基本不等式经典例题学生用
不等式练习题
不等式练习题一、基本不等式1. 已知a > b,求证:a + c > b + c。
2. 已知x > 3,求证:x^2 > 9。
3. 已知0 < x < 1,求证:x^3 < x。
4. 已知a, b均为正数,求证:a^2 + b^2 > 2ab。
5. 已知|x| > |y|,求证:x^2 > y^2。
二、一元一次不等式1. 解不等式:3x 7 > 2x + 4。
2. 解不等式:5 2(x 3) ≤ 3x 1。
3. 解不等式:2(x 1) 3(x + 2) > 7。
4. 解不等式:4 3(x 2) ≥ 2x + 5。
5. 解不等式:5(x 3) + 2(2x + 1) < 7x 9。
三、一元二次不等式1. 解不等式:x^2 5x + 6 > 0。
2. 解不等式:2x^2 3x 2 < 0。
3. 解不等式:x^2 4x + 4 ≤ 0。
4. 解不等式:3x^2 + 4x 4 > 0。
5. 解不等式:x^2 + 5x 6 < 0。
四、分式不等式1. 解不等式:x / (x 1) > 2。
2. 解不等式:1 / (x + 3) 1 / (x 2) ≤ 0。
3. 解不等式:(x 1) / (x + 1) < 0。
4. 解不等式:(2x + 3) / (x 4) ≥ 1。
5. 解不等式:(3x 2) / (x^2 5x + 6) > 0。
五、含绝对值的不等式1. 解不等式:|x 2| > 3。
2. 解不等式:|2x + 1| ≤ 5。
3. 解不等式:|3x 4| < 2。
4. 解不等式:|x + 3| |x 2| > 1。
5. 解不等式:|x 5| + |x + 1| < 6。
六、综合应用题1. 已知不等式组:$\begin{cases} 2x 3y > 6 \\ x + 4y ≤ 8 \end{cases}$,求x的取值范围。
基本不等式典型例题
基本不等式典型例题1、两个不等式:a2+b2≥2ab(a,b∈r)当且仅当a=b时,等号成立;≤a+b(a>0,b>0)当且仅当a=b时,等号成立。
22、常用变形:(1)a+b≥a>0,b>0)⎛a+b⎛(2)⎛≥ab(a,b∈r)⎛2⎛2aba+b(3)≤≤a>0,b>0)a+b2基准1、1.若实数满足用户a+b=2,谋3+3的最小值xy2.若log4+log4=2,求ab211+的最小值xy基准2、未知x>0,y>0,且解:利用“1的代换”,∵19+=1,求x+y的最小值.xy1919y9x+=1,∴x+y=(x+y)·(+)=10++.∵x>0,y>0,xyxyxy∴y9xy9xy9x+≥2=6.当且仅当=,即y=3x时,挑等号.∙xyxyxy19+=1,∴x=4,y=12.∴当x=4,y=12时,x+y取得最小值16.xy又变式训练1.未知正数a,b,x,y满足用户a+b=10,ab+=1,x+y的最小值为18,谋a,b 的值xy2.已知x,y为正实数,且2x+y=1,则基准3、未知0<x<解:∵0<x<21+的最小值为xy1,求函数y=x(1-3x)的最大值;31,∴1-3x>0.3113x+(1-3x)211∴y=x(1-3x)=·3x(1-3x)≤[]=,当且仅当3x=1-3x,即x=时,等33212611号成立.∴x=时,函数取得最大值.6121变式训练1.当x>-1时,谋f(x)=x+的最小值.x+1x4+3x2+33.求函数y=的最小值.x2+1基准4、谋f(x)=3+lgx+4的最小值(0<x<1)lgx4444<0.∴->0.∴(-lgx)+(-)≥2(-lgx)(-)=4.lgxlgxlgxlgx解:∵0<x<1,∴lgx <0,∴lgx+1444≤-4.∴f(x)=3+lgx+≤3-4=-1.当且仅当lgx=,即x=时获得等号.100lgxlgxlgx则有f(x)=3+lgx+4(0<x<1)的最小值为-1.lgx变式训练1.未知x<51,求函数y=4x-2+的最大值.44x-512.求函数y=x+的值域x基准5、1.未知a,b,c为不全相等的正实数,求证:a+b+c>2.已知a>0,b>0,ab>0,求证⎛ab⎛+2⎛(a+b)≥42ba⎛⎛⎛1⎛⎛1⎛⎛1⎛-1⎛-1⎛-1⎛≥8⎛a⎛⎛b⎛⎛c⎛3.设a,b,c∈(0,∞),且a+b+c=1,澄清1.若,且,则下列不等式中,恒成立的是().a.b.c.d.2.未知a.2b.,则的最小值就是().c.4d.53.下列结论正确的是().a.当且时,;b.当时,;c.当时,的最小值为2;d.当时,的最小值为24.设,若是与的等比中项,则的最小值为().a.8b.4c.1d.5.x+y=4,则xy的最大值就是()22a.1b.1c.2d.421()a6.若aa.有最小值2b.有最大值2c.存有最小值-2d.存有最大值-2。
初二不等式经典例题
初二不等式经典例题摘要:1.初二不等式的概念和基本性质2.经典例题1:解不等式|x - 3| < 13.经典例题2:解不等式-2x + 3 > 54.经典例题3:解不等式组{ 2x + 1 < 3, 4x - 5 > 6 }5.总结与展望正文:一、初二不等式的概念和基本性质初二不等式是初中数学中的重要内容,主要研究如何解不等式以及如何处理不等式组。
不等式是指用不等号(如"<"、"≤"、">"、"≥")连接的两个数或代数式。
在初二阶段,我们主要学习解一元一次不等式、一元二次不等式以及不等式组。
二、经典例题1:解不等式|x - 3| < 1这是一个一元一次不等式,我们可以通过以下步骤求解:1.将绝对值符号拆掉,得到两个不等式:x - 3 < 1 和-(x - 3) < 1。
2.分别解这两个不等式,得到x < 4 和x > 2。
3.将两个不等式的解集合并,得到最终解集:{x | 2 < x < 4}。
三、经典例题2:解不等式-2x + 3 > 5这是一个一元一次不等式,我们可以通过以下步骤求解:1.将常数项移到不等式左边,得到-2x > 2。
2.将不等式两边同时除以-2,并注意改变不等号方向,得到x < -1。
四、经典例题3:解不等式组{ 2x + 1 < 3, 4x - 5 > 6 }这是一个一元一次不等式组,我们可以通过以下步骤求解:1.解第一个不等式,得到x < 1。
2.解第二个不等式,得到x >3.5。
3.将两个不等式的解集合并,得到最终解集:{x | 3.5 < x < 1}。
五、总结与展望初二不等式是初中数学的基础知识,对于解决实际问题和进一步学习高中数学有着重要意义。
通过解决不等式和不等式组,我们可以提高自己的逻辑思维能力和运算能力。
基本不等式题型练习含答案
基本不等式题型练习含答案题目1:解不等式2x + 5 > 9。
解答1: 2x + 5 > 9 首先,将不等式两边都减去5。
2x > 4 然后,将不等式两边都除以2。
x > 2 所以,不等式的解集为x > 2。
题目2:解不等式3 - 2x ≤ 7。
解答2: 3 - 2x ≤ 7 首先,将不等式两边都减去3。
-2x ≤ 4 然后,将不等式两边都除以-2。
注意,因为除以负数会改变不等号的方向,所以需要将不等号反转。
x ≥ -2 所以,不等式的解集为x ≥ -2。
题目3:解不等式4x + 3 < 19。
解答3: 4x + 3 < 19 首先,将不等式两边都减去3。
4x < 16 然后,将不等式两边都除以4。
x < 4 所以,不等式的解集为x < 4。
题目4:解不等式5 - 3x > 8。
解答4: 5 - 3x > 8 首先,将不等式两边都减去5。
-3x > 3 然后,将不等式两边都除以-3。
注意,因为除以负数会改变不等号的方向,所以需要将不等号反转。
x < -1 所以,不等式的解集为x < -1。
题目5:解不等式2x - 1 ≤ 5x + 3。
解答5: 2x - 1 ≤ 5x + 3 首先,将不等式两边都减去2x。
-1 ≤ 3x + 3 然后,将不等式两边都减去3。
-4 ≤ 3x 最后,将不等式两边都除以3。
-4/3 ≤ x 所以,不等式的解集为x ≥ -4/3。
题目6:解不等式4 - 2x ≥ 10 - 3x。
解答6: 4 - 2x ≥ 10 - 3x 首先,将不等式两边都加上3x。
4 + x ≥ 10 然后,将不等式两边都减去4。
x ≥ 6 所以,不等式的解集为x ≥ 6。
题目7:解不等式2(3x + 1) > 4x + 6。
解答7: 2(3x + 1) > 4x + 6 首先,将不等式两边都展开。
基本不等式经典例题(含知识点和例题详细解析)
基本不等式专题知识点:1. (1)若R b a ∈,,则ab b a 222≥+(2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”) 若0x <,则12x x+≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x x x x+≥+≥+≤即或 (当且仅当b a =时取“=”)4.若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注意:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用 应用一:求最值 例:求下列函数的值域(1)y =3x 2+12x 2(2)y =x +1x解:(1)y =3x 2+12x 2≥23x 2·12x 2= 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x ≥2x ·1x=2;当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧技巧一:凑项例 已知54x <,求函数14245y x x =-+-的最大值。
基本不等式经典例题(学生用)
根本不等式 【2 】 常识点: 1. (1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”)3.若0x >,则12x x +≥ (当且仅当1x =时取“=”)若0x <,则12x x +≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”)4.若0>ab ,则2≥+a bb a(当且仅当b a =时取“=”)若0ab ≠,则22-2abab a bb a b a b a +≥+≥+≤即或(当且仅当b a =时取“=”)5.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”)留意:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的前提“一正,二定,三取等”(3)均值定理在求最值.比较大小.求变量的取值规模.证实不等式.解决现实问题方面有普遍的运用 运用一:求最值例:求下列函数的值域(1)y =3x2+12x 2 (2)y =x +1x技能一:凑项例 已知54x <,求函数14245y x x =-+-的最大值.技能二:凑系数例: 当时,求(82)y x x =-的最大值.变式:设230<<x ,求函数)23(4x x y -=的最大值.技能三: 分别换元 例:求2710(1)1x x y x x ++=>-+的值域.技能五:在运用最值定理求最值时,若遇等号取不到的情形,. 例:求函数2y =的值域.技能六:整体代换(“1”的运用)多次连用最值定理求最值时,要留意取等号的前提的一致性,不然就会出错.. 例:已知0,0x y >>,且191x y+=,求x y +的最小值. 技能七例:已知x,y 为正实数,且x 2+y 22=1,求x 1+y2 的最大值. 技能八:已知a,b 为正实数,2b +ab +a =30,求函数y =1ab的最小值. 技能九.取平方例: 求函数15()22y x <<的最大值. 运用二:运用均值不等式证实不等式例:已知a.b.c R +∈,且1a b c ++=.求证:1111118a b c ⎛⎫⎛⎫⎛⎫---≥⎪⎪⎪⎝⎭⎝⎭⎝⎭ 运用三:均值不等式与恒成立问题例:已知0,0x y >>且191x y+=,求使不等式x y m +≥恒成立的实数m 的取值规模. 运用四:均值定理在比较大小中的运用:例:若)2lg(),lg (lg 21,lg lg ,1b a R b a Q b a P b a +=+=⋅=>>,则R Q P ,,的大小关系是.。
