其应用知识梳理及典型练习题(含标准答案)

(完整版)基本不等式及其应用知识梳理及典型练习题(含标准答案)

基本不等式及其应用1.基本不等式若a>0,,b>0,则a +b 2≥ab ,当且仅当时取“=”.这一定理叙述为:两个正数的算术平均数它们的几何平均数.注:运用均值不等式求最值时,必须注意以下三点:(1)各项或各因式均正;(一正)(2)和或积为定值;(二定)(3)等号成立的条件存在:含变数的各项均相等,取得最值.(三相等)2.常用不等式(1)a 2+b 2≥ab 2(a ,b ∈R ).2a b +()0,>b a 注:不等式a 2+b 2≥2ab 和2b a +≥ab 它们成立的条件不同,前者只要求a 、b 都是实数,而后者要求a 、b 都是正数.其等价变形:ab≤(2b a +)2. (3)ab ≤22⎪⎭⎫ ⎝⎛+b a (a ,b ∈R ). (4)b a +a b ≥2(a ,b 同号且不为0). (5)22⎪⎭⎫ ⎝⎛+b a ≤a 2+b 22(a ,b ∈R ). (6)ba ab b a b a 1122222+≥≥+≥+()0,>b a (7)abc ≤。

(),,0a b c >(8)≥;(),,0a b c>3.利用基本不等式求最大、最小值问题(1)求最小值:a>0,b>0,当ab为定值时,a+b,a2+b2有,即a+b≥,a2+b2≥.(2)求最大值:a>0,b>0,当a+b为定值时,ab有最大值,即;或a2+b2为定值时,ab有最大值(a>0,b>0),即.设a,b∈R,且a+b=3,则2a+2b的最小值是()A.6B.42C.22D.26解:因为2a>0,2b>0,由基本不等式得2a+2b≥22a·2b=22a+b=42,当且仅当a=b=32时取等号,故选B.若a>0,b>0,且a+2b-2=0,则ab的最大值为()A.12B.1 C.2 D.4解:∵a>0,b>0,a+2b=2,∴a+2b=2≥22ab,即ab≤12.当且仅当a=1,b=12时等号成立.故选A.小王从甲地到乙地往返的时速分别为a和b(a<b),其全程的平均时速为v,则()A.a<v<abB.v=abC.ab<v<a+b2 D.v=a+b2解:设甲、乙两地之间的距离为s.∵a<b,∴v=2ssa+sb=2aba+b<2ab2ab=ab.又v -a =2ab a +b -a =ab -a 2a +b >a 2-a 2a +b=0,∴v >a.故选A. (2014·上海)若实数x ,y 满足xy =1,则x 2+2y 2的最小值为________.解:由xy =1得x 2+2y 2=x 2+2x 2≥22,当且仅当x =±42时等号成立.故填22.点(m ,n )在直线x +y =1位于第一象限内的图象上运动,则log 2m +log 2n 的最大值是________.解:由条件知,m >0,n >0,m +n =1,所以mn ≤⎝ ⎛⎭⎪⎫m +n 22=14, 当且仅当m =n =12时取等号,∴log 2m +log 2n =log 2mn ≤log 214=-2,故填-2.类型一 利用基本不等式求最值(1)求函数y =(x >-1)的值域.解:∵x >-1,∴x +1>0,令m =x +1,则m >0,且y ==m ++5≥2+5=9,当且仅当m =2时取等号,故y min =9.又当m →+∞或m →0时,y →+∞,故原函数的值域是[9,+∞).(2)下列不等式一定成立的是( )A.lg>lg x (x >0)B.sin x +≥2(x ≠k π,k ∈Z )C.x 2+1≥2||x (x ∈R )D.1x 2+1>1(x ∈R ) 解:A 中,x 2+14≥x (x >0),当x =12时,x 2+14=x.B 中,sin x +1sin x ≥2(sin x ∈(0,1]);sin x+1sin x≤-2(sin x∈[-1,0)).C中,x2-2|x|+1=(|x|-1)2≥0(x∈R).D中,1x2+1∈(0,1](x∈R).故C一定成立,故选C.点拨:这里(1)是形如f(x)=ax2+bx+cx+d的最值问题,只要分母x+d>0,都可以将f(x)转化为f(x)=a(x+d)+ex+d+h(这里ae>0;若ae<0,可以直接利用单调性等方法求最值),再利用基本不等式求其最值.(2)牢记基本不等式使用条件——一正、二定、三相等,特别注意等号成立条件要存在.(1)已知t>0,则函数f(t)=t2-4t+1t的最小值为.解:∵t>0,∴f(t)=t2-4t+1t=t+1t-4≥-2,当且仅当t=1时,f(t)min=-2,故填-2.(2)已知x>0,y>0,且2x+8y-xy=0,求:(Ⅰ)xy的最小值;(Ⅱ)x+y的最小值.解:(Ⅰ)由2x+8y-xy=0,得+=1,又x>0,y>0,则1=+≥2=,得xy≥64,当且仅当x=4y,即x=16,y=4时等号成立.(Ⅱ)解法一:由2x+8y-xy=0,得x=,∵x>0,∴y>2,则x+y=y+=(y-2)++10≥18,当且仅当y-2=,即y=6,x=12时等号成立.解法二:由2x+8y-xy=0,得+=1,则x+y=·(x+y)=10++≥10+2=18,当且仅当y=6,x=12时等号成立.类型二利用基本不等式求有关参数范围若关于x的不等式(1+k2)x≤k4+4的解集是M,则对任意实常数k,总有()A.2∈M,0∈MB.2∉M,0∉MC.2∈M,0∉MD.2∉M,0∈M解法一:求出不等式的解集:(1+k2)x≤k4+4⇒x≤=(k2+1)+-2⇒x≤=2-2(当且仅当k2=-1时取等号).解法二(代入法):将x=2,x=0分别代入不等式中,判断关于k的不等式解集是否为R.故选A.点拨:一般地,对含参的不等式求范围问题通常采用分离变量转化为恒成立问题,对于“恒成立”的不等式,一般的解题方法是先分离然后求函数的最值.另外,要记住几个常见的有关不等式恒成立的等价命题:(1)a>f(x)恒成立⇔a>f(x)max;(2)a<f(x)恒成立⇔a<f(x)min;(3)a>f(x)有解⇔a>f(x)min;(4)a<f(x)有解⇔a<f(x)max.已知函数f(x)=e x+e-x,其中e是自然对数的底数.若关于x的不等式mf(x)≤e-x+m-1在(0,+∞)上恒成立,求实数m的取值范围.解:由条件知m(e x+e-x-1)≤e-x-1在(0,+∞)上恒成立.令t=e x(x>0),则t>1,且m≤-t-1t2-t+1=-1t-1+1t-1+1对任意t>1成立.∵t-1+1t-1+1≥2(t-1)·1t-1+1=3,∴-1t -1+1t -1+1≥-13,当且仅当t =2,即x =ln2时等号成立.故实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,-13. 类型三 利用基本不等式解决实际问题围建一个面积为360 m 2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2 m 的进出口,如图所示,已知旧墙的维修费用为45元/m ,新墙的造价为180元/m ,设利用的旧墙的长度为x (单位:元),修建此矩形场地围墙的总费用为y (单位:元).(1)将y 表示为x 的函数;(2)试确定x ,使修建此矩形场地围墙的总费用最小,并求出最小总费用. 