数学:24.1圆-24.1.4圆周角课件(人教新课标九年级上)

合集下载

九年级数学上册第二十四章圆24.1圆24.1.4圆周角课件(新版)新人教版

九年级数学上册第二十四章圆24.1圆24.1.4圆周角课件(新版)新人教版

想一想 D
1.如下左图,比较∠ACB、∠ADB、∠AEB的大小.
C
E
E
A
F
O
A OB
D BC
2.如上右图,如果弧AB=弧CD,那么∠E和∠F是什么关系?
反过来呢? 3.如下图,⊙O1和⊙O2是等圆,
如果弧AB=弧CD,那么∠E和 A
F
∠F是什么关系?
O2
反过来呢?
B
E
O1 D C
推论1: 同弧或等弧所对的圆周角相等; 在同圆或等圆中,相等的圆周角所对的弧相等.
24.1.4 圆周角
一、情境导入
二、探索新知
探究1 判别下列各图形中的角是不是圆周 角.
圆周角:顶__点__在__圆__上__,并且角_两__边__都__和__圆__相__交_.
探究2 分别量一下图中AB所对的两个圆周角的度数,
比较一下,再变动点C在圆周上的位置,圆周角的度
数有没有变化?你能发现什么规律?再分别量出图中
思考:1、“同圆或等圆”的条件能否去掉? 推论2: 半圆(或直径)所对的圆周角是90°; 90°的圆周角所对的弦是直径.
如果一个多边形的所有顶点都在同一个圆上, 这个多边形叫做圆内接多边形,这个圆叫做这 个多边形的外接圆.
探究 圆内接四边形的角之间有何关系?
圆内接四边形的 性质: 圆内接四边形的 对角互补.
又在Rt△ABD中,AD2+BD2=AB2,
AD BD 2 AB 2 10 5 2 (cm)
2
2ห้องสมุดไป่ตู้
例2 如图,AB为圆O的直径,点C,D在圆O上, ∠AOD=30°,求∠BCD的度数.
四、巩固练习
1.如图,∠A=50°,∠AOC=60° BD是⊙O的直径,则∠AEB等于( B ). A.70° B.110° C.90° D.120°

九年级数学人教版(上册)24.1.1圆课件

九年级数学人教版(上册)24.1.1圆课件

D
F
O
B
I
E
A
⌒ ⌒ ACD ACF
⌒⌒
AC AE
C
⌒⌒
ADE ADC

AF

A
D
课堂小结
课堂小结
1.圆的定义、圆的表示方法及确定一个圆的两个基本要素. 2.掌握圆的相关概念: (1)弦、直径;(2)弧及其表示方法;(3)等圆、等弧.
重点: 1.直径是最长的弦! 2.等圆:两个圆能够完全重合 3.等弧:能够完全重合的弧。(所在的圆的半径相等!) 4.劣弧长度<半圆长度<优弧长度 5.圆上各点到定点(圆心O)的距离都等于定长(半径r) 6.到定点的距离等于定长的点都在同一个圆上.
圆的概念
如图,在一个平面内,线段OA绕它固定的一个端点O旋
转一周,另一个端点A所形成的图形叫做圆.
Oo rr AA
固定的端点O叫做圆 心 线段OA叫做半径
确定圆心 确定半径大小
以点O为圆心的圆,记“⊙O”, 读作“圆O”.
确定一个圆的 两个要素
从画圆的过程可以看出:
(1)圆上各点到定点(圆心O)的距离都 AA
作业布置
如图,在Rt△ABC和Rt△ABD中,∠C=90°, ∠D=90°, 点O是AB的中点.
求证:A、B、C、D四个点在以点O为圆心的 同一圆上.
A O
C
BDBiblioteka 等于定长(半径r);r
(2)到定点的距离等于定长的点
都在同一个圆上.
r OO r
BC
CB
判断几个点是否在同一个圆上。
归纳:圆心为O、半径为r的圆可以看成是: 所有到定点O的距离等于定长r的点组成的图形.
圆的两种定义

人教版九年级上册 数学 24.1.4圆周角 教学课件(共20张PPT)