不等式的基本性质例题doc
第五章 一元一次不等式不等式的基本性质 例题例1 将下列不等式化成“x>a ”或“x<a ”的形式:(1) x-5>-1 (2) -2x>3解:(1)根据不等式的基本性质1,两边都加上5,得 x>-1+5即 x>4(2)根据不等式的基本性质3,两边都除以-2,得 -2x ÷(-2)<3÷(-2)即 32x <-例2 若a-b<0,则下列各式中一定成立的是( D )>b >0<0 >-b解:将a-b<0 两边同时减去a 得-a>-b 故D 一定成立或者有a b <;而ab 与0的大小关系就不确定例3 若x 是任意实数,则下列不等式中,恒成立的是( B )>2x >2x2+x>2 +x2>2解:A 可以化为0x > 两边同时减去2xB 可化为 20x > 两边同时减去22xC 可化为 1x >- 两边减去3D 可化为 21x >-两边减去3又知x 是任意实数 显然20x >恒成立 故选B例4、已知a <b,用“<”或“>”号填空:(1) a-3_<__b-3(2) 6a _<__6b(3)–a_>__-b(4) a-b_<__0解:(1)在a b <两边同时减去3(2)在a b <两边同时乘以6(3)在a b <两边同时乘以-1(变号)(4)在a b <两边同时减去b例5 将下列不等式化成“x>a”或“x<a”的形式:(1)x - 5>-1(2)-2x>3(3)2x- 1<2(4)-x <5/6解:(1)4x>两边同时加5(2)32x<-两边同时除以-2(3)32x<先移项,再两边同时除以2(4)56x>-两边同时乘以-1例6、按照下列条件写出仍然成立的不等式,并说明根据不等式的哪一条基本性质:(一般形式)(1)m>n,两边都减去3;(2)m>n,两边同乘以3;(3)m>n,两边同乘以-3;(4)m>n,两边同乘以m.解:(1)m-3>n-3(2) 3m>3n(3)-3m< -3n(4) m>0时,不等式成立。
基本不等式经典题目
基本不等式经典题目基本不等式:经典题目1. 证明柯西不等式:若 \(x_1, x_2, \dots, x_n\) 和 \(y_1, y_2, \dots, y_n\) 是两个 n 维实数序列,则有$$\left(\sum_{k=1}^n x_ky_k\right)^2 \le\left(\sum_{k=1}^n x_k^2\right)\left(\sum_{k=1}^ny_k^2\right)$$2. 证明赫尔德不等式:若 \(p\) 和 \(q\) 是大于 \(1\) 的实数且满足\(\frac{1}{p} + \frac{1}{q} = 1\),则对于任意 n 维实数序列\(x_1, x_2, \dots, x_n\) 和 \(y_1, y_2, \dots, y_n\),都有$$\left|\sum_{k=1}^n x_ky_k\right| \le\left(\sum_{k=1}^n |x_k|^p\right)^{1/p}\left(\sum_{k=1}^n|y_k|^q\right)^{1/q}$$3. 证明明可夫斯基不等式:对于任意p ≥ 1 和 n 维实数序列 \(x_1, x_2, \dots,x_n\),都有$$\left(\sum_{k=1}^n |x_k|^p\right)^{1/p} \le\sum_{k=1}^n |x_k|$$4. 证明切比雪夫不等式:对于任意实数 \(a\) 和 n 维实数序列 \(x_1, x_2, \dots, x_n\),都有$$P(|X - E(X)| \ge a) \le \frac{V(X)}{a^2}$$其中 \(X\) 为序列 \(x_1, x_2, \dots, x_n\) 的随机变量,\(E(X)\) 为期望,\(V(X)\) 为方差。
5. 证明马尔科夫不等式:对于任意实数 \(a > 0\) 和 n 维非负实数序列 \(x_1, x_2, \dots, x_n\),都有$$P(X \ge aE(X)) \le \frac{E(X)}{a}$$其中 \(X\) 为序列 \(x_1, x_2, \dots, x_n\) 的随机变量。
解不等式例题50道
解不等式例题50道一、一元一次不等式1. 解不等式:2x + 5>9- 解析:- 首先对不等式进行移项,将常数项移到右边,得到2x>9 - 5。
- 计算右边式子得2x>4。
- 两边同时除以2,解得x > 2。
2. 解不等式:3x-1<8- 解析:- 移项可得3x<8 + 1。
- 即3x<9。
- 两边同时除以3,解得x<3。
3. 解不等式:5x+3≤slant2x + 9- 解析:- 移项,把含x的项移到左边,常数项移到右边,得到5x-2x≤slant9 - 3。
- 计算得3x≤slant6。
- 两边同时除以3,解得x≤slant2。
4. 解不等式:4x-7≥slant3x+1- 解析:- 移项得4x - 3x≥slant1+7。
- 即x≥slant8。
5. 解不等式:(1)/(2)x+3>x - 1- 解析:- 移项可得(1)/(2)x-x>-1 - 3。
- 通分计算,((1)/(2)-(2)/(2))x>-4,即-(1)/(2)x>-4。
- 两边同时乘以 - 2,不等号变向,解得x < 8。
6. 解不等式:(2)/(3)x-1≤slant(1)/(3)x+2- 解析:- 移项得(2)/(3)x-(1)/(3)x≤slant2 + 1。
- 计算得(1)/(3)x≤slant3。
- 两边同时乘以3,解得x≤slant9。
7. 解不等式:2(x + 3)>3(x - 1)- 解析:- 先展开括号,得到2x+6>3x - 3。
- 移项得2x-3x>-3 - 6。
- 计算得-x>-9。
- 两边同时乘以 - 1,不等号变向,解得x < 9。
8. 解不等式:3(x - 2)≤slant2(x+1)- 解析:- 展开括号得3x-6≤slant2x + 2。
- 移项得3x-2x≤slant2+6。
- 计算得x≤slant8。
高考数学一轮专题复习——基本不等式(学生版)
专题:基本不等式的应用 (ab ≤a +b 2)1.设x 、y 均为正实数,且2+x +2+y=1,则xy 的最小值为 ( ) 2.(2009·天津高考) 设a >0,b >0.若3是3a 与3b 的等比中项,则1a +1b的最小值为 ( ) 3.已知不等式(x +y )(1x +a y)≥9 对任意正实数x ,y 恒成立,则正实数a 的最小值为 ( ) 4.(2010·太原模拟)若直线ax -by +2=0(a >0,b >0)和函数f (x )=a x +1+1(a >0且a ≠1)的图象恒过同一个定点,则当1a +1b取最小值时,函数f (x )的解析式是________.5.设a 、b ①ab >2ab a +b ;②a >|a -b |-b ;③a 2+b 2>4ab -3b 2;④ab +2ab >2恒成立的 序号为 ( )A .①③ B.①④ C.②③ D.②④6.已知a 、b 、c ∈(0,+∞)且a +b +c =1,求证:(1a -1)(1b -1)(1c-1)≥8.7. 某商场中秋前30f (t )=t 2+10t +16,则该商场前t 天平均售出的月饼最少为 ( )8.某公司租地建仓库,每月土地占用费y 1与仓库到车站的距离成反比,而每月库存货物的运费y 2与到车站的距离成正比,如果在距离车站10千米处建仓库,这两项费用y 1和y 2分别为2万元和8万元,那么,要使这两项费用之和最小,仓库应建在离车站________千米处.9.某造纸厂拟建一座平面图形为矩形且面积为162平方米的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400元/米,中间两道隔墙建造单价为248元/米,池底建造单价为80元/米2,水池所有墙的厚度忽略不计。
(1)试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;(2)若由于地形限制,该池的长和宽都不能超过16米,试设计污水池的长和宽,使总造价最低,并求出最低总造价。
专题07 基本不等式学霸必刷100题(解析版)
基本不等式学霸笔刷100题1.在ABC ∆中,点P 满足3BP PC =,过点P 的直线与AB 、AC 所在的直线分别交于点M 、N ,若AM AB λ=,()0,0AN AC μλμ=>>,则λμ+的最小值为( )A .212+ B .312+ C .32D .52【答案】B 【解析】 如下图所示:3BP PC =,即()3AP AB AC AP -=-,1344AP AB AC ∴=+, AM AB λ=,()0,0AN AC μλμ=>>,1AB AM λ∴=,1AC AN μ=,1344AP AM AN λμ∴=+,M 、P 、N 三点共线,则13144λμ+=. ()133331211444444λμλμλμλμλμμλμλ⎛⎫∴+=++=++≥⋅=+ ⎪⎝⎭, 当且仅当3μλ=时,等号成立,因此,λμ+31+,故选B.2.已知,,2a b R a b ∈+=,则221111a b +++的最大值为( ) A .1 B .65C.12D .2【答案】C 【解析】因为,,2a b R a b ∈+=,则()2222222112111+++=+++++a b a b ab a b ()()()()()()()22222222421626221251414+-+----====++-+-+-+-+a b ab ab ab ab ab a b ab ab ab ab ab , 令1=-t ab ,则()()2242142414---=+-+ab t t ab ,再令42-=t m,则42-=mt , 所以()22242443248324844-===+-+-+-+t m m t m m m m m ,由基本不等式可得32+≥m m,当且仅当m =,2=-t4328≤=+-m m,所以221111a b +++的最大值为12. 故选:C3.正数a ,b 满足9a b ab +=,若不等式2218a b x x m +≥-++-对任意实数x 恒成立,则实数m 的取值范围是( ) A .[)3,+∞ B .