解:(1)如图,设矩形的另一边长为a m ,则y =45x +180(x -2)+180·2a =225x +360a -360.由已知xa =360,得a =360x ,所以y =225x +3602x -360(x ≥2).(2)∵x ≥0,∴225x +3602x ≥2225×3602=10800,∴y =225x +3602x -360≥10440,当且仅当225x =3602x ,即x =24时等号成立.答:当x =24 m 时,修建围墙的总费用最小,最小总费用是10440元.如图,为处理含有某种杂质的污水,要制造一个底宽2 m 的无盖长方体的沉淀箱,污水从A孔流入,经沉淀后从B孔排出,设箱体的长度为am,高度为b m,已知排出的水中该杂质的质量分数与a,b的乘积ab成反比.现有制箱材料60 m2,问a,b各为多少m时,经沉淀后排出的水中该杂质的质量分数最小(A,B孔面积忽略不计).解法一:设y为排出的水中杂质的质量分数,根据题意可知:y=kab,其中k是比例系数且k>0.依题意要使y最小,只需ab最大.由题设得:4b+2ab+2a≤60(a>0,b>0),即a+2b≤30-ab(a>0,b>0).∵a+2b≥22ab,∴22·ab+ab≤30,得0<ab≤32.当且仅当a=2b时取“=”号,ab最大值为18,此时得a=6,b=3.故当a=6 m,b=3 m时经沉淀后排出的水中杂质最少.解法二:同解法一得b≤30-aa+2,代入y=kab求解.1.若a>1,则a+的最小值是()A.2B.aC.3D.解:∵a>1,∴a+=a-1++1≥2+1=2+1=3,当a=2时等号成立.故选C.2.设a,b∈R,a≠b,且a+b=2,则下列各式正确的是()A.ab<1<a2+b22 B.ab<1≤a2+b22 C.1<ab<a2+b22 D.ab≤a2+b22≤1解:运用不等式ab ≤⎝ ⎛⎭⎪⎫a +b 22⇒ab ≤1以及(a +b )2≤2(a 2+b 2)⇒2≤a 2+b 2(由于a ≠b ,所以不能取等号)得,ab <1<a 2+b 22,故选A.3.函数f (x )=在(-∞,2)上的最小值是( )A.0B.1C.2D.3解:当x <2时,2-x >0,因此f (x )==+(2-x )≥2·=2,当且仅当=2-x 时上式取等号.而此方程有解x =1∈(-∞,2),因此f (x )在(-∞,2)上的最小值为2,故选C.4.()要制作一个容积为4 m 3,高为1 m 的无盖长方体容器,已知该容器的底面造价是每平方M20元,侧面造价是每平方M10元,则该容器的最低总造价是( )A.80元B.120元C.160元D.240元解:假设底面的长、宽分别为x m , m ,由条件知该容器的最低总造价为y =80+20x +≥160,当且仅当底面边长x =2时,总造价最低,且为160元.故选C.5.下列不等式中正确的是( )A.若a ,b ∈R ,则b a +a b ≥2b a ·ab =2B.若x ,y 都是正数,则lg x +lg y ≥2lg x ·lg yC.若x <0,则x +4x ≥-2x ·4x =-4D.若x ≤0,则2x +2-x ≥22x ·2-x =2解:对于A ,a 与b 可能异号,A 错;对于B ,lg x 与lg y 可能是负数,B 错;对于C ,应是x +4x =-⎣⎢⎡⎦⎥⎤(-x )+4-x ≤-2(-x )·4-x=-4,C 错;对于D ,若x ≤0,则2x +2-x ≥22x ·2-x =2成立(x =0时取等号).故选D.6.()若log 4(3a +4b )=log 2,则a +b 的最小值是( )A.6+2B.7+2C.6+4D.7+4解:因为log4(3a+4b)=log2,所以log4(3a+4b)=log4(ab),即3a+4b=ab,且即a>0,b>0,所以+=1(a>0,b>0),a+b=(a+b)=7++≥7+2=7+4,当且仅当=时取等号.故选D.7.若对任意x>0,≤a恒成立,则a的取值范围是.解:因为x>0,所以x+≥2(当且仅当x=1时取等号),所以有=≤=,即的最大值为,故填a≥.8.()设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx-y-m +3=0交于点P(x,y),则|P A|·|PB|的最大值是________.解:易知定点A(0,0),B(1,3).且无论m取何值,两直线垂直.所以无论P与A,B重合与否,均有|P A|2+|PB|2=|AB|2=10(P在以AB为直径的圆上).所以|P A|·|PB|≤12(|P A|2+|PB|2)=5.当且仅当|P A|=|PB|=5时,等号成立.故填5.9.(1)已知0<x<,求x(4-3x)的最大值;(2)点(x,y)在直线x+2y=3上移动,求2x+4y的最小值.解:(1)已知0<x<,∴0<3x<4.∴x(4-3x)=(3x)(4-3x)≤=,当且仅当3x=4-3x,即x=时“=”成立.∴当x=时,x(4-3x)取最大值为.(2)已知点(x,y)在直线x+2y=3上移动,所以x+2y=3.∴2x+4y≥2=2=2=4.当且仅当即x=,y=时“=”成立.∴当x=,y=时,2x+4y取最小值为4.10.已知a>0,b>0,且2a+b=1,求S=2-4a2-b2的最大值.解:∵a>0,b>0,2a+b=1,∴4a2+b2=(2a+b)2-4ab=1-4ab.且1=2a+b≥2,即≤,ab≤,∴S=2-4a2-b2=2-(1-4ab)=2+4ab-1≤.当且仅当a=,b=时,等号成立.11.如图,动物园要围成相同的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.(1)现有可围36 m长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?(2)若使每间虎笼面积为24 m2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋总长度最小?解:(1)设每间虎笼长为x m,宽为y m,则由条件,知4x+6y=36,即2x+3y=18.设每间虎笼的面积为S,则S=xy.解法一:由于2x+3y≥2=2,∴2≤18,得xy≤,即S≤.当且仅当2x=3y时等号成立.由解得故每间虎笼长为4.5 m,宽为3 m时,可使每间虎笼面积最大.解法二:由2x+3y=18,得x=9-y.∵x>0,∴0<y<6.S=xy=y=(6-y)y.∵0<y<6,∴6-y>0.∴S≤=.当且仅当6-y=y,即y=3时,等号成立,此时x=4.5.故每间虎笼长4.5 m,宽3 m时,可使每间虎笼面积最大. (2)由条件知S=xy=24.设钢筋网总长为l,则l=4x+6y.解法一:∵2x+3y≥2=2=24,∴l=4x+6y=2(2x+3y)≥48,当且仅当2x=3y时,等号成立.由解得故每间虎笼长6 m,宽4 m时,可使钢筋网总长度最小.解法二:由xy=24,得x=.∴l=4x+6y=+6y=6≥6×2=48,当且仅当=y,即y=4时,等号成立,此时x=6.故每间虎笼长6 m,宽4 m时,可使钢筋网总长度最小.11/ 11。

