不等式典型例题之基本不等式的证明
基本不等式证明过程
基本不等式证明过程一、引言基本不等式是高中数学中非常重要的一个概念,它是解决不等式问题的基础。
本文将详细介绍基本不等式的证明过程。
二、基本不等式的定义在高中数学中,我们通常将两个正数a和b的平方和表示为a²+b²,而(a+b)²则表示它们的平方和加上2ab。
因此,我们可以得到以下公式:(a+b)² = a² + 2ab + b²根据这个公式,我们可以得到一个非常重要的结论:对于任意两个实数a和b,都有以下不等式成立:(a+b)² ≥ 4ab这就是基本不等式。
三、证明过程1. 将(a+b)²展开首先,我们需要将(a+b)²展开,得到以下结果:(a+b)² = a² + 2ab + b²2. 将2ab移到左边,并化简接下来,我们将2ab移到左边,并进行化简:(a+b)² - 4ab = a² - 2ab + b²(a-b)² ≥ 0由于平方永远大于或等于0,所以最后一步成立。
3. 化简左边表达式现在我们需要化简左边的表达式:(a+b)² - 4ab = (a-b)² + 4ab - 4ab(a+b)² - 4ab = (a-b)²4. 得出结论由于(a+b)² ≥ 0,所以(a-b)² ≥ 0。
因此,我们得出结论:(a+b)² ≥ 4ab这就是基本不等式。
四、基本不等式的应用基本不等式在高中数学中非常重要,它可以用于解决各种不等式问题。
例如,我们可以使用它来证明以下结论:对于任意三角形ABC,有以下不等式成立:AB² + AC² + BC² ≥ 4S²其中S表示三角形ABC的面积。
证明过程如下:1. 将三角形ABC分为四个小三角形:ABD、ACD、BCE和BDE。
基本不等式习题及答案
基本不等式习题及答案基本不等式习题及答案不等式是数学中重要的概念之一,它描述了数值之间的大小关系。
在初等数学中,我们学习了许多基本的不等式,它们在解决实际问题和推导其他数学知识时起着重要的作用。
在本文中,我们将探讨一些基本的不等式习题,并给出相应的答案。
1. 习题一:证明对于任意的正实数a和b,有(a+b)² ≥ 4ab。
解答:我们可以使用平方差公式来证明这个不等式。
根据平方差公式,我们有(a+b)² = a² + 2ab + b²。
由于a和b都是正实数,所以a²和b²都大于等于0。
因此,我们只需要证明2ab大于等于0即可。
由于a和b都是正实数,所以它们的乘积ab也是正实数。
根据乘法的性质,正实数的乘积仍然是正实数,因此2ab大于等于0。
所以,我们证明了(a+b)²≥ 4ab。
2. 习题二:证明对于任意的正实数a,b和c,有(a+b)(b+c)(c+a) ≥ 8abc。
解答:我们可以使用AM-GM不等式来证明这个不等式。
根据AM-GM不等式,对于任意的正实数x和y,有(x+y)/2 ≥ √(xy)。
将x替换为a+b,y替换为b+c,我们有(a+b+b+c)/2 ≥ √((a+b)(b+c))。
进一步简化得到(a+2b+c)/2 ≥ √((a+b)(b+c))。
同样地,将x替换为b+c,y替换为c+a,我们有(b+c+c+a)/2 ≥ √((b+c)(c+a))。
进一步简化得到(2b+2c+a)/2 ≥ √((b+c)(c+a))。
将x替换为c+a,y替换为a+b,我们有(c+a+a+b)/2 ≥ √((c+a)(a+b))。
进一步简化得到(2c+2a+b)/2 ≥ √((c+a)(a+b))。
将上述三个不等式相乘,我们得到((a+2b+c)/2)((2b+2c+a)/2)((2c+2a+b)/2) ≥ (√((a+b)(b+c)))(√((b+c)(c+a)))(√((c+a)(a+b)))。
4 基本不等式的证明(1)
4、基本不等式的证明(1)目标:(,0)2a b a b +≥的证明过程,并能应用基本不等式证明其他不等式。
过程:一、问题情境把一个物体放在天平的一个盘子上,在另一个盘子上放砝码使天平平衡,称得物体的质量为a 。
如果天平制造得不精确,天平的两臂长略有不同(其他因素不计),那么a 并非物体的实际质量。
不过,我们可作第二次测量:把物体调换到天平的另一个盘上,此时称得物体的质量为b 。
那么如何合理的表示物体的质量呢?把两次称得的物体的质量“平均”一下,以2a b A +=表示物体的质量。
这样的做法合理吗? 设天平的两臂长分别为12,l l ,物体实际质量为M ,据力学原理有1221,l M l a l M l b ==,有2,M ab M ==,0a b >时,2a b +叫,a b,a b 的几何平均数 2a b +二、建构一般,判断两数的大小可采用“比较法”:02a b+-=≥ 2a b +≤(当且仅当a b =时取等号) 说明:当0a=或0b =时,以上不等式仍成立。
从而有 2a b +≤(0,0)a b ≥≥(称之“基本不等式”)当且仅当a b =时取等号。