(]3,-∞C .(],6-∞D .[)6,+∞【答案】A 【解析】9a b ab +=,191a b∴+=,且a ,b 为正数,199()()1010216b a b a b a b a b a b a ∴+=++=+++=,当且仅当9b a a b=,即4,12a b ==时,()16min a b +=,若不等式2218a b x x m +≥-++-对任意实数x 恒成立, 则216218x x m ≥-++-对任意实数x 恒成立, 即222m x x ≥-++对任意实数x 恒成立,2222(1)33x x x -++=--+,3m ∴≥,故选:A4.设正实数,,x y z 满足22340x xy y z -+-=,则当xyz取得最大值时,212x y z +-的最大值为( )A .0B .1C .94D .3【答案】B【解析】x ,y ,z 为正实数,且22340x xy y z -+-=,根据基本不等式得22344z xy x y xy +=+,当且仅当x=2y 取等号,所以x=2y 时,xyz取得最大值1, 此时,221222222212y x y x x x y z xy xy xy x ++--+-=-==224444242x x x x x x--⎛⎫==+=-+ ⎪⎝⎭,当1122x x =⇔=时,244x x -+取最大值1,212x y z+-的最大值为1,故选B. 5.已知实数,x y 满足()()22254x y -+-=,则()2221xy x x y -+-的最大值为( )AB .617C .1225D .2512【答案】A 【解析】所求式()()2222(1)2121xy x x y x y x y --=+-+-,上下同除以(1)x y -得1211xy y x-+-,又1y x -的几何意义为圆上任意一点(),M x y 到定点()0,1N 的斜率,由图可得,当过()0,1N 的直线与圆相切时取得临界条件.当过M 坐标为()0,5时相切为一个临界条件,另一临界条件设:1(0)MN l y k x -=-,化成一般式得10kx y -+=,因为圆与直线相切,故圆心()2,5到直线10kx y -+=的距离225121k d k -+==+,所以221k k -=+22441k k k -+=+,解得34k =,故134y +x -⎡⎫∈∞⎪⎢⎣⎭,.设1y k x -=,则112121x y k y xk=-++-,又34k +⎡⎫∈∞⎪⎢⎣⎭,,故222k k k k +≥⋅=2k =1122124221x y k y xk=≤-++-,故选A .6.若两个正实数x ,y 2222x y=246x y m m >-恒成立,则实数m 的取值范围是( )A .()(),82,-∞-⋃+∞B .()(),28,-∞-+∞C .(),2-∞D .()2,8-【答案】D2222x y=1x y =.44x y x y x y ⎛⎫=+ 1616448y y x x xy x y ==+182166y xx y≥+⋅=.当且仅当16y xxy=,即64x =,4y =时等号成立, 若使得246x y m m +>-恒成立则需2166m m >-,即26160m m --<,解得28m -<<. 所以实数m 的取值范围是()2,8-.故选:D7.已知12F F ,是椭圆与双曲线的公共焦点,P 是它们的一个公共点,且12PF PF >,线段1PF 的垂直平分线过2F ,若椭圆的离心率为1e ,双曲线的离心率为2e ,则21e 2e 2+的最小值为() A .6 B .3 C .6D .3【答案】C【解析】设椭圆长轴12a ,双曲线实轴22a ,由题意可知:1222F F F P c ==, 又1211222,2F P F P a F P F P a +=-=,111222,22F P c a F P c a ∴+=-=,两式相减,可得:122a a c -=,22112122242222e a a a c ce c a ca ++=+=, ()222222222122242842422222c a a c e ca a c a ce ca ca c a ++++∴+===++. , 2222222222a a cc c a c a +≥⋅=,当且仅当2222a c c a =时等立,21e 2e 2∴+的最小值为6, 故选:C .8.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若3sin cos()62A A π++=,4b c +=,则ABC ∆周长的取值范围是( )A .[6,8)B .[6,8]C .[4,6)D .(4,6]【答案】A【解析】∵ sin 62A cos A π⎛⎫++= ⎪⎝⎭,1222sinA cosA sinA ∴+-=,可得:3sin A π+=()40333A A ππππ∈+∈(,),(,),2 33A ππ∴+=,解得3A π=, ∵4b c +=,∴由余弦定理可得222222163a b c bccosA b c bc bc bc =+-=+--=-(),∵由4b c +=,b c +≥ ,得04bc ≤<,∴2416a ≤<,即24a ≤<.∴ABC 周长4[68L a b c a =++=+∈,) .故选A . 9.若正实数x y 、满足1x y +=,则2221x yx y +++的最小值是( ) A .18B .14C .12D .1【答案】B【解析】设x 2s +=,y 1t +=,则s t x y 34+=++=,所以2221x y x y +=++22(2)(1)4142s t s t s t s t --⎛⎫⎛⎫+=-++-+ ⎪ ⎪⎝⎭⎝⎭ 4141()62s t s t s t ⎛⎫⎛⎫=+++-=+- ⎪ ⎪⎝⎭⎝⎭,因为41141149()5444t s s t s t s t s t ⎛⎫⎛⎫+=++=++≥ ⎪ ⎪⎝⎭⎝⎭,当且仅当2,1s t ==时取等号. 所以221214x y x y +≥++.故选:B . 10.我国古代数学名著《九章算术》中有这样一些数学用语,“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱,而“阳马”指底面为矩形,且有一侧棱垂直于底面的四棱锥.现有一如图所示的堑堵,AC BC ⊥,若12AA AB ==,当阳马11B A ACC -体积最大时,则堑堵111ABC A B C -的外接球体积为( )A .22πB .823π C .1423π D .42π【答案】B【解析】依题意可知BC ⊥平面11ACC A .设,AC a BC b ==,则2224a b AB +==.111111323B A ACC V AC AA BC AC BC -=⨯⨯⨯⨯=⨯⨯22114232323AC BC +≤⨯=⨯=,当且仅当2AC BC ==时取得最大值.依题意可知1111,,A BC A BA A BB ∆∆∆是以1A B 为斜边的直角三角形,所以堑堵111ABC A B C -外接球的直径为1A B ,故半径221111222OB A B AA AB ==⨯+=.所以外接球的体积为()34π82π233⋅=. 特别说明:由于BC ⊥平面11ACC A ,1111,,A BC A BA A BB ∆∆∆是以1A B 为斜边的直角三角形,所以堑堵111ABC A B C -外接球的直径为1A B 为定值,即无论阳马11B A ACC -体积是否取得最大值,堑堵111ABC A B C -外接球保持不变,所以可以直接由直径1A B 的长,计算出外接球的半径,进而求得外接球的体积.故选:B11.设a ,b ,c ,d 均为大于零的实数,且abcd =1,令m =a (b +c +d )+b (c +d )+cd ,则a 2+b 2+m 的最小值为( ) A .8B .3C .3D .3【答案】B 【解析】a ,b ,c ,d 均大于零且1abcd =,()()m a b c d b c d cd =+++++,2222()()a b m a b a b c d ab cd ∴++=++++++22243ab ab cd ab cd ab cd +++=++4234abcd +=+,当且仅当a b =,c d =,3ab cd =,即141()3a b ==,143c d ==时取等号,22a b m ∴++的最小值为4+B .12.已知ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c .若2c =,ABC ∆的面积为2244a b +-,则ABC ∆面积的最大值为() A.B1C .D 1【答案】D【解析】∵2c =,22222444ABC a b a b c S ∆+-+-==2cos 1sin 42ab C ab C==. ∴tan 14CCπ,由余弦定理得2222242cos c a b ab C a b ==+-=+2ab ≥-,∴4ab ≤=+(11sin422ABC S ab C ∆=≤⨯+1=.故选:D .13.已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 为数列{a n }的前n 项和,则2163n n S a++的最小值为( ) A .4 B .3C .2D .2【答案】A【解析】∵a 1,a 3,a 13成等比数列,a 1=1,∴a 32=a 1a 13, ∴(1+2d )2=1+12d ,d ≠0,解得d =2.∴a n =1+2(n -1)=2n -1.S n =n +()12n n -×2=n 2.∴2163n nS a ++=221622n n ++=()2(1)2191n n n +-+++=n +1+91n +-,当且仅当n +1=91n +时取等号,此时n =2,且2163n nS a ++取到最小值4, 故选:A .14.抛物线()220y px p =>的焦点为F ,O 为坐标原点,设A 为抛物线上的动点,则AO AF的最大值为() ABC .5D .3【答案】D【解析】由抛物线方程为:22(0)y px p =>,可得:焦点(2pF ,0), 设(,)A m n ,则22n pm =,0m >,设A 到准线2px =-的距离等于d ,则||||||22AO AO AF d m m =====++. 令24p pm t -=,24p t >-,则4t p m p =+,∴2||11||3AOAF =+=234p t = 时,等号成立). 故||||AO AF ,故选:D . 15.若正数a 、b 满足()25ab a b =++,设()()412y a b a b =+---,则y 的最大值是( ) A .12 B .-12C .16D .-16【答案】A 【解析】()25ab a b =++52ab a b -∴+=0a >、0b >52ab a b -∴+=≥解得25ab ≥()()412y a b a b =+---5541222ab ab y --⎛⎫⎛⎫∴=-- ⎪⎪⎝⎭⎝⎭132922ab ab y --⎛⎫⎛⎫∴= ⎪⎪⎝⎭⎝⎭()2132912116224ab ab y ab --⎛⎫⎛⎫∴==--+ ⎪⎪⎝⎭⎝⎭25ab ≥,max 12y ∴=当且仅当25ab =时取得最大值,故选:A16.