人教版九年级上册 数学  24.1.4圆周角 教学课件(共20张PPT)
复习旧知:请说说我们是如何给圆心角下定义的,试回答?
顶点在圆心的角叫圆心角。
考考你:你能仿照圆心角的定义,给下图中象∠ACB 这样的角下个定义吗?
顶点在圆上,并且两边都和
圆相交的角叫做圆周角.
特征:① 角的顶点在圆上.
② 角的两边都与圆相交.
探索:判断下列各图中,哪些是圆周角,为什么? 圆外角 圆内角
∵CD平分∠ACB,
O
B
ACD BCD.
∴A⌒D=B⌒D.
∴AD=BD.
D
又在Rt△ABD中,AD2+BD2=AB2,
2
2
AD BD AB 10 5 2(cm)
2
2
内容小结:
(1)一个概念(圆周角)
(2)一个定理:同圆或等圆中 ,同弧或等弧所对
的圆周角相等且等于该 弧所对的 圆心角的一半;
(3)三个推论:同圆或等圆中,相等的圆周角所对弧相等.
半圆或直径所对的圆周角是直角; 90°的圆周角所对的弦是直径。
1. 如图,在直径为AB的半圆中,O为圆心,C、D 为半圆上的两点,∠COD=50°,则
∠CAD=_2_5_°___;
2、在圆中,一条弧所对的圆心角和 圆周角分别为(2x+100)°和 (5x-30)°,求这条弧所对的 圆心角和圆周角的度数.
在同圆或等圆中,如果两条
弧相等,那么它们所对的圆
同圆或等圆
心角相等, 所对的弦也相等;中,两个圆心角、
在同圆或等圆中,如果 两条弦相等,那么它们所对 的圆心角相等,所对的优弧 与劣弧分别相等.
两条弧、两条弦 中有一组量相等, 它们所对应的其 余各组量也相等.
结论1:
圆周角定理:
一条弧所对的圆周角等于它

九年级数学上册圆周角课件

九年级数学上册圆周角课件

A
E DC
∵ (2)由(1)可知BD=CD
∴ AD平分顶角∠BAC,即∠BAD=∠CAD,
∴ B⌒D D⌒E (同圆或等圆中相等的圆周角所对弧相等).
课堂小结
圆心角
类比
圆周角
圆周角定义 圆周角定理
圆周角定理 圆周角与直
的推论
径的关系
1.顶点在圆上, 2.两边都与圆 相交的角(二 者必须同时具 备)
∴∠BAC=∠BDC
问题2 如图,若 C⌒D=E⌒F ,∠A与∠B相等吗?
相等
AB
∵ C⌒D=E⌒F COD EOF.
E
∠A= 1 ∠COD,∠B=1 ∠EOF,
O
2
2
C
A B.
F
D
想一想:反过来,若∠A=∠B,那么 ⌒CD=E⌒F 成立吗?
在同圆或等圆中,圆周角相等所对的弧相等
知识要点
圆周角定理的推论 同弧或等弧所对的圆周角相等.
A2 A1
AB
A
O
E
3
C
F
D
再探新知
问题2 如图,若BC是 ⊙O的直径,你能求出∠A
的度数吗?
C2 C1
C3
思考:半圆(或直径)所对的圆周
角有什么特殊性?
A
B
O
(1)如图3,若AB为⊙O直径, 则圆心角∠AOB=__1_8_0_°___,圆周角 图3 ∠AC1B=_9_0_°____,∠AC2B=_9_0_°____, ∠AC3B=__9_0_°___,说明你的理由.
九年级数学上(RJ) 教学课件
第二十四章 圆
24.1 圆的有关性质
24.1.4 圆周角
学习目标
1.理解圆周角的概念,会叙述并证明圆周角定理. 2.理解圆周角与圆心角的关系并能运用圆周角定理解 决简单的几何问题.(重点、难点) 3.理解掌握圆周角定理的推论及其证明过程和运用. (难点)

九年级数学上册第二十四章圆24.1.4圆周角教学课件(新版)新人教版

九年级数学上册第二十四章圆24.1.4圆周角教学课件(新版)新人教版

形ABCD的外接圆.
在圆内接四边形ABCD中, ∵∠A所对的弧为弧BCD,∠C所对 的弧为弧BAD, ∵ 弧BCD和弧BAD所对 的圆心角的和是周角
∴∠A+∠C=180° 同理∠B+∠D=180°
A B
D
O
C
性质:圆内接四边形的对角互补.
三、归纳小结
圆周角定理: 一条弧所对的圆周角等于它所对的圆心角的一半. 圆周角推论: 同弧或等弧所对的圆周角相等. 半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦 是直径.
BAD 1 BOD 2
DAC 1 DOC 2
DAC DAB 1 DOC DOB
A
2
BAC 1 BOC 2

D
C B
二、新课讲解
圆周角定理:
一条弧所对的圆周角等于它所对的圆心角的一半.
1
即∠BAC
B
C
A
O C
B
二、新课讲解
圆周角定理的推论:
1、同弧或等弧所对的圆周角 相等. 2、半圆(或直径)所对的圆 周角是直角,90°的圆周角所 对的弦是直径.
AODBOD
D
∴AD=BD.
在Rt△ABD中,
∵ AD2+BD2=AB2,
AD BD 2A B21 052cm
2
2
二、新课讲解
圆内接多边形:
若一个多边形各顶点都在同一个圆上,那么,这个多边 形叫做圆内接多边形,这个圆叫做这个多边形的外接圆。
D
E
C
O
A B
B
C
A
O
D
F
E
二、新课讲解
如图,四边形ABCD为圆O的内接四边形;圆O为四边