2a b +≤的几何解释: 如图,,2a b OC CD OC CD +≥==三、运用例1 设,a b 为正数,证明:1(1)2(2)2b a a a ba +≥+≥ 注意:基本不等式的变形应用 2,2ab a b ab +⎛⎫≤+≤ ⎪⎝⎭例2 证明:22(1)2a b ab +≥ 此不等式以后可直接使用1(2)1(1)1x x x +≥>-+ 4(3)4(0)a a a +≤-< 22≥ 22>例3 已知,0,1a b a b >+=,求证:123a b+≥+四、小结五、作业 反馈32 书P91 习题1,2,3。
证明基本不等式的方法
证明基本不等式的方法基本不等式是数学中极为重要的不等式之一,它可以直接由基本的数学性质和运算法则推导得出。
以下是我详细描述基本不等式的证明方法,以及一些相关的例子和应用。
基本不等式可以表述为:对于正实数a和b,有ab≥2√(ab),即a乘以b大于等于2乘以a和b的平方根。
首先,我们知道一个数的平方根是非负的,即√(ab)≥0,因此我们可以得出一个结果:2√(ab)≥0。
由此可见,当a和b相等时,等式成立。
例如,当a=b=1时,1*1=2√(1*1),等式两边都为1,等式成立。
接下来,我们来考虑当a和b不相等时的情况。
这时我们可以假设一个数x,使得x=√a/√b(注意,这里假设了b不等于0)。
根据这个假设,我们可以得出√a=x√b。
将这个结果代入到基本不等式中,得到:ab≥2√(ab)ab≥2√a√b (将√ab代换成x√b)ab≥2(x√b)√b (将√a代换成x√b)ab≥2xb*bab≥2x(b^2)由于a和b是正实数,因此b的平方b^2也是正实数。
而x是我们自己假设的一个数,通过合适的选择,我们可以使2x(b^2)等于a*b。
这样基本不等式就成立了。
这个证明方法的关键在于假设一个适当的数x,使得√a=x√b,从而将原始不等式转化为x的方程,然后通过解这个方程得到基本不等式。
下面是两个具体的示例应用,展示了基本不等式的实际用途:例1:证明当a+b=2时,a*b≤1根据我们的假设,可以令x=1/√b。
那么根据√a=x√b这个方程,可以得到√a=√b/√b=1,即a=1、将这个结果代入到a+b=2中可以得到1+b=2,从而b=1、因此,我们可以得到a*b=1*1=1,满足a*b≤1例2:证明当a+b=1时,(a^2+1)(b^2+1)≥8/9首先,我们假设x=√a/√b,那么根据√a=x√b这个方程,可以得到√a=√b/√b=1,即a=b。
这时,a+b=1可以变为2a=1,从而得到a=b=1/2将这个结果代入到(a^2+1)(b^2+1)中可以得到(1/4+1)(1/4+1)=5/4、因此,我们可以得到(a^2+1)(b^2+1)=5/4,满足(a^2+1)(b^2+1)≥8/9总结一下,我们通过假设一个适当的数x,并将√a=x√b代入到基本不等式中,转化为一个关于x的方程。
基本不等式的证明_课件
b2 c2 2bc c2 a2 2ca 以上三式相加:2(a2 b2 c2 ) 2ab 2bc 2ca
当且仅当a=b=c时等号成立
∴ a2 b2 c2 ab bc ca
例3:1.已知a,b, c都是正数,
求证(a b)(b c)(c a) 8abc.
猜想:对任意两个正数a、b,
ab a b (a 0,b 0) 2
此不等式是可以证明的,而且证明方法有很多种。
证法1:a
2
b
ab
1 [( a )2 ( b)2 2 a b] 2
1 ( a b)2 0
2
当且仅当 a b 即 a b 时,取“ ”。
证法2:要证
ab a b 2
基本不等式
不等式的一些常用结论: 1、如果a b,则a - b 0,反之也成立; 如果a<b,则a - b<0,反之也成立; 如果a=b,则a - b=0,反之也成立; 2、a 2 0; | a | 0;
问题引入 ab
• 1、两个正数a,b的等差中项是__2___;
• 两个正数a,b的等比中项是___a_b_;
cos x
cos x
x 0 ,则 x 4 2 x 4 4
x
x
(4)若 x 0
2x 2x 2 2x 2x 2
其中正确的有 (3),(4)
回顾小结:
1.基本不等式其应用条件; 2.不等式证明的三种常用方法; 3.利用基本不等式去证明其它不等式或求最值。
•2、对两个正数a,b, a b又叫做正数a与b的
___算__术__平___均_.数
2
ab •3、对两个正数a,b, 又叫做正数a与b的
___几__何__平___均_.数
证明不等式的基本方法
x2
例7(1)设
y2
1, 求x
y的最大值,
16 9
并求此时的x, y值。 三角换元
(2)设 x, y R,且 x2 y 2 1,
求证:| x2 2xy y 2 | 2 ;
(1)设 x r sin, y r cos,且 | r | 1
证明:∵ a, b 是正数,且 a b , ∴要证 aabb abba ,只要证 lg (aabb ) lg(abba ) ,
只要证 a lg a b lgb b lg a a lgb .