过抛物线C :24y x =焦点的直线交该抛物线C 于点A ,B ,与抛物线C 的准线交于点P ,如图所示,则PA PB ⋅的最小值是( )A .8B .12C .16D .18【答案】C【解析】因为双曲线的焦点(1,0)F ,所以设直线AB 的方程为(1)y k x =-,1122(,),(,)A x y B x y ,则(1,2)P k --,将(1)y k x =-代入到24y x =,整理得2222(24)0k x k x k -++=, 则212222442k x x k k ++==+,21221k x x k==, 所以1212124(1)(1)()2y y k x k x k x x k k+=-+-=+-=,1212124416164y y x x x x =-⋅=-=-=-, 所以11221212(1,2)(1,2)(1)(1)(2)(2)PA PB x y k x y k x x y k y k ⋅=++⋅++=+++++21212121212()4x x x x y y k y y k =+++++++2244121424k k k k=+++-+⨯+ 222244482488816k k k k =++≥⋅=+=,当且仅当2244k k=,即1k =±时取得等号.故选:C 17.已知01x <<,则1221x x +-的最小值为( ). A .9B .92C .5D .52【答案】B【解析】()111122522221121x x x x x x x x-+=+=++---.01x <<,0x ∴>且10x ->,()()111122222211x x x x x x x x--+⋅=--≥, 当且仅当()11221x x x x -=-,即13x =时,()11221x x x x-+-取得最小值2. 1221x x ∴+-的最小值为59222+=.故选B . 18.如图,在ΔABC 中,∠BAC =3π,3AD DB =,P 为CD 上一点,且满足12AP mAC AB =+,若△ABC的面积为332,则AP 的最小值为( )A .3B 3C 6D .6【答案】B【解析】因为3AD DB =,所以1223AP mAC AB mAC AD =+=+,由,,C P D 三点共线可得, 213m +=,即13m =,所以1132AP AC AB =+,由向量的模的公式可得,22222111111934964AP AC AB AC AB AC AB AC AB ,而133sin 23ABCS AB AC π==,可得6AB AC =,根据基本不等式, 2221111123964366APAC AB AC AB AB AC AB AC ,所以AP 的最小值为3B .19.已知0>ω,若()22cos sin cos f x x x x ωωω=+在区间72,123ππ⎛⎫⎪⎝⎭上单调时,ω的取值集合为A ,对()2,x ∀∈+∞不等式902x x ω+->-恒成立时,ω的取值集合为B ,则“x A ∈”是“x B ∈”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】()22cos sin cos f x x x x ωωω=+1cos 2112sin 2cos 2sin 21222x x x x ωωωω+=⋅+=++()sin 2A x ωθ=+,可知函数周期22T ππωω==,由题可知函数在区间72,123ππ⎛⎫ ⎪⎝⎭,故该区间长度需小于等于半个周期,及2763121222T ππππωω-=≤=⇒≤,∴(0,6]A ⊆, 对于不等式902x x ω+->-,()2,x ∈+∞;设2x t -=,()0,t ∈+∞,2x t =+; ∴不等式等价于920t tω++->恒成立,及min 92t t ω⎛⎫<++ ⎪⎝⎭,对于()0,t ∈+∞,96t t +≥=,∴8ω<,及集合()0,8B =,∴A B ⊆, “x A ∈”是“x B ∈”的充分非必要条件,故选:A 20.已知数列{}n a 满足121a =,14n n a a n +-=,则na n的最小值为( ) A.2- B .454C .10D .11【答案】D【解析】因为121a =,14n n a a n +-=, 所以2141a a -=⨯,3242a a -=⨯⋯14(1)n n a a n --=⨯-累加得:14[123(1)]2(1)n a a n n n -=⨯++++-=-,所以22221n a n n =-+,故2122n a n n n=+-, 由于2121222n n n n+⋅212n n =,即2212n =,由于n N +∈, 所以当3n =时,na n的最小值为67211+-=.故选:D 21.已知直线l 与抛物线24x y =交于A 、B 两点,若四边形OAMB 为矩形,记直线OM 的斜率为k ,则k的最小值为( ). A .4 B .C .2D【答案】B【解析】设()00,M x y ,()11,A x y ,()22,B x y 设直线l :y mx t =+ ,将直线l 与24x y =联立方程组,消掉y :24y mx tx y=+⎧⎨=⎩ 得: 2440x mx t --=,由韦达定理可得:124x x m += ┄①,124x x t =- ┄② OA OB ⊥,故0OA OB ⋅=,可得:12120x x y y +=┄③ ()11,A x y ,()22,B x y ,是24x y =上的点,∴2114x y = 2224x y =, 可得:()2121216x x y y =┄④由③④可得:12160x x+=,结合②可得:4t =AB 和OM 相互平分,由中点坐标公式可得012012x x x y y y =+⎧⎨=+⎩,结合①②可得:0124m x x x =+=,()22212121202444x x x x x x y +-=+= 221632484m m +==+, 故2004824k y m m x m m+===+,根据对勾函数(对号函数)可知0m >时,2m m+≥当且仅当m =),0m <时,2mm+≤-.(当且仅当m=) 所以k ≥故选:B.22.已知等差数列{}n a (公差不为零)和等差数列{}n b ,如果关于x 的实系数方程21291299()0x a a a x b b b -++⋅⋅⋅++++⋅⋅⋅+=有实数解,那么以下九个方程20i i x a x b -+=(1,2,3,,9i =⋅⋅⋅)中,无实数解的方程最多有( ) A .3个 B .4个 C .5个 D .6个【答案】B【解析】设等差数列{}n a 的公差为1d 不为零,等差数列{}n b 的公差为2d ,因为关于x 的实系数方程21291299()0x a a a x b b b -++⋅⋅⋅++++⋅⋅⋅+=有实数解,所以()()2129129490a a a b b b ∆=++⋅⋅⋅+-⨯++⋅⋅⋅+≥,即()()21919993622a a b b ++⎡⎤⎡⎤≥⨯⎢⎥⎢⎥⎣⎦⎣⎦,化简得2554a b ≥,所以第五个方程有解.设方程2110x a x b -+=与方程2990x a x b -+=的判别式分别为1∆和9∆,则()()()()21922191199194442a a ab a b b b +∆+∆=-+-≥-+()()2525552422402a b a b =-⨯=-≥,所以10∆<和90∆<至多一个成立,同理可知,20∆<和80∆<至多一个成立,30∆<和70∆<至多一个成立,40∆<和60∆<至多一个成立, 所以在所给的9个方程中无实数解的方程最多4个.故选:B 23.正数,a b 满足191a b+=,若不等式2418a b x x m +≥-++-对任意实数x 恒成立,则实数m 的取值范围是( ) A .[3,)+∞ B .(,3]-∞C .(,6]-∞D .[6,)+∞【答案】D 【解析】190,0,1a b a b >>+=,199()1010216b a b a b a b a b a b a ⎛⎫∴+=++=+++= ⎪⎝⎭当且仅当3a b =,即4, 12a b ==时,“=”成立, 若不等式2418a b x x m +≥-++-对任意实数x 恒成立,则241816x x m -++-≤,即242x x m -++≤对任意实数x 恒成立,2242(2)66x x x -++=--+≤6m ∴≥ ,实数m 的取值范围是[6,)+∞.故选D.24.已知数列的前项和为,,若存在两项,使得,则的最小值为( ) A . B .C .D .【答案】B 【解析】因为,所以.两式相减化简可得,公比,由可得,,则,解得, ,当且仅当时取等号,此时,解得,取整数,均值不等式等号条件取不到,则,验证可得,当时,取最小值为,故选B.25.若正数,x y 满足1915x y x y++=+,且1x y +≤,则( ) A .x 为定值,但y 的值不定 B .x 不为定值,但y 是定值 C .x ,y 均为定值 D .x ,y 的值均不确定【答案】C【解析】由题得1999()()1919216y x y x x y x y x y x y++=+++≥++=,因为 1x y +≤,则有191516x y x y ++=+≤且1916x y +≥,故有191516x y x y++=+=,解方程组11916x y x y +=⎧⎪⎨+=⎪⎩,得13,44x y ==,x ,y 均为定值,故选C 。
利用基本不等式求最值(学生版)-高中数学
利用基本不等式求最值题型梳理【题型1直接法求最值】【题型2配凑法求最值】【题型3常数代换法求最值】【题型4消元法求最值】【题型5构造不等式法求最值】【题型6多次使用基本不等式求最值】【题型7实际应用中的最值问题】【题型8与其他知识交汇的最值问题】命题规律基本不等式是高考热点问题,是常考常新的内容,是高中数学中一个重要的知识点.题型通常为选择题或填空题,但它的应用范围很广,涉及到函数、三角函数、平面向量、立体几何、解析几何、导数等内容,它在高考中常用于大小判断、求最值、求最值范围等.在高考中经常考察运用基本不等式求函数或代数式的最值,具有灵活多变、应用广泛、技巧性强等特点.在复习中切忌生搬硬套,在应用时一定要紧扣“一正二定三相等”这三个条件灵活运用.知识梳理【知识点1利用基本不等式求最值的方法】1.利用基本不等式求最值的几种方法(1)直接法:条件和问题间存在基本不等式的关系,可直接利用基本不等式来求最值.(2)配凑法:利用配凑法求最值,主要是配凑成“和为常数”或“积为常数”的形式.(3)常数代换法:主要解决形如“已知x+y=t(t为常数),求的最值”的问题,先将转化为,再用基本不等式求最值.(4)消元法:当所求最值的代数式中的变量比较多时,通常考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”的形式,最后利用基本不等式求最值.(5)构造不等式法:构建目标式的不等式求最值,在既含有和式又含有积式的等式中,对和式或积式利用基本不等式,构造目标式的不等式求解.【知识点2基本不等式的实际应用】1.基本不等式的实际应用的解题策略(1)根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值.(2)解应用题时,一定要注意变量的实际意义及其取值范围.