高中数学基本不等式证明

合集下载

基本不等式证明过程

基本不等式证明过程

基本不等式证明过程一、引言基本不等式是高中数学中非常重要的一个概念,它是解决不等式问题的基础。

本文将详细介绍基本不等式的证明过程。

二、基本不等式的定义在高中数学中,我们通常将两个正数a和b的平方和表示为a²+b²,而(a+b)²则表示它们的平方和加上2ab。

因此,我们可以得到以下公式:(a+b)² = a² + 2ab + b²根据这个公式,我们可以得到一个非常重要的结论:对于任意两个实数a和b,都有以下不等式成立:(a+b)² ≥ 4ab这就是基本不等式。

三、证明过程1. 将(a+b)²展开首先,我们需要将(a+b)²展开,得到以下结果:(a+b)² = a² + 2ab + b²2. 将2ab移到左边,并化简接下来,我们将2ab移到左边,并进行化简:(a+b)² - 4ab = a² - 2ab + b²(a-b)² ≥ 0由于平方永远大于或等于0,所以最后一步成立。

3. 化简左边表达式现在我们需要化简左边的表达式:(a+b)² - 4ab = (a-b)² + 4ab - 4ab(a+b)² - 4ab = (a-b)²4. 得出结论由于(a+b)² ≥ 0,所以(a-b)² ≥ 0。

因此,我们得出结论:(a+b)² ≥ 4ab这就是基本不等式。

四、基本不等式的应用基本不等式在高中数学中非常重要,它可以用于解决各种不等式问题。

例如,我们可以使用它来证明以下结论:对于任意三角形ABC,有以下不等式成立:AB² + AC² + BC² ≥ 4S²其中S表示三角形ABC的面积。

证明过程如下:1. 将三角形ABC分为四个小三角形:ABD、ACD、BCE和BDE。

2020学年高中数学第二讲证明不等式的基本方法三反证法与放缩法学案含解析新人教a版选修45

2020学年高中数学第二讲证明不等式的基本方法三反证法与放缩法学案含解析新人教a版选修45

三 反证法与放缩法1.不等式的证明方法——反证法(1)反证法证明的定义:先假设要证明的命题不成立,然后由此假设出发,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不成立,从而证明原命题成立.(2)反证法证明不等式的一般步骤:①假设命题不成立;②依据假设推理论证;③推出矛盾以说明假设不成立,从而断定原命题成立.2.不等式的证明方法——放缩法 (1)放缩法证明的定义:证明不等式时,通常把不等式中的某些部分的值放大或缩小,简化不等式,从而达到证明的目的.(2)放缩法的理论依据主要有: ①不等式的传递性; ②等量加不等量为不等量;③同分子(分母)异分母(分子)的两个分式大小的比较.利用反证法证明不等式已知f (x )求证:(1)f (1)+f (3)-2f (2)=2;(2)|f (1)|,f |(2)|,|f (3)|中至少有一个不小于12.“不小于”的反面是“小于”,“至少有一个”的反面是“一个也没有”. (1)f (1)+f (3)-2f (2)=(1+p +q )+(9+3p +q )-2(4+2p +q )=2. (2)假设|f (1)|,|f (2)|,|f (3)|都小于12,则|f (1)|+2|f (2)|+|f (3)|<2.而|f (1)|+2|f (2)|+|f (3)|≥f (1)+f (3)-2f (2)=2矛盾, ∴|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12.(1)反证法适用范围:凡涉及不等式为否定性命题,唯一性、存在性命题可考虑反证法.如证明中含“至多”“至少”“不能”等词语的不等式.(2)注意事项:在对原命题进行否定时,应全面、准确,不能漏掉情况,反证法体现了“正难则反”的策略,在解题时要灵活应用.1.实数a ,b ,c 不全为0的等价条件为( ) A .a ,b ,c 均不为0 B .a ,b ,c 中至多有一个为0 C .a ,b ,c 中至少有一个为0 D .a ,b ,c 中至少有一个不为0解析:选D “不全为0”是对“全为0”的否定,与其等价的是“至少有一个不为0”. 2.证明:三个互不相等的正数a ,b ,c 成等差数列,则a ,b ,c 不可能成等比数列. 证明:假设a ,b ,c 成等比数列,则b 2=ac . 又∵a ,b ,c 成等差数列,∴a =b -d ,c =b +d (其中d 为公差). ∴ac =b 2=(b -d )(b +d ). ∴b 2=b 2-d 2. ∴d 2=0,∴d =0.这与已知中a ,b ,c 互不相等矛盾. ∴假设不成立.∴a ,b ,c 不可能成等比数列.3.已知函数y =f (x )在R 上是增函数,且f (a )+f (-b )<f (b )+f (-a ),求证:a <b . 证明:假设a <b 不成立,则a =b 或a >b .当a =b 时,-a =-b ,则有f (a )=f (b ),f (-a )=f (-b ),于是f (a )+f (-b )=f (b )+f (-a ),与已知矛盾.当a >b 时,-a <-b ,由函数y =f (x )的单调性可得f (a )>f (b ),f (-b )>f (-a ),于是有f (a )+f (-b )>f (b )+f (-a ),与已知矛盾.故假设不成立.∴a <b .利用放缩法证明不等式已知实数x x 2+xy +y 2+y 2+yz +z 2+z 2+zx +x 2>32(x +y +z ).解答本题可对根号内的式子进行配方后再用放缩法证明.x 2+xy +y 2=⎝ ⎛⎭⎪⎫x +y 22+34y 2≥⎝ ⎛⎭⎪⎫x +y 22=⎪⎪⎪⎪⎪⎪x +y 2≥x +y 2. 同理可得:y 2+yz +z 2≥y +z2,z 2+zx +x 2≥z +x2,由于x ,y ,z 不全为零,故上述三式中至少有一式取不到等号,所以三式相加,得x 2+xy +y 2+y 2+yz +z 2+z 2+zx +x 2>⎝ ⎛⎭⎪⎫x +y 2+⎝ ⎛⎭⎪⎫y +z 2+⎝ ⎛⎭⎪⎫z +x 2=32(x +y +z ).(1)利用放缩法证明不等式,要根据不等式两端的特点及已知条件(条件不等式),审慎地采取措施,进行恰当的放缩,任何不适宜的放缩都会导致推证的失败.(2)一定要熟悉放缩法的具体措施及操作方法,利用放缩法证明不等式,就是采取舍掉式中一些正项或负项,或者在分式中放大或缩小分子、分母,或者把和式中各项或某项换以较大或较小的数,从而达到证明不等式的目的.4.设n 是正整数,求证:12≤1n +1+1n +2+…+12n <1.证明:由2n ≥n +k >n (k =1,2,…,n ),得12n ≤1n +k <1n .当k =1时,12n ≤1n +1<1n ,当k =2时,12n ≤1n +2<1n ,…当k =n 时,12n ≤1n +n <1n.∴将以上n 个不等式相加,得12=n 2n ≤1n +1+1n +2+…+12n <nn =1.5.设f (x )=x 2-x +13,a ,b ∈,求证: |f (a )-f (b )|<|a -b |.证明:|f (a )-f (b )|=|a 2-a -b 2+b |=|(a -b )(a +b -1)|=|a -b ||a +b -1|. ∵0≤a ≤1,0≤b ≤1,∴0≤a +b ≤2,-1≤a +b -1≤1,|a +b -1|≤1.∴|f (a )-f (b )|≤|a -b |.课时跟踪检测(八)1.设a ,b ,c ∈R +,P =a +b -c ,Q =b +c -a ,R =c +a -b ,则“PQR >0”是“P ,Q ,R 同时大于零”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:选C 必要性是显然成立的;当PQR >0时,若P ,Q ,R 不同时大于零,则其中两个为负,一个为正,不妨设P >0,Q <0,R <0,则Q +R =2c <0,这与c >0矛盾,即充分性也成立.2.若|a -c |<h ,|b -c |<h ,则下列不等式一定成立的是( ) A .|a -b |<2h B .|a -b |>2h C .|a -b |<hD .|a -b |>h解析:选A |a -b |=|(a -c )-(b -c )|≤|a -c |+|b -c |<2h . 3.设x ,y 都是正实数,且xy -(x +y )=1,则( ) A .x +y ≥2(2+1) B .xy ≤2+1 C .x +y ≤(2+1)2D .xy ≥2(2+1)解析:选A 由已知(x +y )+1=xy ≤⎝ ⎛⎭⎪⎫x +y 22,∴(x +y )2-4(x +y )-4≥0. ∵x ,y 都是正实数,∴x >0,y >0,∴x +y ≥22+2=2(2+1).4.对“a ,b ,c 是不全相等的正数”,给出下列判断: ①(a -b )2+(b -c )2+(c -a )2≠0; ②a >b 与a <b 及a ≠c 中至少有一个成立; ③a ≠c ,b ≠c ,a ≠b 不能同时成立. 其中判断正确的个数为( ) A .0 B .1 C .2D .3解析:选C 若(a -b )2+(b -c )2+(c -a )2=0,则a =b =c ,与已知矛盾,故①对;当a >b 与a <b 及a ≠c 都不成立时,有a =b =c ,不符合题意,故②对;③显然不正确.5.若要证明“a ,b 至少有一个为正数”,用反证法证明时作的反设应为________. 答案:a ,b 中没有任何一个为正数(或a ≤0且b ≤0) 6.lg9·lg11与1的大小关系是________.解析:∵lg 9>0,lg 11>0,∴lg 9·lg 11<lg 9+lg 112=lg 992<lg 1002=1,∴lg 9·lg 11<1. 答案:lg 9·lg 11<17.设x >0,y >0,A =x +y 1+x +y ,B =x 1+x +y1+y,则A ,B 的大小关系是________.解析:A =x 1+x +y +y 1+x +y <x 1+x +y1+y =B .答案:A <B8.实数a ,b ,c ,d 满足a +b =c +d =1,且ac +bd >1.求证:a ,b ,c ,d 中至少有一个是负数.证明:假设a ,b ,c ,d 都是非负数. 由a +b =c +d =1知a ,b ,c ,d ∈. 从而ac ≤ac ≤a +c2,bd ≤bd ≤b +d2,∴ac +bd ≤a +c +b +d2=1,即ac +bd ≤1,与已知ac +bd >1矛盾, ∴a ,b ,c ,d 中至少有一个是负数. 9.已知a n =1×2+2×3+3×4+…+n n +1(n ∈N *).求证:n n +12<a n <n n +22.证明:∵n n +1=n 2+n ,∴nn +1>n ,∴a n =1×2+2×3+…+n n +1>1+2+3+…+n =n n +12.∵nn +1<n +n +12,∴a n <1+22+2+32+3+42+…+n +n +12=n 2+(1+2+3+…+n )=n n +22.综上得n n +12<a n <n n +22.10.已知f (x )=ax 2+bx +c ,若a +c =0,f (x )在上的最大值为2,最小值为-52.求证:a ≠0且⎪⎪⎪⎪⎪⎪b a <2. 证明:假设a =0或⎪⎪⎪⎪⎪⎪b a ≥2.①当a =0时,由a +c =0,得f (x )=bx ,显然b ≠0. 由题意得f (x )=bx 在上是单调函数, 所以f (x )的最大值为|b |,最小值为-|b |. 由已知条件得|b |+(-|b |)=2-52=-12,这与|b |+(-|b |)=0相矛盾,所以a ≠0. ②当⎪⎪⎪⎪⎪⎪b a ≥2时,由二次函数的对称轴为x =-b2a ,知f (x )在上是单调函数,故其最值在区间的端点处取得 .所以⎩⎪⎨⎪⎧f 1=a +b +c =2,f -1=a -b +c =-52或⎩⎪⎨⎪⎧f 1=a +b +c =-52,f -1=a -b +c =2.又a +c =0,则此时b 无解,所以⎪⎪⎪⎪⎪⎪b a <2. 由①②,得a ≠0且⎪⎪⎪⎪⎪⎪b a<2.本讲高考热点解读与高频考点例析考情分析从近两年的高考试题来看,不等式的证明主要考查比较法与综合法,而比较法多用作差比较,综合法主要涉及基本不等式与不等式的性质,题目难度不大,属中档题.在证明不等式时,要依据命题提供的信息选择合适的方法与技巧进行证明.如果已知条件与待证结论之间的联系不明显,可考虑用分析法;如果待证的命题以“至少”“至多”“恒成立”等方式给出,可考虑用反证法.在必要的情况下,可能还需要使用换元法、放缩法、构造法等技巧简化对问题的表述和证明.真题体验1.(全国甲卷)已知函数f (x )=⎪⎪⎪⎪⎪⎪x -12+⎪⎪⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集.(1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.(1)解:f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2得-2x <2,解得x >-1;当-12<x <12时,f (x )<2恒成立;当x ≥12时,由f (x )<2得2x <2,解得x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1,从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1=(a 2-1)·(1-b 2)<0.因此|a +b |<|1+ab |.2.(全国卷Ⅱ)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明: (1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件. 证明:(1)因为(a +b )2=a +b +2ab , (c +d )2=c +d +2cd , 由题设a +b =c +d ,ab >cd , 得(a +b )2>(c +d )2. 因此a +b >c +d .(2)①必要性:若|a -b |<|c -d |, 则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd . 因为a +b =c +d ,所以ab >cd . 由(1),得a +b >c +d . ②充分性:若a +b >c +d , 则(a +b )2>(c +d )2, 即a +b +2ab >c +d +2cd .因为a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2. 因此|a -b |<|c -d |.综上,a +b >c +d 是|a -b |<|c -d |的充要条件.比较法证明不等式比较法证明不等式的依据是:不等式的意义及实数比较大小的充要条件.作差比较法证明的一般步骤是:①作差;②恒等变形;③判断结果的符号;④下结论.其中,变形是证明推理中一个承上启下的关键,变形的目的在于判断差的符号,而不是考虑差能否化简或值是多少,变形所用的方法要具体情况具体分析,可以配方,可以因式分解,可以运用一切有效的恒等变形的方法.已知b ,m 1,m 2都是正数,a <b ,m 1<m 2,求证:a +m 1b +m 1<a +m 2b +m 2. a +m 1b +m 1-a +m 2b +m 2=a +m 1b +m 2-a +m 2b +m 1b +m 1b +m 2=am 2+bm 1-am 1-bm 2b +m 1b +m 2=a -b m 2-m 1b +m 1b +m 2.因为b >0,m 1,m 2>0,所以(b +m 1)(b +m 2)>0. 又a <b ,所以a -b <0. 因为m 1<m 2,所以m 2-m 1>0. 从而(a -b )(m 2-m 1)<0. 于是a -b m 2-m 1b +m 1b +m 2<0.所以a +m 1b +m 1<a +m 2b +m 2. 综合法证明不等式逐步推出其必要条件(由因导果),最后推导出所要证明的不等式成立.综合法证明不等式的依据是:已知的不等式以及逻辑推证的基本理论.证明时要注意的是:作为依据和出发点的几个重要不等式(已知或已证)成立的条件往往不同,应用时要先考虑是否具备应有的条件,避免错误,如一些带等号的不等式,应用时要清楚取等号的条件,即对重要不等式中“当且仅当……时,取等号”的理由要理解掌握.设a >0,b >0,a +b =1. 求证:1a +1b +1ab≥8.∵a >0,b >0,a +b =1. ∴1=a +b ≥2ab ,ab ≤12.∴1ab≥4.∴1a +1b +1ab=(a +b )⎝ ⎛⎭⎪⎫1a +1b +1ab≥2ab ·21ab+4=8.∴1a +1b +1ab≥8.分析法证明不等式分析法证明不等式的依据也是不等式的基本性质、已知的重要不等式和逻辑推理的基本理论.分析法证明不等式的思维方向是“逆推”,即由待证的不等式出发, 逐步寻找使它成立的充分条件(执果索因),最后得到的充分条件是已知(或已证)的不等式.当要证的不等式不知从何入手时,可考虑用分析法去证明,特别是对于条件简单而结论复杂的题目往往更为有效.分析法是“执果索因”,步步寻求上一步成立的充分条件,而综合法是“由因导果”,逐步推导出不等式成立的必要条件,两者是对立统一的两种方法.一般来说,对于较复杂的不等式,直接用综合法往往不易入手,因此,通常用分析法探索证题途径,然后用综合法加以证明,所以分析法和综合法可结合使用.已知a >b >0.求证:a -b <a -b . 要证a -b <a -b , 只需证a <a -b +b , 只需证(a )2<(a -b +b )2, 只需证a <a -b +b +2b a -b ,只需证0<2ba -b .∵a >b >0,上式显然成立,∴原不等式成立,即a -b <a -b .反证法证明不等式用直接法证明不等式困难的时候,可考虑用间接证法予以证明,反证法是间接证法的一种.假设欲证的命题是“若A 则B ”,我们可以通过否定B 来达到肯定B 的目的,如果B 只有有限多种情况,就可用反证法.用反证法证明不等式,其实质是从否定结论出发,通过逻辑推理,导出与已知条件或公理或定理或某些性质相矛盾的结论,从而肯定原命题成立.已知:在△ABC 中,∠CAB >90°,D 是BC 的中点.求证:AD <12BC (如右图所示).假设AD ≥12BC .①若AD =12BC ,由平面几何中定理“若三角形一边上的中线等于该边长的一半,那么,这条边所对的角为直角”,知∠A =90°,与题设矛盾.所以AD ≠12BC .②若AD >12BC ,因为BD =DC =12BC ,所以在△ABD 中,AD >BD ,从而∠B >∠BAD .同理∠C >∠CAD .所以∠B +∠C >∠BAD +∠CAD .即∠B +∠C >∠A . 因为∠B +∠C =180°-∠A , 所以180°-∠A >∠A , 即∠A <90°,与已知矛盾. 故AD >12BC 不成立.由①②知AD <12BC 成立.放缩法证明不等式作适当的放大或缩小,证明比原不等式更强的不等式来代替原不等式的一种证明方法.放缩法的实质是非等价转化,放缩没有一定的准则和程序,需按题意适当..放缩,否则达文档从互联网中收集,已重新修正排版,word 格式支持编辑,如有帮助欢迎下载支持。