(a lg a b lg b) (b lg a a lg b) = (a b)(lg a lg b)
= (a2 b2 )(a b) = (a b)(a b)2
∵ a,b 是正数,且 a b ,∴ a b 0, (a b)2 >0
∴ (a3 b3 ) (a2b ab2 ) >0,∴ a3 b3 a2b ab2
注:比较法是证明不等式的基本方法,也是 最重要的方法,另外,有时还可作商比较.
当且仅当(a b)(b c)≥0 时,等号成立.
四.反证法:
假设命题结论的反面成立,经过正确的推理, 引出矛盾,因此说明假设错误,从而证明原命题 成立,这样的证明方法叫反证法.(正难则反)
例、已知 f (x) x2 px q,求证:
1
| f (1) |,| f (2) |,| f (3) |中至少有一个不小于2 。
求证:已知a, b, c R+,求证 :书P25页2(2)
第14讲 基本不等式 (解析版)
【高中新知识预习篇】第14讲 基本不等式解析版一、基本知识及其典型例题知识点一 基本不等式1.基本不等式的概念:当a ,b > 0,ab ≤a +b2,当且仅当a =b 时,等号成立. 2.基本不等式的意义:一般地,对于正数a ,b ,a +b2为a ,b 的算术平均数,ab 为a ,b 的几何平均数. 两个正数的算术平均数不小于它们的几何平均数,即ab ≤ a +b2. 3.基本不等式的常见推论 :(1) (重要不等式) ∀a ,b ∀R ,有a 2+b 2 ≥ 2ab ,当且仅当a =b 时,等号成立.(2) ab ≤ 2)2(b a +≤ a 2+b 22 (R b a ∈、);(3) b a +ab≥ 2 (a ,b 同号);(4)a 2+b 2+c 2 ≥ ab +bc +ca (R c b a ∈、、). 4.利用基本不等式证明不等式(1)策略:从已证不等式和问题的已知条件出发,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后转化为所求问题,其特征是以“已知”看“可知”,逐步推向“未知”. (2) 注意事项:∀多次使用基本不等式时,要注意等号能否成立;∀累加法是不等式证明中的一种常用方法,证明不等式时注意使用;∀对不能直接使用基本不等式的证明可重新组合,形成基本不等式模型,再使用.【例1】证明不等式: a ,b ∀R , ab ≤2)2(b a +≤a 2+b 22,当且仅当a=b 时取等号.【证明】∀化简得:2)2(b a ab +≤.0)(,0224,422222222≥-≥+-++≤++≤b a b ab a b ab a ab b ab a ab 即,即即.时取等号当且仅)2(0)(2b a b a ab b a =+≤∴≥-当恒成立,恒成立, ∀)(22,2422)2(22222222222b a b ab a b a b ab a b a b a +≤+++≤+++≤+即化简得:.0)(,02222≥-≥+-b a b ab a 即即.2)2(222时等式成立恒成立,当且仅当同理,b a b a b a =+≤+综上, a ,b ∀R , ab ≤2)2(b a +≤a 2+b 22,当且仅当a=b 时取等号.【变式1】已知x ,y 都是正数. 求证:(1)y x +xy ≥2; (2)(x +y )(x 2+y 2)(x 3+y 3)≥8x 3y 3;(3)已知a ,b ,c 为任意的实数,求证:a 2+b 2+c 2≥ab +bc +ca . 【证明】 (1)∀x ,y 都是正数,∀x y > 0,yx > 0,∀y x +xy≥ 2y x ·x y = 2, 即 y x +xy≥ 2, 当且仅当x =y 时,等号成立.(2)∀x ,y 都是正数,∀x +y ≥ 2xy > 0, x 2+y 2 ≥ 2x 2y 2 > 0,x 3+y 3 ≥ 2x 3y 3 > 0.∀(x +y )(x 2+y 2)(x 3+y 3) ≥ 2xy ·2x 2y 2·2x 3y 3=8x 3y 3,即 (x +y )(x 2+y 2)(x 3+y 3) ≥ 8x 3y 3,当且仅当x =y 时,等号成立. (3)∀a 2+b 2≥2ab ;b 2+c 2≥2bc ;c 2+a 2≥2ca , ∀2(a 2+b 2+c 2)≥2(ab +bc +ca ), 即a 2+b 2+c 2≥ab +bc +ca , 当且仅当a =b =c 时,等号成立..1.a 2+b 2≥2ab 与a +b 2≥ab 都是带有等号的不等式.