九年级数学上册24.1.4圆周角课件(新版)新人教版 (1)

九年级数学上册24.1.4圆周角课件(新版)新人教版 (1)
▲题型一 ▲题型二 ▲题型三
◆反馈演练
§基础夯实 §能力跃升 §思维拓展
◆要点导航 ◆典例全解
▲题型一 ▲题型二 ▲题型三
◆反馈演练
§基础夯实 §能力跃升 §思维拓展
◆要点导航 ◆典例全解
▲题型一 ▲题型二 ▲题型三
◆反馈演练
§基础夯实 §能力跃升 §思维拓展
◆要点导航 ◆典例全解
▲题型一 ▲题型二 ▲题型三
◆反馈演练
§基础夯实 §能力跃升 §思维拓展
◆要点导航 ◆典例全解
▲题型一 ▲题型二 ▲题型三
◆反馈演练
§基础夯实 §能力跃升 §思维拓展
◆要点导航 ◆典例全解
▲题型一 ▲题型二 ▲题型三
◆反馈演练
§基础夯实 §能力跃升 §思维拓展
◆要点导航 ◆典例全解
▲题型一 ▲题型二 ▲题型三
◆反馈演练
§基础夯实 §能力跃升 §思维拓展
◆反馈演练
§基础夯实 §能力跃升 §思维拓展
◆要点导航 ◆典例全解
▲题型一 ▲题型二 ▲题型三
◆反馈演练
§基础夯实 §能力跃升 §思维拓展
◆要点导航 ◆典例全解
▲题型一 ▲题型二 ▲题型三
◆反馈演练
§基础夯实 §能力跃升 §思维拓展
◆要点导航 ◆典例全解
▲题型一 ▲题型二 ▲题型三
◆反馈演练
§基础夯实 §能力跃升 §思维拓展
◆要点导航 ◆典例全解
▲题型一 ▲题型二 ▲题型三
◆反馈演练
§基础夯实 §能力跃升 §思维拓展
◆要点导航 ◆典例全解
▲题型一 ▲题型二 ▲题型三
◆反馈演练
§基础夯实 §能力跃升 §思维拓展
◆要点导航 ◆典例全解

(2019版)数学:24.1-第4课时《圆周角》课件(人教版九年级上)

(2019版)数学:24.1-第4课时《圆周角》课件(人教版九年级上)
第 4 课时 圆周角
1.圆周角的定义 顶点在___圆__周___上,并且两边都____和__圆__相__交____的角叫做 圆周角. 2.圆周角定理及推论 定理:一条弧所对的圆周角等于_所__对__的__圆__心__角___的一半. 推论 1:(1)同圆或等圆中,____同__弧__或__等__弧____ 所对的圆周 角相等;
;udtoken,cloud token,cloudtoken钱包,cloud token钱包,cloudtoken云钱包,cloud token云钱
包:;
今楚彊以威王此三人 吴起亦位列其中 [71] 作战时必须遵循的战略原则 退朝后他面带忧色 三军惊惕 黄道周·《广名将传》 不复入卫 于是赵人百里内悉入城 以弱诛强 备敌覆我 及至宋代宣和五年 籍 赵王就一再强使李牧出来 走废丘 李日知--?” 5.靠人家养活的 .淮海 晚报数字报[引用日期2013-06-13] 而伏兵从夏阳以木罂鲊渡军 吴有孙武 最后一生荣宠 李世民对李靖说:“隋朝的将领史万岁打败了达头可汗 因而获释 以安抚李靖 这时 大面积饥荒 蒋伸--?”乃骂信曰: 大致对吴王阖闾讲解了之后 欲发以袭吕后 太子 .中国社会科学院 [引用日期2015-07-26] 非以危事尝试者 46.威震于朔 兼刚柔者 蔡泽:“楚地方数千里 筑垒环之 犹发梁焚舟 巳在东掖门 项羽与刘邦签订鸿沟协议 不过深明古今之事 但从卫青得封大将军时“三子在襁褓中”封侯来看 仇氏 楚兵不利 包围了右贤王;皇甫冲)狂风卷地吹 飞尘 ”魏武侯问:“楚庄王是怎么说的 字进乐 为唐朝的统一与巩固立下了赫赫战功 军次伏俟城 江南平 太宗又固请 尽量给你嘉奖赏赐 除去自封的皇帝之号 太子立 详应曰:“诺 仰累陛下 如今坐享其成得到十七座城池 ” 靖妻卒 《秋日杂感》 第二天 但是自幼长在蒙 古的帐下 李渊马上命李靖为行军总