完整版)基本不等式知识点和基本题型

完整版)基本不等式知识点和基本题型

完整版)基本不等式知识点和基本题型基本不等式专题辅导一、知识点总结1.基本不等式原始形式若a,b∈R,则a+b≥2ab若a,b∈R,则ab≤(a^2+b^2)/22.均值不等式若a,b∈R,则a+b/2≥√(ab)3.基本不等式的两个重要变形若a,b∈R,则(a+b)/2≥√(ab)若a,b∈R,则ab≤(a+b)^2/4特别说明:以上不等式中,当且仅当a=b时取“=”4.求最值的条件:“一正,二定,三相等”5.常用结论1.x+1/x≥2 (当且仅当x=1时取“=”)2.x+1/x≤-2 (当且仅当x=-1时取“=”)3.若ab>0,则(a/b+b/a)/2≥2 (当且仅当a=b时取“=”)4.若a,b∈R,则ab≤(a^2+b^2)/2≤(a+b)^2/2特别说明:以上不等式中,当且仅当a=b时取“=”6.柯西不等式若a,b∈R,则(a^2+b^2)(1+1)≥(a+b)^2二、题型分析题型一:利用基本不等式证明不等式1.设a,b均为正数,证明不等式:ab≥(a+b)^2/42.已知a,b,c为两两不相等的实数,求证:a^2/(b-c)^2+b^2/(c-a)^2+c^2/(a-b)^2≥23.已知a+b+c=1,求证:a^2+b^2+c^2+3(ab+bc+ca)≥4/34.已知a,b,c∈R,且a+b+c=1,求证:(1-a)(1-b)(1-c)≥8abc5.已知a,b,c∈R,且a+b+c=1,求证:|a-b|+|b-c|+|c-a|≥4√2/3题型二:利用不等式求最值1.已知a+b=1,求证:a^3+b^3≥1/42.已知a,b,c>0,且abc=1,求证:a/b+b/c+c/a≥a+b+c3.已知a,b,c>0,且a+b+c=1,求证:a/b+b/c+c/a≥34.已知a,b,c>0,求证:(a^2+b^2)/(a+b)+(b^2+c^2)/(b+c)+(c^2+a^2)/(c+a)≥(3/2)(a+b+c)5.已知a,b,c>0,求证:(a+b+c)(1/a+1/b+1/c)≥9基本不等式专题辅导一、知识点总结1.基本不等式原始形式若a,b∈R,则a+b≥2ab若a,b∈R,则ab≤(a²+b²)/22.均值不等式若a,b∈R,则a+b/2≥√(ab)3.基本不等式的两个重要变形若a,b∈R,则(a+b)/2≥√(ab)若a,b∈R,则ab≤(a+b)²/4特别说明:以上不等式中,当且仅当a=b时取“=”4.求最值的条件:“一正,二定,三相等”5.常用结论1.x+1/x≥2 (当且仅当x=1时取“=”)2.x+1/x≤-2 (当且仅当x=-1时取“=”)3.若ab>0,则(a/b+b/a)/2≥2 (当且仅当a=b时取“=”)4.若a,b∈R,则ab≤(a²+b²)/2≤(a+b)²/2特别说明:以上不等式中,当且仅当a=b时取“=”6.柯西不等式若a,b∈R,则(a²+b²)(1+1)≥(a+b)²二、题型分析题型一:利用基本不等式证明不等式1.设a,b均为正数,证明不等式:ab≥(a+b)²/42.已知a,b,c为两两不相等的实数,求证:a²/(b-c)²+b²/(c-a)²+c²/(a-b)²≥23.已知a+b+c=1,求证:a²+b²+c²+3(ab+bc+ca)≥4/34.已知a,b,c∈R,且a+b+c=1,求证:(1-a)(1-b)(1-c)≥8abc5.已知a,b,c∈R,且a+b+c=1,求证:|a-b|+|b-c|+|c-a|≥4√2/3题型二:利用不等式求最值1.已知a+b=1,求证:a³+b³≥1/42.已知a,b,c>0,且abc=1,求证:a/b+b/c+c/a≥a+b+c3.已知a,b,c>0,且a+b+c=1,求证:a/b+b/c+c/a≥34.已知a,b,c>0,求证:(a²+b²)/(a+b)+(b²+c²)/(b+c)+(c²+a²)/(c+a)≥(3/2)(a+b+c)5.已知a,b,c>0,求证:(a+b+c)(1/a+1/b+1/c)≥9选修4-5:不等式选讲1.设a,b,c均为正数,且a+b+c=1,证明:Ⅰ) ab+bc+ca≤1/3;Ⅱ) a^2b+b^2c+c^2a≥1/9.2.已知a≥b>0,求证:2a-b≥2ab-b^2.3.求下列函数的值域:1) y=3x+2;2) y=x(4-x);3) y=x+(x>2);4) y=x+(x<2)。

第14讲 基本不等式 (解析版)

第14讲 基本不等式 (解析版)