高中数学:不等式题目的七种证明方法

高中数学:不等式题目的七种证明方法

高中数学:不等式题目的七种证明方法压轴题目一般是开放型的题目,每年都是会变化。

但大概率题目是函数、数列、圆锥曲线、不等式等知识的综合问题。

我就来总结一下不等式的证明方法。

01比较法所谓比较法,就是通过两个实数a与b的差或商的符号(范围)确定a与b大小关系的方法,即通过来确定a,b大小关系的方法。

前者为作差法,后者为作商法。

但要注意作差法适用范围较广;作商法再用时注意符号问题,如果同为正的话是没有问题的,同为负的话记得改变不等式的符号。

02分析法和综合这两个方法我们一般会一起使用。

分析法是从求证的不等式出发,分析这个不等式成立的充分条件,把证明这个不等式的问题转化为证明这些条件是否具备的问题。

如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立。

综合法是从已知或证明过的不等式出发,根据不等式的性质及公理推导出欲证的不等式。

我们来看一个例题,已知如果要用综合法或者分析法的话,对于过程上需要写明,即证,所以要证,也就是说,即等价于……一些转化的语句来过渡我们的题目。

当然这两个方法我们经常一起用,因为分析完条件,分析结论,两个一起分析做题速度更快一些呢。

03反证法从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的。

这个方法其实是按照集合的补集理论来的,正难则反,但是要注意用反证法证明不等式时,必须将命题结论的反面的各种情形都要考虑到,不能少的。

反证法证明一个命题的思路及步骤:1)假定命题的结论不成立;2)进行推理,在推理中出现下列情况之一:与已知条件矛盾;与公理或定理矛盾;3)由于上述矛盾的出现,可以断言,原来的假定“结论不成立”是错误的;4)肯定原来命题的结论是正确的。