(3)在应用基本不等式求函数的最值时,若等号取不到,则可利用函数的单调性求解.举一反三【题型1直接法求最值】1(2023上·北京·高一校考阶段练习)已知a>0,则a+1a+1的最小值为()A.2B.3C.4D.5【变式训练】1(2023·北京东城·统考一模)已知x>0,则x-4+4x的最小值为()A.-2B.0C.1D.222(2023上·山东·高一统考期中)函数y=x2-x+9x(x>0)的最小值为()A.1B.3C.5D.93(2023下·江西·高三校联考阶段练习)3+1 x21+4x2的最小值为()A.93B.7+42C.83D.7+43【题型2配凑法求最值】1(2023·浙江·校联考模拟预测)已知a>1,则a+16a-1的最小值为()A.8B.9C.10D.11【变式训练】1(2023上·吉林·高一校考阶段练习)已知x>3,则y=2x-3+2x的最小值是()A.6B.8C.10D.122(2023上·海南省直辖县级单位·高三校联考阶段练习)设x>2,则函数y=4x-1+4x-2,的最小值为()A.7B.8C.14D.153(2023上·辽宁·高一校联考期中)若x>0,y>0且满足x+y=xy,则2xx-1+4yy-1的最小值为()A.6+26B.4+62C.2+46D.6+42【题型3常数代换法求最值】1(2023上·内蒙古通辽·高三校考阶段练习)已知a>0,b>0,若2a+3b=1,则2a+b3的最小值是()A.8B.9C.10D.11【变式训练】1(2023·河南·校联考模拟预测)已知正实数a,b,点M1,4在直线xa+yb=1上,则a+b的最小值为()A.4B.6C.9D.122(2023上·重庆·高一统考期末)若正实数x,y满足2x+8y-xy=0,则2x+y的最大值为()A.25B.16C.37D.193(2023·重庆·统考一模)已知a,b为非负实数,且2a+b=1,则2a2a+1+b2+1b的最小值为()A.1B.2C.3D.4【题型4消元法求最值】1(2023上·江苏·高一校联考阶段练习)已知正数x,y满足3x-4=9y,则x+8y的最小值为.【变式训练】1(2023上·安徽池州·高一统考期中)已知x,y∈R+,若2x+y+xy=7,则x+2y的最小值为.2(2023上·山东淄博·高一校考阶段练习)已知正实数a,b,且2a+b+6=ab,则a+2b的最小值为.3(2023·上海崇明·统考一模)已知正实数a, b, c, d满足a2-ab+1=0,c2+d2=1,则当(a-c)2+(b-d)2取得最小值时,ab=.【题型5构造不等式法求最值】1(2023下·河南·高三校联考阶段练习)已知2a+b=ab(a>0,b>0),下列说法正确的是()A.ab的最大值为8B.1a-1+2b-2的最小值为2C.a+b有最小值3+2D.a2-2a+b2-4b有最大值4【变式训练】1(2022上·山东青岛·高一青岛二中校考期中)已知x>0,y>0,且x+y+xy-3=0;则下列结论正确的是()A.xy的最小值是1B.x+y的最小值是2C.x+4y的最小值是8D.x+2y的最大值是42-32(2023上·江苏·高一专题练习)下列说法正确的是()A.若x>2,则函数y=x+1x-1的最小值为3B.若x>0,y>0,3x +1y=5,则5x+4y的最小值为5C.若x>0,y>0,x+y+xy=3,则xy的最小值为1D.若x>1,y>0,x+y=2,则1x-1+2y的最小值为3+223(2023上·广东中山·高三校考阶段练习)设正实数x,y满足x+2y=3,则下列说法错误的是()A.yx+3y的最小值为4 B.xy的最大值为98C.x+2y的最大值为2D.x2+4y2的最小值为92【题型6多次使用基本不等式求最值】1(2023·河南·校联考模拟预测)已知正实数a,b,满足a+b≥92a+2b,则a+b的最小值为()A.5B.52C.52 D.522【变式训练】1(2023·山东菏泽·统考一模)设实数x,y满足x+y=1,y>0,x≠0,则1x+2xy的最小值为()A.22-1B.22+1C.2-1D.2+12(2023·河北衡水·衡水市第二中学校考模拟预测)已知实数x,y,z>0,满足xy+zx=2,则当4y+1z取得最小值时,y+z的值为()A.1B.32C.2 D.523(2023上·辽宁大连·高一期末)若a>0,b>0,a+b=1,则a2+3aba+2b+2b+1-1b的最大值为()A.2B.2-2C.3-2D.3-22【题型7实际应用中的最值问题】1(2023上·四川眉山·高一校联考期中)如图,高新区某居民小区要建一座八边形的休闲场所,它的主体造型平面图是由两个相同的矩形ABCD和EFGH构成的面积为400m2的十字形地域.计划在正方形MNPQ上建一座花坛,造价为8400元/m2;在四个相同的矩形(图中阴影部分)上铺花岗岩地坪,造价为420元/m2;再在四个空角(图中四个三角形)上铺草坪,造价为160元/m2.设总造价为y(单位:元),AD长为x(单位:m).(1)用x表示AM的长度,并求x的取值范围;(2)当x为何值时,y最小?并求出这个最小值.【变式训练】1(2023上·山东·高一校联考期中)某校地势较低,一遇到雨水天气校园内会有大量积水,不但不方便师生出行,还存在严重安全问题.为此学校决定利用原水池改建一个深3米,底面面积16平方米的长方体蓄水池.不但能解决积水问题,同时还可以利用蓄水灌溉学校植被.改建及蓄水池盖儿固定费用800元,由招标公司承担.现对水池内部地面及四周墙面铺设公开招标.甲工程队给出的报价如下:四周墙面每平方米150元,地面每平方米400元.设泳池宽为x米.2≤x≤6(1)当宽为多少时,甲工程队报价最低,并求出最低报价.(2)现有乙工程队也要参与竞标,其给出的整体报价为900a x+2x元(a>0)(整体报价中含固定费用).若无论宽为多少米,乙工程队都能竞标成功,试求a的取值范围.2(2023上·江苏苏州·高一校考阶段练习)因新冠疫情零星散发,某实验中学为了保障师生安全,同时考虑到节省费用,拟借助校门口一侧原有墙体建造一间高为4米、底面积为24平方米、背面靠墙体的长方体形状的隔离室.隔离室的正面需开一扇安全门,此门高为2米,且此门高为此门底的1 3.因此室的后背面靠墙,故无需建墙费用,但需粉饰.现学校面向社会公开招标,甲工程队给出的报价:正面为每平方米360元,左右两侧面为每平方米300元,已有墙体粉饰为每平方米100元,屋顶和地面以及安全门报价共计12000元.设隔离室的左右两侧面的底边长度均为x米(1≤x≤5).(1)记y为甲工程队整体报价,求y关于x的关系式;(2)现有乙工程队也要参与此隔离室建造的竞标,其给出的整体报价为4800t(x+1)x元,问是否存在实数t,使得无论左右两侧底边长为多少,乙工程队都能竞标成功(注:整体报价小者竞标成功),若存在,求出t满足的条件;若不存在,请说明理由.3(2023上·重庆·高一校考阶段练习)为宜传2023年杭州亚运会,某公益广告公司拟在一张面积为36000cm2的矩形海报纸(记为矩形ABCD,如图)上设计四个等高的宣传栏(栏面分别为两个等腰三角形和两个全等的直角三角形),为了美观,要求海报上所有水平方向和竖直方向的留空宽度均为10cm,设DC=xcm.(1)将四个宣传栏的总面积y表示为x的表达式,并写出x的范围;(2)为充分利用海报纸空间,应如何选择海报纸的尺寸(AD和CD分别为多少时),可使用宣传栏总面积最大?并求出此时宣传栏的最大面积.【题型8与其他知识交汇的最值问题】1(2023上·安徽·高三校联考阶段练习)记△ABC的内角A,B,C的对边分别为a,b,c,满足c+b cos2A=2a cos A cos B A≤B.(1)求A;(2)若角A的平分线交BC于D点,且AD=1,求△ABC面积的最小值.【变式训练】1(2023上·安徽铜陵·高二校联考期中)已知圆C的圆心在坐标原点,面积为9π.(1)求圆C的方程;(2)若直线l,l 都经过点(0,2),且l⊥l ,直线l交圆C于M,N两点,直线l 交圆C于P,Q两点,求四边形PMQN面积的最大值.2(2023上·江苏盐城·高一校考阶段练习)已知在定义域内单调的函数f x 满足f f x +12x+1-ln x=23恒成立.(1)设f x +12x+1-ln x=k,求实数k的值;(2)解不等式f7+2x>-2x2x+1+ln-ex;(3)设g x =f x -ln x,若g x ≥mg2x对于任意的x∈1,2恒成立,求实数m的取值范围.3(2023下·湖南长沙·高三长沙一中校考阶段练习)如图,在长方体ABCD-A1B1C1D1中,点P是长方形A1B1C1D1内一点,∠APC是二面角A-PD1-C的平面角.(1)证明:点P在A1C1上;(2)若AB=BC,求直线PA与平面PCD所成角的正弦的最大值.直击真题1(2022·全国·统考高考真题)若x,y满足x2+y2-xy=1,则()A.x+y≤1B.x+y≥-2C.x2+y2≤2D.x2+y2≥12(2020·山东·统考高考真题)已知a>0,b>0,且a+b=1,则()A.a2+b2≥12B.2a-b>12C.log2a+log2b≥-2D.a+b≤23(2020·全国·统考高考真题)设O为坐标原点,直线x=a与双曲线C:x2a2-y2b2=1(a>0,b>0)的两条渐近线分别交于D,E两点,若△ODE的面积为8,则C的焦距的最小值为() A.4 B.8 C.16 D.324(2021·天津·统考高考真题)若a>0,b>0,则1a+ab2+b的最小值为.5(2020·天津·统考高考真题)已知a>0, b>0,且ab=1,则12a+12b+8a+b的最小值为6(2020·江苏·统考高考真题)已知5x2y2+y4=1(x,y∈R),则x2+y2的最小值是.7(2019·天津·高考真题)设x>0, y>0, x+2y=5,则(x+1)(2y+1)xy的最小值为8(2017·江苏·高考真题)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是.。
基本不等式典型例题(学生版)
典题精讲----基本不等式
典题精讲
例1(1)已知0<x <3
1,求函数y=x(1-3x)的最大值; (2)求函数y=x+x 1的值域.
变式训练1当x >-1时,求f(x)=x+11
+x 的最小值.
变式训练2求函数y=133224+++x x x 的最小值.
例2已知x >0,y >0,且x 1+y 9
=1,求x+y 的最小值
例3求f(x)=3+lgx+x lg 4的最大值(0<x <1).
变式训练已知正数a,b,x,y 满足a+b=10,
y b x a +=1,x+y 的最小值为18,求a,b 的值.
变式训练1已知x <
45,求函数y=4x-2+541-x 的最大值. 变式训练2当x <23时,求函数y=x+3
28-x 的最大值.
例4如图,动物园要围成相同的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.
(1)现有可围36 m 长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积
最大?
(2)若使每间虎笼面积为24 m 2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋总长度最小?