【高中新知识预习篇】第14讲 基本不等式解析版一、基本知识及其典型例题知识点一 基本不等式1.基本不等式的概念:当a ,b > 0,ab ≤a +b2,当且仅当a =b 时,等号成立. 2.基本不等式的意义:一般地,对于正数a ,b ,a +b2为a ,b 的算术平均数,ab 为a ,b 的几何平均数. 两个正数的算术平均数不小于它们的几何平均数,即ab ≤ a +b2. 3.基本不等式的常见推论 :(1) (重要不等式) ∀a ,b ∀R ,有a 2+b 2 ≥ 2ab ,当且仅当a =b 时,等号成立.(2) ab ≤ 2)2(b a +≤ a 2+b 22 (R b a ∈、);(3) b a +ab≥ 2 (a ,b 同号);(4)a 2+b 2+c 2 ≥ ab +bc +ca (R c b a ∈、、). 4.利用基本不等式证明不等式(1)策略:从已证不等式和问题的已知条件出发,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后转化为所求问题,其特征是以“已知”看“可知”,逐步推向“未知”. (2) 注意事项:∀多次使用基本不等式时,要注意等号能否成立;∀累加法是不等式证明中的一种常用方法,证明不等式时注意使用;∀对不能直接使用基本不等式的证明可重新组合,形成基本不等式模型,再使用.【例1】证明不等式: a ,b ∀R , ab ≤2)2(b a +≤a 2+b 22,当且仅当a=b 时取等号.【证明】∀化简得:2)2(b a ab +≤.0)(,0224,422222222≥-≥+-++≤++≤b a b ab a b ab a ab b ab a ab 即,即即.时取等号当且仅)2(0)(2b a b a ab b a =+≤∴≥-当恒成立,恒成立, ∀)(22,2422)2(22222222222b a b ab a b a b ab a b a b a +≤+++≤+++≤+即化简得:.0)(,02222≥-≥+-b a b ab a 即即.2)2(222时等式成立恒成立,当且仅当同理,b a b a b a =+≤+综上, a ,b ∀R , ab ≤2)2(b a +≤a 2+b 22,当且仅当a=b 时取等号.【变式1】已知x ,y 都是正数. 求证:(1)y x +xy ≥2; (2)(x +y )(x 2+y 2)(x 3+y 3)≥8x 3y 3;(3)已知a ,b ,c 为任意的实数,求证:a 2+b 2+c 2≥ab +bc +ca . 【证明】 (1)∀x ,y 都是正数,∀x y > 0,yx > 0,∀y x +xy≥ 2y x ·x y = 2, 即 y x +xy≥ 2, 当且仅当x =y 时,等号成立.(2)∀x ,y 都是正数,∀x +y ≥ 2xy > 0, x 2+y 2 ≥ 2x 2y 2 > 0,x 3+y 3 ≥ 2x 3y 3 > 0.∀(x +y )(x 2+y 2)(x 3+y 3) ≥ 2xy ·2x 2y 2·2x 3y 3=8x 3y 3,即 (x +y )(x 2+y 2)(x 3+y 3) ≥ 8x 3y 3,当且仅当x =y 时,等号成立. (3)∀a 2+b 2≥2ab ;b 2+c 2≥2bc ;c 2+a 2≥2ca , ∀2(a 2+b 2+c 2)≥2(ab +bc +ca ), 即a 2+b 2+c 2≥ab +bc +ca , 当且仅当a =b =c 时,等号成立..1.a 2+b 2≥2ab 与a +b 2≥ab 都是带有等号的不等式.“当且仅当…时,取等号”这句话的含义是:当a =b 时,a +b2=ab ;当a +b2=ab 时,也有a =b .2.在利用基本不等式证明的过程中,常需要把数、式合理地拆成两项或多项或把恒等式变形配凑成适当的数、式,以便于利用基本不等式.【例2】(多选题)设a >0,b >0,下列不等式中恒成立的有( ) A.a 2+1>a B.4)1)(1(≥++bb a a C.4)11)((≥++ba b a D.a 2+9>6a .【解析】由于a 2+1-a =2)21(-a +34>0,故A 恒成立;由于a +1a ≥2,b +1b≥2,∀4)1)(1(≥++bb a a ,当且仅当a =b =1时,等号成立,故B 恒成立; 由于a +b ≥2ab ,1a +1b≥21ab, 故4)11)((≥++ba b a ,当且仅当a =b 时,等号成立,故C 恒成立; 当a =3时,a 2+9=6a ,故D 不恒成立. 综上,恒成立的是ABC.【变式2】下列各式中,对任何实数x 都成立的一个式子是( ). A.x y +≥B .21x x +>2C .2111x ≤+ D .12x x+≥ 【答案】C【分析】取特殊值可得a,b,D 不恒成立,由211x +≥可得C 对应的不等式2111x ≤+恒成立,得解. 【解析】对于A ,当0x <时,根式无意义,故A 不恒成立; 对于B ,当1x =时,212x x +=,故B 不恒成立; 对于C ,211x +≥,所以2111x ≤+成立,故C 成立; 对于D ,当0x <时,12x x+<,故D 恒不成立, 即对任何实数x 都成立的一个式子是2111x ≤+ 【例3】已知,,若,证明:。

初中不等式经典例题

初中不等式经典例题

初中不等式经典例题一、例题11. 若不等式3x - a ≤ 0的正整数解是1、2、3,求a的取值范围。

这题啊,可有点小绕呢。

首先我们来解这个不等式3x - a ≤ 0,把它变形一下就得到x ≤ a/3。

正整数解是1、2、3,那就是说3肯定是满足这个不等式的,所以3 ≤ a/3,这就得出a ≥ 9。

但是呢,4就不满足这个不等式了,要是4满足的话正整数解就不止1、2、3了,所以4 > a/3,也就是a < 12。

所以啊,a的取值范围就是9 ≤ a < 12。

2. 已知关于x的不等式组{x - a > 0,1 - x > 0}的整数解共有3个,求a的取值范围。

先看这个不等式组,x - a > 0,那就是x > a;1 - x > 0,变形一下就是x < 1。

这个不等式组的解集就是a < x < 1。

它的整数解共有3个,那这三个整数解肯定是 - 2, - 1,0啊。

所以 - 3 ≤ a < - 2。

为什么呢?要是a < - 3的话,整数解就不止3个了,要是a ≥ - 2的话,整数解就没3个了,是不是很有趣呢?二、例题21. 解不等式2(x - 1) + 5 < 3x。

这题看着简单,可也有不少同学会犯错哦。

我们先把括号展开,2x - 2 + 5 < 3x,然后把含有x的项移到一边,常数项移到另一边,就得到2x - 3x < 2 - 5,也就是 - x < - 3。

两边同时除以 - 1,注意哦,除以一个负数的时候,不等式要变号,所以x > 3。

2. 若不等式组{x + 8 < 4x - 1,x > m}的解集是x > 3,求m 的取值范围。

先解x + 8 < 4x - 1,移项得到x - 4x < - 1 - 8, - 3x < - 9,x > 3。

这个不等式组的解集是x > 3,还有个x > m,那m肯定是小于等于3的。

高中数学基本不等式知识点归纳及练习题

高中数学基本不等式知识点归纳及练习题

高中数学基本不等式的巧用1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R );(2)b a +a b ≥2(a ,b 同号);(3)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ); (4)a 2+b 22≥⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ). 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数大于或等于它的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小)(2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大) 一个技巧运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2ab 逆用22 ⎛⎭⎪⎫a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等. 两个变形(1)a 2+b 22≥⎝⎛⎭⎪⎫a +b 22≥ab (a ,b ∈R ,当且仅当a =b 时取等号);(2)a 2+b 22≥a +b 2≥ab ≥21a +1b(a >0,b >0,当且仅当a =b 时取等号).这两个不等式链用处很大,注意掌握它们. 三个注意(1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.(3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致.应用一:求最值 例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。

(完整版)基本不等式及其应用知识梳理及典型练习题(含标准答案)

(完整版)基本不等式及其应用知识梳理及典型练习题(含标准答案)