24.1.4 圆周角 课件 2024--2025学年人教版九年级数学上册

24.1.4 圆周角  课件  2024--2025学年人教版九年级数学上册

问题4:为了证明上面发现的结论,首先观察圆周角与圆心O的位置 特点,然后将它进行分类.
结论:同一条弧所对的圆周角等于它所对的圆心角的一半. 因此,我们得到以下三种情况:
圆心在圆周角外
圆心在圆周角的一边上
圆心在圆周角内
探索新知 活动五:证明圆周角与圆心角的关系
证明:在⊙O中 OA=OC
∴∠A= ∠C ∵∠BOC是△AOC的外角
圆周角的概念
我们把顶点在圆上,并且两边都与圆相交的角叫做圆周角.
(1)图中的圆周角:__∠__B_A_C____. (2)这个角所对的弧:_______.
说出下图中有哪些圆周角,并分别说出它们所对的弧.
A
∠BAC 、∠B 、∠C 、∠BDC 、∠CAD
D
O C
∠ADB 、∠BAD 、∠ADC
B
探索新知
∴∠BOC= ∠A+ ∠C
A
O B
D
A
OO
B
C
D
A
O C
D
A O
A
O
D
C
D
C
B
A O
D条弧所对的圆周角等于该弧它所对的圆心角的一半;
几何语言: 在⊙O中
课堂小测
1.如图,点A、B、C、D在☉O上,点A与点D在点B、C所在直线的 同侧,∠BAC=35º.
(1)∠BOC= 70 º, (2)∠BDC= 35 º.
AA
追问:在⊙O上任取一条弧,作出这条弧所对
O
的圆周角和圆心角,测量它们的度数,你能得
C 出同样的结论吗?
结论仍然成立. B
探索新知 活动三:探究圆周角与圆心角的数量关系
因此, 猜想:同一条弧所对的圆周角等于它所对的圆心角的一半.

24.1.4 .1圆周角定理及其推论课件 2024-2025学年人教版数学九年级上册

24.1.4 .1圆周角定理及其推论课件 2024-2025学年人教版数学九年级上册
则∠D等于( A )
A.25°
B.30°
C.35°
D.50°
知识讲解
知识点2 圆周角定理的推论
圆周角定理的推论:(1)同弧或等弧所对的圆周角相等.
知识讲解
知识点2 圆周角定理的推论
(2)圆周角和直径的关系:半圆或直径所对的圆周角都是直角,
90°的圆周角所对的弦是直径.
知识讲解
知识点2 圆周角定理都是⊙O的半径,∠AOB=2∠BOC.求证:
∠ACB=2∠BAC.
证明:∵∠ACB=


∠AOB,∠BAC=


∵∠AOB=2∠BOC,∴∠ACB=2∠BAC.
∠BOC,
随堂练习
8. 船在航行过程中,船长通过测定角度来确定是否遇到暗礁,如图,A、
B表示灯塔,暗礁分布在经过A、B两点的一个圆形区域内,优弧AB上
30°
∠AOD=60°,则∠DBC的度数为__________.
随堂练习
3. 如图,BD是⊙O的直径,∠CBD=30°,则∠A的度数为( C )
A.30°
B.45°
C.60°
D.75°
解析:由BD是⊙O直径得∠BCD=90°.
∵∠CBD=30°,∴∠BDC=60°.
∵∠A与∠BDC是同弧所对的圆周角,
证明:连接BE,∵AE是⊙O的直径,
∴∠ABE=90°,∴∠BAE+∠E=90°,
∵AD 是 △ABC 的 高 , ∴∠ADC = 90° ,
∴∠CAD+∠C=90°.
知识讲解
知识点2 圆周角定理的推论
【例 4】如图所示,已知△ABC的顶点在⊙O上,AD是△ABC的高,
AE是⊙O的直径,求证:∠BAE=∠CAD.

九年级数学上册 24.1.4 圆周角课件 (新版)新人教版.ppt

九年级数学上册 24.1.4 圆周角课件 (新版)新人教版.ppt

A2
推论1:
同弧所对的圆周角相等.
A1
A
3
13
课堂探究
如图,点A、B、C、D在同一个圆上,AC、BD为四
边形ABCD的对角线.
D
(1)完成下列填空 ∠1=∠4 .
∠2=∠8 . ∠3=∠6 .
∠5=∠7 .
78
A
1 2
34
O6
5
C
B
14
课堂探究
如图,点A、B、C、D在同一个圆上,AC、BD为四 边形ABCD的对角线. (2)若A⌒B=A⌒D,则∠1与∠2是否相等,为什么?
22
随堂检测
2.如图,AB是⊙O的直径, C 、D是圆上的两点,∠ABD=40°, 则∠BCD=__50_°_.
C
D
O
O
A
B
C
A
B
第4题
第5题
3.已知△ABC的三个顶点在⊙O上,∠BAC=50°,∠ABC=47°
,则∠AOB= 166°.
23
随堂检测
4.如图,已知圆心角∠AOB=100°,则圆周角∠ACB=130° , ∠ADB= 50° .
BAC1BOC 2
8
课堂探究
推导与验证
圆心O在∠BAC 的 内部
圆心O在∠BAC 的一边上
圆心O在 ∠BAC 的外部
9
课堂探究
圆心O在∠BAC的一边上(特殊情形)
OA=OC ∠A= ∠C ∠BOC= ∠ A+ ∠C
BAC1BOC 2
10
课堂探究
圆心O在∠BAC的内部
A
A
A
O
OO
O
B
D
BAD1BOD 2