“当且仅当…时,取等号”这句话的含义是:当a =b 时,a +b2=ab ;当a +b2=ab 时,也有a =b .2.在利用基本不等式证明的过程中,常需要把数、式合理地拆成两项或多项或把恒等式变形配凑成适当的数、式,以便于利用基本不等式.【例2】(多选题)设a >0,b >0,下列不等式中恒成立的有( ) A.a 2+1>a B.4)1)(1(≥++bb a a C.4)11)((≥++ba b a D.a 2+9>6a .【解析】由于a 2+1-a =2)21(-a +34>0,故A 恒成立;由于a +1a ≥2,b +1b≥2,∀4)1)(1(≥++bb a a ,当且仅当a =b =1时,等号成立,故B 恒成立; 由于a +b ≥2ab ,1a +1b≥21ab, 故4)11)((≥++ba b a ,当且仅当a =b 时,等号成立,故C 恒成立; 当a =3时,a 2+9=6a ,故D 不恒成立. 综上,恒成立的是ABC.【变式2】下列各式中,对任何实数x 都成立的一个式子是( ). A.x y +≥B .21x x +>2C .2111x ≤+ D .12x x+≥ 【答案】C【分析】取特殊值可得a,b,D 不恒成立,由211x +≥可得C 对应的不等式2111x ≤+恒成立,得解. 【解析】对于A ,当0x <时,根式无意义,故A 不恒成立; 对于B ,当1x =时,212x x +=,故B 不恒成立; 对于C ,211x +≥,所以2111x ≤+成立,故C 成立; 对于D ,当0x <时,12x x+<,故D 恒不成立, 即对任何实数x 都成立的一个式子是2111x ≤+ 【例3】已知,,若,证明:。
不等式证明的基本方法 经典例题透析
经典例题透析类型一:比较法证明不等式1、用作差比较法证明下列不等式:(1);(2)(a,b均为正数,且a≠b)思路点拨:(1)中不等号两边是关于a,b,c的多项式,作差后因式分解的前途不大光明,但注意到如a2, b2, ab这样的结构,考虑配方来说明符号;(2)中作差后重新分组进行因式分解。
证明:(1)当且仅当a=b=c时等号成立,(当且仅当a=b=c取等号).(2)∵a>0, b>0, a≠b,∴a+b>0, (a-b)2>0,∴,∴.总结升华:作差,变形(分解因式、配方等),判断差的符号,这是作差比较法证明不等式的常用方法。
举一反三:【变式1】证明下列不等式:(1)a2+b2+2≥2(a+b)(2)a2+b2+c2+3≥2(a+b+c)(3)a2+b2≥ab+a+b-1【答案】(1)(a2+b2+2)-2(a+b)=(a2-2a+1)+(b2-2b+1)=(a-1)2+(b-1)2≥0∴a2+b2+2≥2(a+b)(2)证法同(1)(3)2(a2+b2)-2(ab+a+b-1)=(a2-2ab+b2)+(a2-2a+1)+(b2-2b+1)=( a-b)2+(a-1)2+(b-1)2≥0 ∴2(a2+b2)≥2(ab+a+b-1),即a2+b2≥ab+a+b-1【变式2】已知a,b∈,x,y∈,且a+b=1,求证:ax2+by2≥(ax+by)2【答案】ax2+by2-(ax+by)2=ax2+by2-a2x2-b2y2-2abxy=a(1-a)x2+b(1-b)y2-2abxy=abx2+aby2-2abxy=ab(x-y)2≥0∴ax2+by2≥(ax+by)22、用作商比较法证明下列不等式:(1)(a,b均为正实数,且a≠b)(2)(a,b,c∈,且a,b,c互不相等)证明:(1)∵a3+b3>0, a2b+ab2>0.∴,∵a, b为不等正数,∴,∴∴(2)证明:不妨设a>b>c,则∴所以,总结升华:当不等号两边均是正数乘积或指数式时,常用这种方法,目的是约分化简. 作商比较法的基本步骤:判定式子的符号并作商变形判定商式大于1或等于1或小于1结论。
13基本不等式(2)
x
例 3 过点 1,2 的直线 l与 x的正半径、 y轴 的正半轴分别交于 A, B两点,当AOB 的面 积最小时, 求直线 l的方程.