基本不等式及其应用1.基本不等式若a>0,,b>0,则a +b 2≥ab ,当且仅当时取“=”.这一定理叙述为:两个正数的算术平均数它们的几何平均数.注:运用均值不等式求最值时,必须注意以下三点:(1)各项或各因式均正;(一正)(2)和或积为定值;(二定)(3)等号成立的条件存在:含变数的各项均相等,取得最值.(三相等)2.常用不等式(1)a 2+b 2≥ab 2(a ,b ∈R ).2a b +()0,>b a 注:不等式a 2+b 2≥2ab 和2b a +≥ab 它们成立的条件不同,前者只要求a 、b 都是实数,而后者要求a 、b 都是正数.其等价变形:ab≤(2b a +)2. (3)ab ≤22⎪⎭⎫ ⎝⎛+b a (a ,b ∈R ). (4)b a +a b ≥2(a ,b 同号且不为0). (5)22⎪⎭⎫ ⎝⎛+b a ≤a 2+b 22(a ,b ∈R ). (6)ba ab b a b a 1122222+≥≥+≥+()0,>b a (7)abc ≤。

(),,0a b c >(8)≥;(),,0a b c>3.利用基本不等式求最大、最小值问题(1)求最小值:a>0,b>0,当ab为定值时,a+b,a2+b2有,即a+b≥,a2+b2≥.(2)求最大值:a>0,b>0,当a+b为定值时,ab有最大值,即;或a2+b2为定值时,ab有最大值(a>0,b>0),即.设a,b∈R,且a+b=3,则2a+2b的最小值是()A.6B.42C.22D.26解:因为2a>0,2b>0,由基本不等式得2a+2b≥22a·2b=22a+b=42,当且仅当a=b=32时取等号,故选B.若a>0,b>0,且a+2b-2=0,则ab的最大值为()A.12B.1 C.2 D.4解:∵a>0,b>0,a+2b=2,∴a+2b=2≥22ab,即ab≤12.当且仅当a=1,b=12时等号成立.故选A.小王从甲地到乙地往返的时速分别为a和b(a<b),其全程的平均时速为v,则()A.a<v<abB.v=abC.ab<v<a+b2 D.v=a+b2解:设甲、乙两地之间的距离为s.∵a<b,∴v=2ssa+sb=2aba+b<2ab2ab=ab.又v -a =2ab a +b -a =ab -a 2a +b >a 2-a 2a +b=0,∴v >a.故选A. (2014·上海)若实数x ,y 满足xy =1,则x 2+2y 2的最小值为________.解:由xy =1得x 2+2y 2=x 2+2x 2≥22,当且仅当x =±42时等号成立.故填22.点(m ,n )在直线x +y =1位于第一象限内的图象上运动,则log 2m +log 2n 的最大值是________.解:由条件知,m >0,n >0,m +n =1,所以mn ≤⎝ ⎛⎭⎪⎫m +n 22=14, 当且仅当m =n =12时取等号,∴log 2m +log 2n =log 2mn ≤log 214=-2,故填-2.类型一 利用基本不等式求最值(1)求函数y =(x >-1)的值域.解:∵x >-1,∴x +1>0,令m =x +1,则m >0,且y ==m ++5≥2+5=9,当且仅当m =2时取等号,故y min =9.又当m →+∞或m →0时,y →+∞,故原函数的值域是[9,+∞).(2)下列不等式一定成立的是( )A.lg>lg x (x >0)B.sin x +≥2(x ≠k π,k ∈Z )C.x 2+1≥2||x (x ∈R )D.1x 2+1>1(x ∈R ) 解:A 中,x 2+14≥x (x >0),当x =12时,x 2+14=x.B 中,sin x +1sin x ≥2(sin x ∈(0,1]);sin x+1sin x≤-2(sin x∈[-1,0)).C中,x2-2|x|+1=(|x|-1)2≥0(x∈R).D中,1x2+1∈(0,1](x∈R).故C一定成立,故选C.点拨:这里(1)是形如f(x)=ax2+bx+cx+d的最值问题,只要分母x+d>0,都可以将f(x)转化为f(x)=a(x+d)+ex+d+h(这里ae>0;若ae<0,可以直接利用单调性等方法求最值),再利用基本不等式求其最值.(2)牢记基本不等式使用条件——一正、二定、三相等,特别注意等号成立条件要存在.(1)已知t>0,则函数f(t)=t2-4t+1t的最小值为.解:∵t>0,∴f(t)=t2-4t+1t=t+1t-4≥-2,当且仅当t=1时,f(t)min=-2,故填-2.(2)已知x>0,y>0,且2x+8y-xy=0,求:(Ⅰ)xy的最小值;(Ⅱ)x+y的最小值.解:(Ⅰ)由2x+8y-xy=0,得+=1,又x>0,y>0,则1=+≥2=,得xy≥64,当且仅当x=4y,即x=16,y=4时等号成立.(Ⅱ)解法一:由2x+8y-xy=0,得x=,∵x>0,∴y>2,则x+y=y+=(y-2)++10≥18,当且仅当y-2=,即y=6,x=12时等号成立.解法二:由2x+8y-xy=0,得+=1,则x+y=·(x+y)=10++≥10+2=18,当且仅当y=6,x=12时等号成立.类型二利用基本不等式求有关参数范围若关于x的不等式(1+k2)x≤k4+4的解集是M,则对任意实常数k,总有()A.2∈M,0∈MB.2∉M,0∉MC.2∈M,0∉MD.2∉M,0∈M解法一:求出不等式的解集:(1+k2)x≤k4+4⇒x≤=(k2+1)+-2⇒x≤=2-2(当且仅当k2=-1时取等号).解法二(代入法):将x=2,x=0分别代入不等式中,判断关于k的不等式解集是否为R.故选A.点拨:一般地,对含参的不等式求范围问题通常采用分离变量转化为恒成立问题,对于“恒成立”的不等式,一般的解题方法是先分离然后求函数的最值.另外,要记住几个常见的有关不等式恒成立的等价命题:(1)a>f(x)恒成立⇔a>f(x)max;(2)a<f(x)恒成立⇔a<f(x)min;(3)a>f(x)有解⇔a>f(x)min;(4)a<f(x)有解⇔a<f(x)max.已知函数f(x)=e x+e-x,其中e是自然对数的底数.若关于x的不等式mf(x)≤e-x+m-1在(0,+∞)上恒成立,求实数m的取值范围.解:由条件知m(e x+e-x-1)≤e-x-1在(0,+∞)上恒成立.令t=e x(x>0),则t>1,且m≤-t-1t2-t+1=-1t-1+1t-1+1对任意t>1成立.∵t-1+1t-1+1≥2(t-1)·1t-1+1=3,∴-1t -1+1t -1+1≥-13,当且仅当t =2,即x =ln2时等号成立.故实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,-13. 类型三 利用基本不等式解决实际问题围建一个面积为360 m 2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2 m 的进出口,如图所示,已知旧墙的维修费用为45元/m ,新墙的造价为180元/m ,设利用的旧墙的长度为x (单位:元),修建此矩形场地围墙的总费用为y (单位:元).(1)将y 表示为x 的函数;(2)试确定x ,使修建此矩形场地围墙的总费用最小,并求出最小总费用. 