九年级数学上册《第一章 特殊平行四边形》单元测试卷-附带答案(北师大版)
北师大九年级上《第1章特殊平行四边形》单元测试含答案解析
《第1章 特殊平行四边形》一、选择题1.平行四边形ABCD 中,AC 、BD 是两条对角线,如果添加一个条件,即可推出平行四边形ABCD 是矩形,那么这个条件是( )A .AB=BCB .AC=BDC .AC ⊥BD D .AB ⊥BD2.在平面直角坐标系中,正方形A 1B 1C 1D 1、D 1E 1E 2B 2、A 2B 2C 2D 2、D 2E 3E 4B 3、A 3B 3C 3D 3…按如图所示的方式放置,其中点B 1在y 轴上,点C 1、E 1、E 2、C 2、E 3、E 4、C 3…在x 轴上,已知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O=60°,B 1C 1∥B 2C 2∥B 3C 3…则正方形A 2015B 2015C 2015D 2015的边长是( )A .()2014B .()2015C .()2015 D .()2014二、填空题 3.如图,▱ABCD 的对角线相交于点O ,请你添加一个条件 (只添一个即可),使▱ABCD 是矩形.4.如图,在正方形ABCD 的外侧,作等边△ADE ,则∠BED 的度数是 .5.如图,正方形ABCD 的边长为1,以对角线AC 为边作第二个正方形,再以对角线AE 为边作第三个正方形AEGH ,如此下去,第n 个正方形的边长为 .6.如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC 交于点E .若∠CBF=20°,则∠AED 等于 度.7.边长为1的一个正方形和一个等边三角形如图摆放,则△ABC 的面积为 .8.如图,点E 在正方形ABCD 的边CD 上.若△ABE 的面积为8,CE=3,则线段BE 的长为 .9.正方形OA 1B 1C 1、A 1A 2B 2C 2、A 2A 3B 3C 3,按如图放置,其中点A 1、A 2、A 3在x 轴的正半轴上,点B 1、B 2、B 3在直线y=﹣x+2上,则点A 3的坐标为 .10.已知E 是正方形ABCD 的对角线AC 上一点,AE=AD ,过点E 作AC 的垂线,交边CD 于点F ,那么∠FAD= 度.11.如图,要使平行四边形ABCD 是矩形,则应添加的条件是 (只填一个).12.如图,正方形ABCD 的边长为a ,在AB 、BC 、CD 、DA 边上分别取点A 1、B 1、C 1、D 1,使AA 1=BB 1=CC 1=DD 1=a ,在边A 1B 1、B 1C 1、C 1D 1、D 1A 1上分别取点A 2、B 2、C 2、D 2,使A 1A 2=B 1B 2=C 1C 2=D 1D 2=A 1B 2,….依次规律继续下去,则正方形A n B n C n D n 的面积为 .13.如图,▱ABCD 中,AB >AD ,AE ,BE ,CM ,DM 分别为∠DAB ,∠ABC ,∠BCD ,∠CDA 的平分线,AE 与DM 相交于点F ,BE 与CM 相交于点N ,连接EM .若▱ABCD 的周长为42cm ,FM=3cm ,EF=4cm ,则EM= cm ,AB= cm .三、解答题14.如图,在△ABC 中,AB=BC ,BD 平分∠ABC .四边形ABED 是平行四边形,DE 交BC 于点F ,连接CE .求证:四边形BECD 是矩形.15.如图,在平面直角坐标系中,点A(2,n),B(m,n)(m>2),D(p,q)(q<n),点B,D在直线y=x+1上.四边形ABCD的对角线AC,BD相交于点E,且AB∥CD,CD=4,BE=DE,△AEB 的面积是2.求证:四边形ABCD是矩形.16.如图,在△ABC中,AB=AC,点D(不与点B重合)在BC上,点E是AB的中点,过点A作AF∥BC交DE延长线于点F,连接AD,BF.(1)求证:△AEF≌△BED.(2)若BD=CD,求证:四边形AFBD是矩形.17.正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A按顺时针方向旋转,记旋转角∠DAG=α,其中0°≤α≤180°,连结DF,BF,如图.(1)若α=0°,则DF=BF,请加以证明;(2)试画一个图形(即反例),说明(1)中命题的逆命题是假命题;(3)对于(1)中命题的逆命题,如果能补充一个条件后能使该逆命题为真命题,请直接写出你认为需要补充的一个条件,不必说明理由.18.如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.(1)求证:BE=CE.(2)求∠BEC的度数.19.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.20.在平面直角坐标系xOy中,直线y=﹣x+3与x轴、y轴分别交于A、B,在△AOB内部作正方形,使正方形的四个顶点都落在该三角形的边上,求正方形落在x轴正半轴的顶点坐标.21.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.22.已知在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.(1)求证:四边形ADBE是矩形;(2)求矩形ADBE的面积.23.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.24.如图,在梯形ABCD中,AD∥BC,点E是BC的中点,连接AC,DE,AC=AB,DE∥AB.求证:四边形AECD是矩形.25.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE ⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.26.如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.(1)求证:△ADE≌△CBF;(2)求证:四边形BFDE为矩形.27.如图,在正方形ABCD中,点P在AD上,且不与A、D重合,BP的垂直平分线分别交CD、AB于E、F两点,垂足为Q,过E作EH⊥AB于H.(1)求证:HF=AP;(2)若正方形ABCD的边长为12,AP=4,求线段EQ的长.28.如图,在梯形ABCD中,AD∥BC,∠ADC=90°,∠B=30°,CE⊥AB,垂足为点E.若AD=1,AB=2,求CE的长.29.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.30.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.《第1章 特殊平行四边形》参考答案与试题解析一、选择题1.平行四边形ABCD 中,AC 、BD 是两条对角线,如果添加一个条件,即可推出平行四边形ABCD 是矩形,那么这个条件是( )A .AB=BCB .AC=BDC .AC ⊥BD D .AB ⊥BD【考点】矩形的判定;平行四边形的性质.【专题】证明题;压轴题.【分析】根据对角线相等的平行四边形是矩形判断.【解答】解:A 、是邻边相等,可得到平行四边形ABCD 是菱形,故不正确;B 、是对角线相等,可推出平行四边形ABCD 是矩形,故正确;C 、是对角线互相垂直,可得到平行四边形ABCD 是菱形,故不正确;D 、无法判断.故选B .【点评】本题主要考查的是矩形的判定定理.但需要注意的是本题的知识点是关于各个图形的性质以及判定.2.在平面直角坐标系中,正方形A 1B 1C 1D 1、D 1E 1E 2B 2、A 2B 2C 2D 2、D 2E 3E 4B 3、A 3B 3C 3D 3…按如图所示的方式放置,其中点B 1在y 轴上,点C 1、E 1、E 2、C 2、E 3、E 4、C 3…在x 轴上,已知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O=60°,B 1C 1∥B 2C 2∥B 3C 3…则正方形A 2015B 2015C 2015D 2015的边长是( )A .()2014B .()2015C .()2015D .()2014【考点】正方形的性质.【专题】压轴题;规律型.【分析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.【解答】方法一:解:如图所示:∵正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O=60°,B 1C 1∥B 2C 2∥B 3C 3…∴D 1E 1=B 2E 2,D 2E 3=B 3E 4,∠D 1C 1E 1=∠C 2B 2E 2=∠C 3B 3E 4=30°,∴D 1E 1=C 1D 1sin30°=,则B 2C 2=()1,同理可得:B 3C 3==()2,故正方形A n B n C n D n 的边长是:()n ﹣1.则正方形A 2015B 2015C 2015D 2015的边长是:()2014. 故选:D .方法二:∵正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O=60°,∴D 1E 1=B 2E 2=,∵B 1C 1∥B 2C 2∥B 3C 3…∴∠E 2B 2C 2=60°,∴B 2C 2=, 同理:B 3C 3=×=…∴a 1=1,q=,∴正方形A 2015B 2015C 2015D 2015的边长=1×.【点评】此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键.二、填空题3.如图,▱ABCD的对角线相交于点O,请你添加一个条件AC=BD (只添一个即可),使▱ABCD 是矩形.【考点】矩形的判定;平行四边形的性质.【专题】开放型.【分析】根据矩形的判定定理(对角线相等的平行四边形是矩形)推出即可.【解答】解:添加的条件是AC=BD,理由是:∵AC=BD,四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故答案为:AC=BD.