04放缩法在证明过程中,利用不等式的传递性,作适当的放大或缩小,证明有更好的不等式来代替原不等式。

放缩法的目的性强,必须恰到好处,。

同时在放缩时必须时刻注意放缩的跨度,放不能过头,缩不能不及,灵活性很大。

高中数学 第二讲 证明不等式的基本方法 一 比较法教案(含解析)5数学教案

高中数学 第二讲 证明不等式的基本方法 一 比较法教案(含解析)5数学教案

一 比较法1.作差比较法(1)作差比较法的理论依据a -b >0⇔a >b ,a -b <0⇔a <b ,a -b =0⇔a =b .(2)作差比较法解题的一般步骤:①作差;②变形整理;③判定符号;④得出结论.其中变形整理是解题的关键,变形整理的目的是为了能够直接判定差的符号,常用的手段有:因式分解、配方、通分、分子或分母有理化等.2.作商比较法(1)作商比较法的理论依据是不等式的基本性质:①b >0,若a b >1,则a >b ;若ab <1,则a <b ;②b <0,若a b >1,则a <b ;若ab<1,则a >b .(2)作商比较法解题的一般步骤:①判定a ,b 的符号;②作商;③变形整理;④判定与1大小关系;⑤得出结论.作差比较法证明不等式[例1] y 3.[思路点拨] 因为不等式两边是同一种性质的整式,所以可以直接通过作差比较大小.[证明] x 3-x 2y +xy 2-(x 2y -xy 2+y 3)=x (x 2-xy +y 2)-y (x 2-xy +y 2) =(x -y )(x 2-xy +y 2)=(x -y )⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎫x -y 22+3y 24. 因为x >y ,所以x -y >0,于是(x -y )⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎫x -y 22+3y 24>0, 所以x 3-x 2y +xy 2>x 2y -xy 2+y 3.(1)作差比较法中,变形具有承上启下的作用,变形的目的在于判断差的符号,而不用考虑差能否化简或值是多少.(2)变形所用的方法要具体情况具体分析,可以配方,可以因式分解,可以运用一切有效的恒等变形的方法.(3)因式分解是常用的变形手段,为了便于判断“差式”的符号,常将“差式”变形为一个常数,或几个因式积的形式,当所得的“差式”是某字母的二次三项式时,常用配方法判断符号.有时会遇到结果符号不能确定,这时候要对差式进行分类讨论.1.求证:a 2+b 2≥2(a -b -1). 证明:a 2+b 2-2(a -b -1) =(a -1)2+(b +1)2≥0, ∴a 2+b 2≥2(a -b -1). 2.已知a ,b ∈R +,n ∈N +, 求证:(a +b )(a n+b n)≤2(an +1+bn +1). 证明:∵(a +b )(a n+b n)-2(an +1+bn +1)=an +1+ab n +ba n +bn +1-2an +1-2bn +1=a (b n -a n)+b (a n-b n) =(a -b )(b n-a n).①当a >b >0时,b n-a n<0,a -b >0, ∴(a -b )(b n-a n )<0.②当b >a >0时,b n-a n>0,a -b <0. ∴(a -b )(b n-a n )<0.③当a =b >0时,(b n-a n)(a -b )=0.综合①②③可知,对于a ,b ∈R +,n ∈N +,都有(a +b )(a n+b n)≤2(an +1+bn +1).作商比较法证明不等式[例2] 设a >0,b >0,求证:a a b b≥(ab )2.[思路点拨] 不等式两端都是指数式,它们的值均为正数,可考虑用作商比较法.[证明] ∵a a b b>0,(ab )a +b2>0,∴a a b b (ab )a +b 2=a a -b 2·b b -a 2=⎝ ⎛⎭⎪⎫a b a -b 2.当a =b时,显然有⎝ ⎛⎭⎪⎫a b a -b2=1;当a >b >0时,a b >1,a -b2>0,∴由指数函数单调性,有⎝ ⎛⎭⎪⎫a b a -b2>1;当b >a >0时,0<a b <1,a -b2<0,∴由指数函数的单调性,有⎝ ⎛⎭⎪⎫a b a -b2>1.综上可知,对任意实数a ,b ,都有a a b b≥(ab )a +b2.当欲证的不等式两端是乘积形式或幂指数形式时,常采用作商比较法,用作商比较法时,如果需要在不等式两边同乘某个数,要注意该数的正负,且最后结果与1比较.3.已知a >b >c >0.求证:a 2a b 2b c 2c>a b +c b c +a c a +b.证明:由a >b >c >0,得ab +c b c +a c a +b >0.作商a 2a b 2b c 2c a b +c b c +a c a +b =a a a a b b b b c c c ca b a c b c b a c a cb=aa -b a a -c b b -c b b -a c c -a cc -b=⎝ ⎛⎭⎪⎫a b a -b ⎝ ⎛⎭⎪⎫a c a -c ⎝ ⎛⎭⎪⎫b c b -c. 由a >b >c >0,得a -b >0,a -c >0,b -c >0,且a b >1,a c >1,b c>1. ∴⎝ ⎛⎭⎪⎫a b a -b ⎝ ⎛⎭⎪⎫a c a -c ⎝ ⎛⎭⎪⎫b c b -c>1. ∴a 2a b 2b c 2c >ab +c b c +a c a +b.4.设n ∈N ,n >1,求证log n (n +1)>log (n +1)(n +2).证明:因为n >1,所以log n (n +1)>0,log (n +1)(n +2)>0, 所以log (n +1)(n +2)log n (n +1)=log (n +1)(n +2)·log (n +1)n≤⎣⎢⎡⎦⎥⎤log (n +1)(n +2)+log (n +1)n 22=⎣⎢⎡⎦⎥⎤log (n +1)(n 2+2n )22<⎣⎢⎡⎦⎥⎤log (n +1)(n +1)222=1. 故log (n +1)(n +2)<log n (n +1), 即原不等式得证.比较法的实际应用[例3] 一半时间以速度m 行走,另一半以速度n 行走;乙有一半路程以速度m 行走,另一半路程以速度n 行走.如果m ≠n ,问甲、乙二人谁先到达指定地点?[思路点拨] 先用m ,n 表示甲、乙两人走完全程所用时间,再进行比较.[解] 设从出发地点至指定地点的路程为s ,甲、乙二人走完这段路程所用的时间分别为t 1,t 2 ,依题意有t 12m +t 12n =s ,s 2m +s2n=t 2.∴t 1=2s m +n ,t 2=s (m +n )2mn.∴t1-t2=2sm+n-s(m+n)2mn=s[4mn-(m+n)2]2mn(m+n)=-s(m-n)22mn(m+n).其中s,m,n都是正数,且m≠n,∴t1-t2<0.即t1<t2.从而知甲比乙先到达指定地点.应用不等式解决实际问题时,关键是如何把等量关系、不等量关系转化为不等式的问题来解决,也即建立数学模型是解应用题的关键,最后利用不等式的知识来解.在实际应用不等关系问题时,常用比较法来判断数的大小关系,若是选择题或填空题则可用特殊值加以判断.5.某人乘出租车从A地到B地,有两种方案;第一种方案:乘起步价为10元.每千米1.2元的出租车,第二种方案:乘起步价为8元,每千米1.4元的出租车.按出租车管理条例,在起步价内,不同型号的出租车行驶的路程是相等的,则此人从A地到B地选择哪一种方案比较合适?解:设A地到B地距离为m千米.起步价内行驶的路程为a千米.显然当m≤a时,选起步价为8元的出租车比较便宜.当m>a时,设m=a+x(x>0),乘坐起步价为10元的出租车费用为P(x)元.乘坐起步价为8元的出租车费用为Q(x)元,则P(x)=10+1.2 x,Q (x )=8+1.4x .∵P (x )-Q (x )=2-0.2x =0.2(10-x ),∴当x >10时,P (x )<Q (x ),此时选择起步价为10元的出租车较为合适.当x <10时,P (x )>Q (x ),此时选起步价为8元的出租车较为合适.当x =10时,P (x )=Q (x ),两种出租车任选,费用相同. 1.下列关系中对任意a <b <0的实数都成立的是( ) A .a 2<b 2B .lg b 2<lg a 2C.ba>1 D.⎝ ⎛⎭⎪⎫12a 2>⎝ ⎛⎭⎪⎫12b 2 解析:选B ∵a <b <0,∴-a >-b >0. (-a )2>(-b )2>0.即a 2>b 2>0.∴b 2a2<1.又lg b 2-lg a 2=lg b 2a2<lg 1=0,∴lg b 2<lg a 2.2.已知P =1a 2+a +1,Q =a 2-a +1,那么P ,Q 的大小关系是( )A .P >QB .P <QC .P ≥QD .P ≤Q解析:选D 法一:Q P=(a 2-a +1)(a 2+a +1)=(a 2+1)2-a 2=a 4+a 2+1≥1, 又∵a 2+a +1>0恒成立, ∴Q ≥P .法二:P -Q =1-(a 2-a +1)(a 2+a +1)a 2+a +1 =-(a 4+a 2)a 2+a +1,∵a 2+a +1>0恒成立且a 4+a 2≥0, ∴P -Q ≤0,即Q ≥P .3.已知a >0,b >0,m =a b +ba,n =a +b ,p =a +b ,则m ,n ,p 的大小关系是( )A .m ≥n >pB .m >n ≥pC .n >m >pD .n ≥m >p解析:选A 由m =a b +ba,n =a +b ,得a =b >0时,m=n, 可排除B 、C 项.比较A 、D 项,不必论证与p 的关系.取特殊值a =4,b =1,则m =4+12=92,n =2+1=3,∴m >n ,可排除D ,故选A.4.设m >n ,n ∈N +,a =(lg x )m +(lg x )-m ,b =(lg x )n+(lg x )-n,x >1,则a 与b 的大小关系为( )A .a ≥bB .a ≤bC .与x 值有关,大小不定D .以上都不正确解析:选A a -b =lg mx +lg -mx -lg n x -lg -nx =(lg mx -lgnx )-⎝ ⎛⎭⎪⎫1lg n x -1lg m x=(lg m x -lg nx )-lg mx -lg nx lg m x lg n x=(lg mx -lg nx )⎝ ⎛⎭⎪⎫1-1lg m x lg n x=(lg m x -lgnx )⎝⎛⎭⎪⎫1-1lg m +n x .∵x >1,∴lg x >0. 当0<lg x <1时,a >b ; 当lg x =1时,a =b ; 当lg x >1时,a >b . ∴应选A.5.若0<x <1,则1x 与1x2的大小关系是________.解析:1x -1x 2=x -1x2.因为0<x <1,所以1x -1x2<0.所以1x <1 x2.答案:1x < 1 x26.设P=a2b2+5,Q=2ab-a2-4a,若P>Q,则实数a,b满足的条件为________.解析:P-Q=a2b2+5-(2ab-a2-4a)=a2b2+5-2ab+a2+4a=a2b2-2ab+1+4+a2+4a=(ab-1)2+(a+2)2,∵P>Q,∴P-Q>0,即(ab-1)2+(a+2)2>0,∴ab≠1或a≠-2.答案:ab≠1或a≠-27.一个个体户有一种商品,其成本低于3 5009元.如果月初售出可获利100元,再将本利存入银行,已知银行月息为2.5%,如果月末售出可获利120元,但要付成本的2%的保管费,这种商品应________出售(填“月初”或“月末”).解析:设这种商品的成本费为a元.月初售出的利润为L1=100+(a+100)×2.5%,月末售出的利润为L2=120-2%a,则L1-L2=100+0.025a+2.5-120+0.02a=0.045⎝ ⎛⎭⎪⎫a -3 5009, ∵a <3 5009, ∴L 1<L 2,月末出售好.答案:月末8.已知x ,y ∈R, 求证:sin x +sin y ≤1+sin x sin y . 证明:∵sin x +sin y -1-sin x sin y=sin x (1-sin y )-(1-sin y )=(1-sin y )(sin x -1).∵-1≤sin x ≤1,-1≤sin y ≤1.∴1-sin y ≥0,sin x -1≤0.∴(1-sin y )(sin x -1)≤0.即sin x +sin y ≤1+sin x sin y .9.若a >0,b >0,c >0,求证:a a b b c c ≥(abc )a +b +c 3.证明:不妨设a ≥b ≥c ≥0,那么由指数函数的性质,有 ⎝ ⎛⎭⎪⎫a b a -b 3≥1,⎝ ⎛⎭⎪⎫b c b -c 3≥1,⎝ ⎛⎭⎪⎫c a c -a 3≥1. 所以a a b b c c (abc )a +b +c 3=a a -b 3+a -c 3b b -c 3+b -a 3c c -a 3+c -b 3 =⎝ ⎛⎭⎪⎫a b a -b 3·⎝ ⎛⎭⎪⎫b c b -c 3·⎝ ⎛⎭⎪⎫c a c -a 3≥1. ∴原不等式成立.10.已知a<b<c,x<y<z,则ax+by+cz,ax+cy+bz,bx +ay+cz,bx+cy+az中最大的是哪一个?证明你的结论.解:ax+by+cz最大.理由如下:ax+by+cz-(ax+cy+bz)=(b-c)y+(c-b)z=(b-c)(y -z),∵a<b<c,x<y<z,∴b-c<0,y-z<0,∴ax+by+cz-(ax+cy+bz)>0,即ax+by+cz>ax+cy+bz.ax+by+cz-(bx+ay+cz)=(a-b)x+(b-a)y=(a-b)(x -y)>0,∴ax+by+cz>bx+ay+cz.ax+by+cz-(bx+cy+az)=(a-b)x+(b-c)y+(c-a)z=(a-b)x+(b-c)y+[(c-b)+(b-a)]z=(a-b)(x-z)+(b-c)(y-z)>0,∴ax+by+cz>bx+cy+az.故ax+by+cz最大.。

高中数学-学生-不等式基本性质及证明

高中数学-学生-不等式基本性质及证明

基本不等式2:对任意正数错误!未找到引用源。

、错误!未找到引用源。

,有错误!未找到引用源。

,___________________等号成立基本不等式3:对任意错误!未找到引用源。

、错误!未找到引用源。

、错误!未找到引用源。

,有错误!未找到引用源。

,____________等号成立【热身练习】1、若错误!未找到引用源。

,用“”从小到大依次排列错误!未找到引用源。

、错误!未找到引用源。

、错误!未找到引用源。

、错误!未找到引用源。

:____________2、能使错误!未找到引用源。

与错误!未找到引用源。

同时成立的充要条件:__________________________3、命题“若错误!未找到引用源。

,错误!未找到引用源。

,则错误!未找到引用源。

”的逆否命题是_________________4、若错误!未找到引用源。

,错误!未找到引用源。

,则错误!未找到引用源。

__________错误!未找到引用源。

(选填“”、“”或“=”)5、下列命题中不正确的一个是()A、若错误!未找到引用源。

,则错误!未找到引用源。

B、若错误!未找到引用源。

,错误!未找到引用源。

,则错误!未找到引用源。

C、若错误!未找到引用源。

,错误!未找到引用源。

,则错误!未找到引用源。

D、若错误!未找到引用源。

,错误!未找到引用源。

,则错误!未找到引用源。

6、若错误!未找到引用源。

,错误!未找到引用源。

,下列命题中不恒成立的是()A、错误!未找到引用源。

B、错误!未找到引用源。

C、错误!未找到引用源。

D、错误!未找到引用源。

7、下列命题中,真命题是()A、若错误!未找到引用源。

,则错误!未找到引用源。

(错误!未找到引用源。

)B、若错误!未找到引用源。

,则错误!未找到引用源。

C、若错误!未找到引用源。

,则错误!未找到引用源。

D、若错误!未找到引用源。

且错误!未找到引用源。

,则错误!未找到引用源。

【精解名题】1、已知错误!未找到引用源。

高中数学知识点总结(不等式选讲 第二节 不等式的证明)

 高中数学知识点总结(不等式选讲 第二节 不等式的证明)