解:(1)如图,设矩形的另一边长为a m ,则y =45x +180(x -2)+180·2a =225x +360a -360.由已知xa =360,得a =360x ,所以y =225x +3602x -360(x ≥2).(2)∵x ≥0,∴225x +3602x ≥2225×3602=10800,∴y =225x +3602x -360≥10440,当且仅当225x =3602x ,即x =24时等号成立.答:当x =24 m 时,修建围墙的总费用最小,最小总费用是10440元.如图,为处理含有某种杂质的污水,要制造一个底宽2 m 的无盖长方体的沉淀箱,污水从A孔流入,经沉淀后从B孔排出,设箱体的长度为am,高度为b m,已知排出的水中该杂质的质量分数与a,b的乘积ab成反比.现有制箱材料60 m2,问a,b各为多少m时,经沉淀后排出的水中该杂质的质量分数最小(A,B孔面积忽略不计).解法一:设y为排出的水中杂质的质量分数,根据题意可知:y=kab,其中k是比例系数且k>0.依题意要使y最小,只需ab最大.由题设得:4b+2ab+2a≤60(a>0,b>0),即a+2b≤30-ab(a>0,b>0).∵a+2b≥22ab,∴22·ab+ab≤30,得0<ab≤32.当且仅当a=2b时取“=”号,ab最大值为18,此时得a=6,b=3.故当a=6 m,b=3 m时经沉淀后排出的水中杂质最少.解法二:同解法一得b≤30-aa+2,代入y=kab求解.1.若a>1,则a+的最小值是()A.2B.aC.3D.解:∵a>1,∴a+=a-1++1≥2+1=2+1=3,当a=2时等号成立.故选C.2.设a,b∈R,a≠b,且a+b=2,则下列各式正确的是()A.ab<1<a2+b22 B.ab<1≤a2+b22 C.1<ab<a2+b22 D.ab≤a2+b22≤1解:运用不等式ab ≤⎝ ⎛⎭⎪⎫a +b 22⇒ab ≤1以及(a +b )2≤2(a 2+b 2)⇒2≤a 2+b 2(由于a ≠b ,所以不能取等号)得,ab <1<a 2+b 22,故选A.3.函数f (x )=在(-∞,2)上的最小值是( )A.0B.1C.2D.3解:当x <2时,2-x >0,因此f (x )==+(2-x )≥2·=2,当且仅当=2-x 时上式取等号.而此方程有解x =1∈(-∞,2),因此f (x )在(-∞,2)上的最小值为2,故选C.4.()要制作一个容积为4 m 3,高为1 m 的无盖长方体容器,已知该容器的底面造价是每平方M20元,侧面造价是每平方M10元,则该容器的最低总造价是( )A.80元B.120元C.160元D.240元解:假设底面的长、宽分别为x m , m ,由条件知该容器的最低总造价为y =80+20x +≥160,当且仅当底面边长x =2时,总造价最低,且为160元.故选C.5.下列不等式中正确的是( )A.若a ,b ∈R ,则b a +a b ≥2b a ·ab =2B.若x ,y 都是正数,则lg x +lg y ≥2lg x ·lg yC.若x <0,则x +4x ≥-2x ·4x =-4D.若x ≤0,则2x +2-x ≥22x ·2-x =2解:对于A ,a 与b 可能异号,A 错;对于B ,lg x 与lg y 可能是负数,B 错;对于C ,应是x +4x =-⎣⎢⎡⎦⎥⎤(-x )+4-x ≤-2(-x )·4-x=-4,C 错;对于D ,若x ≤0,则2x +2-x ≥22x ·2-x =2成立(x =0时取等号).故选D.6.()若log 4(3a +4b )=log 2,则a +b 的最小值是( )A.6+2B.7+2C.6+4D.7+4解:因为log4(3a+4b)=log2,所以log4(3a+4b)=log4(ab),即3a+4b=ab,且即a>0,b>0,所以+=1(a>0,b>0),a+b=(a+b)=7++≥7+2=7+4,当且仅当=时取等号.故选D.7.若对任意x>0,≤a恒成立,则a的取值范围是.解:因为x>0,所以x+≥2(当且仅当x=1时取等号),所以有=≤=,即的最大值为,故填a≥.8.()设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx-y-m +3=0交于点P(x,y),则|P A|·|PB|的最大值是________.解:易知定点A(0,0),B(1,3).且无论m取何值,两直线垂直.所以无论P与A,B重合与否,均有|P A|2+|PB|2=|AB|2=10(P在以AB为直径的圆上).所以|P A|·|PB|≤12(|P A|2+|PB|2)=5.当且仅当|P A|=|PB|=5时,等号成立.故填5.9.(1)已知0<x<,求x(4-3x)的最大值;(2)点(x,y)在直线x+2y=3上移动,求2x+4y的最小值.解:(1)已知0<x<,∴0<3x<4.∴x(4-3x)=(3x)(4-3x)≤=,当且仅当3x=4-3x,即x=时“=”成立.∴当x=时,x(4-3x)取最大值为.(2)已知点(x,y)在直线x+2y=3上移动,所以x+2y=3.∴2x+4y≥2=2=2=4.当且仅当即x=,y=时“=”成立.∴当x=,y=时,2x+4y取最小值为4.10.已知a>0,b>0,且2a+b=1,求S=2-4a2-b2的最大值.解:∵a>0,b>0,2a+b=1,∴4a2+b2=(2a+b)2-4ab=1-4ab.且1=2a+b≥2,即≤,ab≤,∴S=2-4a2-b2=2-(1-4ab)=2+4ab-1≤.当且仅当a=,b=时,等号成立.11.如图,动物园要围成相同的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.(1)现有可围36 m长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?(2)若使每间虎笼面积为24 m2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋总长度最小?解:(1)设每间虎笼长为x m,宽为y m,则由条件,知4x+6y=36,即2x+3y=18.设每间虎笼的面积为S,则S=xy.解法一:由于2x+3y≥2=2,∴2≤18,得xy≤,即S≤.当且仅当2x=3y时等号成立.由解得故每间虎笼长为4.5 m,宽为3 m时,可使每间虎笼面积最大.解法二:由2x+3y=18,得x=9-y.∵x>0,∴0<y<6.S=xy=y=(6-y)y.∵0<y<6,∴6-y>0.∴S≤=.当且仅当6-y=y,即y=3时,等号成立,此时x=4.5.故每间虎笼长4.5 m,宽3 m时,可使每间虎笼面积最大. (2)由条件知S=xy=24.设钢筋网总长为l,则l=4x+6y.解法一:∵2x+3y≥2=2=24,∴l=4x+6y=2(2x+3y)≥48,当且仅当2x=3y时,等号成立.由解得故每间虎笼长6 m,宽4 m时,可使钢筋网总长度最小.解法二:由xy=24,得x=.∴l=4x+6y=+6y=6≥6×2=48,当且仅当=y,即y=4时,等号成立,此时x=6.故每间虎笼长6 m,宽4 m时,可使钢筋网总长度最小.11/ 11。