【点评】本题考查了矩形的判定定理的应用,注意:对角线相等的平行四边形是矩形,此题是一道开放型的题目,答案不唯一.4.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是45°.【考点】正方形的性质;等边三角形的性质.【分析】根据正方形的性质,可得AB与AD的关系,∠BAD的度数,根据等边三角形的性质,可得AE与AD的关系,∠AED的度数,根据等腰三角形的性质,可得∠AEB与∠ABE的关系,根据三角形的内角和,可得∠AEB的度数,根据角的和差,可得答案.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°.∵等边三角形ADE,∴AD=AE,∠DAE=∠AED=60°.∠BAE=∠BAD+∠DAE=90°+60°=150°,AB=AE,∠AEB=∠ABE=(180°﹣∠BAE)÷2=15°,∠BED=∠DAE﹣∠AEB=60°﹣15°=45°,故答案为:45°.【点评】本题考查了正方形的性质,先求出∠BAE的度数,再求出∠AEB,最后求出答案.5.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为()n﹣1.【考点】正方形的性质.【专题】压轴题;规律型.【分析】首先求出AC、AE、HE的长度,然后猜测命题中隐含的数学规律,即可解决问题.【解答】解:∵四边形ABCD为正方形,∴AB=BC=1,∠B=90°,∴AC2=12+12,AC=;同理可求:AE=()2,HE=()3…,=()n﹣1.∴第n个正方形的边长an故答案为()n﹣1.【点评】该题主要考查了正方形的性质、勾股定理及其应用问题;应牢固掌握正方形有关定理并能灵活运用.6.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于65 度.【考点】正方形的性质;全等三角形的判定与性质.【分析】根据正方形的性质得出∠BAE=∠DAE,再利用SAS证明△ABE与△ADE全等,再利用三角形的内角和解答即可.【解答】解:∵正方形ABCD,∴AB=AD,∠BAE=∠DAE,在△ABE与△ADE中,,∴△ABE≌△ADE(SAS),∴∠AEB=∠AED,∠ABE=∠ADE,∵∠CBF=20°,∴∠ABE=70°,∴∠AED=∠AEB=180°﹣45°﹣70°=65°,故答案为:65【点评】此题考查正方形的性质,关键是根据正方形的性质得出∠BAE=∠DAE,再利用全等三角形的判定和性质解答.7.边长为1的一个正方形和一个等边三角形如图摆放,则△ABC的面积为.【考点】正方形的性质;等边三角形的性质;含30度角的直角三角形.【分析】过点C作CD和CE垂直正方形的两个边长,再利用正方形和等边三角形的性质得出CE的长,进而得出△ABC的面积即可.【解答】解:过点C作CD和CE垂直正方形的两个边长,如图∵一个正方形和一个等边三角形的摆放,∴四边形DBEC是矩形,∴CE=DB=,∴△ABC的面积=AB•CE=×1×=,故答案为:.【点评】此题考查正方形的性质,关键是根据正方形和等边三角形的性质得出BE和CE的长.8.如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为 5 .【考点】正方形的性质;三角形的面积;勾股定理.【分析】根据正方形性质得出AD=BC=CD=AB,根据面积求出EM,得出BC=4,根据勾股定理求出即可.【解答】解:过E作EM⊥AB于M,∵四边形ABCD是正方形,∴AD=BC=CD=AB,∴EM=AD,BM=CE,∵△ABE的面积为8,∴×AB×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:BE===5,故答案为:5.【点评】本题考查了三角形面积,正方形性质,勾股定理的应用,解此题的关键是求出BC 的长,难度适中.9.正方形OA 1B 1C 1、A 1A 2B 2C 2、A 2A 3B 3C 3,按如图放置,其中点A 1、A 2、A 3在x 轴的正半轴上,点B 1、B 2、B 3在直线y=﹣x+2上,则点A 3的坐标为 (,0) .【考点】正方形的性质;一次函数图象上点的坐标特征.【专题】压轴题;规律型.【分析】设正方形OA 1B 1C 1的边长为t ,则B 1(t ,t ),根据t 一次函数图象上点的坐标特征得到t=﹣t+2,解得t=1,得到B 1(1,1),然后利用同样的方法可求得B 2(,),B 3(,),则A 3(,0).【解答】解:设正方形OA 1B 1C 1的边长为t ,则B 1(t ,t ),所以t=﹣t+2,解得t=1,得到B 1(1,1);设正方形A 1A 2B 2C 2的边长为a ,则B 2(1+a ,a ),a=﹣(1+a )+2,解得a=,得到B 2(,);设正方形A 2A 3B 3C 3的边长为b ,则B 3(+b ,b ),b=﹣(+b )+2,解得b=,得到B 3(,),所以A 3(,0).故答案为(,0).【点评】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角.也考查了一次函数图象上点的坐标特征.10.已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD= 22.5 度.【考点】正方形的性质;全等三角形的判定与性质.【分析】根据正方形的性质可得∠DAC=45°,再由AD=AE易证△ADF≌△AEF,求出∠FAD.【解答】解:如图,在Rt△AEF和Rt△ADF中,∴Rt△AEF≌Rt△ADF,∴∠DAF=∠EAF,∵四边形ABCD为正方形,∴∠CAD=45°,∴∠FAD=22.5°.故答案为:22.5.【点评】本题考查了正方形的性质,全等三角形的判定与性质,求证Rt△AEF≌Rt△ADF是解本题的关键.11.如图,要使平行四边形ABCD是矩形,则应添加的条件是∠ABC=90°或AC=BD(不唯一)(只填一个).【考点】矩形的判定;平行四边形的性质.【专题】开放型.【分析】根据矩形的判定定理:①对角线相等的平行四边形是矩形,②有一个角是直角的平行四边形是矩形,直接添加条件即可.【解答】解:根据矩形的判定定理:对角线相等的平行四边形是矩形,有一个角是直角的平行四边形是矩形故添加条件:∠ABC=90°或AC=BD .故答案为:∠ABC=90°或AC=BD .【点评】本题主要应用的知识点为:矩形的判定. ①对角线相等且相互平分的四边形为矩形.②一个角是90度的平行四边形是矩形.12.如图,正方形ABCD 的边长为a ,在AB 、BC 、CD 、DA 边上分别取点A 1、B 1、C 1、D 1,使AA 1=BB 1=CC 1=DD 1=a ,在边A 1B 1、B 1C 1、C 1D 1、D 1A 1上分别取点A 2、B 2、C 2、D 2,使A 1A 2=B 1B 2=C 1C 2=D 1D 2=A 1B 2,….依次规律继续下去,则正方形A n B n C n D n 的面积为 .【考点】正方形的性质.【专题】压轴题;规律型.【分析】首先在Rt △A 1BB 1中,由勾股定理可求得正方形A 1B 1C 1D 1的面积=,然后再在Rt △A 2B 1B 2中,由勾股定理求得正方形A 2B 2C 2D 2的面积=,然后找出其中的规律根据发现的规律即可得出结论.【解答】解:在Rt △A 1BB 1中,由勾股定理可知; ==,即正方形A 1B 1C 1D 1的面积=;在Rt △A 2B 1B 2中,由勾股定理可知:==;即正方形A 2B 2C 2D 2的面积= …∴正方形A n B n C n D n 的面积=.故答案为:.【点评】本题主要考查的是正方形的性质和勾股定理的应用,通过计算发现其中的规律是解题的关键.13.如图,▱ABCD 中,AB >AD ,AE ,BE ,CM ,DM 分别为∠DAB ,∠ABC ,∠BCD ,∠CDA 的平分线,AE 与DM 相交于点F ,BE 与CM 相交于点N ,连接EM .若▱ABCD 的周长为42cm ,FM=3cm ,EF=4cm ,则EM= 5 cm ,AB= 13 cm .【考点】矩形的判定与性质;勾股定理的应用;平行四边形的性质;相似三角形的应用.【专题】综合题;压轴题.【分析】由条件易证∠AEB=∠AFD=∠DMC=90°.进而可证到四边形EFMN 是矩形及∠EFM=90°,由FM=3cm ,EF=4cm 可求出EM .易证△ADF ≌△CBN ,从而得到DF=BN ;易证△AFD ∽△AEB ,从而得到4DF=3AF .设DF=3k ,则AF=4k .AE=4(k+1),BE=3(k+1),从而有AD=5k ,AB=5(k+1).由▱ABCD 的周长为42cm 可求出k ,从而求出AB 长.【解答】解:∵AE 为∠DAB 的平分线,∴∠DAE=∠EAB=∠DAB ,同理:∠ABE=∠CBE=∠ABC ,∠BCM=∠DCM=∠BCD ,∠CDM=∠ADM=∠ADC .∵四边形ABCD 是平行四边形,∴∠DAB=∠BCD ,∠ABC=∠ADC ,AD=BC .∴∠DAF=∠BCN ,∠ADF=∠CBN .在△ADF 和△CBN 中,.∴△ADF≌△CBN(ASA).∴DF=BN.∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAB+∠ABC=180°.∴∠EAB+∠EBA=90°.∴∠AEB=90°.同理可得:∠AFD=∠DMC=90°.∴∠EFM=90°.∵FM=3,EF=4,∴ME==5(cm).∵∠EFM=∠FMN=∠FEN=90°.∴四边形EFMN是矩形.∴EN=FM=3.∵∠DAF=∠EAB,∠AFD=∠AEB,∴△AFD∽△AEB.∴=.∴=.∴4DF=3AF.设DF=3k,则AF=4k.∵∠AFD=90°,∴AD=5k.∵∠AEB=90°,AE=4(k+1),BE=3(k+1),∴AB=5(k+1).∵2(AB+AD)=42,∴AB+AD=21.∴5(k+1)+5k=21.∴k=1.6.∴AB=13(cm).故答案为:5;13.