第二节 不等式的证明一、基础知识1.基本不等式(1)定理1:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. (2)定理2:如果a ,b >0,那么a +b2≥ab ,当且仅当a =b 时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均.(3)定理3:如果a ,b ,c ∈R +,那么a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.2.比较法(1)作差法的依据是:a -b >0⇔a >b . (2)作商法:若B >0,欲证A ≥B ,只需证AB ≥1.3.综合法与分析法(1)综合法:一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立.(2)分析法:从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义,公理或已证明的定理,性质等),从而得出要证的命题成立.考点一 比较法证明不等式[典例] 已知函数f (x )=⎪⎪⎪⎪x -12+⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.[解] (1)f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2,得-2x <2,解得x >-1;当-12<x <12时,f (x )<2恒成立;当x ≥12时,由f (x )<2,得2x <2,解得x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1, 从而(a +b )2-(1+ab )2 =a 2+b 2-a 2b 2-1 =(a 2-1)(1-b 2)<0. 因此|a +b |<|1+ab |. [题组训练]1.当p ,q 都是正数且p +q =1时,求证:(px +qy )2≤px 2+qy 2. 解:(px +qy )2-(px 2+qy 2) =p 2x 2+q 2y 2+2pqxy -(px 2+qy 2) =p (p -1)x 2+q (q -1)y 2+2pqxy .因为p +q =1,所以p -1=-q ,q -1=-p . 所以(px +qy )2-(px 2+qy 2) =-pq (x 2+y 2-2xy )=-pq (x -y )2. 因为p ,q 为正数,所以-pq (x -y )2≤0,所以(px +qy )2≤px 2+qy 2.当且仅当x =y 时,不等式中等号成立. 2.求证:当a >0,b >0时,a a b b≥(ab )+2a b .证明:∵a ab b ab+2a b =⎝⎛⎭⎫a b -2a b ,∴当a =b 时,⎝⎛⎭⎫a b -2a b =1,当a >b >0时,ab >1,a -b 2>0,∴⎝⎛⎭⎫a b -2a b>1,当b >a >0时,0<ab <1,a -b 2<0,∴⎝⎛⎭⎫a b -2a b>1,∴a a b b≥(ab )+2a b.考点二 综合法证明不等式[典例] (2017·全国卷Ⅱ)已知a >0,b >0,a 3+b 3=2.证明: (1)(a +b )(a 5+b 5)≥4; (2)a +b ≤2.[证明] (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6 =(a 3+b 3)2-2a 3b 3+ab (a 4+b 4) =4+ab (a 2-b 2)2≥4.(2)∵(a +b )3=a 3+3a 2b +3ab 2+b 3 =2+3ab (a +b )≤2+3a +b 24(a +b )=2+3a +b 34,∴(a +b )3≤8,因此a +b ≤2.[解题技法] 综合法证明不等式的方法(1)综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系,合理进行转换,恰当选择已知不等式,这是证明的关键;(2)在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,要注意性质成立的前提条件.[题组训练]1.设a ,b ,c ,d 均为正数,若a +b =c +d ,且ab >cd ,求证:a +b >c +d . 证明:因为(a +b )2=a +b +2ab ,(c +d )2=c +d +2cd . 由题设a +b =c +d ,ab >cd 得(a +b )2>(c +d )2. 因此 a +b >c +d .2.(2018·湖北八校联考)已知不等式|x |+|x -3|<x +6的解集为(m ,n ). (1)求m ,n 的值;(2)若x >0,y >0,nx +y +m =0,求证:x +y ≥16xy . 解:(1)由|x |+|x -3|<x +6,得⎩⎪⎨⎪⎧ x ≥3,x +x -3<x +6或⎩⎪⎨⎪⎧ 0<x <3,3<x +6或⎩⎪⎨⎪⎧x ≤0,-x +3-x <x +6, 解得-1<x <9,∴m =-1,n =9.(2)证明:由(1)知9x +y =1,又x >0,y >0, ∴⎝⎛⎭⎫1x +1y (9x +y )=10+y x +9xy≥10+2y x ×9xy=16, 当且仅当y x =9x y ,即x =112,y =14时取等号,∴1x +1y ≥16,即x +y ≥16xy .考点三 分析法证明不等式[典例] (2019·长春质检)设不等式||x +1|-|x -1||<2的解集为A . (1)求集合A ;(2)若a ,b ,c ∈A ,求证:⎪⎪⎪⎪⎪⎪1-abc ab -c >1.[解] (1)由已知,令f (x )=|x +1|-|x -1|=⎩⎪⎨⎪⎧2,x ≥1,2x ,-1<x <1,-2,x ≤-1,由|f (x )|<2,得-1<x <1,即A ={x |-1<x <1}. (2)证明:要证⎪⎪⎪⎪⎪⎪1-abc ab -c >1,只需证|1-abc |>|ab -c |,即证1+a 2b 2c 2>a 2b 2+c 2,即证1-a 2b 2>c 2(1-a 2b 2), 即证(1-a 2b 2)(1-c 2)>0,由a ,b ,c ∈A ,得-1<ab <1,c 2<1,所以(1-a 2b 2)(1-c 2)>0恒成立. 综上,⎪⎪⎪⎪⎪⎪1-abc ab -c >1.[解题技法] 分析法证明不等式应注意的问题(1)注意依据是不等式的基本性质、已知的重要不等式和逻辑推理的基本理论. (2)注意从要证不等式出发,逐步寻求使它成立的充分条件,最后得到的充分条件是已知(或已证)的不等式.(3)注意恰当地用好反推符号“⇐”或“要证明”“只需证明”“即证明”等词语. [题组训练]1.已知a >b >c ,且a +b +c =0,求证:b 2-ac <3a . 证明:由a >b >c 且a +b +c =0, 知a >0,c <0. 要证b 2-ac <3a , 只需证b 2-ac <3a 2.∵a +b +c =0,∴只需证b 2+a (a +b )<3a 2, 即证2a 2-ab -b 2>0, 即证(a -b )(2a +b )>0, 即证(a -b )(a -c )>0.∵a >b >c ,∴a -b >0,a -c >0, ∴(a -b )(a -c )>0显然成立, 故原不等式成立.2.已知函数f (x )=|x +1|.(1)求不等式f (x )<|2x +1|-1的解集M ; (2)设a ,b ∈M ,求证:f (ab )>f (a )-f (-b ). 解:(1)由题意,|x +1|<|2x +1|-1, ①当x ≤-1时,不等式可化为-x -1<-2x -2, 解得x <-1; ②当-1<x <-12时,不等式可化为x +1<-2x -2, 此时不等式无解; ③当x ≥-12时,不等式可化为x +1<2x ,解得x >1. 综上,M ={x |x <-1或x >1}.(2)证明:因为f (a )-f (-b )=|a +1|-|-b +1|≤|a +1-(-b +1)|=|a +b |, 所以要证f (ab )>f (a )-f (-b ), 只需证|ab +1|>|a +b |, 即证|ab +1|2>|a +b |2,即证a 2b 2+2ab +1>a 2+2ab +b 2, 即证a 2b 2-a 2-b 2+1>0, 即证(a 2-1)(b 2-1)>0.因为a ,b ∈M ,所以a 2>1,b 2>1,所以(a 2-1)(b 2-1)>0成立,所以原不等式成立.[课时跟踪检测]1.已知△ABC 的三边a ,b ,c 的倒数成等差数列,试用分析法证明:∠B 为锐角. 证明:要证∠B 为锐角,只需证cos B >0, 所以只需证a 2+c 2-b 2>0, 即a 2+c 2>b 2,因为a 2+c 2≥2ac , 所以只需证2ac >b 2, 由已知得2ac =b (a +c ).所以只需证b (a +c )>b 2,即a +c >b ,显然成立. 所以∠B 为锐角.2.若a >0,b >0,且1a +1b =ab .(1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由. 解:(1)由ab =1a +1b ≥2ab,得ab ≥2,仅当a =b =2时等号成立.故a 3+b 3≥2a 3b 3≥42,仅当a =b =2时等号成立. 所以a 3+b 3的最小值为4 2. (2)由(1)知,2a +3b ≥26ab ≥4 3.由于43>6,从而不存在a ,b ,使得2a +3b =6. 3.(2019·南宁模拟)(1)解不等式|x +1|+|x +3|<4; (2)若a ,b 满足(1)中不等式,求证:2|a -b |<|ab +2a +2b |.解:(1)当x <-3时,|x +1|+|x +3|=-x -1-x -3=-2x -4<4,解得x >-4,所以 -4<x <-3;当-3≤x <-1时,|x +1|+|x +3|=-x -1+x +3=2<4恒成立, 所以-3≤x <-1;当x ≥-1时,|x +1|+|x +3|=x +1+x +3=2x +4<4,解得x <0,所以-1≤x <0. 综上,不等式|x +1|+|x +3|<4的解集为{x |-4<x <0}. (2)证明:因为4(a -b )2-(ab +2a +2b )2 =-(a 2b 2+4a 2b +4ab 2+16ab ) =-ab (b +4)(a +4)<0, 所以4(a -b )2<(ab +2a +2b )2, 所以2|a -b |<|ab +2a +2b |.4.(2018·武昌调研)设函数f (x )=|x -2|+2x -3,记f (x )≤-1的解集为M . (1)求M ;(2)当x ∈M 时,求证:x [f (x )]2-x 2f (x )≤0.解:(1)由已知,得f (x )=⎩⎪⎨⎪⎧x -1,x ≤2,3x -5,x >2.当x ≤2时,由f (x )=x -1≤-1, 解得x ≤0,此时x ≤0;当x >2时,由f (x )=3x -5≤-1, 解得x ≤43,显然不成立.故f (x )≤-1的解集为M ={x |x ≤0}.(2)证明:当x ∈M 时,f (x )=x -1,于是x [f (x )]2-x 2f (x )=x (x -1)2-x 2(x -1)=-x 2+x =-⎝⎛⎭⎫x -122+14. 令g (x )=-⎝⎛⎭⎫x -122+14, 则函数g (x )在(-∞,0]上是增函数, ∴g (x )≤g (0)=0. 故x [f (x )]2-x 2f (x )≤0.5.(2019·西安质检)已知函数f (x )=|2x -1|+|x +1|. (1)解不等式f (x )≤3;(2)记函数g (x )=f (x )+|x +1|的值域为M ,若t ∈M ,求证:t 2+1≥3t+3t .解:(1)依题意,得f (x )=⎩⎪⎨⎪⎧-3x ,x ≤-1,2-x ,-1<x <12,3x ,x ≥12,∴f (x )≤3⇔⎩⎪⎨⎪⎧x ≤-1,-3x ≤3或⎩⎪⎨⎪⎧-1<x <12,2-x ≤3或⎩⎪⎨⎪⎧x ≥12,3x ≤3,解得-1≤x ≤1,即不等式f (x )≤3的解集为{x |-1≤x ≤1}.(2)证明:g (x )=f (x )+|x +1|=|2x -1|+|2x +2|≥|2x -1-2x -2|=3, 当且仅当(2x -1)(2x +2)≤0,即-1≤x ≤12时取等号,∴M =[3,+∞). t 2+1-3t -3t =t 3-3t 2+t -3t=t -3t 2+1t,∵t ∈M ,∴t -3≥0,t 2+1>0, ∴t -3t 2+1t ≥0,∴t 2+1≥3t+3t .6.(2019·长春质检)已知函数f (x )=|2x -3|+|3x -6|. (1)求f (x )<2的解集;(2)若f (x )的最小值为T ,正数a ,b 满足a +b =12,求证:a +b ≤T .解:(1)f (x )=|2x -3|+|3x -6|=⎩⎪⎨⎪⎧-5x +9,x <32,-x +3,32≤x ≤2,5x -9,x >2.作出函数f (x )的图象如图所示.由图象可知,f (x )<2的解集为⎝⎛⎭⎫75,115. (2)证明:由图象可知f (x )的最小值为1, 由基本不等式可知a +b2≤ a +b2= 14=12, 当且仅当a =b 时,“=”成立,即a +b ≤1=T . 7.已知函数f (x )=|2x -1|-⎪⎪⎪⎪x +32. (1)求不等式f (x )<0的解集M ;(2)当a ,b ∈M 时,求证:3|a +b |<|ab +9|.解:(1)f (x )=⎩⎪⎨⎪⎧52-x ,x <-32,-3x -12,-32≤x ≤12,x -52,x >12.当x <-32时,f (x )<0,即52-x <0,无解;当-32≤x ≤12时,f (x )<0,即-3x -12<0,得-16<x ≤12;当x >12时,f (x )<0,即x -52<0,得12<x <52.综上,M =⎩⎨⎧⎭⎬⎫x ⎪⎪-16<x <52. (2)证明:要证3|a +b |<|ab +9|,只需证9(a 2+b 2+2ab )<a 2b 2+18ab +81, 即证a 2b 2-9a 2-9b 2+81>0, 即证(a 2-9)(b 2-9)>0.因为a ,b ∈M ,所以-16<a <52,-16<b <52,所以a 2-9<0,b 2-9<0, 所以(a 2-9)(b 2-9)>0, 所以3|a +b |<|ab +9|.8.已知函数f (x )=m -|x +4|(m >0),且f (x -2)≥0的解集为[-3,-1]. (1)求m 的值;(2)若a ,b ,c 都是正实数,且1a +12b +13c =m ,求证:a +2b +3c ≥9.解:(1)法一:依题意知f (x -2)=m -|x +2|≥0, 即|x +2|≤m ⇔-m -2≤x ≤-2+m .由题意知不等式的解集为[-3,-1],所以⎩⎪⎨⎪⎧-m -2=-3,-2+m =-1,解得m =1.法二:因为不等式f (x -2)≥0的解集为[-3,-1],所以-3,-1为方程f (x -2)=0的两根,即-3,-1为方程m -|x +2|=0的两根,所以⎩⎪⎨⎪⎧m -|-3+2|=0,m -|-1+2|=0,解得m =1.(2)证明:由(1)可知1a +12b +13c=1(a ,b ,c >0),所以a +2b +3c =(a +2b +3c )⎝⎛⎭⎫1a +12b +13c =3+⎝⎛⎭⎫a 2b +2b a +⎝⎛⎭⎫a 3c +3c a +⎝⎛⎭⎫2b 3c +3c2b ≥9,当且仅当a =2b =3c ,即a =3,b =32,c =1时取等号.。