变式训练某工厂拟建一座平面图为矩形且面积为200 平方米的三级污水处理池,由于地形限制,长、宽都不能超过26米,如果池外周壁建造单价为每米400元,中间两道隔墙建造单价为每米248元,池底建造单价为每平方米80元,池壁的厚度忽略不计,试设计污水处理池的长和宽,使总造价最低,并求出最低造价.。
高一基本不等式题型归纳
高一基本不等式题型归纳一、利用基本不等式求最值1. 积定和最小- 例1:已知x>0,y>0,且xy = 16,求x + y的最小值。
- 解析:根据基本不等式a + b≥slant2√(ab)(当且仅当a = b时取等号),这里a=x,b = y,已知xy=16。
- 则x + y≥slant2√(xy)=2√(16)=8。
- 当且仅当x=y时取等号,又因为xy = 16,所以x=y = 4时,x + y取得最小值8。
2. 和定积最大- 例2:已知x>0,y>0,x + y=8,求xy的最大值。
- 解析:由基本不等式xy≤slant((a + b)/(2))^2(当且仅当a = b时取等号),这里a=x,b = y,已知x + y = 8。
- 则xy≤slant((x + y)/(2))^2=((8)/(2))^2 = 16。
- 当且仅当x=y时取等号,又因为x + y = 8,所以x=y = 4时,xy取得最大值16。
二、基本不等式的变形应用1. 配凑法求最值- 例3:已知x> - 1,求y=frac{x^2+7x + 10}{x + 1}的最小值。
- 解析:- 因为x> - 1,则x+1>0。
- 对y=frac{x^2+7x + 10}{x + 1}进行变形,y=frac{(x + 1)^2+5(x + 1)+4}{x + 1}=(x + 1)+(4)/(x + 1)+5。
- 根据基本不等式a+b≥slant2√(ab),这里a=x + 1,b=(4)/(x + 1)。
- 则y=(x + 1)+(4)/(x + 1)+5≥slant2√((x + 1)×frac{4){x + 1}}+5=2×2 +5=9。
- 当且仅当x + 1=(4)/(x + 1),即(x + 1)^2=4,因为x> - 1,所以x + 1 = 2,x=1时取等号,y的最小值为9。
基本不等式练习题带答案
06
基本不等式的扩展 知识
基本不等式的推广形式
单击此处添加标题
平方和与平方差形式:a²+b² ≥ 2ab 和 a²-b² ≥ 2ab
• 题目:已知 x > 0,y > 0,且 xy = 4,则下列结论正确的是 ( ) A. x + y ≥ 4 B. x + y ≤ 4 C. x + y ≥ 8 D. x + y ≤ 8 答案: A
• A. x + y ≥ 4 B. x + y ≤ 4 • C. x + y ≥ 8 D. x + y ≤ 8 • 答案:A
基本不等式的应用:在数学、物 理、工程等领域有广泛的应用, 用于解决最优化问题、估计值域 和解决一些数学竞赛问题等。
添加标题
添加标题
添加标题
添加标题
基本不等式的形式:常见的形式 有AM-GM不等式、CauchySchwarz不等式和Holder不等式 等。
基本不等式的证明方法:可以通 过代数、几何和概率统计等方法 证明基本不等式。
• 题目:若 a > b > c,且 a + b + c = 1,则下列结论正确的是 ( ) A. ac + bc ≥ ab B. ac + bc ≤ ab C. ac + bc > ab D. ac + bc < ab 答案:B
• A. ac + bc ≥ ab B. ac + bc ≤ ab • C. ac + bc > ab D. ac + bc < ab
高中数学基本不等式的解法十例
高中数学基本不等式问题求解十例一、基本不等式的基础形式1.222a b ab +≥,其中,a b R ∈,当且仅当a b =时等号成立。
2.a b +≥[),0,a b ∈+∞,当且仅当a b =时等号成立。
3.常考不等式:22221122a b a b ab ++⎛⎫≥≥≥ ⎪⎝⎭+,其中(),0,a b ∈+∞,当且仅当a b =时等号成立。
二、常见问题及其处理办法 问题1:基本不等式与最值 解题思路:(1)积定和最小:若ab 是定值,那么当且仅当a b =时,()min a b +=。
其中[),0,a b ∈+∞ (2)和定积最大:若a b +是定值,那么当且仅当a b =时,()2max 2a b ab +⎛⎫= ⎪⎝⎭,其中,a b R ∈。
例题1:若实数,a b 满足221a b +=,则a b +的最大值是 .解析:很明显,和为定,当且仅当1a b ==-时取等号。
变式:函数1(0,1)x y aa a -=>≠的图象恒过定点A ,若点在直线1mx ny +=上,则mn 的最大值为______。
解析:由题意可得函数图像恒过定点()1,1A ,将点()1,1A 代入直线方程1mx ny +=中可得1m n +=,明12m n ==时取等号。
例题2:已知函数()2122xx f x +=+,则()f x 取最小值时对应的x 的值为__________.解析:很明显,积为定,根据积定和最小法则可得,当且仅当21212x x x +=⇒=-时取等号。
变式:已知2x >-,则12x x ++的最小值为 。
解析:由题意可得()120,212x x x +>+⨯=+,明显,积为定,根据和定积最大法则可得:122112x x x x +=⇒+=⇒=-+时取等号,此时可 例题3:若对任意x >0,xx 2+3x +1≤a 恒成立,则a 的取值范围是________.解析:解法1:故而可得分式的解法2:问题2:“1”的代换例题4:若两个正实数x 、y 满足141x y += ,且不等式234y x m m +-<有解,则实数m 的取值范围是 。
基本不等式典型例题
基本不等式典型例题一、利用基本不等式求最值1. 例1:已知x > 0,求y = x+(1)/(x)的最小值。
- 解析:对于基本不等式a + b≥slant2√(ab)(a,b>0,当且仅当a = b时等号成立)。
- 在y=x+(1)/(x)中,a = x,b=(1)/(x),因为x>0,所以(1)/(x)>0。
- 根据基本不等式y=x+(1)/(x)≥slant2√(x×frac{1){x}} = 2。
- 当且仅当x=(1)/(x)(x > 0),即x = 1时等号成立。
所以y的最小值为2。
2. 例2:已知x <0,求y=x+(1)/(x)的最大值。
- 解析:因为x<0,则-x>0。
- 此时y=x+(1)/(x)=-<=ft[(-x)+(1)/(-x)]。
- 对于-x和(1)/(-x),根据基本不等式a + b≥slant2√(ab)(a,b>0),这里a=-x,b = (1)/(-x),则(-x)+(1)/(-x)≥slant2√((-x)×frac{1){-x}}=2。
- 所以y =-<=ft[(-x)+(1)/(-x)]≤slant - 2,当且仅当-x=(1)/(-x),即x=-1时等号成立。
所以y的最大值为-2。
二、基本不等式在实际问题中的应用1. 例3:用篱笆围一个面积为100m^2的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短?最短的篱笆是多少?- 解析:设矩形菜园的长为x m,宽为y m,则xy = 100。
- 篱笆的周长C=2(x + y)。
- 根据基本不等式x + y≥slant2√(xy),因为xy = 100,所以x +y≥slant2√(100)=20。
- 则C = 2(x + y)≥slant40。
- 当且仅当x=y时等号成立,由xy = 100且x=y,可得x=y = 10。
基本不等式全题型
题型1 根本不等式正用a +b ≥2ab例1:(1)函数f (x )=x +1x (x >0)值域为________;函数f (x )=x +1x(x ∈R )值域为________;(2)函数f (x )=x 2+1x 2+1的值域为________. 解析:(1)∵x >0,x +1x≥2x ·1x=2,∴f (x )(x >0)值域为[2,+∞); 当x ∈R 时,f (x )值域为(-∞,-2]∪[2,+∞); (2)x 2+1x 2+1=(x 2+1)+1x 2+1-1≥2x 2+1·1x 2+1-1=1,当且仅当 x =0 时等号成立. 答案:(1)[2,+∞) (-∞,-2]∪[2,+∞) (2)[1,+∞)4.(2021·XX 期中)假设x >1,那么x +4x -1的最小值为________.解析:x +4x -1=x -1+4x -1+1≥4+1=5.当且仅当x -1=4x -1,即x =3时等号成立.答案:5 [例1] (1)x <0,那么f (x )=2+4x+x 的最大值为________.(1)∵x <0,∴-x >0,∴f (x )=2+4x +x =2-⎣⎢⎡⎦⎥⎤4-x +-x .∵-4x +(-x )≥24=4,当且仅当-x =4-x ,即x =-2时等号成立.∴f (x )=2-⎣⎢⎡⎦⎥⎤4-x +-x ≤2-4=-2,∴f (x )的最大值为-2. 例:当x >0时,那么f (x )=2xx 2+1的最大值为________.解析:(1)∵x >0,∴f (x )=2x x 2+1=2x +1x≤22=1,当且仅当x =1x,即x =1时取等号. 3.函数y =x 2+2x -1(x >1)的最小值是________.解析:∵x >1,∴x -1>0.∴y =x 2+2x -1=x 2-2x +2x +2x -1=x 2-2x +1+2x -1+3x -1=x -12+2x -1+3x -1=x -1+3x -1+2≥2 x -13x -1+2=23+2.当且仅当x -1=3x -1,即x =1+3时,取等号.答案:23+2 10.x >0,a 为大于2x 的常数,求y =1a -2x-x 的最小值.解:y =1a -2x +a -2x 2-a 2≥2 12-a 2=2-a 2.当且仅当x =a -22时取等号.故y =1a -2x -x 的最小值为2-a2. 题型2 根本不等式反用ab ≤a +b2例:(1)函数f (x )=x (1-x )(0<x <1)的值域为__________;(2)函数f (x )=x (1-2x )⎝⎛⎭⎪⎫0<x <12的值域为__________.解析:(1)∵0<x <1,∴1-x >0, x (1-x )≤⎣⎢⎡⎦⎥⎤x +1-x 22=14,∴f (x ) 值域为⎝ ⎛⎭⎪⎫0,14.(2)∵0<x <12,∴1-2x >0. x (1-2x )=12×2x (1-2x )≤12·⎣⎢⎡⎦⎥⎤2x +1-2x 22=18,∴f (x ) 值域为⎝ ⎛⎭⎪⎫0,18.答案:(1)⎝ ⎛⎭⎪⎫0,14 (2)⎝ ⎛⎭⎪⎫0,183.(教材习题改编)0<x <1,那么x (3-3x )取得最大值时x 的值为________.解析:由x (3-3x )=13×3x (3-3x )≤13×94=34,当且仅当3x =3-3x ,即x =12时等号成立.答案:123.函数y =x 1-x 2的最大值为________.解析:x 1-x 2=x21-x2≤x 2+1-x 22=12. 