【点评】本题考查了平行四边形的性质、平行线的性质、矩形的判定与性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识,综合性较强.三、解答题14.(2015•聊城)如图,在△ABC中,AB=BC,BD平分∠ABC.四边形ABED是平行四边形,DE交BC 于点F,连接CE.求证:四边形BECD是矩形.【考点】矩形的判定.【专题】证明题.【分析】根据已知条件易推知四边形BECD是平行四边形.结合等腰△ABC“三线合一”的性质证得BD⊥AC,即∠BDC=90°,所以由“有一内角为直角的平行四边形是矩形”得到▱BECD是矩形.【解答】证明:∵AB=BC,BD平分∠ABC,∴BD⊥AC,AD=CD.∵四边形ABED是平行四边形,∴BE∥AD,BE=AD,∴BE=CD,∴四边形BECD是平行四边形.∵BD⊥AC,∴∠BDC=90°,∴▱BECD是矩形.【点评】本题考查了矩形的判定.矩形的定义:有一个角是直角的平行四边形是矩形.15.如图,在平面直角坐标系中,点A(2,n),B(m,n)(m>2),D(p,q)(q<n),点B,D在直线y=x+1上.四边形ABCD的对角线AC,BD相交于点E,且AB∥CD,CD=4,BE=DE,△AEB 的面积是2.求证:四边形ABCD是矩形.【考点】矩形的判定;一次函数图象上点的坐标特征.【专题】证明题.【分析】首先利用对角线互相平分的四边形是平行四边形判定该四边形为平行四边形,然后根据△ABE的面积得到整个四边形的面积和AD的长,根据平行四边形的面积计算方法得当DA⊥AB即可判定矩形.【解答】证明:作EF⊥AB于点F,∵AB∥CD,∴∠1=∠2,∠3=∠4,在△ABE和△CDE中,,∴△ABE≌△CDE,∴AE=CE,∴四边形ABCD是平行四边形,∵A(2,n),B(m,n),易知A,B两点纵坐标相同,∴AB∥CD∥x轴,∴m﹣2=4,m=6,将B(6,n)代入直线y=x+1得n=4,∴B(6,4),∵CD=4=AB,△AEB的面积是2,∴EF=1,∵D(p,q),∴E(,),F(,4),∴+1=4,∴q=2,p=2,∴DA⊥AB,∴四边形ABCD是矩形.【点评】本题考查了矩形的判定,解题的关键是了解有一个角是直角的平行四边形是矩形,难度不大.16.如图,在△ABC中,AB=AC,点D(不与点B重合)在BC上,点E是AB的中点,过点A作AF∥BC交DE延长线于点F,连接AD,BF.(1)求证:△AEF≌△BED.(2)若BD=CD,求证:四边形AFBD是矩形.【考点】矩形的判定;全等三角形的判定与性质.【专题】证明题.【分析】(1)AAS或ASA证全等;(2)根据对角线互相平分的证明四边形AFBD是平行四边形,再根据等腰三角形三线合一证明∠ADB=90°,进而根据有一个角是直角的平行四边形是矩形得证.【解答】证明:(1)∵AF∥BC,∴∠AFE=∠EDB,∵E为AB的中点,∴EA=EB,在△AEF和△BED中,,∴△AEF≌△BED(ASA);(2)∵△AEF≌△BED,∴AF=BD,∵AF∥BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴AD⊥BD,∴四边形AFBD是矩形.【点评】本题考查了矩形的判定,三角形全等的判定及性质,能够了解矩形的判定定理是解答本题的关键,难度不大.17.(2015•义乌市)正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A按顺时针方向旋转,记旋转角∠DAG=α,其中0°≤α≤180°,连结DF,BF,如图.(1)若α=0°,则DF=BF,请加以证明;(2)试画一个图形(即反例),说明(1)中命题的逆命题是假命题;(3)对于(1)中命题的逆命题,如果能补充一个条件后能使该逆命题为真命题,请直接写出你认为需要补充的一个条件,不必说明理由.【考点】正方形的性质;全等三角形的判定与性质;命题与定理;旋转的性质.【专题】压轴题.【分析】(1)利用正方形的性质证明△DGF≌△BEF即可;(2)当α=180°时,DF=BF.(3)利用正方形的性质和△DGF≌△BEF的性质即可证得是真命题.【解答】(1)证明:如图1,∵四边形ABCD和四边形AEFG为正方形,∴AG=AE,AD=AB,GF=EF,∠DGF=∠BEF=90°,∴DG=BE,在△DGF和△BEF中,,∴△DGF≌△BEF(SAS),∴DF=BF;(2)解:图形(即反例)如图2,(3)解:补充一个条件为:点F在正方形ABCD内;即:若点F在正方形ABCD内,DF=BF,则旋转角α=0°.【点评】本题主要考查正方形的性质及全等三角形的判定和性质,旋转的性质,命题和定理,掌握全等三角形的对应边相等是解题的关键,注意利用正方形的性质找三角形全等的条件.18.(2015•鄂州)如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.(1)求证:BE=CE.(2)求∠BEC的度数.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)根据正方形的性质,可得AB=AD=CD,∠BAD=∠ADC=90°,根据正三角形的性质,可得AE=AD=DE,∠EAD=∠EDA=60°,根据全等三角形的判定与性质,可得答案;(2)根据等腰三角形的性质,∠ABE=∠AEB,根据三角形的内角和定理,可得∠AEB,根据角的和差,可得答案.【解答】(1)证明:∵四边形ABCD为正方形∴AB=AD=CD,∠BAD=∠ADC=90°∵三角形ADE为正三角形∴AE=AD=DE,∠EAD=∠EDA=60°∴∠BAE=∠CDE=150°在△BAE和△CDE中,∴△BAE≌△CDE∴BE=CE;(2)∵AB=AD,AD=AE,∴AB=AE,∴∠ABE=∠AEB,又∵∠BAE=150°,∴∠ABE=∠AEB=15°,同理:∠CED=15°∴∠BEC=60°﹣15°×2=30°.【点评】本题考查了正方形的性质,(1)利用了正方形的性质,等腰三角形的性质,全等三角形的判定与性质;(2)利用了等腰三角形的判定与性质,角的和差.19.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.【考点】正方形的性质;全等三角形的判定与性质;菱形的性质.【专题】证明题.【分析】(1)先证出△ABP≌△CBP,得PA=PC,由于PA=PE,得PC=PE;(2)由△ABP≌△CBP,得∠BAP=∠BCP,进而得∠DAP=∠DCP,由PA=PC,得到∠DAP=∠E,∠DCP=∠E,最后∠CPF=∠EDF=90°得到结论;(3)借助(1)和(2)的证明方法容易证明结论.【解答】(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∴PC=PE;(2)由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠BCP,∵PA=PE,∴PC=PE,∴∠DAP=∠DCP,∵PA=PC,∴∠DAP=∠AEP,∴∠DCP=∠AEP∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠AEP,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,【点评】本题考查了正方形的性质,全等三角形的判定与性质,菱形的性质,等边对等角的性质,熟记正方形的性质确定出∠ABP=∠CBP是解题的关键.20.在平面直角坐标系xOy中,直线y=﹣x+3与x轴、y轴分别交于A、B,在△AOB内部作正方形,使正方形的四个顶点都落在该三角形的边上,求正方形落在x轴正半轴的顶点坐标.【考点】正方形的性质;一次函数图象上点的坐标特征.【分析】分两种情况:①如图1,令x=0,则y=3,令y=0,则x=3,得到OA=OB=3,∠BAO=45°,根据DE⊥OA,推出DE=AE,由于四边形COED是正方形,得到OE=DE,等量代换得到OE=AE,即可得到结论;②如图2,由(1)知△OFC,△EFA是等腰直角三角形,由四边形CDEF是正方形,得到EF=CF,于是得到AF=OF=2OF,求出OA=OF+2OF=3,即可得到结论.【解答】解:分两种情况;①如图1,令x=0,则y=3,令y=0,则x=3,∴OA=OB=3,∴∠BAO=45°,∵DE⊥OA,∴DE=AE,∵四边形COED是正方形,∴OE=DE,∴OE=AE,∴OE=OA=,∴E(,0);②如图2,由①知△OFC,△EFA是等腰直角三角形,∴CF=OF,AF=EF,∵四边形CDEF是正方形,∴EF=CF,∴AF=OF=2OF,∴OA=OF+2OF=3,∴OF=1,∴F(1,0).【点评】本题考查了正方形的性质,一次函数图象上点的坐标特征,等腰直角三角形的性质,正确的画出图形是解题的关键.21.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.【考点】矩形的判定;全等三角形的判定与性质.【专题】证明题.【分析】求出∠BAE=∠CAD,证△BAE≌△CAD,推出∠BEA=∠CDA,BE=CD,得出平行四边形BCDE,根据平行线性质得出∠BED+∠CDE=180°,求出∠BED,根据矩形的判定求出即可.【解答】证明:∵∠BAD=∠CAE,∴∠BAD﹣∠BAC=∠CAE﹣∠BAC,∴∠BAE=∠CAD,∵在△BAE和△CAD中∴△BAE≌△CAD(SAS),∴∠BEA=∠CDA,BE=CD,∵DE=CB,∴四边形BCDE是平行四边形,∵AE=AD,∴∠AED=∠ADE,∵∠BEA=∠CDA,∴∠BED=∠CDE,∵四边形BCDE是平行四边形,∴BE∥CD,∴∠CDE+∠BED=180°,∴∠BED=∠CDE=90°,∴四边形BCDE是矩形.【点评】本题考查了矩形的判定,平行四边形的性质和判定,平行线的性质全等三角形的性质和判定的应用,主要考查学生运用定理进行推理的能力,注意:有一个角是直角的平行四边形是矩形.22.已知在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.(1)求证:四边形ADBE是矩形;(2)求矩形ADBE的面积.【考点】矩形的判定与性质;勾股定理;平行四边形的性质.