24.1.4《圆周角 第1课时》数学人教版九年级上册教学课件

24.1.4《圆周角 第1课时》数学人教版九年级上册教学课件

A
B
C
(3)
∠BAC圆=周1 ∠角B定OC理
一条弧所对的圆周角等2 于它所对的圆心角的一半.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
思考
“在同圆或等圆中,同弧所对的圆心角相等”那么同弧
所对的圆周角呢?
A
D
O
E
小组合作 1.猜想可能的结果;
2.验证你的猜想.
B
C
创设情境 探究新知 应用新知 巩固新知 课堂小结得出AB是直径
A
O 180°
吗?
B
推论2:半圆(或直径)所对的圆周角是直
角, 90°的圆周角所对的弦是直径.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
归纳
圆周角定理及其推论
圆周角定理: 一条弧所对的圆周角等于它所对的圆心角的一半.
推论1:同弧或等弧所对的圆周角相等. 推论2:半圆(或直径)所对的圆周角是直角,
所对的圆周角呢? AC͡͡ BD͡͡∠AOC∠BOD
等弧
D O
C
∠ADC= 1∠AOC 2
∠ADC∠BAD
∠BAD= 1∠BOD
B
A
2
推论1:同弧或等弧所对的圆周角相等.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
做一做
如图,AB是直径,C是圆上任意一点(不与A、B重合), 求∠ACB 90 °.
A
·O 40° B AB是直径 ∠ADB90°∠BAD50°
∠ABD40°
C
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
随堂练习
2.在⊙O中,∠CBD=30°,∠BDC=20°,求∠A. A ∠CAD=∠CBD=30°

数学:24.1.4《圆周角》课件(人教新课标九年级上)

数学:24.1.4《圆周角》课件(人教新课标九年级上)

典型例题
Байду номын сангаас
2.如图,点A、B在⊙O上,点P为⊙O上 动点,要是△ABP为等腰三角形, (1)请画出所有符合条件的点P.
(2)如果∠AOB=100°,请求出所 有符合条件∠P的度数.
拓展提高 1、如图,AD是⊙O的直径. (1) 如图①,垂直于AD的两条弦B1C1,B2C2 把圆周4等分,则∠B1的度数是 , ∠B2的度数是 ;
拓展提高
1、如图,AD是⊙O的直径. (2) 如图②,垂直于AD的三条弦B1C1,B2C2, B3C3把圆周6等分,分别求∠B1,∠B2, ∠B3的度数;
拓展提高 1、如图,AD是⊙O的直径. (3) 如图③,垂直于AD的n条弦B1C1,B2C2, B3 C3,…,BnCn把圆周2n等分,请你用含 n的代数式表示∠Bn的度数(只需直接写出答 案 ).
人教版九年级上册
C E O D
B
A
路桥三中 张春凤
知识回顾
顶点在圆心的角叫圆心角
探究新知
顶点在圆上,两边都与圆相交的 角叫做圆周角。 C
O A B
探究新知 下列哪些图中的∠α是圆周角? 一个角是圆周角的条件:
1
(1)角的顶点在圆上; (2)角的两边都与圆相交 。 (3)


(6)
在同圆或等圆中,同弧或等弧所对的圆 周角相等 ,都等于这条弧所对圆心角的一 思考 :在同圆或等圆中,等弧所对的圆周 角相等吗 ? 半。
活动小结 1、因图形的位置不能确定, 就必须分类讨论;
2、正确选择分类的标准,进行合理分类; 3、逐类讨论解决; A
A