高中数学必修5公开课教案 基本不等式 的证明

高中数学必修5公开课教案  基本不等式 的证明

3.4 基本不等式:2b a ab +≤3.4.1 基本不等式2b a ab +≤的证明 从容说课在前两节课的研究当中,学生已掌握了一些简单的不等式及其应用,并能用不等式及不等式组抽象出实际问题中的不等量关系,掌握了不等式的一些简单性质与证明,研究了一元二次不等式及其解法,学习了二元一次不等式(组)与简单的线性规划问题.本节课的研究是前三大节学习的延续和拓展.另外,为基本不等式的应用垫定了坚实的基础,所以说,本节课是起到了承上启下的作用.本节课是通过让学生观察第24届国际数学家大会的会标图案中隐含的相等关系与不等关系而引入的.通过分析得出基本不等式:2b a ab +≤,然后从三种角度对基本不等式展开证明及对基本不等式展开一些简单的应用,进而更深一层次地从理性角度建立不等观念.教师应作好点拨,利用几何背景,数形结合做好归纳总结、逻辑分析,并鼓励学生从理性角度去分析探索过程,进而更深层次理解基本不等式,鼓励学生对数学知识和方法获得过程的探索,同时也能激发学生的学习兴趣,根据本节课的教学内容,应用观察、类比、归纳、逻辑分析、思考、合作交流、探究,得出基本不等式,进行启发、探究式教学并使用投影仪辅助.教学重点 1.创设代数与几何背景,用数形结合的思想理解基本不等式;2.从不同角度探索基本不等式的证明过程;3.从基本不等式的证明过程进一步体会不等式证明的常用思路.教学难点 1.对基本不等式从不同角度的探索证明;2.通过基本不等式的证明过程体会分析法的证明思路.教具准备 多媒体及课件三维目标 一、知识与技能1.创设用代数与几何两方面背景,用数形结合的思想理解基本不等式;2.尝试让学生从不同角度探索基本不等式的证明过程;3.从基本不等式的证明过程进一步体会不等式证明的常用思路,即由条件到结论,或由结论到条件. 二、过程与方法1.采用探究法,按照联想、思考、合作交流、逻辑分析、抽象应用的方法进行启发式教学;2.教师提供问题、素材,并及时点拨,发挥老师的主导作用和学生的主体作用;3.将探索过程设计为较典型的具有挑战性的问题,激发学生去积极思考,从而培养他们的数学学习兴趣.三、情感态度与价值观1.通过具体问题的解决,让学生去感受、体验现实世界和日常生活中存在着大量的不等量关系并需要从理性的角度去思考,鼓励学生用数学观点进行归纳、抽象,使学生感受数学、走进数学,培养学生严谨的数学学习习惯和良好的思维习惯;2.学习过程中,通过对问题的探究思考,广泛参与,培养学生严谨的思维习惯,主动、积极的学习品质,从而提高学习质量;3.通过对富有挑战性问题的解决,激发学生顽强的探究精神和严肃认真的科学态度,同时去感受数学的应用性,体会数学的奥秘、数学的简洁美、数学推理的严谨美,从而激发学生的学习兴趣.教学过程导入新课探究:上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客,你能在这个图中找出一些相等关系或不等关系吗?(教师用投影仪给出第24届国际数学家大会的会标,并介绍此会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客.通过直观情景导入有利于吸引学生的注意力,激发学生的学习热情,并增强学生的爱国主义热情) 推进新课师 同学们能在这个图中找出一些相等关系或不等关系吗?如何找? (沉静片刻)生 应该先从此图案中抽象出几何图形.师 此图案中隐含什么样的几何图形呢?哪位同学能在黑板上画出这个几何图形? (请两位同学在黑板上画.教师根据两位同学的板演作点评)(其中四个直角三角形没有画全等,不形象、直观.此时教师用投影片给出隐含的规范的几何图形)师 同学们观察得很细致,抽象出的几何图形比较准确.这说明,我们只要在现有的基础上进一步刻苦努力,发奋图强,也能作出和数学家赵爽一样的成绩.(此时,每一位同学看上去都精神饱满,信心百倍,全神贯注地投入到本节课的学习中来) [过程引导]师 设直角三角形的两直角边的长分别为a 、b ,那么,四个直角三角形的面积之和与正方形的面积有什么关系呢?生 显然正方形的面积大于四个直角三角形的面积之和.师 一定吗? (大家齐声:不一定,有可能相等)师 同学们能否用数学符号去进行严格的推理证明,从而说明我们刚才直觉思维的合理性? 生 每个直角三角形的面积为ab 21,四个直角三角形的面积之和为2ab .正方形的边长为22b a,所以正方形的面积为a 2+b 2,则a 2+b 2≥2ab .师这位同学回答得很好,表达很全面、准确,但请大家思考一下,他对a2+b2≥2ab证明了吗?生没有,他仍是由我们刚才的直观所得,只是用字母表达一下而已.师回答得很好.(有的同学感到迷惑不解)师这样的叙述不能代替证明.这是同学们在解题时经常会犯的错误.实质上,对文字性语言叙述证明题来说,他只是写出了已知、求证,并未给出证明.(有的同学窃窃私语,确实是这样,并没有给出证明)师请同学们继续思考,该如何证明此不等式,即a2+b2≥2ab.生采用作差的方法,由a2+b2-2ab=(a-b)2,∵(a-b)2是一个完全平方数,它是非负数,即(a-b)2≥0,所以可得a2+b2≥2ab.师同学们思考一下,这位同学的证明是否正确?生正确.[教师精讲]师这位同学的证明思路很好.今后,我们把这种证明不等式的思想方法形象地称之为“比较法”,它和根据实数的基本性质比较两个代数式的大小是否一样.生实质一样,只是设问的形式不同而已.一个是比较大小,一个是让我们去证明.师这位同学回答得很好,思维很深刻.此处的比较法是用差和0作比较.在我们的数学研究当中,还有另一种“比较法”.(教师此处的设问是针对学生已有的知识结构而言)生作商,用商和“1”比较大小.师对.那么我们在遇到这类问题时,何时采用作差,何时采用作商呢?这个问题让同学们课后去思考,在解决问题中自然会遇到.(此处设置疑问,意在激发学生课后去自主探究问题,把探究的思维空间切实留给学生)[合作探究]师请同学们再仔细观察一下,等号何时取到.生当四个直角三角形的直角顶点重合时,即面积相等时取等号.(学生的思维仍建立在感性思维基础之上,教师应及时点拨)师从不等式a2+b2≥2ab的证明过程能否去说明.生当且仅当(a-b)2=0,即a=b时,取等号.师这位同学回答得很好.请同学们看一下,刚才两位同学分别从几何图形与不等式两个角度分析等号成立的条件是否一致.(大家齐声)一致.(此处意在强化学生的直觉思维与理性思维要合并使用.就此问题来讲,意在强化学生数形结合思想方法的应用)板书:一般地,对于任意实数a、b,我们有a2+b2≥2ab,当且仅当a=b时,等号成立.[过程引导]师这是一个很重要的不等式.对数学中重要的结论,我们应仔细观察、思考,才能挖掘出它的内涵与外延.只有这样,我们用它来解决问题时才能得心应手,也不会出错.(同学们的思维再一次高度集中,似乎能从不等式a2+b2≥2ab中得出什么.此时,教师应及时点拨、指引)师当a>0,b>0时,请同学们思考一下,是否可以用a、b代替此不等式中的a、b.生完全可以.师 为什么?生 因为不等式中的a 、b ∈R. 师 很好,我们来看一下代替后的结果.板书:ab b a ≥+2即2b a ab +≤ (a >0,b >0). 师 这个不等式就是我们这节课要推导的基本不等式.它很重要,在数学的研究中有很多应用,我们常把2b a +叫做正数a 、b 的算术平均数,把ab 叫做正数a 、b 的几何平均数,即两个正数的算术平均数不小于它们的几何平均数.(此处意在引起学生的重视,从不同的角度去理解)师 请同学们尝试一下,能否利用不等式及实数的基本性质来推导出这个不等式呢?(此时,同学们信心十足,都说能.教师利用投影片展示推导过程的填空形式) 要证:ab b a ≥+2, 只要证a +b ≥2ab ,要证②,只要证:a +b -2ab ≥0,要证③,只要证:,0)(2≥-b a显然④是成立的,当且仅当a =b 时,④中的等号成立,这样就又一次得到了基本不等式. (此处以填空的形式,突出体现了分析法证明的关键步骤,意在把思维的时空切实留给学生,让学生在探究的基础上去体会分析法的证明思路,加大了证明基本不等式的探究力度) [合作探究]老师用投影仪给出下列问题.如图,AB 是圆的直径,点C 是AB 上一点,A C=a ,B C=b .过点C 作垂直于AB 的弦DD′,连结A D 、B D.你能利用这个图形得出基本不等式的几何解释吗?(本节课开展到这里,学生从基本不等式的证明过程中已体会到证明不等式的常用方法,对基本不等式也已经很熟悉,这就具备了探究这个问题的知识与情感基础) [合作探究]师 同学们能找出图中与a 、b 有关的线段吗?生 可证△A CD ∽△B CD,所以可得ab CD =.生 由射影定理也可得ab CD =.师 这两位同学回答得都很好,那ab 与2b a +分别又有什么几何意义呢?生ab 表示半弦长,2b a +表示半径长. 师 半径和半弦又有什么关系呢? 生 由半径大于半弦可得ab b a ≥+2. 师 这位同学回答得是否很严密?生 当且仅当点C 与圆心重合,即当a =b 时可取等号,所以也可得出基本不等式2b a ab +≤(a >0,b >0). 课堂小结师 本节课我们研究了哪些问题?有什么收获?生 我们通过观察分析第24届国际数学家大会的会标得出了不等式a 2+b 2≥2ab . 生 由a 2+b 2≥2ab ,当a >0,b >0时,以a 、b 分别代替a 、b ,得到了基本不等式2b a ab +≤ (a >0,b >0).进而用不等式的性质,由结论到条件,证明了基本不等式. 生 在圆这个几何图形中我们也能得到基本不等式.(此处,创造让学生进行课堂小结的机会,目的是培养学生语言表达能力,也有利于课外学生归纳、总结等学习方法、能力的提高)师 大家刚才总结得都很好,本节课我们从实际情景中抽象出基本不等式.并采用数形结合的思想,赋予基本不等式几何直观,让大家进一步领悟到基本不等式成立的条件是a >0,b >0,及当且仅当a =b 时等号成立.在对不等式的证明过程中,体会到一些证明不等式常用的思路、方法.以后,同学们要注意数形结合的思想在解题中的灵活运用.布置作业活动与探究:已知a 、b 都是正数,试探索b a 112+,ab ,2b a +,222b a +的大小关系,并证明你的结论.分析:(方法一)由特殊到一般,用特殊值代入,先得到表达式的大小关系,再由不等式及实数的性质证明.(方法二)创设几何直观情景.设A C=a ,B C=b ,用a 、b 表示线段CE、OE、CD、DF的长度,由CE>OE>CD>DF可得. 板书设计基本不等式2b a ab +≤的证明 一、实际情景引入得到重要不等式 课时小结a 2+b 2≥2ab二、定理若a >0,b >0,课后作业 则ab b a ≥+2证明过程探索:。

高中数学必修第一册(人教A版)第二章2.2基本不等式

高中数学必修第一册(人教A版)第二章2.2基本不等式
本节课我们研究了哪些问 题?有什么收获?
课作 后业 肆
1.课后习题; 2.查阅相关资料了解数学史 上对基本不等式的研究和发现。
谢谢观看
Click here to modify the text , you may post text here . Click here to modify the text . Click here to modify the text , you may post text here . Click here to modify the text , you may post text here . Click here to modify the text . Click here to modify the text
基本不等式
新初 知探 壹
A
D
ab
2
ab
a O Cb
B
E
基本不等式
如果a 0,b 0, a b ab ,当且仅当a=b时号成立. 2
算术平均数
几何平均数
基本不等式表明: 两个正数的算术平均数不小于它们的几何平均数.
你能从其他角度证明基本不等式吗?
证明:(作差法) a b ab(1)已知x 0,求x+ 1的最大值. x
(2)已知x 2,求 x2 +5x+7 的最小值. x+2
利用基本不等式解决实际问题
例3(1)用篱笆围成一个面积为100m2 的矩形 菜园,问这个矩形的长、宽各为多少时,所用 篱笆最短?最短的篱笆是多少?
(2)用一段长为36 m的篱笆围成一个矩形 菜园,问这个矩形的长、宽各为多少时,菜园面 积最大?最大面积是多少?
z 150 4800 120(2 3x 2 3 4800)

高中数学第二讲证明不等式的基本方法综合法与分析法

高中数学第二讲证明不等式的基本方法综合法与分析法

2。

2.2 分析法课堂导学三点剖析一,利用分析法证明不等式【例1】 (1)设a>b 〉0,求证:333b a b a ->-。

(2)已知0〈α〈π,证明2sin2α≤cot 2α,并指出等号成立的条件。

证明:(1)要证333b a b a ->-,∵a>b〉0,有3b a ->0, ∴需证(3b a -)3>(33b a -)3,展开得a —b 〉a —323b a +b ab -323, 即证明)(3333b a ab -〉0, 也就是证33b a ->0,在题设条件下这一不等式显然成立,∴原不等式成立.(2)要证2sin2α≤cot 2α,由0<α<π知sinα〉0,只需证2sinα·sin2α≤1+cosα,即证明4sin 2αcosα-(1+cosα)≤0,也就是证(1+cosα)[4(1—cosα)cosα-1]≤0,而1+cosα>0,于是只要证-4cos 2α+4cosα—1≤0,即—(2cosα—1)2≤0,就是(2cosα-1)2≥0,这是显然的。

∴2sin2α≤cot 2α,等号在2cosα=1,α=3π时取得。

各个击破类题演练1若a ,b,c 三数均大于1,且ab=10,求证:log a c+log b c≥4lgc.证明:由于a>1,b 〉1,要证log a c+log b c≥4lgc,需证b ca clg lg lg lg +≥4lgc,而lgc>0, 因此只要证b a lg 1lg 1+≥4,即证b a b a lg lg lg lg +≥4。

∵ab=10,有lga+lgb=1,于是只需证lga·lgb≤41, 而lga·lgb≤(2lg lg b a +)2=41。

∴不等式log a c+log b c≥4lgc 成立.变式提升1已知a>0,b 1—a 1>1,求证:ba ->+111。

数学基本不等式知识点(高中数学知识点复习资料归纳整理)

数学基本不等式知识点(高中数学知识点复习资料归纳整理)

数学基本不等式知识点(高中数学知识点复习资料归纳整理)基本不等式【考纲要求】1. 了解基本不等式的证明过程,理解基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;2. 会用基本不等式解决最大(小)值问题.3. 会应用基本不等式求某些函数的最值;能够解决一些简单的实际问题【知识网络】【考点梳理】考点一:重要不等式及几何意义1.重要不等式:如果,那么(当且仅当时取等号“=”).2.基本不等式:如果是正数,那么(当且仅当时取等号“=”).要点诠释:和两者的异同:(1)成立的条件是不同的:前者只要求都是实数,而后者要求都是正数;(2)取等号“=”的条件在形式上是相同的,都是“当且仅当时取等号”。

(3)可以变形为:,可以变形为:.3. 如图,是圆的直径,点C是AB上的一点,AC=a,BC=b,过点C作交圆于点D,连接AD、BD易证,那么,即.这个圆的半径为,它大于或等于CD,即,其中当且仅当点C与圆心重合,即a=b时,等号成立.要点诠释:1. 在数学中,我们称为a,b的算术平均数,称为a,b 的几何平均数. 因此基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.2. 如果把看作是正数的等差中项,看作是正数的等比中项,那么基本不等式可以叙述为:两个正数的等差中项不小于它们的等比中项.考点二:基本不等式的证明1. 几何面积法如图,在正方形ABCD中有四个全等的直角三角形。

设直角三角形的两条直角边长为a、b,那么正方形的边长为。

这样,4个直角三角形的面积的和是2ab,正方形ABCD的面积为。

由于4个直角三角形的面积小于正方形的面积,所以:。

当直角三角形变为等腰直角三角形,即a=b时,正方形EFGH缩为一个点,这时有。

得到结论:如果,那么(当且仅当时取等号“=”)特别的,如果a>0,b>0,我们用、分别代替a、b,可得:如果a>0,b>0,则,(当且仅当a=b时取等号“=”).通常我们把上式写作:如果a>0,b>0,,(当且仅当a=b时取等号“=”)2. 代数法∵,当时,;当时,.所以,(当且仅当时取等号“=”).特别的,如果,,我们用、分别代替、,可得:如果,,则,(当且仅当时取等号“=”).通常我们把上式写作:如果,,,(当且仅当时取等号“=”).要点三、用基本不等式求最大(小)值在用基本不等式求函数的最值时,应具备三个条件:一正二定三取等。