【分析】(1)利用三线合一定理可以证得∠ADB=90°,根据矩形的定义即可证得;(2)利用勾股定理求得BD的长,然后利用矩形的面积公式即可求解.【解答】解:(1)∵AB=AC,AD是BC边上的中线,∴AD⊥BC,∴∠ADB=90°,∵四边形ADBE是平行四边形.∴平行四边形ADBE是矩形;(2)∵AB=AC=5,BC=6,AD是BC的中线,∴BD=DC=6×=3,在直角△ACD中,AD===4,∴S=BD•AD=3×4=12.矩形ADBE【点评】本题考查了三线合一定理以及矩形的判定,理解三线合一定理是关键.23.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.【考点】矩形的判定;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明△AEF和△DEC全等,根据全等三角形对应边相等可得AF=CD,再利用等量代换即可得证;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD是平行四边形,再根据一个角是直角的平行四边形是矩形,可知∠ADB=90°,由等腰三角形三线合一的性质可知必须是AB=AC.【解答】解:(1)BD=CD.理由如下:依题意得AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴BD=CD;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD(三线合一),∴∠ADB=90°,∴▱AFBD是矩形.【点评】本题考查了矩形的判定,全等三角形的判定与性质,平行四边形的判定,是基础题,明确有一个角是直角的平行四边形是矩形是解本题的关键.24.(2014•宁德)如图,在梯形ABCD中,AD∥BC,点E是BC的中点,连接AC,DE,AC=AB,DE∥AB.求证:四边形AECD是矩形.【考点】矩形的判定.【专题】证明题.【分析】先判断四边形AECD为平行四边形,然后由∠AEC=90°即可判断出四边形AECD是矩形.【解答】证明:∵AD∥BC,DE∥AB,∴四边形ABED是平行四边形.∴AD=BE.∵点E是BC的中点,∴EC=BE=AD.∴四边形AECD是平行四边形.∵AB=AC,点E是BC的中点,∴AE⊥BC,即∠AEC=90°.∴▱AECD是矩形.【点评】本题考查了梯形和矩形的判定,难度适中,解题关键是掌握平行四边形和矩形的判定定理.25.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE ⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.【考点】矩形的判定;角平分线的性质;等腰三角形的性质;正方形的判定.【专题】证明题;开放型.(1)根据矩形的有三个角是直角的四边形是矩形,已知CE⊥AN,AD⊥BC,所以求证∠DAE=90°,【分析】可以证明四边形ADCE为矩形.(2)根据正方形的判定,我们可以假设当AD=BC,由已知可得,DC=BC,由(1)的结论可知四边形ADCE为矩形,所以证得,四边形ADCE为正方形.【解答】(1)证明:在△ABC中,AB=AC,AD⊥BC,∴∠BAD=∠DAC,∵AN是△ABC外角∠CAM的平分线,∴∠MAE=∠CAE,∴∠DAE=∠DAC+∠CAE=180°=90°,又∵AD⊥BC,CE⊥AN,∴∠ADC=∠CEA=90°,∴四边形ADCE为矩形.(2)当△ABC满足∠BAC=90°时,四边形ADCE是一个正方形.理由:∵AB=AC,∴∠ACB=∠B=45°,∵AD⊥BC,∴∠CAD=∠ACD=45°,∴DC=AD,∵四边形ADCE为矩形,∴矩形ADCE是正方形.∴当∠BAC=90°时,四边形ADCE是一个正方形.【点评】本题是以开放型试题,主要考查了对矩形的判定,正方形的判定,等腰三角形的性质,及角平分线的性质等知识点的综合运用.26.如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.(1)求证:△ADE≌△CBF;(2)求证:四边形BFDE为矩形.【考点】矩形的判定;全等三角形的判定与性质;平行四边形的性质.【专题】证明题.【分析】(1)由DE与AB垂直,BF与CD垂直,得到一对直角相等,再由ABCD为平行四边形得到AD=BC,对角相等,利用AAS即可的值;(2)由平行四边形的对边平行得到DC与AB平行,得到∠CDE为直角,利用三个角为直角的四边形为矩形即可的值.【解答】证明:(1)∵DE⊥AB,BF⊥CD,∴∠AED=∠CFB=90°,∵四边形ABCD为平行四边形,∴AD=BC,∠A=∠C,在△ADE和△CBF中,,∴△ADE≌△CBF(AAS);(2)∵四边形ABCD为平行四边形,。
北师版九年级数学第一章特殊平行四边形单元测试题含答案
本页为预览页,下载后将此页内容删除后就可打印使用,后面附有答案。
欢迎批评指正!九年级数学上册第一章特殊平行四边形单元测试(时间60分钟 满分120分)一、选择题(每小题3分,共30分) 1.下列说法中错误的是( )A 两条对角线互相平分的四边形是平行四边形B 两条对角线相等的菱形是正方形C 两条对角线互相垂直的矩形是正方形;D .两条对角线相等的四边形是矩形2.矩形具有而平行四边形不具有的性质是( )A 、对角线互相平分B 、对角线相等C 、对角线互相垂直D 、四边相等 3.能够找到一点,使该点到各顶点的距离都相等的图形是( ) ①平行四边形 ②菱形 ③矩形 ④正方形 A .①与② B .②与③ C .②与④ D .③与④4.给出五种图形:①矩形; ②菱形; ③等腰三角形(腰与底边不相等); ④等边三角形; ⑤平行四边形(不含矩形、菱形).其中,能用完全重合的含有30°角的两块直角三角板拼成的图形是( )A .②③B .②③④C .①③④⑤D .①②③④⑤5.已知一矩形的两边长分别为10 cm 和15 cm ,其中一个内角的平分线分长边为两部分,这两部分的长为( )A.6 cm 和9 cmB. 5 cm 和10 cmC. 4 cm 和11 cmD. 7 cm 和8 cm6.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形中满足条件的是( ) ①平行四边形;②菱形; ③矩形;④对角线互相垂直的四边形.A.①③B.②③C.③④D.②④7. 如图,在菱形ABCD 中,∠BAD=800,AB 的垂直平分线交对角线AC 于点F ,E 为垂足,连结DF ,则∠CDF 等于( ) A 、80B 、70C 、650D 、60AEO DBFCG8.如图,正方形ABCD ,AF BE 于点F ,交BD 于点G ,则下述结论中不成立的是( ) A. AG=BE B. △ABG ≌△BCE C. AE=DG D. ∠AGD=∠DAG9.如图,正方形ABCD 的对角线AC 是菱形AEFC 的一边,则∠FAB 等于( ) A.135° B.45° C.22.5° D.30°10.如图矩形ABCD 中,AB=2AD,AE=AB,则∠CBE 等于( ) A.30° B.22.5° C.15° D.以上答案都不对 二、填空题(每小题3分,共30分)11.已知菱形的周长为40,一条对角线长为12,则这个菱形的面积为_________. 12.四边形ABCD 为菱形,∠A=60°, BD=10cm , 则此菱形的周长________cm . 13.已知正方形的一条对角线长为8cm ,则其面积是__________cm 2. 14.已知矩形ABCD 中,CE ⊥BD 于E ,∠BCE ︰∠ECD=3︰1,则∠ACE=____度.15.一个菱形的边长与一个等腰直角三角形的直角边长相等,若菱形的一个内角为30°,则菱形的面积与等腰直角三角形的面积之比为________.16.矩形ABCD 中,M 是BC 的中点,且MA ⊥MD ,若矩形的周长为48cm ,则矩形ABCD 的面积为________. 17.如图,矩形ABCD 中过点O 作AC 的垂线EF ,已知△CDE 的周长为24 cm ,则矩形ABCD 的周长 是 cm.18.如图,矩形ABCD 中AC=10,BC=8,则图中五个小矩形的周长之和为_______.19.如图,在RtΔABC,∠ACB=900,∠A<∠B,CM 是斜边AB 的中线,将ΔACM 沿直线CM 折叠,点A 落在点D 处,若CD 恰好与AB 垂直,则∠A 等于 度。
2022-2023学年北师大版九年级数学上册第一章特殊平行四边形单元测试题含答案
第一章 特殊平行四边形一 选择题(共10小题,每小题3分,共30分.每小题有四个选项,其中只有一个选项符合题意)1.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,下列说法不正确的是 ( )A.AB ∥DCB.AC=BDC.AC ⊥BDD.OA=OB(第1题) (第2题)2.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,E 为AD 的中点,连接OE ,若OE=3,则菱形ABCD 的周长为 ( )A.10B.12C.16D.243.如图,正方形ABCD 的对角线AC ,BD 相交于点O ,P 为边BC 上一点,且BP=OB ,则∠COP= ( ) A.15° B.22.5° C.25°D.17.5°(第3题) (第4题)4.如图,在矩形ACBE 中,∠ABC=30°,AB 交CE 于点D ,若AC=2,则CD 的长为 ( )A.2B.3C.4D.55.如图,EF 过矩形ABCD 的对角线的交点O ,且分别交AB ,CD 于点E ,F ,那么阴影部分的面积是矩形ABCD 面积的 ( )A.15B.14C.13D.310(第5题) (第6题)6.如图,已知▱ABCD 的对角线AC ,BD 相交于点O ,下列说法正确的是( ) A.当OA=OB 时,▱ABCD 为菱形 B.当AB=AD 时,▱ABCD 为正方形 C.当∠ABC=∠BCD 时,▱ABCD 为矩形 D.当AC ⊥BD 时,▱ABCD 为正方形7.