解 设点Aa,0, B0, ba 0, b 0, 则直线 l x y 1 2 的方程为 1, 点1,2在l上, 故 1.
2)解决实际问题注意:
审题——建模——求解——评价
3)注重分类讨论、换元、化归等数 学思想方法在解题中的运用
练习 练习(1)求周长为 12的直角三角形面积的最大值.
(2)、若直角三角形的内切圆半径为,求其面积的 1
半径为,求其面积的最小值。 1 (3) 如图,设矩形ABCD(AB>CD)的周长为 24,把它关于AC对折起来,AB折过去以后, 交DC于点P,AB=x,求⊿ADP的最大面积及 相应的x值。
Thursday, September 25, 2008
知识回顾
1、基本不等式的内容:
ab ab (a, b R ) 2 2、基本不等式的条件:
一正 、二定 、三相等
3、基本不等式的变形:
x y 2 xy ( x R , y R )
x y 2 xy ( ) (x R , y R ) 2
4 (3)已知x 3, 求x 的最小值. x 4 4 解 : x 2 x 4, 原式有最小值4. x x 4 当且仅当x , 即x 2时, 等号成立. x
D : 练1.下列函数的最小值为2的是 ____
1 A. y x x
C. y x 2
1 1 变式(2) : 设0 x , y x(1 2 x)最大值是 ____ . 2 8
例1 用长为4 a 的铁丝围成一个矩形 , 怎样才能 使所围矩形的面积最大 . 解 设矩形长为 x 0 x 2a , 则宽为2a x, 矩形
基本不等式证明
基本不等式证明
基本不等式是数学中一个重要的概念,主要是用来表达当给定一列数值时,它们之间的关系。
它可以表达从这列数值中提取有用信息的工具,通常用英文表示为“inequalities”。
基本不等式的证明大多是演绎证明,也就是比较不断引出更多的结论,从而达到最终的结果。
具体的推演步骤一般是:把要证明的式子内所有求值结果或者关系符号化成变量,然后用数学工具严格地给出合理的推演有效性框架,再将已知条件逐一给出,根据逐步变换后结论来条件地扩大和加强模型,最后逐步优化,最终将更强的优化结果带入最初式,证明要证明的式子有唯一的确定的结果,从而证明原假设正确。
一个常用的基本不等式证明案例如下:
设$a,b,c$是实数,且$a\neq b$。
假设$a^2 + b^2 = c^2$,那么$a+b>c$。
证明:
(2)两边同时取平方,得到$(a+b)^2 > 4ab$;
(4)由于$(a+b)^2 \geq 0$,得到$a+b \geq 2\sqrt{ab}$;
(6)因为已知$a^2 + b^2 = c^2$,即$c^2 = ab + ab$,从而$c\sqrt{ab} = ab$,联立式$c(a+b) > 2c\sqrt{ab}$和$c\sqrt{ab} > ab$,可得$c(a+b) > 2ab$;
(8)两边都除以$a+b$,最终得到$c>a+b$。
根据以上的不断推演,最终我们得出了结论$a+b>c$,这就证明了$a^2 + b^2 =
c^2$时,$a+b>c$的基本不等式。
n元基本不等式的证明过程
n元基本不等式的证明过程n元基本不等式是指对于任意实数a1, a2, ..., an,有以下不等式成立,(a1 + a2 + ... + an)/n ≥ (a1 a2 ... an)^(1/n)。
这个不等式也被称为均值不等式或者幂平均不等式。
证明过程如下:首先,我们可以使用数学归纳法来证明这个不等式。
当n=2时,不等式成立。
这是因为对于任意实数a和b,有(a+b)/2 ≥ √(ab),这是平均值不等式的形式。
接下来,假设对于任意正整数k,不等式对于n=k成立。
我们来证明不等式对于n=k+1也成立。
考虑实数a1, a2, ..., ak+1,我们可以将它们分成两组,(a1, a2, ..., ak)和ak+1。
根据我们的假设,对于前面的k个数,不等式成立,(a1 + a2 + ... + ak)/k ≥ (a1 a2 ... ak)^(1/k)。
对于ak+1,我们可以将它看做是一个数的情况,即n=1的情况,不等式显然成立,ak+1 ≥ ak+1。
现在我们考虑这两组数的加权平均值。
设前面k个数的加权平均值为A,即A = (a1 + a2 + ... + ak)/k,加权平均值的定义是A = (w1a1 + w2a2 + ... + wkak),其中w1, w2, ..., wk是权重,满足w1 + w2 + ... + wk = k。
那么我们可以得到ak+1的加权平均值为ak+1 = (1/k)ak+1。