高中数学 第一章 不等式的基本性质和证明的基本方法 1

高中数学 第一章 不等式的基本性质和证明的基本方法 1

>
������ ������2+1
,
故正确;对于选项
D,当 c=0 时不正确.
答案:C
【做一做2-2】 下列命题中正确的有
.
①若a>b,则ac2>bc2;
②若
������ ������2
>
������ ������2
,
则a>b;
③若
a>b,ab≠0,则
1 ������
<
1 ������
;
④若 a>b,c>d,则 ac>bd;
C.
������ ������2+1
>
������ ������2+1
D.a|c|>b|c|
解析:对于选项A,还需有ab>0这个前提条件;对于选项B,当a,b都
为负数时不成立,或一正一负时可能不成立,如2>-3,但22>(-3)2不正
确;对于选项
C,由
1 ������2+1
>
0,a>b,可知
������ ������2+1
(3) 加(减) 如果 a>b,那么 a+c>b+c,即 a>b⇔a+c>b+c
(4)
乘(除)
如果 a>b,c>0,那么 ac>bc; 如果 a>b,c<0,那么 ac<bc
(5) 乘方 如果 a>b>0,那么 an>bn(n∈N*,且 n≥2)
(6) 开方 如果 a>b>0,那么������ ������ > ������ ������(n∈N*,且 n≥2)

高中数学第一章不等式的基本性质和证明不等式的基本方法1

高中数学第一章不等式的基本性质和证明不等式的基本方法1

——教学资料参考参考范本——高中数学第一章不等式的基本性质和证明不等式的基本方法1______年______月______日____________________部门[读教材·填要点]1.反证法首先假设要证明的命题是不正确的,然后利用公理,已有的定义、定理,命题的条件逐步分析,得到和命题的条件(或已证明过的定理,或明显成立的事实)矛盾的结论,以此说明假设的结论不成立,从而原来结论是正确的,这种方法称为反证法.2.放缩法在证明不等式时,有时需要将所需证明的不等式的值适当放大(或缩小)使它由繁化简,达到证明目的,这种方法称为放缩法.[小问题·大思维]1.用反证法证明不等式应注意哪些问题?提示:用反证法证明不等式要把握三点:(1)必须先否定结论,对于结论的反面出现的多种可能要逐一论证,缺少任何一种可能,证明都是不完全的.(2)反证法必须从否定结论进行推理,且必须根据这一条件进行论证;否则,仅否定结论,不从结论的反面出发进行论证,就不是反证法.(3)推导出来的矛盾可以是多种多样的,有的与已知条件相矛盾,有的与假设相矛盾,有的与定理、公理相违背,有的与已知的事实相矛盾等,但推导出的矛盾必须是明显的.2.运用放缩法证明不等式的关键是什么?提示:运用放缩法证明不等式的关键是放大(或缩小)要适当.如果所要证明的不等式中含有分式,那么我们把分母放大时相应分式的值就会缩小;反之,如果把分母缩小,则相应分式的值就会放大.有时也会把分子、分母同时放大,这时应该注意不等式的变化情况,可以与相应的函数相联系,以达到判断大小的目的,这些都是我们在证明中的常用方法与技巧,也是放缩法中的主要形式.[对应学生用书P21]用反证法证明否定性结论[例1] 设a,b,c,d都是小于1的正数,求证:4a(1-b),4b(1-c),4c(1-d),4d(1-a)这四个数不可能都大于1.[思路点拨] 本题考查反证法的应用.解答本题若采用直接法证明将非常困难,因此可考虑采用反证法从反面入手解决.[精解详析] 假设4a(1-b)>1,4b(1-c)>1,4c(1-d)>1,4d(1-a)>1,则有a(1-b)>,b(1-c)>,c(1-d)>,d(1-a)>.∴>,>,>,>.又∵≤,≤,≤,≤,∴>,>,c+1-d>,>.2将上面各式相加得2>2,矛盾.∴4a(1-b),4b(1-c),4c(1-d),4d(1-a)这四个数不可能都大于1.(1)当证明的结论中含有“不是”,“不都”,“不存在”等词语时,适于应用反证法,因为此类问题的反面比较具体.(2)用反证法证明不等式时,推出的矛盾有三种表现形式①与已知相矛盾,②与假设矛盾,③与显然成立的事实相矛盾.1.已知数列{an}的前n项和为Sn,且满足an+Sn=2.(1)求数列{an}的通项公式;(2)求证数列{an}中不存在三项按原来顺序成等差数列.解:(1)当n=1时,a1+S1=2a1=2,则a1=1.又an+Sn=2,所以an+1+Sn+1=2,两式相减得an+1=an,所以{an}是首项为1,公比为的等比数列,所以an=.(2)反证法:假设存在三项按原来顺序成等差数列,记为ap+1,aq+1,ar+1(p<q<r,且p,q,r∈N+),则2·=+,所以2·2r-q=2r-p+1.①又因为p<q<r,所以r-q,r-p∈N+.所以①式左边是偶数,右边是奇数,等式不成立,所以假设不成立,原命题得证.用反证法证明“至多”、“至少”型命题[例2]若a,b,c均为实数,且a=x2-2y+π2,b=y2-2z+π3,c=z2-2x+π6,求证:a,b,c中至少有一个大于0.[思路点拨] 由于问题是“至少型”命题,故可用反证法证明.[精解详析] 假设a,b,c都不大于0,即a≤0,b≤0,c≤0,则a+b+c≤0,而a+b+c=x2-2y++y2-2z++z2-2x+=(x-1)2+(y-1)2+(z-1)2+π-3∴π-3>0,且(x-1)2+(y-1)2+(z-1)≥0∴a+b+c>0这与a+b+c≤0矛盾.因此,a,b,c中至少有一个大于0.(1)在证明中含有“至少”、“至多”、“最多”等字眼时,或证明否定性命题、惟一性命题时,可使用反证法证明.在证明中常见的矛盾可以与题设矛盾,也可以与已知矛盾,与显然的事实矛盾,也可以自相矛盾.(2)在用反证法证明的过程中,由于作出了与结论相反的假设,相当于增加了题设条件,因此在证明过程中必须使用这个增加的条件,否则将无法推出矛盾.2.实数a,b,c,d满足a+b=c+d=1,ac+bd>1.求证:a,b,c,d中至少有一个是负数.证明:假设a,b,c,d都是非负数,即a≥0,b≥0,c≥0,d≥0,则1=(a+b)(c+d)=(ac+bd)+(ad+bc)≥ac+bd.这与已知中ac+bd>1矛盾,∴原假设错误,故a,b,c,d中至少有一个是负数.用放缩法证明不等式[例3] 求证:-<1++…+<2-(n∈N*且n≥2).[思路点拨]本题考查放缩法在证明不等式中的应用,解答本题要注意欲证的式子中间是一个和的形式,但我们不能利用求和公式或其他方法求和,因此可考虑将分母适当放大或缩小成可以求和的形式,进而求和,并证明该不等式.[精解详析] ∵k(k+1)>k2>k(k-1),∴<<.即-<<-(k∈N+且k≥2).分别令k=2,3,…,n得1-<<1-,-<<-,2…1-<<-,将这些不等式相加得n1-+-+…+-<++…+<1-+-+…+-,2即-<++…+<1-.∴1+-<1+++…+<1+1-.即-<1+++…+<2-(n∈N+且n≥2)成立.(1)放缩法证不等式主要是根据不等式的传递性进行变换,即欲证a>b,可换成证a>c且c>b,欲证a<b,可换成证a<c且c<b.(2)放缩法是不等式证明中最重要的变形方法之一,放缩必须有目标.而且要恰到好处,目标往往要从证明的结论考察.常用的放缩方法有增项、减项、利用分式的性质、利用不等式的性质、利用已知不等式、利用函数的性质进行放缩等.比如:舍去或加上一些项:2+>2;将分子或分母放大(缩小):<,>1,<,>(k∈R,k>1)等.3.设n是正整数,求证:≤++…+<1.证明:由2n≥n+k≥n(k=1,2…,n),得≤<.当k=1时,≤<;当k=2时,≤<;…当k=n时,≤<,∴=≤++…+<=1.[对应学生用书P23]一、选择题1.否定“自然数a 、b 、c 中恰有一个为偶数”时正确的反设为( )A .a 、b 、c 都是奇数B .a 、b 、c 都是偶数C .a 、b 、c 中至少有两个偶数D .a 、b 、c 中至少有两个偶数或都是奇数解析:三个自然数的奇偶情况有“三偶、三奇、二偶一奇、二奇一偶”4种,而自然数a 、b 、c 中恰有一个为偶数包含“二奇一偶”的情况,故反面的情况有3种,只有D 项符合.答案:D2.设M =+++…+,则( ) A .M =1 B .M<1 C .M>1D .M 与1大小关系不定解析:∵210+1>210,210+2>210,…,211-1>210, ∴M =+++…+1211-1<=1.101010102111···222+++个答案:B3.设a ,b ,c∈(-∞,0),则三数a +,b +,c +的值( ) A .都不大于-2 B .都不小于-2C.至少有一个不大于-2D.至少有一个不小于-2解析:假设都大于-2,则a++b++c+>-6,∵a,b,c<0,∴a+≤-2,b+≤-2,c+≤-2,∴a++b++c+≤-6,这与假设矛盾,则选C.答案:C4.已知p=a+,q=-a2+4a(a>2),则( )A.p>q B.p<qC.p≥q D.p≤q解析:∵p=(a-2)++2,又a-2>0,∴p≥2+2=4,而q=-(a-2)2+4,由a>2,可得q<4,∴p>q.答案:A二、填空题5.给出下列两种说法:①已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p+q≥2;②已知a,b∈R,|a|+|b|<1,求证方程x2+ax+b=0的两根的绝对值都小于1,用反证法证明时,可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1.以上两种说法正确的是________.解析:反证法的实质是否定结论,对于①,其结论的反面是p+q>2,所以①错误;对于②,其假设正确.答案:②6.用反证法证明“已知平面上有n(n≥3)个点,其中任意两点的距离最大为d ,距离为d 的两点间的线段称为这组点的直径,求证直径的数目最多为n 条”时,假设的内容为________.解析:对“至多”的否定应当是“至少”,二者之间应该是完全对应的,所以本题中的假设应为“直径的数目至少为n +1条”.答案:直径的数目至少为n +1条7.A =1+++…+与(n∈N+)的大小关系是________. 解析:A =+++…+≥==.111++?··+n n n n项答案:A≥n8.设a>0,b>0,M =,N =+,则M 与N 的大小关系是________. 解析:∵a>0,b>0, ∴N =+>+ ==M. ∴M<N. 答案:M<N 三、解答题9.已知0<x<2,0<y<2,0<z<2,求证:x(2-y),y(2-z),z(2-x)不都大于1.证明:法一:假设x(2-y)>1且y(2-z)>1且z(2-x)>1均成立, 则三式相乘有:xyz(2-x)(2-y)(2-z)>1.①由于0<x<2,∴0<x(2-x)=-x2+2x =-(x -1)2+1≤1.同理:0<y(2-y)≤1,且0<z(2-z)≤1,∴三式相乘得:0<xyz(2-x)(2-y)(2-z)≤1② ②与①矛盾,故假设不成立.∴x(2-y),y(2-z),z(2-x)不都大于1.法二:假设x(2-y)>1且y(2-z)>1且z(2-x)>1. ∴++>3.③又++≤++=3④④与③矛盾,故假设不成立,∴原题设结论成立.10.已知实数x 、y 、z 不全为零,求证: + + >(x +y +z). 证明:x2+xy+y2= ≥ ⎝ ⎛⎭⎪⎫x+y 22 =|x +|≥x+.同理可得:≥y+,z2+zx+x2≥z+.由于x 、y 、z 不全为零,故上述三式中至少有一式取不到等号,所以三式累加得:x2+xy+y2++>++=(x +y +z).11.设数列{an}的前n 项和为Sn ,a1=1,Sn =nan -2n(n -1).(1)求数列{an}的通项公式an ;(2)设数列的前n 项和为Tn ,求证:≤Tn<.解:(1)由Sn =nan -2n(n -1)得an +1=Sn +1-Sn =(n +1)an +1-nan -4n , 即an +1-an =4.∴数列{an}是以1为首项,4为公差的等差数列, ∴an =4n -3.(2)证明:Tn =++…+1anan+1 =+++…+1 =14⎝ ⎛⎭⎪⎫1-15+15-19+19-113+…+14n-3-14n+1=<.又易知Tn 单调递增,故Tn≥T1=,得≤Tn<.。

高中数学基本不等式证明

高中数学基本不等式证明

高中数学基本不等式证明高中数学中,基本不等式是指一些常见的不等式或不等式组,它们的成立非常重要,经常被用于证明其他不等式或解决实际问题。

下面,我将为您详细介绍几个常见的高中数学基本不等式以及它们的证明。

1. 平均不等式:对于任意正数a1,a2,...,an,有(a1+a2+...+an)/n ≥ (a1*a2*...*an)^(1/n)。

证明:我们可以利用数学归纳法进行证明。

首先,当n=2时,不等式成立,即(a1+a2)/2≥(a1*a2)^(1/2),这是平均值不等式的特殊情况。

假设当n=k时,不等式成立,即(a1+a2+...+ak)/k ≥(a1*a2*...*ak)^(1/k)。

当n=k+1时,考虑(a1+a2+...+ak+ak+1)/(k+1)与(a1*a2*...*ak*ak+1)^(1/(k+1))的大小关系。

由于(a1+a2+...+ak)/k ≥ (a1*a2*...*ak)^(1/k)(根据假设,这是成立的)。

我们可以将(a1+a2+...+ak+ak+1)分解为(k*(a1+a2+...+ak))/k+ak+1,利用不等式的性质,得到:(k*(a1+a2+...+ak))/k+ak+1 ≥k*(a1*a2*...*ak)^(1/k)*(ak+1)^(1/k+1)。