如图,在矩形ABCD 中,BC=8,AB=4,点E ,F 分别为AD 和BC 的中点,连接CE ,DF ,交于点O ,连接AO ,则AO 的长为( )A.2√10B.5√2C.32√10 D.4√2(第7题)(第8题)8.如图,在四边形ABCD中,点E,F,G,H分别是AB,BD,CD,AC的中点,要使四边形EFGH是菱形,四边形ABCD应满足的一个条件是()A.AD=BCB.AC⊥BDC.AC=BDD.AB=CD9.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB'C'D',边B'C'与DC 相交于点O,则OC的长是() A.2√2-2 B.2+√2 C.2-√2 D.√2(第9题)(第10题)10.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B'处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是() A.12 B.24 C.12√3 D.16√3二填空题(共5小题,每小题3分,共15分)11.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,若∠A=26°,则∠DCA=.(第11题)(第12题)12.如图,在平面直角坐标系中,矩形木框OABC的顶点B的坐标为(1,2),若固定OA,向左推矩形木框OABC,使点B落在y轴上的点B'处,则点C的对应点C'的坐标为.13.对下列现象中蕴含的数学原理阐述正确的是(填序号).图(1)图(2)图(3)①如图(1),工人师傅在做矩形门窗时,不仅要测量出两组对边的长度相等,还要测量出两条对角线的长度相等,以确保门窗是矩形.其依据是“对角线相等的四边形是矩形”.②如图(2),将两张等宽的矩形纸条交叉叠放在一起,重合部分构成的四边形ABCD一定是菱形.其依据是“有一组邻边相等的平行四边形是菱形”.③把一张矩形纸片按图(3)的方式折一下,然后沿EF裁剪,打开就可以得到正方形.其依据是“有一组邻边相等的矩形是正方形”.14.如图,P是正方形ABCD的对角线BD上一点,PE⊥DC于点E,PF⊥BC于点F,若CF=3,CE=4,则AP的长是.(第14题)(第15题)15.如图,在边长为6的菱形ABCD中,∠DAB=60°,E为AB的中点,F为AC上一动点,连接EF,BF,则EF+BF的最小值是.三解答题(共6小题,共55分)16.(7分)如图,正方形ABCD中,点E,F分别在边CD,AD上,DE=AF,BE与CF相交于点G.(1)求证:BE=CF.(2)若BC=4,DE=1,求CF的长.17.(8分)如图,矩形ABCD的对角线AC,BD相交于点O,过点B作AC的平行线交DC的延长线于点E.(1)求证:BD=BE.(2)若BE=10,CE=6,连接OE,求△ODE的面积.18.(8分)如图,在矩形ABCD中,AB=3 cm,BC=6 cm.点P从点D出发向点A运动,运动到点A即停止;同时,点Q从点B出发向点C运动,运动到点C即停止.点P,Q的速度都是1 cm/s.连接PQ,AQ,CP.设点P,Q运动的时间为t s.(1)当t为何值时,四边形ABQP是矩形?(2)当t为何值时,四边形AQCP是菱形?19.(9分)如图(1),在菱形纸片ABCD中,∠A=45°.对其进行如下操作:如图(2),现将纸片进行折叠,使点A与点D重合,点C与点D重合,折痕分别为EG,FH,且两条折痕的延长线交于点O.(1)求∠EOF的度数;(2)四边形DGOH是菱形吗?请说明理由.图(1)图(2)20.(10分)我们给出如下定义:把对角线互相垂直的四边形叫做“对角线垂直四边形”.如图(1),在四边形ABCD中,AC⊥BD于点O,四边形ABCD就是“对角线垂直四边形”.(1)下列四边形,一定是“对角线垂直四边形”的是.①平行四边形,②矩形,③菱形,④正方形.(2)如图(2),在“对角线垂直四边形ABCD”中,点E,F,G,H分别是边AB,BC,CD,DA的中点.求证:四边形EFGH是矩形.图(1)图(2)(3)小明说:计算“对角线垂直四边形”的面积可以仿照求菱形的面积的方法,其面积是对角线长的乘积的一半.小明的说法正确吗?如果正确,请结合图(1)说明理由;如果不正确,请给出反例.21.(13分)如图(1),矩形ABCD的对角线AC,BD相交于点O,过点D作DP∥OC,且DP=OC,连接CP.(1)猜想:请你判断四边形CODP的形状,并说明理由.(2)证明:如果将矩形变为菱形,如图(2),请你判断四边形CODP的形状,并说明理由.(3)应用:如果将矩形变为正方形,如图(3),请你判断四边形CODP的形状,并说明理由.图(1)图(2)图(3)答案解析1.C根据矩形的性质可知,矩形的对角线不一定互相垂直.故选C.【归纳总结】矩形的有关性质①边,矩形的对边平行且相等;②角,矩形的四个角都是直角;③对角线,矩形的对角线互相平分且相等.2.D根据菱形的性质可知,O是AC的中点.∵E为AD的中点,∴OE为△ACD的中位线,∴CD=2OE=6.又菱形的四边相等,∴菱形ABCD的周长为6×4=24.故选D.【一题多解】由题意得∠AOD=90°.在Rt△AOD中,∵E为AD的中点,∴AD=2OE=2×3=6,∴菱形ABCD的周长为6×4=24.故选D.3.B∵四边形ABCD是正方形,∴∠BOC=90°,∠OBC=45°.∵BP=OB,∴∠BOP=∠BPO=12(180°-45°)=67.5°,∴∠COP=90°-67.5°=22.5°.故选B.4.A∵四边形ACBE是矩形,∴∠ACB=90°,D为AB的中点.∵AC=2,∠ABC=30°,∴AB=2AC=4,∴CD=12AB=2,故选A.5.B∵四边形ABCD为矩形,∴OB=OD,AB∥CD,∴∠EBO=∠FDO.在△EBO与△FDO中,∵∠EOB=∠FOD,OB=OD,∠EBO=∠FDO,∴△EBO≌△FDO,∴S阴影部分=S△AEO+S△EBO=S△AOB.∵S△AOB=12S△ABC=14S矩形ABCD,∴S阴影部分=14S矩形ABCD.故选B.【数学思想】本题利用全等三角形把不规则图形的面积转化为较简单的规则图形的面积,进而利用整体思想求解.6.C∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.又OA=OB,∴AC=BD,由“对角线相等的平行四边形是矩形”,可判定▱ABCD为矩形,故选项A中说法错误.当AB=AD时,由菱形的定义可知,▱ABCD为菱形,故选项B中说法错误.∵在▱ABCD中,AB∥CD,∴∠ABC+∠BCD=180°.又∠ABC=∠BCD,∴∠ABC=90°.由矩形的定义,可判定▱ABCD为矩形,故选项C中说法正确.当AC⊥BD时,根据“对角线互相垂直的平行四边形是菱形”,可判定▱ABCD为菱形,但无法判定其为正方形,故选项D中说法错误.故选C.7.A连接EF,过点O作OM⊥AD于点M,易证四边形EFCD为正方形,∴OM=MD=12AB=2,∴AM=6.在Rt△AOM中,由勾股定理,得AO=√AM2+OM2=2√10.8.A∵点E,F,G,H分别是AB,BD,CD,AC的中点,∴GH∥AD,EF∥AD,FG∥BC,HE∥BC,且GH=12AD,EH=12BC,∴EF∥GH,HE∥FG,∴四边形EFGH是平行四边形.当AD=BC时,GH=EH,此时平行四边形EFGH是菱形.故选A.9.C如图,连接B'C,AC.∵旋转角∠BAB'=45°,∠BAC=45°,∴点B'在对角线AC上.∵AB=AB'=BC=1,∴AC=√2,∴B'C=√2-1.在等腰直角三角形OB'C中,OB'=B'C=√2-1,∴OC=√2(√2-1)=2-√2.故选C.10.D在矩形ABCD中,∵AD∥BC,∴∠DEF=∠EFB=60°.由翻折可知,∠EFB'=60°,∠A'B'F=∠B=90°,∠A'=∠A=90°,A'E=AE=2,A'B'=AB.在△EFB'中,∵∠B'EF=∠EFB'=60°,∴△EFB'是等边三角形.在Rt△A'EB'中,∵∠A'B'E=90°-60°=30°,∴B'E=2A'E=4,∴A'B'=2√3,即AB=2√3.∵AE=2,DE=6,∴AD=AE+DE=2+6=8,∴矩形ABCD的面积=AB·AD=2√3×8=16√3.故选D.AB=AD,∴∠DCA=∠A=26°.11.26°【解析】∵∠ACB=90°,D是AB的中点,∴DC=1212.(-1,√3)【解析】∵四边形OABC是矩形,点B的坐标为(1,2),∴OA=1,AB=2.由题意得AB'=AB=2,四边形OAB'C'是平行四边形,∴OB'=√AB'2-OA2=√3,B'C'=OA=1,∴点C的对应点C'的坐标为(-1,√3).13.②③【解析】①∵两组对边的长度相等,∴四边形是平行四边形.又对角线相等,∴该平行四边形是矩形(对角线相等的平行四边形是矩形),故①错误.②如图,由矩形的对边平行,可得AB∥CD,AD∥BC,∴四边形ABCD是平行四边形.过点D分别作AB,BC边上的高DE,DF,则DE=DF.∵平行四边形ABCD的面积=AB×DE=BC×DF,∴AB=BC,∴平行四边形ABCD为菱形(有一组邻边相等的平行四边形是菱形),故②正确.③根据折叠可知,所得到的四边形有三个直角,∴该四边形为矩形.又有一组邻边相等,∴该矩形为正方形(有一组邻边相等的矩形是正方形),故③正确.故正确的阐述为②③.14.5【解析】如图,连接PC.∵四边形ABCD是正方形,∴AD=DC,∠ADP=∠CDP.∵PD=PD,∴△APD≌△CPD,∴AP=CP.∵四边形ABCD是正方形,∴∠DCB=90°.∵PE⊥DC,PF⊥BC,∴四边形PFCE是矩形,∴PC=EF.在Rt△CEF中,EF=√CE2+CF2=√42+32=5,∴AP=CP=EF=5.15.3√3【解析】∵四边形ABCD是菱形,∴点B,D关于AC对称,AB=AD.如图,连接BD,ED,则ED 的长即为EF+BF的最小值.∵∠DAB=60°,∴△ABD是等边三角形.∵E为AB的中点,∴DE⊥AB,AE=12AB=3.在Rt△ADE中,根据勾股定理,得ED=√AD2-AE2=√62-32=3√3,∴EF+BF 的最小值为3√3.16.【参考答案】(1)证明:∵四边形ABCD是正方形,∴BC=CD=DA,∠BCE=∠CDF=90°.