根据加权平均值不等式,我们有A ≥ (a1 a2 ...ak)^(1/k),ak+1 ≥ (a1 a2 ... ak)^(1/k)。
将这两个不等式相乘,我们得到A ak+1 ≥ (a1 a2 ... ak)^(1/k) (a1a2 ... ak)^(1/k) = (a1 a2 ... ak ak+1)^(1/k)。
因此,我们有(A ak+1)/2 ≥ (a1 a2 ... akak+1)^(1/(k+1))。
高二数学证明不等式的基本方法
1 a b c d 2 abd bca cba dac
例4 已知a,b是实数,求证 a b a b . 1 ab 1 a 1 b
证明: 0 a b a b
ab
1
1
1
若 在 上 述 溶 液 中 再 添 加mkg白 糖, 此 时 溶 液 的 浓 度
增加到a m ,将这个事实抽象为数学问题,并给出证明. bm
解 : 可以把上述事实抽象成如下不等式问题:
已知a,b, m都是正数,并a b且,则 a m a bm b
解 : 可以把上述事实抽象成如下不等式问题:
a
a a
abcd abd ab
b
b b
abcd bca ab
c
c c
abcd cdb cd
d
d d
abcd dac cd
把 以 上 四 个 不 等 式 相 加得
abcd a b c d abcd abd bca cbd dac
abc 故 a2b2 b2c2 c2a2 abc
abc
三、反证法与放缩法
(1)反证法
先假设要证的命题不成立,以此为出发点,结合已知条 件,应用公理,定义,定理,性质等,进行正确的推理,得到 和命题的条件(或已证明的定理,性质,明显成立的事实 等)矛盾的结论,以说明假设不正确,从而证明原命题成 立,这种方法称为反证法.对于那些直接证明比较困难 的命题常常用反证法证明.
证明: 假设a,b,c不全是正数,即其中至少有一个不是正数, 不妨先设a 0,下面分a 0和a 0两种情况讨论. (1)如果a 0,则abc 0,与abc 0矛盾, a 0不可能. (2)如果a 0,那么由abc 0可得bc 0, 又a b c 0, b c a 0,于是ab bc ca a(b c) bc 0, 这和已知ab bc ca 0相矛盾. a 0也不可能. 综上所述a 0,同理可证b 0,c 0, 所以原命题成立.
基本不等式公式四个几何证明
基本不等式公式四个几何证明好的,以下是为您生成的关于“基本不等式公式四个几何证明”的文章:在咱们数学的世界里,基本不等式公式就像是一座坚固的桥梁,连接着不同的数学知识和解题思路。
今天,咱们就来好好聊聊基本不等式公式的四个几何证明,这可是相当有趣的哟!先来说说基本不等式公式到底是啥。
它是这样的:对于任意的正实数 a 和 b ,都有a + b ≥ 2√(ab) ,当且仅当 a = b 时,等号成立。
那这四个几何证明到底是怎么回事呢?我给您慢慢道来。
第一个证明,咱们可以借助矩形的面积来说明。
假设咱们有一个矩形,它的长和宽分别是 a 和 b 。
那这个矩形的面积就是 ab 。
然后呢,我们再以这个矩形的对角线为边长,构造一个正方形。
这个正方形的面积就是 (a + b)² / 4 。
因为正方形的面积肯定大于等于矩形的面积,所以就有(a + b)² / 4 ≥ ab ,整理一下就得到了a + b ≥ 2√(ab) 。
记得有一次,我给学生们讲这个证明的时候,有个调皮的小家伙举手说:“老师,我还是不太明白。
”我就走到他身边,拿起他桌上的尺子和铅笔,重新给他画了一遍那个矩形和正方形,边画边解释:“你看啊,这个正方形把矩形包在里面了,是不是正方形的面积更大呀?”小家伙眼睛一下子亮了起来,兴奋地说:“老师,我懂啦!”那一刻,我心里别提多有成就感了。
第二个证明,咱们可以用圆的半径来帮忙。
想象有两个圆,它们的半径分别是√a 和√b 。
那么这两个圆的面积之和就是πa + πb 。
而以 a+ b 为直径的圆的面积是π(a + b) / 4 。
因为大圆的面积肯定大于等于两个小圆的面积之和,所以就有π(a + b) / 4 ≥ πa + πb ,同样能推出基本不等式公式。
第三个证明,咱们可以通过三角形的边长关系来搞定。
假设有一个直角三角形,两条直角边分别是√a 和√b ,斜边就是√(a + b) 。
根据三角形的三边关系,斜边肯定大于等于两条直角边的算术平均值,也就是√(a + b) ≥ (√a + √b) / 2 ,两边平方一下,也能得到基本不等式公式。
典型例题:基本不等式
典型例题【例1】已知x,y都是正数,求证:
(1)≥2;
(2)(x+y)(x2+y2)(x3+y3)≥8x3y3.
【例2】(1) 若x>0,求的最小值;
(2)若x<0,求的最大值.