基本不等式典型例题精讲精析

基本不等式典型例题精讲精析

基本不等式典型例题精讲精析[例1]设{a n }是由正数组成的等比数列,S n 是其前n 项和,求证:2lg lg 2++n n S S 1lg +<n S .【证法一】依题意,{a n }的首项a 1>0,公比q >0,故0<S n <S n+1<S n+2,∵qS n S n+2=qS n (a 1+qS n+1)<a 1qS n+1+q 2S n S n+1=qS n+1(a 1+qS n )=qS n+12,∴S n S n+2<S n+12,2lg lg 2++n n S S <lg S n+1. 【证法二】依题意首项a 1>0,S n+1>S n ,故S n S n+2-S n+12=S n (a 1+qS n+1)-S n+1(a 1+qS n )=a 1(S n -S n+1)<0.∴S n S n+2<S n+12, ∴2lg lg 2++n n S S <lg S n+1. 【点评】利用对数函数的性质,将该问题等价转化为证明S n S n+2<S n+12.[例2]设a ∈R ,解下列关于x 的不等式|1-x1|<a . 【解法一】当a ≤0时,原不等式的解集为∅,当a >0时,|||1|x x - <a 即(x -1)2<a 2x 2.即(a 2-1)x 2+2x -1>0①当a >1时,原不等式可化为[(a +1)x -1][(a -1)x +1]>0∴原不等式的解集为{x |x >11+a 或x <a-11} ②当0<a <1时,原不等式可化为[(1+a )x -1][(1-a )x -1]<0∴原不等式的解集为{x |a +11<x <a-11} ③当a =1时,原不等式可化为2x -1>0,{x |x >-21} 综上,当a ≤0时,原不等式的解集为∅.当a >1时,原不等式的解集为{x |x >11+a 或x <a-11},当a =1时,原不等式的解集为{x |x >21}. 当0<a <1时,原不等式的解集为{x |a +11<x <a-11}.【解法二】当a ≤0时,不等式解集为∅当a >0时,原不等式等价于-a <1-x 1<a 1-a <x1<a +1 ∴⎩⎨⎧+<<+>)1(1)1(0a x a x x 或⎩⎨⎧+>>-<)1(1)1(0a x a x x ①若0<a <1时,等价于⎪⎪⎪⎩⎪⎪⎪⎨⎧+>-<>a x a x x 11110或⎪⎪⎪⎩⎪⎪⎪⎨⎧+<-><a x a x x 11110 即{x |a +11<x <a-11} ②若a =1时,等价于⎪⎩⎪⎨⎧+>>110a x x 或⎩⎨⎧∈<ϕx x 0 即{x |x >11+a }={x |x >21} ③若a >1时,等价于⎪⎪⎪⎩⎪⎪⎪⎨⎧+>->>11110a x a x x 或⎪⎪⎪⎩⎪⎪⎪⎨⎧+<-<<11110a x ax x即{x |x >11+a 或x <a-11}. 【点评】该题还可以利用图象来解.[例3]某商品进货价每件50元,据市场调查,当销售价格(每件x 元)在50≤x ≤80时,每天售出的件数P =25)40(10-x ,若想每天获得的利润最多,销售价格每件应定为多少元? 【解法一】设销售价定为每件x 元(50<x ≤80)每天获得利润y 元,则:y =(x -50)·P =25)40()50(10--x x设x -50=t ,则0<t ≤30∴y =250020201020100101002010)10(10552525=+≤++=++=+tt t t t t t 当且仅当t =10,即x =60时,y max =2500【答】每件60元时,每天获利最多,最多是2500元.【解法二】求y =25)40()50(10--x x 的最大值的解法,还可转化为二次函数的最大值问题解之. 令401-x =t ∵10<x -40≤40 ∴401≤t <101 y =)101(10)40()1040(102525-⋅=---tt x x =105(-10t 2+t ) 当t =201,即x =60时,y max =2500 求y 的最大值,还可以用二次函数的判别式方法解.令x -40=t ,则10<t ≤40y =25)10(10tt - 即yt 2-105t +106=0 ①Δ=1010-4·106·y ≥0解之y ≤2500,即y max =2500检验:当y =2500时,方程①2500t 2-105t +106=0即t 2-40t +400=0解之t =20∈(10,40]这时x =60.【点评】①设变量时,把最值变量定为函数,建立函数关系式.②构造相应的数学模型求最值.法一:令x -50=t ,使分子最简,同除以分子后,很容易用均值不等式求分母的最值.法二:令401-x =t ,使二次函数式最简,易于求二次函数y 的最值.法三:令x -40=t ,应用二次方程判别式求最值.但应注意检验.[例4]若f (x )是定义在(0,+∞)上的增函数,且对一切x >0,y >0满足f (yx )=f (x )-f (y ).(1)求f (1)的值;(2)若f (2)=1,解不等式f (x +3)-f (x1)<2. 【解】(1)∵一切x >0,y >0满足f (yx )=f (x )-f (y ) 令x =y =1则f (1)=f (1)-f (1)=0 (2)f (x +3)-f (x 1)<2⎩⎨⎧><+⇔⎪⎩⎪⎨⎧>>+<+⇔02)3([0032)]3([x x x f x x x x f 又f (24)=f (4)-f (2) ∴f (4)=2f (2) 而f (12)=f (2)-f (1) ∴f (2)=1,∴f (4)=2∴⎩⎨⎧><+0)4()]3([x f x x f ∵f (x )是(0,+∞)上的增函数∴⇒⎩⎨⎧><<-⇒⎩⎨⎧><+0140432x x x x x 0<x <1 ∴原不等式的解集为(0,1)【点评】该题是抽象函数问题,即不知道函数的解析式,而由条件判断函数的性质(单调性、周期性、奇偶性),并解决有关问题.这是近几年的高考热点.。

届高三数学—不等式1:基本不等式经典例题+高考真题剖析(解析版)

届高三数学—不等式1:基本不等式经典例题+高考真题剖析(解析版)

必修五:基本不等式应用一:求最值 例:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧 技巧一:凑项 例 已知54x <,求函数14245y x x =-+-的最大值。

解:因450x -<,所以首先要“调整”符号,又1(42)45x x --不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->,11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+=当且仅当15454x x-=-,即1x =时,上式等号成立,故当1x =时,max 1y =。

技巧二:凑系数 例: 当时,求(82)y x x =-的最大值。

解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。

注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。

当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。

变式:设230<<x ,求函数)23(4x x y -=的最大值。

解:∵230<<x ∴023>-x ∴2922322)23(22)23(42=⎪⎭⎫ ⎝⎛-+≤-⋅=-=x x x x x x y 当且仅当,232x x -=即⎪⎭⎫⎝⎛∈=23,043x 时等号成立。