(2分)∵DE=AF,∴CE=DF.(3分)在△BCE和△CDF中,{BC=CD,∠BCE=∠CDF, CE=DF,∴△BCE≌△CDF,∴BE=CF.(5分) (2)∵CD=AD=BC=4,AF=DE=1,∴DF=3.在Rt△CDF中,CF=√CD2+DF2=5.(7分) 17.【参考答案】(1)证明:∵四边形ABCD是矩形,∴AC=BD,AB∥CD.又BE∥AC,∴四边形ABEC是平行四边形,∴AC=BE,∴BD=BE.(3分)(2)如图,过点O作OF⊥CD于点F.∵四边形ABCD是矩形,∴∠BCD=90°,∴∠BCE=90°.在Rt△BCE中,根据勾股定理可得BC=8.∵BE=BD,∴CD=CE=6,∴DE=12.∵OD=OC,∴CF=DF.又OB=OD,∴OF为△BCD的中位线,∴OF=12BC=4,∴S△ODE=12DE·OF=12×12×4=24.(8分)18.【参考答案】(1)由题意得,BQ=DP=t,AP=CQ=6-t.在矩形ABCD中,∠B=90°,AD∥BC.要使四边形ABQP是矩形,则BQ=AP,即t=6-t,解得t=3.故当t=3时,四边形ABQP是矩形.(4分) (2)由题意得,四边形AQCP是平行四边形.要使平行四边形AQCP是菱形,则AQ=CQ,即√32+t2=6-t,解得t=94.故当t=94时,四边形AQCP是菱形.(8分)19.【参考答案】(1)由折叠可知∠DEG=∠DFH=90°.∵四边形ABCD是菱形,∴AB∥CD,∠C=∠A=45°,∴∠A+∠ADC=180°,∴∠ADC=135°.∵∠EOF+∠DEG+∠DFH+∠ADC=360°,∴∠EOF=360°-90°-90°-135°=45°.(4分) (2)是菱形.(5分)理由:由折叠可知∠ADG=∠A=45°,∠CDH=∠C=45°.∵∠ADC=135°,∴∠GDC=∠ADH=90°.∵∠AEG=∠CFH=90°,∴GE∥DH,GD∥HF,∴四边形DGOH是平行四边形.(7分)∵∠A=∠C,AD=CD,∠ADG=∠CDH,∴△ADG≌△CDH,∴DG=DH,∴四边形DGOH是菱形.(9分)20.【参考答案】(1)③④(2分) (2)∵点E,F,G,H分别是边AB,BC,CD,DA的中点,∴HG∥AC,EF∥AC,∴HG∥EF.同理可得HE∥GF.∴四边形EFGH是平行四边形.(4分)∵DB⊥AC,∴HE⊥HG,∴∠EHG=90°,∴四边形EFGH是矩形.(6分) (3)正确.(7分)理由:S四边形ABCD=S△ADC+S△BAC=12AC·OD+12AC·BO=12AC(OD+OB)=12AC·BD,即“对角线垂直四边形”的面积是对角线长的乘积的一半.(10分)【提分技法】解决中点四边形的有关方法(1)解决中点四边形问题,往往借助三角形的中位线的性质证明四边形的对边相等或平行.(2)中点四边形的形状由原来四边形对角线的特征决定.连接矩形各边中点得到的四边形是菱形;连接菱形各边中点得到的四边形是矩形;连接正方形各边中点得到的四边形是正方形.21.【解题思路】(1)由DP∥OC且DP=OC,得四边形CODP是平行四边形,根据矩形的性质得OC=OD,从而可证得四边形CODP是菱形;(2)由DP∥OC且DP=OC,得四边形CODP是平行四边形,又根据菱形的性质得∠DOC=90°,从而证得四边形CODP是矩形;(3)由DP∥OC且DP=OC,得四边形CODP 是平行四边形,又由正方形的性质得∠DOC=90°,OD=OC,从而证得四边形CODP是正方形.【参考答案】(1)四边形CODP是菱形.(1分)理由:∵DP∥OC,DP=OC,∴四边形CODP是平行四边形.(2分)∵四边形ABCD是矩形,∴AC=BD,OC=12AC,OD=12BD,∴OC=OD,∴四边形CODP是菱形.(4分) (2)四边形CODP是矩形.(5分)理由:∵DP∥OC,DP=OC,∴四边形CODP是平行四边形.∵四边形ABCD是菱形,∴AC⊥BD,∴∠DOC=90°,∴四边形CODP是矩形.(8分) (3)四边形CODP是正方形.(9分)理由:∵DP∥OC,DP=OC,∴四边形CODP是平行四边形.∵四边形ABCD是正方形,∴AC⊥BD,AC=BD,OC=12AC,OD=12BD,∴∠DOC=90°,OC=OD,(12分)∴四边形CODP是正方形.(13分)。
九年级数学(上)单元测试卷 第一章《特殊平行四边形》(含答案与解析)
【新北师大版九年级数学(上)单元测试卷】第一章《特殊平行四边形》(含答案与解析)班级:___________ 姓名:___________ 得分:___________一.选择题:(每小题3分,共36分)1. 已知下列命题:①矩形是轴对称图形,且有两条对称轴;②两条对角线相等的四边形是矩形;③有两个角相等的平行四边形是矩形;④两条对角线相等且互相平分的四边形是矩形.其中正确的有()A. 4个B. 3个C. 2个D. 1个2. 如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A. AB=BCB. AC=BCC. ∠B=60°D. ∠ACB=60°3.菱形的对角线长分别为3和4,则该菱形的面积是A. 6B. 8C. 12D. 244. 已知四边形ABCD中,分别是的中点,则四边形EFGH是A. 菱形B. 矩形C. 正方形D. 梯形5.在四边形ABCD中,O是对角线的交点,能判定这个四边形为正方形的是()A. AD∥BC,∠B=∠DB. AC=BD,AB=CD,AD=BCC. OA=OC,OB=OD,AB=BCD. OA=OB=OC=OD,AC⊥BD6. 正方形具有而矩形不一定有的性质是()A. 对角线相等且互相平分B. 对角线互相垂直且平分每一组对角C. 每一内角均为直角D. 对边平行且相等7. 平行四边形ABCD是正方形需增加的条件是()A. 邻边相等B. 邻角相等8.如图,在矩形ABCD中,,则BD的长为A. 5B. 10C. 12D. 139.若一个菱形的两条对角线长分别是5cm和10cm,则与该菱形面积相等的正方形的边长是A. 6cmB. 5cmC.D.10.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边上的点B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A. 12B. 24C. 12D. 1611.如图,正方形ABCD中,E,F分别为AB,CD的中点,连接DE,BF,CE,AF,正方形ABCD的面积为1,则阴影部分的面积为()A. B. C. D.12.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为点F,则EF的长为()A. 1B.C. 4-2D. 3-4二.填空题:(每小题3分共12分)13.正方形的一条边长是4,则它的对角线长是_________.15.矩形的对角线相交构成的钝角为120°,短边等于5cm,则对角线的长为__________.16.如图,E为正方形ABCD边BC延长线上一点,且CE=BD,AE交DC于F,则∠AFC=_________.三.解答题:(共52分)17.如图,在四边形ABCD中,∠ABC=∠ADC=90°,点P是AC的中点.求证:∠BDP=∠DBP.18.已知:菱形ABCD中,对角线于点E,求菱形ABCD的面积和BE的长.于点F,且,连接BF.证明:;当满足什么条件时,四边形AFBD是矩形?并说明理由.20.已知中对角线AC的垂直平分线交AD于点F,交BC于点E.求证:四边形AECF是菱形.证明:∵EF是AC的垂直平分线(已知)∴四边形AECF是不正确⑴你能找出小明错误的原因吗?请你指出来.⑵请你给出本题的证明过程.21.如图,在菱形ABCD中,F是BC上任意一点,连接AF交对角线BD于点E,连接EC.(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置?说明理由.22. 如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是点E,F,并且DE=DF.求证:(1)△ADE≌△CDF;(2)四边形ABCD是菱形.23.如图,F是正方形ABCD的边BC的中点,CG平分∠DCM,交过F点AF的垂线FG于G,求证:AF=FG.一.选择题:(每小题3分,共36分)1. 已知下列命题:①矩形是轴对称图形,且有两条对称轴;②两条对角线相等的四边形是矩形;③有两个角相等的平行四边形是矩形;④两条对角线相等且互相平分的四边形是矩形.其中正确的有()A. 4个B. 3个C. 2个D. 1个【答案】C【解析】①正确.②等腰梯形是对角线相等,错误.③菱形也两个角相等,错误.④正确.所以选C.2. 如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A. AB=BCB. AC=BCC. ∠B=60°D. ∠ACB=60°【答案】B【解析】试题分析:∵将△ABC沿BC方向平移得到△DCE,∴AB CD,∴四边形ABCD为平行四边形,当AC=BC时,平行四边形ACED是菱形.故选B.3.菱形的对角线长分别为3和4,则该菱形的面积是A. 6B. 8C. 12D. 24【答案】A【解析】∵菱形的两条对角线长分别为3和4,∴S菱形=.故选A.4. 已知四边形ABCD中,分别是的中点,则四边形EFGH是A. 菱形B. 矩形C. 正方形D. 梯形【答案】B【解析】如图,∵E、F、G、H分别是AB、BC、CD、DA的中点,∴EF∥AC,HG∥AC,∴EF∥AC,∴四边形EFGH是平行四边形,∵EF∥AC,AC⊥BD,∴EF⊥BD,∵HE∥BD,∴EF⊥HE,∴∠HEF=90°,∴平行四边形EFGH是矩形.故选B.5.在四边形ABCD中,O是对角线的交点,能判定这个四边形为正方形的是()A. AD∥BC,∠B=∠DB. AC=BD,AB=CD,AD=BCC. OA=OC,OB=OD,AB=BCD. OA=OB=OC=OD,AC⊥BD【答案】D【解析】A、不能,只能判定出是平行四边形;B、不能,只能判定出是矩形;C、不能,只能判定出是菱形;D、能,由OA=OB=OC=OD可判断出四边形ABCD是矩形,再根据AC⊥BD,可判断出矩形ABCD 又是菱形,所以可判断出四边形ABCD是正方形,故选D.6. 