O
O
B C
4、归纳并作出结论。
转化 思想

九年级数学上册(人教版)圆周角-定理及推论1教学课件

九年级数学上册(人教版)圆周角-定理及推论1教学课件
人教版九年级(上)数学教学课件
第24章 圆
24.1 圆的有关性质
24.1.4(1) 圆周角-定理及推论1
情境导入 探究新知 知识归纳 典例精讲 当堂训练
温故知新
圆周角---定理及推论
情境导入
A
B C
E D
站在哪一个位置踢球,最容易进
01 圆周角的定义
知识要点 02
圆周角定理
精讲精练
03 圆周角定理的推论1
圆周角---定理及推论
1.顶点在圆上 2.两边都与圆相交的角
知识梳理
圆周角 同弧或等弧所对的圆周角等于该弧所对
定理
圆周角
的圆心角的一半;
推论 同弧或等弧所对的圆周角相等; 相等的圆周角所对的弧相等.
强化 训练
强化训练
圆周角---定理及推论
提升能力
1.如图,在☉O中,已知直径AB⊥CD于点E,∠CDB=18º.将△OBD绕点O顺时针
∴ BAC 1 BOC
2
典例精讲
圆周角定理
知识点二
【例1】在⊙O中,一条弧所对的圆心角和圆周角分别为(2x+100)º
和(5x-30)º,求这条弧所对的圆心角和圆周角的度数。
解:由题意得: 2x+100=2(5x-30) 解得:x=20 ∴2x+100=140º,5x-30=70º.
答:这条弧所对的圆心角和圆周角的度数分别为:140º和70º.
B O· A
B
C

C O·
C A
(√1)
A
顶点不(2在) 圆上 B
B 边AC没(3有)和圆相交

B
C
顶点不(4在) 圆上
C A O·

24.1.4 圆周角 人教版九年级数学上册第1课时课件

24.1.4 圆周角 人教版九年级数学上册第1课时课件

∠BAD= 1∠BOD,
2
∴∠BAC=∠2 CAD-∠BAD= (∠1 COD-∠BOD)= ∠B10C.
2
2
圆周角定理:一条弧所对的圆周角等 于它所对的圆心角的一半.
数学思想方法:分类思想、化归思 想、由特殊到一般的数学方法.
共同探究2
思考: 1.同弧所对的圆周角是否相等? 2.如果改为等弧,那么所对的圆周角还
(2)如图(2)圆心O在∠BAC的内部上时.
作直径AD,则由(1)可得∠BAD= 1 ∠BOD,
∠CAD= 1 ∠COD,
2
∴∠BAC=2∠BAD+∠CAD= (∠1 BOD+∠COD)
= 1 ∠BOC.
2
2
证明:
(3)如图(3) ,圆心O在∠BAC的外部上时.
作直径AD,则由(1)可得∠CAD= 1 ∠COD,
圆周角:顶点在圆上,并且两边都和圆相交, 我们把这样的角叫做圆周角.
观察下列图形中的角都是圆周角吗?
O
共同探究1
动手操作:
1.画⊙O,在⊙O上任意画弧AB,分别画出弧AB所
对的圆心角和圆周角.
2.你能画出几个弧AB所对的圆心角和圆周角?
3.分别测量所画圆心角和圆周角的度数,它们之 间有什么关系?
思考:
第二十四章 圆
24.1.4 圆周角(第1课时)
问题思考
足球训练场上教练在球门前划了一个圆圈进
行无人防守的射门训练如图,甲、乙两名运动员
分别在C、D两处,他们争论不休,都说在自已所
在的位置对球门AB的张角大,如果你是教练,请
评一评他们两个人谁的位置对球门AB的张角大?
为什么?
A
B
C D

人教版九年级上册 24.1.4 圆周角 课件30张

人教版九年级上册 24.1.4 圆周角 课件30张

五、思维拓展
与圆有关的角除了圆心角、圆周角还有其 它的角,比较∠A、∠D、∠E的大小关系,你 有什么发现?能说明你的结论吗?
D’
A
E’ E
D
B
C
练习. 如图,在⊙O中,BC=2DE,∠BOC=84°,求
∠A的度数.
C E
A
O
D
B
活动六:反思提升
目标检测
1.如左图,OA、OB、OC都是⊙O的半径,
24.1.4圆周角
一、温故探新 定义 顶点在圆心的角叫做圆心角.
O
B
C
二、建立概念
圆周角
类 比 思
定义 顶点在圆上, 并且两边都和圆相交 的角叫做圆周角.

圆心角
B C
· · B 定义O 顶点A 在圆心 O
A
的角叫做圆心角.
C
(1)√
(2) ×
A O
B
C
A C
·O
B
(3)×
圆周角
定义 顶点在圆上, 并且两边都和圆相交 的角叫做圆周角.
四边形ABCD的对角线.填空:
(1)∠1=∠ 4 ; (2)∠2=∠ 7 ; (3)∠3=∠ 6 ; (4)∠5=∠ 8 .
1.如图,点A、B、C都在⊙O上. (1)若∠AOC=120°,则求∠ABC的度数. (2)写出∠AOC与∠ABC的数量关系.
O
C
A
B
2.如图,点A、B、C都在⊙O上. ∠AOB = 2∠BOC. 请说明∠ACB = 2∠BAC.
O
C
A
B
一、温故探新 定义 顶点在圆心的角叫做圆心角. 性质 弧的度数等于它所对圆心角的度数.
O
B
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
O
半圆(或直径)所对的圆周角是直角,
90度的圆周角所对的弦是直径。
五、定理
定 理
在同圆或等圆中,同弧或等弧所对的圆周 角相等,都等于这条弧所对的圆心角的一半.
C2 C1 C3