4.0<x <1,那么x (3-3x )取得最大值时x 的值为( )A.13B.12C.34D.23 解析 ∵0<x <1,∴1-x >0.∴x (3-3x )=3x (1-x )≤3⎝⎛⎭⎪⎫x +1-x 22=34.当x =1-x ,即x =12时取等号.答案 B10.x >0,a 为大于2x 的常数,求函数y =x (a -2x )的最大值;解:∵x >0,a >2x ,∴y =x (a -2x )=12×2x (a -2x )≤12×⎣⎢⎡⎦⎥⎤2x +a -2x 22=a 28,当且仅当x =a4时取等号,故函数的最大值为a 28.题型三:利用根本不等式求最值2.t >0,那么函数y =t 2-4t +1t的最小值为________.解析 ∵t >0,∴y =t 2-4t +1t =t +1t-4≥2-4=-2,且在t =1时取等号.答案 -2例:当x >0时,那么f (x )=2xx 2+1的最大值为________.解析:∵x >0,∴f (x )=2x x 2+1=2x +1x≤22=1,当且仅当x =1x,即x =1时取等号.例1:(1)求函数f (x )=1x -3+x (x >3)的最小值;(2)求函数f (x )=x 2-3x +1x -3(x >3)的最小值;思维突破:(1)“添项〞,可通过减3再加3,利用根本不等式后可出现定值.(2)“拆项〞,把函数式变为y =M +a M的形式.(1)∵x >3,∴x -3>0.∴f (x )=1x -3+(x -3)+3≥21x -3·x -3+3=5.当且仅当1x -3=x -3,即x =4时取等号,∴f (x )的最小值是5.(2)令x -3=t ,那么x =t +3,且t >0.∴f (x )=t +32-3t +3+1t =t +1t+3≥2t ·1t+3=5. 当且仅当t =1t,即t =1时取等号,此时x =4,∴当x =4时,f (x )有最小值为5.技巧总结:当式子不具备“定值〞条件时,常通过“添项〞到达目的;形如y =cx 2+dx +fax +b(a ≠0,c ≠0)的函数,一般可通过配凑或变量替换等价变形化为y =t +pt(p 为常数)型函数,要注意t 的取值X 围;例:设x >-1,求函数y =x +4x +1+6的最小值; 解:∵x >-1,∴x +1>0.∴y =x +4x +1+6=x +1+4x +1+5≥2x +1·4x +1+5=9,当且仅当x +1=4x +1,即x =1时,取等号.∴当x =1时,函数y 的最小值是9. 1.假设x >0,y >0,且x +y =18,那么xy 的最大值是________.解析 由于x >0,y >0,那么x +y ≥2xy ,所以xy ≤⎝ ⎛⎭⎪⎫x +y 22=81,当且仅当x =y =9时,xy 取到最大值81. 答案 815.x ,y ∈R +,且满足x 3+y4=1,那么xy 的最大值为_______________.解析 ∵x >0,y >0且1=x 3+y4≥2xy 12,∴xy ≤3.当且仅当x 3=y4时取等号.答案 3 6.(2021·XX 期中)x ,y 为正实数,且满足4x +3y =12,那么xy 的最大值为________.解析:∵12=4x +3y ≥24x ×3y ,∴xy ≤3.当且仅当⎩⎨⎧4x =3y ,4x +3y =12,即⎩⎨⎧x =32,y =2时xy 取得最大值3.答案:32.m >0,n >0,且mn =81,那么m +n 的最小值为________.解析:∵m >0,n >0,∴m +n ≥2mn =18.当且仅当m =n =9时,等号成立.答案:185.x >0,y >0,lg x +lg y =1,那么z =2x +5y的最小值为________.解析:由条件lg x +lg y =1,可得xy =10.那么2x +5y≥210xy=2,故⎝ ⎛⎭⎪⎫2x +5y min =2,当且仅当2y =5x 时取等号.又xy =10,即x =2,y =5时等号成立.答案:2(2021·XX 高考)log 2a +log 2b ≥1,那么3a +9b的最小值为________. 解析:由log 2a +log 2b ≥1得log 2(ab )≥1,即ab ≥2,∴3a+9b=3a+32b≥2×3a +2b 2(当且仅当3a =32b,即a =2b 时取等号).∵a +2b ≥22ab ≥4(当且仅当a =2b 时取等号),∴3a +9b ≥2×32=18.即当a =2b 时,3a +9b 有最小值18.3.设x ,y ∈R ,a >1,b >1,假设a x=b y=3,a +b =23,那么1x +1y的最大值为( )A .2 B.32 C .1 D.12解析 由a x=b y=3,得:x =log a 3,y =log b 3,由a >1,b >1知x >0,y >0,1x +1y =log 3a +log 3b =log 3ab ≤log 3⎝ ⎛⎭⎪⎫a +b 22=1,当且仅当a =b =3时“=〞成立,那么1x +1y的最大值为1. 答案 C6.(2021·)设x ,y ∈R ,且xy ≠0,那么⎝ ⎛⎭⎪⎫x 2+1y 2·⎝ ⎛⎭⎪⎫1x 2+4y 2的最小值为________.解析 ⎝ ⎛⎭⎪⎫x 2+1y 2⎝ ⎛⎭⎪⎫1x 2+4y 2=5+1x 2y 2+4x 2y 2≥5+21x 2y 2·4x 2y 2=9,当且仅当x 2y 2=12时“=〞成立.答案 9例:假设正数x ,y 满足x +3y =5xy ,求xy 的最小值.解:∵x >0,y >0,那么5xy =x +3y ≥2x ·3y ,∴xy ≥1225,当且仅当x =3y 时取等号.∴xy 的最小值为1225.4.假设正实数x ,y 满足2x +y +6=xy ,那么xy 的最小值是________. 答案 18解析 由x >0,y >0,2x +y +6=xy ,得xy ≥22xy +6(当且仅当2x =y 时,取“=〞),即(xy )2-22xy -6≥0,∴(xy -32)·(xy +2)≥0. 又∵xy >0,∴xy ≥32,即xy ≥18. ∴xy 的最小值为18.例:x >0,y >0,x +2y +2xy =8,那么x +2y 的最小值是( )A .3B .4 C.92 D.112解析 依题意,得(x +1)(2y +1)=9, ∴(x +1)+(2y +1)≥2x +12y +1=6,即x +2y ≥4.当且仅当⎩⎨⎧ x +1=2y +1,x +2y +2xy =8,即⎩⎨⎧x =2,y =1时等号成立.∴x +2y 的最小值是4.3.假设x ,y ∈(0,+∞),x +2y +xy =30. (1)求xy 的取值X 围; (2)求x +y 的取值X 围.解:由x +2y +xy =30,(2+x )y =30-x , 那么2+x ≠0,y =30-x2+x >0,0<x <30.(1)xy =-x 2+30x x +2=-x 2-2x +32x +64-64x +2=-x -64x +2+32 =-⎣⎢⎡⎦⎥⎤x +2+64x +2+34≤18,当且仅当x =6时取等号,因此xy 的取值X 围是(0,18]. (2)x +y =x +30-x 2+x =x +32x +2-1=x +2+32x +2-3≥82-3,当且仅当⎩⎪⎨⎪⎧x =42-2,y =42-1时,等号成立,又x +y =x +2+32x +2-3<30,因此x+y 的取值X 围是[82-3,30).例:a >b >0,那么a 2+16ba -b的最小值是________.解析:∵a >b >0,∴b (a -b )≤⎝ ⎛⎭⎪⎫b +a -b 22=a 24,当且仅当a =2b 时等号成立.∴a 2+16b a -b ≥a 2+16a 24=a 2+64a2≥2a 2·64a2=16,当且仅当a =22时等号成立.∴当a =22,b =2时,a 2+16ba -b取得最小值16.8.设x ,y ,z 为正实数,满足x -2y +3z =0,那么y 2xz的最小值是________.解析:由条件可得y =x +3z2,所以y 2xz =x 2+9z 2+6xz 4xz=14⎝ ⎛⎭⎪⎫x z +9z x +6 ≥14⎝⎛⎭⎪⎫2 x z ×9z x +6=3, 当且仅当x =y =3z 时,y 2xz取得最小值3.答案:3例:x >0,y >0,xy =x +2y ,假设xy ≥m -2恒成立,那么实数m 的最大值是________.解析:由x >0,y >0,xy =x +2y ≥22xy ,得xy ≥8,于是由m -2≤xy 恒成立,得m -2≤8,即m ≤10.故m 的最大值为10.1.正数x ,y 满足x +22xy ≤λ(x +y )恒成立,那么实数λ的最小值为________. 解析:依题意得x +22xy ≤x +(x +2y )=2(x +y ),即x +22xy x +y ≤2(当且仅当x =2y 时取等号),即x +22xyx +y的最大值是2;又λ≥x +22xyx +y,因此有λ≥2,即λ的最小值是2.答案:21.关于x 的不等式2x +2x -a≥7在x ∈(a ,+∞)上恒成立,那么实数a 的最小值为________. 解析:因为x >a ,所以2x +2x -a =2(x -a )+2x -a+2a ≥22x -a ·2x -a+2a =2a +4,即2a +4≥7,所以a ≥32,即a 的最小值为32.答案:325.圆x 2+y 2+2x -4y +1=0关于直线2ax -by +2=0 (a ,b ∈R )对称,那么ab 的取值X 围是( )A.⎝ ⎛⎦⎥⎤-∞,14B.⎝ ⎛⎦⎥⎤0,14C.⎝ ⎛⎭⎪⎫-14,0 D.⎝ ⎛⎭⎪⎫-∞,14答案 A解析 由题可知直线2ax -by +2=0过圆心(-1,2),故可得a +b =1,又因ab ≤⎝ ⎛⎭⎪⎫a +b 22=14(a =b 时取等号). 故ab 的取值X 围是⎝⎛⎦⎥⎤-∞,14.典例:(12分)a 、b 均为正实数,且a +b =1,求y =⎝⎛⎭⎪⎫a +1a ⎝⎛⎭⎪⎫b +1b 的最小值.易错分析 在求最值时两次使用根本不等式,其中的等号不能同时成立,导致最小值不能取到.审题视角 (1)求函数最值问题,可以考虑利用根本不等式,但是利用根本不等式,必须保证“正、定、等〞,而且还要符合条件.(2)可以考虑利用函数的单调性,但要注意变量的取值X 围. 规X 解答解 方法一 y =⎝⎛⎭⎪⎫a +1a ⎝⎛⎭⎪⎫b +1b=⎝⎛⎭⎪⎫ab +1ab +⎝ ⎛⎭⎪⎫b a +a b ≥⎝ ⎛⎭⎪⎫ab +1ab +2=⎝ ⎛⎭⎪⎫ab +1ab 2=⎝ ⎛⎭⎪⎫4ab +1ab -3ab 2≥⎝ ⎛⎭⎪⎫24ab ·1ab -3×a +b 22=⎝ ⎛⎭⎪⎫4-322=254.[10分]当且仅当a =b =12时,y =⎝ ⎛⎭⎪⎫a +1a ⎝ ⎛⎭⎪⎫b +1b 取最小值,最小值为254.[12分]方法二 y =⎝ ⎛⎭⎪⎫a +1a ⎝ ⎛⎭⎪⎫b +1b =ab +1ab +a b +b a=ab +1ab +a 2+b 2ab =ab +1ab +a +b 2-2ab ab=2ab+ab -2.[8分]令t =ab ≤⎝⎛⎭⎪⎫a +b 22=14,即t ∈⎝ ⎛⎦⎥⎤0,14. 