正方形具有而矩形不一定有的性质是()A. 对角线相等且互相平分B. 对角线互相垂直且平分每一组对角C. 每一内角均为直角D. 对边平行且相等【答案】B【解析】根据正方形和矩形的性质知,它们具有相同的特征有:四个角都是直角、对边平行且相等、对角线相等、对角线互相平分,但矩形的对角线不互相垂直,故选B.7. 平行四边形ABCD是正方形需增加的条件是()A. 邻边相等B. 邻角相等C. 对角线互相垂直D. 对角线互相垂直且相等【解析】如图所示:添加的条件是AC=BD且AC⊥BD,平行四边形ABCD为正方形;理由如下:添加的条件时AC=BD且AC⊥BD时;∵四边形ABCD是平行四边形.又AC=BD,∴四边形ABCD是矩形,∵AC⊥BD,∴四边形ABCD是菱形,∴四边形ABCD是正方形;故选:D.8.如图,在矩形ABCD中,,则BD的长为A. 5B. 10C. 12D. 13【答案】B【解析】∵四边形ABCD是矩形,∠BOC=120°,∴AO=BO,∠BAD=90°,∠AOB=60°,∴△AOB是等边三角形,∴∠ABD=60°,∴∠BDA=30°,∴BD=2AB=10.故选B.9.若一个菱形的两条对角线长分别是5cm和10cm,则与该菱形面积相等的正方形的边长是A. 6cmB. 5cmC.D.【解析】∵菱形的两条对角线分别为5cm和10cm,∴菱形的面积为:(cm2),设正方形的边长为cm,则,解得:(cm).故选B.10.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边上的点B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A. 12B. 24C. 12D. 16【答案】D【解析】试题分析:根据题意可得:AD=2+6=8,根据折叠图形的性质可得:AB=2,然后根据矩形的面积计算公式求出矩形的面积.11.如图,正方形ABCD中,E,F分别为AB,CD的中点,连接DE,BF,CE,AF,正方形ABCD的面积为1,则阴影部分的面积为()A. B. C. D.【答案】C【解析】DE BF,AF EC,EGFH是平行四边形,E,F是中点,易得,四边形对角线垂直,1∴EGFH是菱形。
北师大版九年级数学上册第一章特殊平行四边形测评卷含答案
第一章测评卷(时间:45分钟,满分:100分)一、选择题(本大题共6小题,每小题5分,共30分.下列各题给出的四个选项中,只有一项符合题意) 1.下列所述图形中,是轴对称图形但不是中心对称图形的是( ). A.圆 B.菱形C.平行四边形D.等腰三角形2.如图,四边形ABCD 是菱形,过点A 作BD 的平行线交CD 的延长线于点E ,则下列式子不成立的是( ).A .DA=DEB .∠ABC=2∠EC .∠EAC=90°D .BD=CE3.给出下列说法:①四边相等的四边形一定是菱形;②顺次连接矩形各边中点形成的四边形一定是正方形; ③对角线相等的四边形一定是矩形;④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分. 其中正确的有( ). A.4个B.3个C.2个D.1个4.如图,四边形ABCD 是菱形,AC=8,DB=6,DH ⊥AB 于点H ,则DH 等于( ).A.245B.125C.5D.45.如图,EF 过平行四边形ABCD 对角线的交点O ,交AD 于点E ,交BC 于点F.若平行四边形ABCD 的周长为18,OE=1.5,则四边形EFCD 的周长为( ). A.14B.13C.12D.10(第5题图)6.(2021·湖南衡阳中考)如图,矩形纸片ABCD,AB=4,BC=8,点M,N分别在矩形的边AD,BC上,将矩形纸片沿直线MN折叠,使点C落在矩形的边AD上,记为点P,点D落在G处,连接PC,交MN于点Q,连接CM.给出下列结论:①四边形CMPN是菱形;②点P与点A重合时,MN=5;③△PQM的面积S的取值范围是4≤S≤5.其中所有正确结论的序号是().(第6题图)A.①②③B.①②C.①③D.②③二、填空题(每小题4分,共16分)7.如图,点P是正方形ABCD内位于对角线AC下方的一点,∠1=∠2,则∠BPC的度数为.8.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为.9.如图,正方形ABCD和正方形CEFG的边长分别为a和b,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2.其中正确的结论有.(填序号)10.如图,正方形ABCD的边长为2,H在CD的延长线上,四边形CEFH也为正方形,则△DBF的面积为.三、解答题(共54分)11.(12分) (2021·四川遂宁中考)如图,在▱ABCD中,对角线AC与BD相交于点O.过点O的直线EF与BA,DC的延长线分别交于点E,F.(1)求证:AE=CF;(2)请再添加一个条件,使四边形BFDE为菱形,并说明理由.12.(12分) 如图,在矩形ABCD中,点E在边CD上,将△ADE沿AE折叠,使点D落在边BC上的点F 处,过点F作FG∥CD,交AE于点G,连接DG.(1)求证:四边形DEFG为菱形;(2)若CD=8,CF=4,求CEDE的值.13.(14分) 如图,B,C,E是同一直线上的三个点,四边形ABCD与四边形CEFG都是正方形.连接BG,DE.(1)观察猜想BG与DE之间的大小关系,并证明你的结论.(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,请指出,并说出旋转过程;若不存在,请说明理由.14.(16分)如图,在矩形纸片AEE'D中,AD=5,S矩形AEE'D=15,在EE'上取一点F,使EF=4,剪下△AEF,将它平移至△DE'F'的位置,拼成四边形AFF'D.(1)求证:四边形AFF'D是菱形;(2)求四边形AFF'D的两条对角线的长.第一章测评卷一、选择题1.D2.D3.C4.A5.C6.C 二、填空题7.135°8.72 9.①②③ 10.2 三、解答题11.(1)证明: 因为四边形ABCD 是平行四边形, 所以OA=OC ,BE ∥DF , 所以∠E=∠F.在△AOE 和△COF 中,{∠E =∠F ,∠AOE =∠COF ,OA =OC .所以△AOE ≌△COF (AAS), 所以AE=CF.(2)解: 当EF ⊥BD 时,四边形BFDE 是菱形.理由如下: 如图,连接BF ,DE ,因为四边形ABCD 是平行四边形, 所以OB=OD. 因为△AOE ≌△COF , 所以OE=OF ,所以四边形BFDE 是平行四边形. 因为EF ⊥BD ,所以四边形BFDE 是菱形.12.(1)证明: 由轴对称的性质,得∠DEG=∠FEG ,ED=EF ,GD=GF. 因为FG ∥CD ,所以∠DEG=∠FGE , 所以∠FEG=∠FGE , 所以FE=FG ,所以ED=EF=GD=GF , 所以四边形DEFG 为菱形. (2)35.13.(1)BG=DE.证明略.(2)存在.△BCG和△DCE.△BCG绕点C按顺时针方向旋转90°后与△DCE重合(或△DCE绕点C按逆时针方向旋转90°后与△BCG重合).14.(1)证明: 因为AD=5,S矩形AEE'D=15,所以AE=3.因为EF=4,所以AF=√AE2+EF2=√32+42=5.所以AF=AD=5.又由平移得AF∥DF',AF=DF',所以四边形AFF'D是平行四边形.所以四边形AFF'D是菱形.(2)3√10,√10.。
北师大版九年级数学上册_第一章_特殊平行四边形_单元检测试卷(含答案)
北师大九年级数学上册第一章特殊平行四边形单元检测试卷学校:__________班级:__________姓名:__________考号:__________一、选择题(本题共计10小题,每题3分,共计30分,)1.如图,四边形ABCD是菱形,∠BAD=60∘,AC=8,DB=6,DH⊥AB于H,则DH=()A.245B.125C.4D.82.如图:A,D,E在同一条直线上,AD=3,DE=1,BD,DF分别为正方形ABCD,正方形DEFG的对角线,则三角形△BDF的面积为()A.4.5B.3C.4D.23.矩形、菱形、正方形都具有的性质是()A.对角线互相垂直B.对角线互相平分C.对角线相等D.对角线平分一组对角4.如图,菱形ABCD的周长为16,∠ABC=120∘,则AC的长为()A.4√3B.4C.2√3D.25.下列说法中:(1)四个角都相等的四边形是矩形.(2)两组对边分别相等并且有一个角是直角的四边形是矩形.(3)对角线相等并且有一个角是直角的四边形是矩形.(4)一组对边平行,另一组对边相等并且有一个角为直角的四边形是矩形.正确的个数是()A.1个B.2个C.3个D.4个6.如图,由两个长为9,宽为3的全等矩形叠合而得到四边形ABCD,则四边形ABCD 面积的最大值是()A.15B.16C.19D.207.下列说法:①矩形是轴对称图形,两条对角线所在的直线是它的对称轴;②两条对角线相等的四边形是矩形;③有两个角相等的平行四边形是矩形;④两条对角线相等且互相平分的四边形是矩形;⑤两条对角线互相垂直平分的四边形是矩形.其中,正确的有()A.1个B.2个C.3个D.4个8.如图,矩形ABCD中,对角线AC、BD相交于点O,AE⊥BD于E,若∠OAE=24∘,则∠BAE的度数是()A.24∘B.33∘C.42∘D.43∘9.如图,在正方形OABC中,点A的坐标是(−3, 1),点B的纵坐标是4,则B,C两点的坐标分别是()A.(−2, 4),(1, 3)B.(−2, 4),(2, 3)C.(−3, 4),(1, 4)D.(−3, 4),(1, 3)10.对于四边形ABCD,给出下列4组条件:①∠A=∠B=∠C=∠D;②∠B=∠C=∠D;③∠A=∠B,∠C=∠D;④∠A=∠B=∠C=90∘,其中能得到“四边形ABCD是矩形”的条件有()A.1组B.2组C.3组D.4组二、填空题(本题共计10小题,每题3分,共计30分,)11.己知菱形相邻两角的度数比为1:5,且它的面积为8,则这个菱形的周长为________.12.