经过简单的变形,我们可以得到要证明的不等式,即(a1+a2+...+ak+ak+1)/(k+1) ≥ (a1*a2*...*ak*ak+1)^(1/k+1)。

根据数学归纳法的原理,平均不等式得证。

2.伯努利不等式:对于任意实数x>-1和正整数n,有(1+x)^n ≥ 1+nx。

证明:我们可以利用数学归纳法来证明伯努利不等式。

首先,当n=1时,左边为(1+x),右边为1+x,显然成立。

假设当n=k时,不等式成立,即(1+x)^k ≥ 1+kx。

当n=k+1时,考虑(1+x)^(k+1)和(1+(k+1)x)之间的大小关系。

高中数学证明不等式的九种常用方法

高中数学证明不等式的九种常用方法

ab-a-b+1≥a+b-3 即ab≥a+b+(a+b-4) ∵a≥2,b≥2 ∴a+b-4≥0 ∴ab≥a+b 当且仅当a=b=2时等号成立 证毕
6 Math Part
构造法
6 Math Part 构造法
构造法:通过构造函数、图形、方程、数列、 向量等来证明不等式的方法。
本题我们使用构造函数和几何图形两种方法 来说明构造法的使用。
=a(b-1)-(b-1)-1
∴ab-a-b≥0
=(a-1)(b-1)-1
即ab≥a+b
∵a≥2,b≥2
证毕
2 Math Part
综合法
2 Math Part 综合法
综合法:综合法是从命题的已知条件出发, 利用公理、已知定义及定理,逐步推导,从 而最后推导出要证明的命题。
2 Math Part 综合法
4 Math Part 反证法
例题:已知a≥2,b≥2,求证:ab≥a+b
证明: 假设ab<a+b ab-a-b =a(b-1)-b =a(b-1)-(b-1)-1 =(a-1)(b-1)-1 ∵ab<a+b
∴(a-1)(b-1)<1

∵a≥2,b≥2
∴a-1≥1,b-1≥1
∴(a-1)(b-1)≥1
与①式矛盾
所以原命题成立
证毕
5 Math Part
公式法
5 Math Part 公式法
伯公努式利法不:等利式用:已有的不等式的定理、公式等 (1证+x明1)不(1等+x式2)…的(一1+种xn方) ≥法1。+x高1+中x2常…+见xn的公式有: 对基 栖于本 西任不不意等等1≤式式i,、、j≤绝加n都对权有值平x不均i>-等不1且式 等所、 式有均 、x值 切i与不 比x等雪j同式夫号、不

高中数学第1章不等式的基本性质和证明的基本方法1.2基本不等式讲义新人教B版选修4_5

高中数学第1章不等式的基本性质和证明的基本方法1.2基本不等式讲义新人教B版选修4_5

1.2 基本不等式学习目标:1.理解两个正数的基本不等式.2.了解三个正数和一般形式的基本不等式.3.会用基本不等式求一些函数的最值及实际应用题.教材整理 基本定理(重要不等式及基本不等式) 1.定理1设a ,b ∈R ,则a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 2.定理2如果a ,b 为正数,则a =b 时,等号成立.这个不等式我们称之为基本不等式或平均值不等式.同时,我们称a +b2为正数a ,b 的算术平均值,称ab 为正数a ,b 的几何平均值,该定理又可叙述为:两个正数的算术平均值大于或等于它们的几何平均值.3.定理3如果a ,b ,c 为正数,则a +b +c3≥3abc ,当且仅当a =b =c 时,等号成立.4.定理4如果a 1,a 2,…,a n 为n 个正数,则a 1=a 2=…=a n时,等号成立.设0<a <b ,则下列不等式中正确的是( ) A .a <b <ab <a +b2 B .a <ab <a +b2<bC .a <ab <b <a +b 2D.ab <a <a +b2<b[解析] ∵0<a <b ,∴a <a +b2<b ,A ,C 错误;ab -a =a (b -a )>0,即ab >a ,故选B.[答案] B【例1】 已知a ,b ,c 都是正数,求证:b +c +a≥a +b +c .[精彩点拨] 观察不等号两边差异,利用基本不等式来构造关系. [自主解答] ∵a >0,b >0,c >0,∴a 2b +b ≥2a 2b·b =2a , 同理:b 2c +c ≥2b ,c 2a+a ≥2c .三式相加得:a 2b +b 2c +c 2a+(b +c +a )≥2(a +b +c ), ∴a 2b +b 2c +c 2a≥a +b +c .1.首先根据不等式两端的结构特点进行恒等变形,或配凑使之具备基本不等式的结构和条件,然后合理地选择基本不等式或其变形进行证明.2.当且仅当a =b =c 时,上述不等式中“等号”成立,若三个式子中有一个“=”号取不到,则三式相加所得的式子中“=”号取不到.1.(2019·全国卷Ⅰ)已知a ,b ,c 为正数,且满足abc =1.证明:(1)1a +1b +1c≤a 2+b2+c 2;(2)(a +b )3+(b +c )3+(c +a )3≥24.[证明] (1)因为a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac ,又abc =1, 故有a 2+b 2+c 2≥ab +bc +ca =ab +bc +caabc=1a +1b +1c.所以1a +1b +1c≤a 2+b 2+c 2.(2)因为a ,b ,c 为正数且abc =1,故有 (a +b )3+(b +c )3+(c +a )3≥33(a +b )3(b +c )3(a +c )3=3(a +b )(b +c )(a +c )≥3×(2ab )×(2bc )×(2ac )=24, 所以(a +b )3+(b +c )3+(c +a )3≥24.【例2】 (1)已知x ,y ∈R +,且x +2y =1,求x +y的最小值;(2)已知x >0,y >0,且5x +7y =20,求xy 的最大值.[精彩点拨] 根据题设条件,合理变形,创造能用基本不等式的条件. [自主解答] (1)因为x +2y =1, 所以1x +1y =x +2y x +x +2y y =3+2y x +x y≥3+22y x ·xy=3+22,当且仅当2y x=xy,x +2y =1,即x =2-1,y =1-22时,等号成立. 所以当x =2-1,y =1-22时,1x +1y取最小值3+2 2. (2)xy =135(5x ·7y )≤135⎝ ⎛⎭⎪⎫5x +7y 22=135⎝ ⎛⎭⎪⎫2022=207, 当且仅当5x =7y =10,即x =2,y =107时,等号成立,此时xy 取最大值207.在求最值时,除了注意“一正、二定、三相等”之外,还要掌握配项、凑系数等变形技巧,有时为了便于应用公式,还用换元法,多用于分母中有根式的情况.2.若将本例(1)的条件改为“已知x >0,y >0,且1x +9y=1”,试求x +y 的最小值.[解] ∵x >0,y >0,且1x +9y=1,∴x +y =(x +y )⎝⎛⎭⎪⎫1x +9y=y x+9xy+10≥2y x ·9xy+10=16. 当且仅当y x=9xy,即y =3x 时等号成立. 又1x +9y=1,∴当x =4,y =12时,(x +y )min =16.万件与年促销费用m 万元(m ≥0)满足x =3-km +1(k 为常数),如果不搞促销活动,该产品的年销售量只能是1万件.已知生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为年平均每件产品成本的1.5倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用).(1)将该产品的年利润y 万元表示为年促销费用m 万元的函数;(2)该厂家的年促销费用投入为多少万元时,厂家的年利润最大?最大年利润是多少万元?[精彩点拨] (1)可先通过m =0时,x =1求出常数k ,再根据条件列出y 关于m 的函数;(2)在(1)的函数关系式下,利用基本不等式求最值.[自主解答] (1)依题意得m =0时,x =1,代入x =3-km +1,得k =2,即x =3-2m +1. 年成本为8+16x =8+16⎝⎛⎭⎪⎫3-2m +1(万元), 所以y =(1.5-1)⎣⎢⎡⎦⎥⎤8+16⎝⎛⎭⎪⎫3-2m +1-m =28-m -16m +1(m ≥0). (2)由(1)得y =29-⎣⎢⎡⎦⎥⎤(m +1)+16m +1≤ 29-2(m +1)·16m +1=21. 当且仅当m +1=16m +1,即m =3时,厂家的年利润最大,为21万元.设出变量――→建立数学模型――→定义域利用均值不等式求最值 ――――→“=”成立的条件结论3.某工厂建一底面为矩形(如图),面积为162 m 2,且深为1 m 的无盖长方体的三级污水池,由于受地形限制,底面的长和宽都不能超过16 m ,如果池外围四壁建造单价为400 元/m 2,中间两条隔墙建造单价为248 元/m 2,池底建造单价为80 元/m 2,试设计污水池的长和宽,使总造价最低.[解] 设污水池的宽为x m ,则长为162xm ,则总造价f (x )=400×⎝⎛⎭⎪⎫2x +2×162x+248×2x +80×162=1 296x +1 296×100x+12 960=1 296⎝ ⎛⎭⎪⎫x +100x +12 960.由限制条件,知⎩⎪⎨⎪⎧0<x ≤16,0<162x ≤16,得818≤x ≤16. 设g (x )=x +100x ⎝ ⎛⎭⎪⎫818≤x ≤16, 因为g (x )在⎣⎢⎡⎦⎥⎤818,16上是增函数, 所以当x =818时⎝ ⎛⎭⎪⎫此时162x =16,g (x )有最小值,即f (x )有最小值,f (x )min =1 296×⎝ ⎛⎭⎪⎫818+80081+12 960=38 882(元).所以当长为16 m ,宽为818 m 时,总造价最低,为38 882元.1.在基本不等式a +b2≥ab 中,为什么要求a >0,b >0?[提示] 对于不等式a +b2≥ab ,如果a ,b 中有两个或一个为0,虽然不等式仍成立,但是研究的意义不大,当a ,b 都为负数时,不等式不成立;当a ,b 中有一个为负数,另一个为正数,不等式无意义.2.你能给出基本不等式的几何解释吗?[提示] 如图,以a +b 为直径的圆中,DC =ab ,且DC ⊥AB . 因为CD 为圆的半弦,OD 为圆的半径,长为a +b2,根据半弦长不大于半径,得不等式ab≤a +b2.显然,上述不等式当且仅当点C 与圆心重合,即当a =b 时,等号成立.因此,基本不等式的几何意义是:圆的半弦长不大于半径;或直角三角形斜边的中线不小于斜边上的高.3.利用基本不等式,怎样求函数的最大值或最小值?[提示] 利用算术平均数与几何平均数定理(即基本不等式)可以求函数的最大值、最小值.(1)已知x ,y ∈(0,+∞),如果积xy 是定值P ,那么当x =y 时,和x +y 有最小值2P . (2)已知x ,y ∈(0,+∞),如果和x +y 是定值S ,那么当x =y 时,积xy 有最大值14S 2.以上两条可简记作:和一定,相等时,积最大;积一定,相等时,和最小.条件满足:“一正、二定、三相等”.【例4】 求下列函数的值域.(1)y =x 2+12x ;(2)y =2x x 2+1.[精彩点拨] 把函数转化为y =ax +bx或y =1ax +b x的形式,再利用基本不等式求解.[自主解答] (1)y =x 2+12x =12⎝ ⎛⎭⎪⎫x +1x ,当x >0时,x +1x ≥2,∴y ≥1;当x <0时,-x >0,-x +1-x ≥2,x +1x ≤-2,∴y ≤-1,综上函数y =x 2+12x的值域为{y |y ≤-1或y ≥1}.(2)当x >0时,y =2x x 2+1=2x +1x. 因为x +1x ≥2,所以0<1x +1x≤12,所以0<y ≤1,当且仅当x =1时,等号成立; 当x <0时,x +1x≤-2,所以0>1x +1x≥-12, 所以-1≤y <0,当且仅当x =-1时,等号成立; 当x =0时,y =0. 综上,函数y =2xx 2+1的值域为{y |-1≤y ≤1}.形如y =cx 2+ex +f ax +b 型的函数,一般可先通过配凑或变量替换等变形为y =t +Pt+C (P ,C为常数)型函数,再利用基本不等式求最值,但要注意变量t 的取值范围.4.求函数y =x 2+8x -1(x >1)的最小值.[解] 因为x >1,所以x -1>0.所以y =x 2+8x -1=(x -1)2+2x +7x -1=(x -1)2+2(x -1)+9x -1=(x -1)+9x -1+2≥2(x -1)·9x -1+2=8, 当且仅当x -1=9x -1, 即x =4时,等号成立. 所以当x =4时,y min =8.1.函数y =1x -3+x (x >3)的最小值是( ) A .5 B .4 C .3D .2[解析] 原式变形为y =1x -3+x -3+3. ∵x >3,∴x -3>0,∴1x -3>0, ∴y ≥2(x -3)·1x -3+3=5, 当且仅当x -3=1x -3,即x =4时等号成立. [答案] A2.下列函数中最小值为4的是( ) A .y =x +4xB .y =sin x +4sin x (0<x <π)C .y =3x+4×3-xD .y =lg x +4log x 10[解析] A 项,当x <0时,y =x +4x<0,故A 项错误;B 项,当0<x <π时,sin x >0,∴y =sin x +4sin x ≥2sin x ·4sin x =4,当且仅当sin x =4sin x,即sin x =2时取等号,但sin x ≤1,B 项错误;C 项,由指数函数的性质可得3x>0,所以y =3x+4·3-x≥24=4,当且仅当3x=2,即x =log 32时取得最小值4,故C 项正确;D 项,当0<x <1时,lg x <0,log x 10<0,所以y =lg x +4log x 10<0,故D 项错误.[答案] C3.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C .1a +1b>2abD .b a +ab≥2[解析] A 选项中,当a =b 时,a 2+b 2=2ab ,则排除A ;当a <0,b <0时,a +b <0<2ab ,1a +1b<0<2ab,则排除B ,C 选项;D 选项中,由b a >0,a b >0,得b a +a b≥2b a ·ab=2,当且仅当a =b 时取“=”,所以选D.[答案] D4.不等式b a +a b>2成立的充要条件是________. [解析] 由b a +a b >2,知b a>0,即ab >0, 又b a ≠a b,∴a ≠b .因此b a +a b>2的充要条件是ab >0且a ≠b . [答案] ab >0且a ≠b5.(2019·全国卷Ⅲ)设x ,y ,z ∈R ,且x +y +z =1. (1)求(x -1)2+(y +1)2+(z +1)2的最小值;(2)若(x -2)2+(y -1)2+(z -a )2≥13成立,证明:a ≤-3或a ≥-1.[解] (1)由于[(x -1)+(y +1)+(z +1)]2=(x -1)2+(y +1)2+(z +1)2+2[(x -1)(y +1)+(y +1)(z +1)+(z +1)(x -1)]≤3[(x-1)2+(y +1)2+(z +1)2],故由已知得(x -1)2+(y +1)2+(z +1)2≥43,当且仅当x =53,y =-13,z =-13时等号成立.所以(x -1)2+(y +1)2+(z +1)2的最小值为43.(2)证明:由于[(x -2)+(y -1)+(z -a )]2=(x -2)2+(y -1)2+(z -a )2+2[(x -2)(y -1)+(y -1)(z -a )+(z -a )(x -2)] ≤3[(x -2)2+(y -1)2+(z -a )2],故由已知得(x -2)2+(y -1)2+(z -a )2≥(2+a )23,当且仅当x =4-a 3,y =1-a 3,z =2a -23时等号成立.因此(x -2)2+(y -1)2+(z -a )2的最小值为(2+a )23.由题设知(2+a )23≥13,解得a ≤-3或a ≥-1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式证明基本方法例1 :求证:221a b a b ab ++≥+-分析:比较法证明不等式是不等式证明的最基本的方法,常用作差法和作商法,此题用作差法较为简便。