参考答案
例1:
【分析】利用基本不等式进行证明.
【解】∵x,y都是正数,
∴>0,0,x2>0,y2>0,x3>0,y3>0.
(1)=2 即≥2.
(2)x+y≥>0 ,x2+y2≥>0 ,x3+y3≥>0,
∴(x+y)(x2+y2)(x3+y3)
≥··=8x3y3.
即(x+y)(x2+y2)(x3+y3)≥8x3y3.
【点拨】在运用定理时,注意条件a,b均为正数,结合不等式的性质(把握好每条性质成立的条件),进行变形.
例2
【分析】本题(1)x>0和=36两个前提条件;(2)中x<0,可以用-x>0来转化.
【解】(1) 因为x>0 由基本不等式得
,当且仅当,即x=时,
取最小值12.
(2)因为x<0, 所以-x>0, 由基本不等式得
所以.
当且仅当即x=时, 取得最大-12.
【点拨】利用基本不等式求最值时,个项必须为正数,若为负数,则添负号变正.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.3、不等式典型例题之基本不等式的证明——(6例题)雪慕冰一、知识导学1.比较法:比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法).(1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”.其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论.应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法.(2)商值比较法的理论依据是:“若a,b∈R +,a/b≥1a≥b;a/b≤1a≤b”.其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1.应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法.2.综合法:利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”.即从已知A逐步推演不等式成立的必要条件从而得出结论B.3.分析法:是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”.用分析法证明书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明A为真,而已知A为真,故B必为真.这种证题模式告诉我们,分析法证题是步步寻求上一步成立的充分条件.4.反证法:有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑,即要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B.凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不可能”等词语时,可以考虑用反证法.5.换元法:换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以便简化原有的结构或实现某种转化与变通,给证明带来新⇔⇔⇔⇔的启迪和方法.主要有两种换元形式.(1)三角代换法:多用于条件不等式的证明,当所给条件较复杂,一个变量不易用另一个变量表示,这时可考虑三角代换,将两个变量都有同一个参数表示.此法如果运用恰当,可沟通三角与代数的联系,将复杂的代数问题转化为三角问题; (2)增量换元法:在对称式(任意交换两个字母,代数式不变)和给定字母顺序(如a>b>c等)的不等式,考虑用增量法进行换元,其目的是通过换元达到减元,使问题化难为易,化繁为简.如a+b=1,可以用a=1-t,b=t或a=1/2+t,b=1/2-t进行换元.二、疑难知识导析1.在用商值比较法证明不等式时,要注意分母的正、负号,以确定不等号的方向.2.分析法与综合法是对立统一的两个方面,前者执果索因,利于思考,因为它方向明确,思路自然,易于掌握;后者是由因导果,宜于表述,因为它条理清晰,形式简洁,适合人们的思维习惯.但是,用分析法探求证明不等式,只是一种重要的探求方式,而不是一种好的书写形式,因为它叙述较繁,如果把“只需证明”等字眼不写,就成了错误.而用综合法书写的形式,它掩盖了分析、探索的过程.因而证明不等式时,分析法、综合法常常是不能分离的.如果使用综合法证明不等式,难以入手时常用分析法探索证题的途径,之后用综合法形式写出它的证明过程,以适应人们习惯的思维规律.还有的不等式证明难度较大,需一边分析,一边综合,实现两头往中间靠以达到证题的目的.这充分表明分析与综合之间互为前提、互相渗透、互相转化的辩证统一关系.分析的终点是综合的起点,综合的终点又成为进一步分析的起点.3.分析法证明过程中的每一步不一定“步步可逆”,也没有必要要求“步步可逆”,因为这时仅需寻找充分条件,而不是充要条件.如果非要“步步可逆”,则限制了分析法解决问题的范围,使得分析法只能使用于证明等价命题了.用分析法证明问题时,一定要恰当地用好“要证”、“只需证”、“即证”、“也即证”等词语.4.反证法证明不等式时,必须要将命题结论的反面的各种情形一一加以导出矛盾.5.在三角换元中,由于已知条件的限制作用,可能对引入的角有一定的限制,应引起高度重视,否则可能会出现错误的结果.这是换元法的重点,也是难点,且要注意整体思想的应用.三、经典例题导讲[例1] 已知a>b(ab ),比较与的大小.0 a 1b1错解: a>b(ab ),<. 错因:简单的认为大数的倒数必定小,小数的倒数必定大.