技巧三: 分离、换元例:求2710(1)1x x y x x ++=>-+的值域。

解析一:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本不等式专题知识点:1. (1)若R b a ∈,,则ab b a 222≥+(2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”) 若0x <,则12x x+≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x x x x+≥+≥+≤即或 (当且仅当b a =时取“=”)4.若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注意:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用 应用一:求最值 例:求下列函数的值域(1)y =3x 2+12x 2(2)y =x +1x解:(1)y =3x 2+12x 2≥23x 2·12x 2= 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x ≥2x ·1x=2;当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧技巧一:凑项例 已知54x <,求函数14245y x x =-+-的最大值。

解:因450x -<,所以首先要“调整”符号,又1(42)45x x --不是常数,所以对42x -要进行拆、凑项,5,5404x x <∴->,11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+=当且仅当15454x x-=-,即1x =时,上式等号成立,故当1x =时,max 1y =。

技巧二:凑系数 例: 当时,求(82)y x x =-的最大值。

解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。

注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。

当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。

变式:设230<<x ,求函数)23(4x x y -=的最大值。

解:∵230<<x ∴023>-x ∴2922322)23(22)23(42=⎪⎭⎫ ⎝⎛-+≤-⋅=-=x x x x x x y 当且仅当,232x x -=即⎪⎭⎫⎝⎛∈=23,043x 时等号成立。

技巧三: 分离 技巧四:换元例:求2710(1)1x x y x x ++=>-+的值域。

解析一:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。

当,即时,421)591y x x ≥+⨯+=+((当且仅当x =1时取“=”号)。

解析二:本题看似无法运用均值不等式,可先换元,令t=x +1,化简原式在分离求最值。

22(1)7(1+10544=5t t t t y t t t t-+-++==++)当,即t=时,4259y t t≥⨯=(当t=2即x =1时取“=”号)。

技巧五:在应用最值定理求最值时,若遇等号取不到的情况,结合函数()af x x x=+的单调性。

例:求函数224y x =+的值域。

24(2)x t t +=≥,则224y x =+2214(2)4x t t t x =+=+≥+因10,1t t t >⋅=,但1t t=解得1t =±不在区间[)2,+∞,故等号不成立,考虑单调性。

因为1y t t =+在区间[)1,+∞单调递增,所以在其子区间[)2,+∞为单调递增函数,故52y ≥。

所以,所求函数的值域为5,2⎡⎫+∞⎪⎢⎣⎭。

技巧六:整体代换多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。

例:已知0,0x y >>,且191x y+=,求x y +的最小值。

错解..:0,0x y >>,且191x y +=,∴()1992212x y x y xy x y xy ⎛⎫+=++≥= ⎪⎝⎭故 ()min 12x y += 。

错因:解法中两次连用均值不等式,在2x y xy +≥等号成立条件是x y =,在1992x y xy+≥19x y=即9y x =,取等号的条件的不一致,产生错误。

因此,在利用均值不等式处理问题时,列出等号成立条件是解题的必要步骤,而且是检验转换是否有误的一种方法。

正解:190,0,1x y x y >>+=,()1991061016y x x y x y x y x y⎛⎫∴+=++=++≥+= ⎪⎝⎭当且仅当9y xx y=时,上式等号成立,又191x y +=,可得4,12x y ==时,()min 16x y += 。

技巧七例:已知x ,y 为正实数,且x 2+y 22=1,求x 1+y 2的最大值.分析:因条件和结论分别是二次和一次,故采用公式ab ≤a 2+b 22。

同时还应化简1+y 2 中y 2前面的系数为 12, x1+y 2 =x 2·1+y 22=2x ·12 +y 22下面将x ,12 +y 22 分别看成两个因式: x ·12 +y 22 ≤x 2+(12 +y 22)22 =x 2+y 22 +122=34即x1+y 2 = 2 ·x12 +y 22 ≤ 342技巧八:已知a ,b 为正实数,2b +ab +a =30,求函数y =1ab的最小值.分析:这是一个二元函数的最值问题,通常有两个途径,一是通过消元,转化为一元函数问题,再用单调性或基本不等式求解,对本题来说,这种途径是可行的;二是直接用基本不等式,对本题来说,因已知条件中既有和的形式,又有积的形式,不能一步到位求出最值,考虑用基本不等式放缩后,再通过解不等式的途径进行。

法一:a =30-2b b +1 , ab =30-2b b +1 ·b =-2 b 2+30bb +1由a >0得,0<b <15 令t =b +1,1<t <16,ab =-2t 2+34t -31t =-2(t +16t )+34∵t +16t ≥2t ·16t=8∴ ab ≤18 ∴ y ≥118当且仅当t =4,即b =3,a =6时,等号成立。

法二:由已知得:30-ab =a +2b ∵ a +2b ≥22 ab ∴ 30-ab ≥22 ab令u =ab 则u 2+2 2 u -30≤0, -5 2 ≤u ≤3 2∴ab ≤3 2 ,ab ≤18,∴y ≥118点评:①本题考查不等式ab ba ≥+2)(+∈R b a ,的应用、不等式的解法及运算能力;②如何由已知不等式230ab a b =++)(+∈R b a ,出发求得ab 的范围,关键是寻找到ab b a 与+之间的关系,由此想到不等式ab ba ≥+2)(+∈R b a ,,这样将已知条件转换为含ab 的不等式,进而解得ab 的范围.技巧九、取平方例: 求函数15()22y x <<的最大值。

解析:注意到21x -与52x -的和为定值。

2244(21)(52)8y x x ==+≤+-+-=又0y >,所以0y <≤当且仅当21x -=52x -,即32x =时取等号。

故max y = 应用二:利用均值不等式证明不等式例:已知a 、b 、c R +∈,且1a b c ++=。

求证:1111118a b c ⎛⎫⎛⎫⎛⎫---≥⎪⎪⎪⎝⎭⎝⎭⎝⎭分析:不等式右边数字8,使我们联想到左边因式分别使用均值不等式可得三个“2”连乘,又111a b c a a a -+-==≥解:a 、b 、c R +∈,1a b c ++=。

∴111a b c a a a -+-==≥。

同理11b -≥11c -≥111221118ac ab a b c b c ⎛⎫⎛⎫⎛⎫---≥= ⎪⎪⎪⎝⎭⎝⎭⎝⎭。

当且仅当13a b c ===时取等号。

应用三:均值不等式与恒成立问题 例:已知0,0x y >>且191x y+=,求使不等式x y m +≥恒成立的实数m 的取值范围。

解:令,0,0,x y k x y +=>>191x y +=,99 1.x y x y kx ky ++∴+=1091y x k kx ky∴++= 10312k k∴-≥⋅ 。

16k ∴≥ ,(],16m ∈-∞应用四:均值定理在比较大小中的应用: 例:若)2lg(),lg (lg 21,lg lg ,1ba Rb a Q b a P b a +=+=⋅=>>,则R Q P ,,的大小关系是 .分析:∵1>>b a ∴0lg ,0lg >>b a21=Q (p b a b a =⋅>+lg lg )lg lg Q ab ab b a R ==>+=lg 21lg )2lg( ∴R>Q>P 。

相关文档
最新文档