又f (t )=2t +t 在⎝ ⎛⎦⎥⎤0,14上是单调递减的,[10分]∴当t =14时,f (t )min =334,此时,a =b =12.∴当a =b =12时,y 有最小值254.[12分]温馨提醒 (1)这类题目考生总感到比拟容易下手.但是解这类题目却又常常出错.(2)利用根本不等式求最值,一定要注意应用条件:即一正、二定、三相等.否那么求解时会出现等号成立、条件不具备而出错.(3)此题出错的原因前面已分析,关键是忽略了等号成立的条件. 方法与技巧1.根本不等式具有将“和式〞转化为“积式〞和将“积式〞转化为“和式〞的放缩功能,常常用于比拟数(式)的大小或证明不等式,解决问题的关键是分析不等式两边的构造特点,选择好利用根本不等式的切入点. 2.恒等变形:为了利用根本不等式,有时对给定的代数式要进展适当变形.比方:(1)当x >2时,x +1x -2=(x -2)+1x -2+2≥2+2=4.(2)0<x <83,x (8-3x )=13(3x )(8-3x )≤13⎝ ⎛⎭⎪⎫3x +8-3x 22=163.失误与防X1.使用根本不等式求最值,其失误的真正原因是对其前提“一正、二定、三相等〞的无视.要利用根本不等式求最值,这三个条件缺一不可.2.在运用重要不等式时,要特别注意“拆〞“拼〞“凑〞等技巧,使其满足重要不等式中“正〞“定〞“等〞的条件.3.连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 题型四:利用根本不等式整体换元例2:假设正数 a ,b 满足 ab =a +b +3,求 ab 及 a +b 的取值X 围. 思维突破:此题主要考察均值不等式在求最值时的运用,并表达了换元法、构造法等重要思想.自主解答:方法一:由ab =a +b +3≥2ab +3, 即ab -2ab -3≥0.即(ab -3)(ab +1)≥0. ∵ab ≥0,∴ab +1≥1. 故ab -3≥0,∴ab ≥9. 当且仅当a =b =3时取等号.又∵ab ≤a +b2,∴ab =a +b +3≤⎝ ⎛⎭⎪⎫a +b 22.当且仅当a =b =3时取等号. 即(a +b )2-4()a +b -12≥0,(a +b -6)(a +b +2)≥0.∵a +b +2>0,有a +b -6≥0,即a +b ≥6. ∴a +b 的取值X 围是[6,+∞). 方法二:由ab =a +b +3,那么b =a +3a -1. ab =a +4a a -1=a +4+4a -1=a -1+4a -1+5≥2a -1·4a -1+5=9, 当且仅当a =b =3时取等号. ∴ab 的取值X 围是[9,+∞). 由ab =a +b +3,得b =a +3a -1,a +b =a +a +3a -1=a +1+4a -1=(a -1)+4a -1+2≥2()a -1·4a -1+2=6,当且仅当a =b =3时取等号. ∴a +b 的取值X 围是[6,+∞).技巧总结:整体思想是分析这类题目的突破口,即a +b 与ab 分别是统一的整体,把a +b 转换成ab 或把ab 转换成a +b .例3:正数a ,b 满足a +2b =1,那么1a +1b的最小值是____.试解:1a +1b =a +2b a +a +2b b=3+2b a +ab≥3+22b a ·ab=3+2 2.易错点评:屡次利用根本不等式解题,没有考虑等号能否同时成立。
中学数学 基本不等式求最值 (含答案)
基本不等式终极版例1. 已知正数 x ,y 满足x +2y =1,则 1x+1y的最小值是 .解:1x +1y=(1x +1y )(x +2y )≥3+2√2变1: 已知正数 x ,y 满足x +2y =1,则 1x+xy的最小值是 .解:1x+x y=x+2y x+xy≥1+2√2变2: 已知正数 x ,y 满足x +y =1,则4x+1+9y+2的最小值是 . 解:4x+1+9y+2=(4x+1+9y+2)(x+1)+(y+2)4≥254变3:已知实数 x ,y 满足 x >y >0 满足x +y =2,则 2x+3y+1x−y的最小值是 .解:2x+3y+1x−y=(2x+3y+1x−y)(x+3y )+(x−y )4≥3+2√24变4:已知实数 x ,y 满足 x >0,y >0,则x 2x+y+y x+2y的最大值是 ;x x+2y+y 2x+y的最小值是 .解:x2x+y+yx+2y≜2m−n 3m+2n−m 3n=43−13(n m+m n)≤23x x +2y +y 2x +y ≜2n −m 3m +2m −n 3n =23(n m +m n )−23≥23例2. 已知正数 x,y 满足 xy+2x+y=4,则 x+y 的最小值是.解:∵正数x,y 满足 xy+2x+y=4∴消元 y=4−2xx−1(0<x<2)∴x+y =x+4−2xx+1=x+6−(2+2x)x+1=(x+1)+6x+1−3≥2√6−3变1:已知正数 x,y 满足 2x+y+6=xy,则 xy 的最小值是.解:2x+y+6=xy≥2√2xy+6⇒xy≥18变2:已知正数 x,y 满足 x+2y+2xy=8,则 x+2y 的最小值是.解:8=x+2y+2xy≤x+2y+(x+2y2)2⇒ x+2y ≥4变3:已知实数 x,y 满足 4x2+y2+xy=1,则 2x+y 的最大值是.解:1=4x2+y2+xy=( 2x+y)2−3xy≥( 2x+y)2−32(2x+y2)2=58( 2x+y)2⇒2x+y ≤2√105变4:已知实数 x,y 满足 x2+y2+xy=1,则x+y的最大值是.解:1=x2+y2+xy=( x+y)2−xy≥( x+y)2−(x+y2)2=34( x+y)2⇒x+y ≤2√3 3例3. 若a,b,c>0 且 a(a+b+c)+bc=4 ,则 2a+b+c 的最小值是.解:4=a(a+b+c)+bc=(a+b)(a+c)≤(2a+b+c2) 2⇒2a+b+c≥4变1:若a,b,c>0 且 a2+2ab+2ac+4bc=12 ,则 a+b+c 的最小值是.解:12=a2+2ab+2ac+4bc=(a+2b)(a+2c)≤(2a+2b+2c2)2=(a+b+c )2⇒a+b+c≥2√3例4. 设 x ,y ,z 为正数,满足 x −2y +3z =0,则 y 2xz的最小值是 . 解:x −2y +3z =0 ⇒(2y )2=(x +3z)2≥12xz ⇒y 2xz≥3变1:设 x ,y ,z 为正数,满足 x 2+y 2+z 2=1,则S = 1+z 2xyz的最小值是 .解:S = 1+z 2xyz≥1+z (x 2+y 2)z=1+z (1−z 2)z=1(1−z )z≥1(1−z+z 2)2=4变2:设 x ,y ,z 为正数,满足 x 2+y 2+z 2=1,则 S = 12xyz 2 的最小值是 .解:S = 12xyz2≥1(x 2+y 2)z2=1(1−z 2)z2≥1(1−z 2+z 22)2=4例5. 设 x ,y ,z 为正数,则 xy+yzx 2+y 2+z 2 的最大值是 .解:xy+yz x 2+y 2+z2=xy+yzx 2+ky 2+(1−k )y 2+z2≤2√kxy+2√(1−k )yz令2√k =2√(1−k ),则k =12,即2√k =√2∴xy +yz x 2+y 2+z 2≤√22变1:设 x ,y ,z 为正数,则x 2+y 2+z 2xy+2yz的最小值是 .解:x 2+y 2+z 2xy+2yz=x 2+ky 2+(1−k )y 2+z 2xy+2yz≥2√kxy+2√(1−k )yzxy+2yz令2√k :2√(1−k )=1:2,则k =15,即2√k =√5∴x 2+y 2+z 2xy +2yz ≥2√55。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本不等式
知识点:
1. (1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤ (当且仅当b a =时取“=”)
2. (1)若*,R b a ∈,则ab b
a ≥+2 (2)若*,R
b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”)
(3)若*,R b a ∈,则2
2⎪⎭
⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”
)
3.若0x >,则1
2x x +≥ (当且仅当1x =时取“=”)
若0x <,则1
2x x +≤- (当且仅当1x =-时取“=”)
若0x ≠,则11
1
22-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”)
4.若0>ab ,则2≥+a b
b a
(当且仅当b a =时取“=”)若0ab ≠,则22-2
a b a b a b
b a b a b a +≥+≥+≤即或 (
当且仅当b a =时取“=”)
5.若R b a ∈,,则2)2(2
2
2b a b a +≤+(当且仅当b a =时取“=”)
注意:
(1)当两个正数的积为定植时,可以求它们的和的最小值,
当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.
(2)求最值的条件“一正,二定,三取等”
(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用 应用一:求最值
例:求下列函数的值域
(1)y =3x 2+1
2x 2 (2)y =x +1
x
技巧一:凑项
例 已知5
4x <,求函数1
4245y x x =-+-的最大值。
技巧二:凑系数
例: 当时,求(82)y x x =-的最大值。
变式:设23
0<<x ,求函数)23(4x x y -=的最大值。
技巧三: 分离换元
例:求2710
(1)1x x y x x ++=>-+的值域。
技巧五:在应用最值定理求最值时,若遇等号取不到的情况,结合函数()a
f x x x =+的单调性。
例:求函数224y x =+的值域。
技巧六:整体代换(“1”的应用)
多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。
例:已知0,0x y >>,且
191x y +=,求x y +的最小值。
技巧七
例:已知x ,y 为正实数,且x 2+
y 22 =1,求x 1+y 2 的最大值. 技巧八:
已知a ,b 为正实数,2b +ab +a =30,求函数y =1ab
的最小值. 技巧九、取平方
例: 求函数15
()22
y x =<<的最大值。
应用二:利用均值不等式证明不等式
例:已知a 、b 、c R +∈,且1a b c ++=。
求证:1111118a b c ⎛⎫⎛⎫⎛⎫---≥ ⎪⎪⎪⎝⎭⎝⎭⎝⎭ 应用三:均值不等式与恒成立问题
例:已知0,0x y >>且191x y
+=,求使不等式x y m +≥恒成立的实数m 的取值范围。
应用四:均值定理在比较大小中的应用:
例:若
)2lg(),lg (lg 21,lg lg ,1b a R b a Q b a P b a +=+=⋅=>>,则R Q P ,,的大小关系是 .。