正确的结论是:当两数同号时,大数的倒数必定小,小数的倒数必定大.正解:,又 a>b(ab ), (1)当a 、b 同号时,即a>b>0或b<a<0时,则ab>0,b -a<0, ,<. (2)当a 、b 异号时,则a>0,b<0, >0,<0>. [例2] 当a 、b 为两个不相等的正实数时,下列各式中最小的是( )A. B. C. D.错解:所以选B.错因是由于在、、中很容易确定最小,所以易误选B.而事实上三者中最小者,并不一定是四者中最小者,要得到正确的结论,就需要全面比较,不可遗漏与前三者的大小比较. Θ0≠∴a 1b1aba b b a -=-11ΘΘ0≠0<-ab a b ∴a 1b1a 1b 1∴a 1b12b a +ab 222b a +111)2(---+b a 2b a +ab 222b a +ab 111)2(---+b a正解:由均值不等式及a 2+b 22ab,可知选项A 、B 、C 中,最小,而=,由当a b 时,a+b>2,两端同乘以,可得(a+b )·>2ab, <,因此选D. [例3] 已知:a>0 , b>0 , a+b=1,求(a+ 1a )2+(b+ 1b )2的最小值.错解: (a+)2+(b+)2=a 2+b 2+++4≥2ab++4≥4+4=8, ∴(a+)2+(b+)2的最小值是8. 错因:上面的解答中,两次用到了基本不等式a 2+b 2≥2ab ,第一次等号成立的条件是a=b=,第二次等号成立的条件是ab=,显然,这两个条件是不能同时成立的.因此,8不是最小值.正解:原式= a 2+b 2+++4=( a 2+b 2)+(+)+4=[(a+b)2-2ab]+[(+)2-]+4 = (1-2ab)(1+)+4, 由ab ≤()2= 得:1-2ab ≥1-=, 且≥16,1+≥17, ≥+2b a ab ≥ab 111)2(---+b a b a ab +2≠ab ab ab ∴ba ab +2ab a 1b 121a 21bab 2ab ab 1•a 1b121ab 121a 21b 21a 21ba 1b 1ab 2221b a 2b a +412121221b a 221ba∴原式≥×17+4= (当且仅当a=b=时,等号成立), ∴(a +)2 + (b + )2的最小值是252 . [例4] 已知0 < x < 1, 0 < a < 1,试比较的大小.解法一:∵0 < 1 - x 2< 1, ∴ ∴解法二:∵0 < 1 - x 2 < 1, 1 + x > 1, ∴∴ ∴解法三:∵0 < x < 1, ∴0 < 1 - x < 1, 1 < 1 + x < 2,2122521a 1b 1|)1(log | |)1(log |x x a a +-和[][])1(log )1(log )1(log )1(log |)1(log | |)1(log |22x x x x x x a a a a a a +---+-=+--xx x a a +--=11log )1(log 21110<+-<x x 011log )1(log 2>+--x x x a a |)1(log | |)1(log |x x a a +>-2111111log 11log )1(log )1(log )1(log )1(log xx x x x x x x x x x a a -+=-=--=-=+-++++)1(log 121x x --=+0)1(log 21>--+x x 1)1(log 121>--+x x |)1(log | |)1(log |x x a a +>-∴∴左 - 右 =∵0 < 1 - x 2 < 1, 且0 < a < 1 ∴∴[例5]已知x 2 = a 2 + b 2,y 2 = c 2 + d 2,且所有字母均为正,求证:xy ≥ac + bd证:证法一(分析法)∵a , b , c , d , x , y 都是正数∴要证:xy ≥ac + bd只需证:(xy )2≥(ac + bd )2即:(a 2 + b 2)(c 2 + d 2)≥a 2c 2 + b 2d 2 + 2abcd展开得:a 2c 2 + b 2d 2 + a 2d 2 + b 2c 2≥a 2c 2 + b 2d 2 + 2abcd即:a 2d 2 + b 2c 2≥2abcd 由基本不等式,显然成立∴xy ≥ac + bd证法二(综合法)xy = ≥证法三(三角代换法) ∵x 2 = a 2 + b 2,∴不妨设a = x sin α, b = x cos α y 2 = c 2 + d 2 c = y sin β, d = y cos β0)1(log ,0)1(log <+>-x x a a )1(log )1(log )1(log 2x x x a a a -=++-0)1(log 2>-x a |)1(log | |)1(log |x x a a +>-222222222222d b d a c b c a d c ba +++=++bd ac bd ac db abcdc a +=+=++22222)(2∴ac + bd = xy sin αsin β + xy cos αcos β = xy cos(α - β)≤xy[例6] 已知x > 0,求证:证:构造函数 则, 设2≤α<β 由 显然 ∵2≤α<β ∴α - β > 0, αβ - 1 > 0, αβ > 0 ∴上式 > 0 ∴f (x )在上单调递增,∴左边 25111≥+++x x x x )0(1)(>+=x x x x f 21≥+x x αβ-αββ-α=⎪⎪⎭⎫ ⎝⎛β-α+β-α=β+β-α+α=β-α)1)((11)()1(1)()(f f ),2[+∞25)2(=≥f。