半圆(或直径)所对的圆周 角是直角; A 90°的圆周角所对的弦是直径.
O
·
B
练 习
2.如图,你能设法确定一个圆形纸片的圆心吗?你有多 少种方法?与同学交流一下.
1 ∴∠ACB= 2 ×180°= 90°.
CO= AB,
A
· O
B
∴ △ABC 为直角三角形.
3、AB、AC为⊙O的两条弦,延长CA到D,使 AD=AB,如果∠ADB=35° , 求∠BOC的度数。 ∠BOC =140°
700 350
1、在⊙O中,∠CBD=30° ,∠BDC=20°,求∠A
1、在⊙O中,∠CBD=30° ,∠BDC=20°,求∠A
C

O
同弧所对的圆周角等于它所对 的圆心角的一半.
四、同弧所对圆周角与圆心角的关系
A

如果圆心不在圆周角的一边上,结果 会怎样? 2.当圆心(O)在圆周角(∠ABC)的内部 时,圆周角∠ABC与圆心角∠AOC的大 小关系会怎样?
C

O
B A O D C

老师提示:能否转化为1的情况? 过点B作直径BD.由1可得:
1.首先考虑一种特殊情况: 当圆心(O)在圆周角(∠ABC)的一边(BC)上时,圆周角 ∠ABC与圆心角∠AOC的大小关系. ∵∠AOC是△ABO的外角, ∴∠AOC=∠B+∠A. ∵OA=OB, ∴∠A=∠B. ∴∠AOC=2∠B.

A

你能写出这个命题吗?
1 ∠ABC = ∠AOC. 2
老师期望: 你可要理 解并掌握 这个模型. B
一. 复习引入:
1.圆心角的定义? 答:顶点在圆心的角叫圆心角 O
.
2.上节课我们学习了一个反映圆
心角、弧、弦三个量之间关系的
B
C
一个结论,这个结论是什么? 在同圆(或等圆)中,如果圆心角、弧、弦有 一组量相等,那么它们所对应的其余两个量都
分别相等。
一、概念
什么叫做圆周角?
顶点在圆上,并且两边都和圆相交的角.
C
证明: 以AB为直径作⊙O, ∵AO=BO, CO= AB, ∴AO=BO=CO. ∴点C在⊙O上. 又∵AB为直径, 1 ∴∠ACB= ×180°= 90°. 2 ∴ △ABC 为直角三角形.
1 2
A
· O
B
练习:如图 AB是⊙O的直径, C ,D是圆上的两 点,若∠ABD=40°,则∠BCD=_____.
A
乙C
甲O
丁E
B
D
AOB是AB所对的圆心角 ACB是AB所对的圆周角 ADB是AB所对的圆周角 AEB是AB所对的圆周角
它们之间有什么关系呢?
C O
A
E
B
类比圆心角探知圆周角

在同圆或等圆中,同弧或等弧所对的圆心角相等. 在同圆或等圆中,同弧或等弧所对的圆周角有什么 关系? 为了解决这个问题,我们先探究同弧所对的圆周角 和圆心角之间有的关系.
恰好等于这条弧所对的圆心角的度数的一半.
练 习
1.如图,点A、B、C、D在同一个圆上,四边形ABCD 的对角线把4个内角分成8个角,这些角中哪些是相 等的角?
∠1 = ∠4 ∠5 = ∠8 ∠2 = ∠7
B C A
2 3 4 5 1 8 7
6
∠3 = ∠6
D
四、同弧所对圆周角与圆心角的关系

所对的弧相等。
作业
⌒ = CF, ⌒ 2、如图,在⊙O中,AB为直径,CB
弦CG⊥AB,交AB于D,交BF于E 求证:BE=EC
3. 如图,在直径为AB的半圆中,O为圆心,C、D
为半圆上的两点,∠COD=50°,则
∠CAD=______; 25°
4、在⊙O中,一条弧所对的圆心角和圆周角分别为
(2x+100)°和(5x-30)°,则x=_20° _;
在Rt△ABC中,
BC AB2 AC 2 102 62 8 A
O B
∵CD平分∠ACB,
ACD BCD.
∴AD=BD. 又在Rt△ABD中,AD2+BD2=AB2,
D
2 2 AD BD AB 10 5 2(cm) 2 2
练 习
3.求证:如果三角形一边上的中线等于这边的一半,那么这个 三角形是直角三角形.(提示:作出以这条边为直径的圆.) 1 已知:△ABC 中,CO为AB边上的中线, 且CO= AB 2 求证: △ABC 为直角三角形.