证明:221()a b a b ab ++-+- 2221[()(1)(1)]02a b a b =-+-+-≥ 评注:1.比较法之一(作差法)步骤:作差——变形——判断与0的关系——结论2.作差后的变形常用方法有因式分解、配方、通分、有理化等,应注意结合式子的形式,适当选 用。

例2:设c b a >>,求证:b a a c c b ab ca bc 222222++<++分析:从不等式两边形式看,作差后可进行因式分解。

证明:)(222222b a a c c b ab ca bc ++-++=)()()(a b ab c a ca b c bc -+-+-=)()]()[()(a b ab c b b a ca b c bc -+-+-+-=))()((a c c b b a --- c b a >>Θ,则,0,0,0<->->-a c c b b a∴0))()((<---a c c b b a故原不等式成立评注:三元因式分解因式,可以排列成一个元的降幂形式:=++-++)(222222b a a c c b ab ca bc )())(()(2a b ab b a b a c a b c -++-+-,这样容易发现规律。

例3 :已知,,a b R +∈求证:11()()2()n n n n a b a b ab ++++≤+ 证明:11()()2()n n n n a b a b ab ++++-+ 11n n n n a b ab ab ++=+-- ()()n na b a b a b =-+-()()n n a b b a =--ⅰ)当0a b >>时,0,n n a b b a -><,则()()0n na b b a --<ⅱ)当0a b =>时,0,a b -=,则()()0n n a b b a --=ⅲ)当0b a >>时,0,n n a b b a -<>,则()()0n n a b b a --<评注:两边相减能消去一部分、两边相除能约去一部分,作差后能因式分解,作商后能进一步简化变形等,是运用比较法的外部特征。

当作差或商后的式子中含有字母时,有时需对字母进行分类讨论。

例4 :已知,,a b R +∈且,a b ≠求证:a b b a a b a b > 分析一:作差后可以判定符号,可用作差法。

证法一:(1)a b b a a b b a a b a b a b a b ab ---=- [1()]a b b a a a b b -=- ⅰ)当a b >时,1,0,a b a b>-<则()1b a a b -< ⅱ)当a b <时,01,0,a b a b<<->则()1b a a b -< 又∵0a b a b >,∴a b b a a b a b >分析二:不等式两边次数不同,也可以先降次,再作差。

证法二:∵0,0a b >>Q∴lg()lg()a b a ba b b a -lg lg lg lg a a b b a b b a =+--()(lg lg )a b a b =--ⅰ)当0a b >>时,a b -与lg lg a b -同为正ⅱ)当0b a >>时,a b -与lg lg a b -同为负∴lg()lg()a b a b a b b a >即a b b a a b a b >评注:有时可将原不等式变形后再作差比较(如平方后作差等),可使变形更方便。

分析三:不等式两边均为正数,也可用作商法。

证法三:()a b a b a b a b a b a b-=ⅰ)当0a b >>时,1,0,()1a b a a a b b b->->∴> ⅱ)当0b a >>时,01,0,()1a b a a a b b b -<<-<∴> ∴a b b a a b a b >评注:1.比较法之二(作商法)步骤:作商——变形——判断与1的关系——结论2.作差法是通法,运用较广。

作商法要注意条件,不等式两边必须为正数。

常用于证幂、指数形 式的不等式。

例5 :设c b a ,,都正数,求证:c b a cab b ca a bc ++≥++ 分析:不等式左边可以两两运用均值不等式,得到不等式右边。

证明:,,,+∈R c b a Θ,,,+∈∴R cab b ca a bc ∴2,2,2bc ca ca ab ab bc c a b a b b c c a+≥+≥+≥ ∴2(bc a +)(2c b a cab b ca ++≥+, ∴c b a c ab b ca a bc ++≥++ 评注:1.利用某些已经证明过的不等式(例如算术平均数与几何平均数定理)和不等式的性质推导出所要 证明的不等式成立,这种证明方法通常叫做综合法2.综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推 出结论的一种证明方法例6:设a,b,c 均为正实数,求证:a 21+b 21+c 21≥c b +1+a c +1+ba +1. 分析一:不等式左边两两结合,可以连续使用均值不等式。

证法一:∵a,b,c 均为正实数, ∴21(a 21+b 21)≥ab21≥b a +1,当a =b 时等号成立; 21(b 21+c 21)≥bc21≥c b +1,当b =c 时等号成立; 21(c 21+a 21)≥ca21≥a c +1.当a =c 时等号成立; 三个不等式相加即得a 21+b 21+c 21≥c b +1+a c +1+ba +1,当且仅当a =b =c 时等号成立. 分析二:从一些常用不等式出发,可以减少思维回路,降低解题难度,提高效率。

证法二:∵0,0>>b a .4)11)((≥++b a b a ∴.411ba b a +≥+同理:.411b c b c +≥+ .411ca c a +≥+ ∴.444)111(2c a cb b ac b a +++++≥++ ∴a 21+b 21+c 21≥c b +1+a c +1+ba +1 评注:运用综合法证明不等式,必须发现式子的结构特征,结合重要不等式和常用不等式,找到解题的方 法。

例7 : 已知a,b,c ∈R +,且a +b +c =1.求证:(1+a )(1+b )(1+c )≥8(1-a )(1-b )(1-c ).分析:在条件“a +b +c =1”的作用下,将不等式的“真面目”隐含了,给证明不等式带来困难,若将“a +b +c ” 换成“1”,则还原出原不等式的“真面目”,从而抓住实质,解决问题.证明:∵a,b,c ∈R +且a +b +c =1,∴要证原不等式成立,即证[(a +b +c )+a ]·[(a +b +c )+b ][(a +b +c )+c ]≥8[(a +b +c )-a ]·[(a +b +c )-b ]·[(a +b +c )-c ]. 也就是证[(a +b )+(c +a )][(a +b )+(b +c )]·[(c +a )+(b +c )]≥8(b +c )(c +a )(a +b ) ①∵(a +b )+(b +c )≥2))((c b b a ++>0,(b +c )+(c +a )≥2))((a c c b ++>0,(c +a )+(a +b )≥2))((b a a c ++>0,三式相乘得①式成立.故原不等式得证.评注:1.证明不等式时,有时可以从求证的不等式出发,分析使这个不等式成立的条件,把证明不等式转 化为判定这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以断定原不等式 成立,这种方法通常叫做分析法分析法的思维特点是:执果索因2.分析法的书写格式:要证明命题B 为真,只需要证明命题1B 为真,从而有……这只需要证明命 题2B 为真,从而又有…… 这只需要证明命题A 为真,而已知A 为真,故命题B 必为真 例8 :设0>>b a ,求证:.8)(28)(22bb a ab b a a b a -<-+<+ 分析:不等式的形式较复杂,可以从原不等式出发,进行化简变形。

证法一:要证原不等式成立,只需证:.8)(2)(8)(222b b a b a a b a -<-<+ ∵b a ≠只需证.4)(14)(22bb a a b a +<<+ 只需证bb a a b a 212+<<+,只需证b a a b <<1 ∵0>>b a 上式成立 ∴原不等式在0>>b a 时成立.证法二:∵0>>b a∴ba ab <<1 ∴b ba a ba 212+<<+∴.4)(14)(22bb a a b a +<<+ ∴.8)(2)(8)(222bb a b a a b a -<-<+ 即 .8)(28)(22bb a ab b a a b a -<-+<+ 评注:分析法与综合法本质上是一致的,形式上是互逆的,我们常常用分析法寻找证题思路,用综合法书 写证明过程。

配套小练习:证明下列不等式1 己知c b a ,,都是正数,且c b a ,,成等比数列,求证:.)(2222c b a c b a +->++2.已知a,b,x,y ∈R +且a 1>b 1,x >y . 求证:ax x +>b y y + 3.已知b a ,均为正数,且1=+b a ,求证:222)(by ax by ax +≥+.4.设a , b , c R ,求证:)(2222222c b a a c c b b a ++≥+++++5.已知c b a ,,是正实数,求证:.222c b a ac c b b a ++≥++ 6.已知c b a ,,为不相等的正数,且1=abc ,求证:.111c b a c b a ++<++ 7.若a ,b >0,2c >a +b ,求证: (1)c 2>ab (2)c -ab c -2<a <c +ab c -28.已知c b a ,,均为正数,且1=++ca bc ab ,求证:①3≥++c b a ; ②).(3c b a abc ac b bc a ++≥++解答: 1.证明:)(2)(2222ac bc ab c b a c b a -+=+--++ Θ c b a ,,成等比数列,ac b =∴2c b a ,,Θ都是正数,c a c a ac b +<+≤=<∴20 ,b c a >+∴ 0)(2)(2)(22>-+=-+=-+∴b c a b b bc ab ac bc ab.)(2222c b a c b a +->++∴2.证法一:(作差比较法) ∵a x x +-b y y +=))((b y a x ay bx ++-, 又a 1>b1且a,b ∈R +, ∴b >a >0.又x >y >0,∴bx >ay . ∴))((b y a x ay bx ++->0,即ax x +>b y y +. 证法二:(分析法)∵x,y,a,b ∈R +,∴要证ax x +>b y y +, 只需证明x (y +b )>y (x +a ),即证xb >ya . 而由a 1>b1>0,∴b >a >0.又x >y >0, 知xb >ya 显然成立.故原不等式成立.3.证明:∵ 1=+b a∴ 2222222222)(y b abxy x a by ax by ax by ax ---+=+-+ 22)1(2)1(y b b abxy x a a -+--=.)()2(222y x ab y xy x ab -=+-=∵0)(,0,02≥->>y x b a ∴.)(222by ax by ax +≥+4.证明:∵0)2(2222≥+≥+b a b a ∴2|2|222b a b a b a +≥+≥+ ∴)(2222b a b a +≥+ 同理:)(2222c b c b +≥+, )(2222a c a c +≥+ 三式相加:)(2222222c b a a c c b b a ++≥+++++5.证明:∵ 0,0>>b a ∴ a b b a 22≥+ 同理:c a a c 22≥+;b c cb 22≥+ ∴ .222c b a ac c b b a ++≥++ 6.证明:∵c b a ,,是不相等的正数,且.1=abc∴.111211*********cb a b a ac c b ab ac bc c b a ++=+++++<++=++ 7.证明:(1)∵ab ≤(2b a +)2<c 2 ∴ab <c 2(2)欲证c -ab c -2<a <c +ab c -2只需证-ab c -2<a -c <ab c -2即|a -c |<ab c -2即a 2-2ac +c 2<c 2-ab只需证a (a +b )<2ac∵a >0,只要证a +b <2c (已知)故原不等式成立8.①要证 3≥++c b a , c b a ,,均为正数,只要证.3)(2≥++c b a 只要证 3)(2222≥+++++ca bc ab c b a ;只要证.1222ca bc ab c b a ++=≥++而ca bc ab a c c b b a c b a ++≥+++++=++222222222222成立∴3≥++c b a ②∵.abcc b a ab c ac b bc a ++=++由①3≥++c b a 要证原不等式,只需证明 c b a abc ++≥1只需证.1≤++ab c ac b bc a∵2ac ab ac ab bc a +≤⋅= 同理.2,2bc ac ab c bc ab ac b +≤+≤ ∴.ca bc ab ab c ac b bc a ++≤++成立.。

相关文档
最新文档