综上所述,圆周角∠ABC与圆心角∠AOC的大小关系是 :
1 ∠ABC = ∠AOC. 2
A C

ቤተ መጻሕፍቲ ባይዱ
A C B

O
O
O
B
B
如图所示,∠ADB、∠ACB、∠AOB 分别是什么角? 它们有何共同点?
∠ADB与∠ACB有什么关系?
圆周角定理:
同弧 (等弧) 所对的圆周角相等. 都等于这条弧所对的圆心角的一半.

你会画同弧所对的圆周角和圆心角吗?
圆周角和圆心角的关系

教师提示:注意圆心与圆周角的位置关系.
(1) 折痕是圆周角的一条边, (2) 折痕在圆周角的内部, (3) 折痕在圆周角的外部.
图 23.1.11

如图,观察圆周角∠ABC与圆心角∠AOC,它们的大 小有什么关系?
说说你的想法,并与同伴交流.


的关系
C

O
B
A
老师提示:能否也转化为1的情况?
过点B作直径BD.由1可得: ∠ABD =
1 ∠AOD,∠CBD 2
C
B

O
= 1∠COD,
2

1 ∠ABC = ∠AOC. 2
你能写出这个命题吗?
同弧所对的圆周角等于它所对 的圆心角的一半.


同弧所对的圆周角等于它所对的圆心角的一半.

A C
练习:
如图,圆心角∠AOB=100°,
则∠ACB=___。
O A C B
小结:
1.圆周角定义:顶点在圆上,并且两边都和圆相
交的角叫圆周角.
2.半圆或直径所对的圆周角都相等,都等于90° 90°的圆周角所对的弦是圆的直径 3.在同圆(或等圆)中,同弧或等弧所对的圆周角相 等,都等于该弧所对的圆心角的一半;相等的圆周角
方法三
方法一 A C O 方法二
O
B
方法四
D
· B
A
O
六、
在同圆或等圆中,如果两个圆周角相等, 它们所对弧一定相等吗?为什么?
在同圆或等圆中,如果两个圆周角相等,它 们所对的弧一定相等.
七、例题
例 如图,⊙O直径AB为10cm,弦AC为6cm,∠ACB的平 分线交⊙O于D,求BC、AD、BD的长. 解:∵AB是直径, C ∴ ∠ACB= ∠ADB=90°.
D A C
O
·
B
E
辩一辩 图中的∠CDE是圆周角吗? C
C C
E D D E C E D E
D
练习一:判断下列各图中,哪些是圆周角,为什么?
如图是一个圆柱形的海洋馆的横截面的示意图,人们可以 通过其中的圆弧形玻璃AB 观看窗内的海洋动物,同学甲站 在圆心的O 位置,同学乙站在正对着玻璃窗的靠墙的位置 C,他们的视角(∠AOB 和∠ACB)有什么关系?如果同学 丙、丁分别站在他靠墙的位置D和E,他们的视角( ∠ADB 和∠AEB )和同学乙的视角相同吗? 丙D

∠ABD =
1 ∠AOD,∠CBD 2
1 = ∠COD, 2

1 ∴ ∠ABC = ∠AOC. 2
你能写出这个命题吗?
同弧所对的圆周角等于它所对 的圆心角的一半.
B
四、同弧所对圆周角与圆心角A


如果圆心不在圆周角的一边上,结果 会怎样? 3.当圆心(O)在圆周角(∠ABC)的外 部时,圆周角∠ABC与圆心角∠AOC的 大小关系会怎样?
D
A
O 40°
B
C
2、求证:如果三角形一边上的中线等于这边的一半, 那么这个三角形是直角三角形.(提示:作出以这条 边为直径的圆.) 已知:△ABC
证明:
1 ,CO为AB边上的中线,且CO= AB 2
C
求证: △ABC 为直角三角形. 以AB为直径作⊙O, ∵AO=BO, ∴AO=BO=CO. ∴点C在⊙O上. 又∵AB为直径,

A
B

A O
B

A
B

O
C
O
C
C
三、 探究
AB 分别量一下图中 所对的两个 圆周角的度数,比较一下,再变 动点C在圆周上的位置,圆周角 的度数有没有变化?你能发现什 么规律吗? AB 再分别量出图中 所对的圆周
角和圆心角的度数,比较一下, 你什么发现?
圆周角.gsp
C
D O
·
B
A
同弧所对的圆周角的度数没有变化,并且它的度数
思考:
在同圆或等圆中
相等的圆周角所对的弧相等 吗?
在同圆或等圆中 相等的圆周角所对的弧相等.
A B
如图, 若 AC = BD 则 ∠ D=∠A


C
D
∴AB∥CD
B

1.如图,在⊙O中,∠BOC=50°, 求∠A的大小. 解: ∠A
相关文档
最新文档