如图,正方形ABCD中对角线交于O点,正方形OMNQ与正方形ABCD的边长均为a,DE=CF,则两个正方形重合的部分面积为________.13.如图,在矩形ABCD中,AB=3,AD=4,P为AD上一动点,PE⊥AC于E,PF⊥BD 于F,则PE+PF的值为________.14.如图,在ABCD中,AC⊥BD于O.若不增加任何字母与辅助线,要使得四边形ABCD 是正方形,则还需增加的一个条件是________.15.如图,BF平行于正方形ABCD的对角线AC,点E在BF上,且AE=AC,CF // AE,则∠BCF的度数为________.16.如图,将正方形ABCD中的△ABD绕对称中心O旋转至△GEF的位置,EF交AB于M,GF交BD于N.△ABD绕对称中心O顺时针至少旋转________度,四边形DFBE 成为正方形.17.如图,若将四根木条钉成的矩形木框变成平行四边形ABCD的形状,并使其面积为矩形面积的一半,则这个平行四边形的最大内角等于________.18.已知⊙O是等边三角形ABC的内切圆,⊙O的半径为1,则等边三角形ABC的边长为________.19.请你添加一个条件,使平行四边形ABCD成为一个菱形,你添加的条件是________.20.在四边形ABCD中,AB // DC,AD // BC,AC,BD交于点O,有下列四个条件:①∠ADC=90∘②AO=CO;③AD=BC;④∠AOB=90∘.如果添加其中一个条件,即可判定该四边形是矩形,那么这个条件是________.三、解答题(本题共计6小题,每题10分,共计60分,)21.AD是Rt△ABC斜边上的高,BE平分∠B交AD于点G,交AC于点E,过点E作EF⊥BC于点F,试证明:(1)AG=AE;(2)四边形AFEG是菱形.22.已知:如图,在正方形ABCD中,点E、F在对角线BD上,且BF=DE,(1)求证:四边形AECF是菱形;(2)若AB=2,BF=1,求四边形AECF的面积.23.如图所示,在矩形ABCD中,AB=4cm,BC=8cm、点P从点D出发向点A运动,同时点Q从点B出发向点C运动,点P、Q的速度都是1cm/s.(1)在运动过程中,四边形AQCP可能是菱形吗?如果可能,那么经过多少秒后,四边形AQCP是菱形?(2)分别求出菱形AQCP的周长、面积.24.如图,点O是菱形ABCD的对角线的交点,DE // AC,CE // BD,连接OE.求证:(1)四边形OCED是矩形;(2)OE=BC.25.如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.(1)求证:OP=OQ;(2)若AD=4厘米,AB=3厘米,当AP为何值时,四边形PBQD是菱形,并加以说明.26.已知△ABC是等边三角形,点D、F分别在边BC、AC上,且DF // AB,过点A平行于BC的直线与DF的延长线交于点E,连结CE、BF.(1)求证:△ABF≅△ACE;(2)若D是BC的中点,判断△DCE的形状,并说明理由.答案1.A2.B3.B4.A5.C6.A7.A8.B9.A10.B11.16a212.1413.12514.AC=BD等(答案不唯一)15.105∘16.9017.150∘18.2√319.AB=BC20. ①21. 证明:(1)∵∠C +DAC =90∘,∠BAD +∠DAC =90∘, ∴∠C =∠BAD ,∵BE 平分∠ABC ,∴∠ABE =∠CBE ,∵∠AGE =∠BAD +∠ABE ,∠AEG =∠C +∠CBE , ∴∠AGE =∠AEG ,∴AG =AE ;(2)∵BE 平分∠ABC ,EF ⊥BC ,EA ⊥AB , ∴EA =EF =AG ,∵AD ⊥BC ,EF ⊥BC ,∴AD // EF ,∵AG =EF ,∴四边形AGFE 是平行四边形,∵AG =AE ,∴四边形AEFG 是菱形.22. (1)证明:正方形ABCD 中,对角线BD , ∴AB =BC =CD =DA ,∠ABF =∠CBF =∠CDE =∠ADE =45∘.∵BF =DE ,∴△ABF ≅△CBF ≅△DCE ≅△DAE (SAS ).AF =CF =CE =AE∴四边形AECF 是菱形;(2)解:在Rt △ABD 中,由勾股定理,得 BD =√AB 2+AD 2,AC =BD =2√2,EF =BD −BF −DE =2√2−1−1,四边形AECF 的面积=AC ⋅EF ÷2 =2√2×(2√2−2)÷2=4−2√2.23. 解:(1)经过x 秒后,四边形AQCP 是菱形 ∴DP =xcm ,AP =CP =AD −DP =(8−x )cm , ∵DP 2+CD 2=PC 2,∴16+x 2=(8−x )2,解得x =3即经过3秒后四边形是菱形.(2)由第一问得菱形的边长为5 ∴菱形AQCP 的周长=5×4=20(cm )菱形AQCP 的面积=5×4=20(cm 2)24. 证明:(1)∵DE // AC ,CE // BD , ∴四边形OCED 是平行四边形,又∵菱形ABCD 中,AC ⊥BD ,即∠COD =90∘, ∴四边形OCED 是矩形;(2)∵四边形OCED 是矩形, ∴OE =CD ,又∵菱形ABCD 中,BC =CD ,∴OE =BC .25. (1)证明:∵四边形ABCD 是矩形, ∴AD // BC ,∠A =90∘,∴∠PDO =∠QBO ,∵O 为BD 中点,∴OB =OD ,在△PDO 和△QBO 中, {∠PDO =∠QBOOB =OD ∠POD =∠BOQ,∴△PDO ≅△BQO (ASA ),∴OP =OQ .(2)解:当AP =78时,四边形PBQD 是菱形;理由如下: ∵OB =OD ,OP =OQ ,∴四边形PBQD 是平行四边形,当四边形PBQD 是菱形时,BP =PD ,设AP =x 厘米,则BP =PD =(4−x )厘米, 由勾股定理得:X 2+32=(4−x )2,解得:x =78,即当AP 为78厘米时,四边形PBQD 是菱形.26. (1)证明:∵△ABC 是等边三角形, ∴AB =AC ,∠BAC =∠ACB =60∘,∵DE // AB ,AE // BD ,∴∠EFA =∠BAC =60∘,∠CAE =∠ACB =60∘,∴△EAF 是等边三角形, ∴AF =AE ,在△ABF 和△ACE 中,∵{AB =AC∠BAF =∠CAE AF =AE,∴△ABF ≅△ACE (SAS ).(2)△DCE 是直角三角形,∠DCE =90∘. 理由:连接AD ,∵DE // AB ,AE // BD , ∴四边形ABDE 是平行四边形, ∴AE =BD ,∵D 是BC 中点,∴BD =DC ,∴AE =DC ,∵AE // DC ,∴四边形ADCE 是平行四边形, ∵AB =AC ,D 是BC 中点, ∴AD ⊥DC ,∴四边形ADCE 是矩形, ∴△DCE 是直角三角形,∠DCE =90∘.。
北师大版九年级数学上册《第一章特殊平行四边形 》单元检测卷及答案
北师大版九年级数学上册《第一章特殊平行四边形》单元检测卷及答案一、选择题1.下列说法不正确的是()A.有一组邻边相等的平行四边形是菱形B.有一个角是直角的平行四边形是矩形C.有一组邻边相等,有一个角是直角的平行四边形是正方形D.一组邻边相等的四边形是菱形2.如图,在平面直角坐标系中,若菱形ABCD的顶点A,B的坐标分别为(-3,0),(2,0),点D 在y轴上,则点C的坐标是()A.(5,4) B.(4,5) C.(4,4) D.(5,3)3.如图,矩形ABCD的对角线AC,BD相交于点O,∠AOB=60°,AB=4则矩形对角线的长为()A.4 B.8 C.4√3D.4√54.如图所示,菱形ABCD中,对角线AC、BD相交于点O,H为AD边的中点,菱形ABCD的周长为36,则OH的长等于()A.4.5B.5 C.6 D.95.如图,在矩形ABCD中AB=3,BC=4,AE⊥BD于F,则线段AF的长是()A.3B.2.5C.2.4D.26.如图,在矩形ABCD中,AC、BD相交于点O,AE平分∠BAD交BC于点E,若∠CAE=15°,则∠BOE 的度数为()A.60°B.75°C.72°D.90°7.如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,则∠BCE的度数是()A.62.5∘B.45∘C.32.5∘D.22.5∘8.如图1,在正方形ABCD中,对角线AC、BD相交于点O,E,F分别为AO,DO上的一点,且EF∥AD,连接AF,DE若∠FAC=15°,则∠AED的度数为( )A.80°B.90°C.105°D.115°二、填空题9.如图,若菱形ABCD的对角线AC,BD相交于点O,AB=6cm,E是CD的中点,则OE 的长为cm.10.如图,菱形ABCD的周长为24,点A的坐标为(2√5,0),则点D的坐标为.11.如图,矩形ABCD的两条对角线相交于点O,∠AOB=120°,AD=3,则该矩形对角线的长度等于.12.如图,E,F是正方形ABCD对角线BD上的两点,BD = 8,BE = DF = 2,则四边形AECF的面积是.13.如图,边长为6的正方形ABCD,点P是对角线BD上一动点,点E在边CD上EC=2,则PC+PE的最小值是.三、解答题14.如图,在平行四边形ABCD中,对角线AC的垂直平分线交AD于点E,交BC于点F,连接AF,CE.求证:四边形AFCE是菱形.15.如图所示,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB上,EF⊥AB,OG∥EF.(1)求证:四边形OEFG是矩形;(2)若AD=12,EF=4√2,求OE和BG的长.16.如图,在矩形ABCD中AC, BD相交于点O AE∥BD,BE∥AC.(1)求证:四边形AEBO是菱形;(2)若AB=2,OB=3求AD的长及四边形AEBO的面积.17.如图,矩形ABCD的对角线AC,BD相交于点O,过点C作BD的平行线交AB的延长线于点E.(1)求证:AC=CE.(2)若∠BOC=60°,CE=4求AB的长.18.如图,正方形ABCD的对角线交于点O,点E是线段OD上一点,连接EC,作BF⊥CE于点F,交OC于点G.(1)求证:BG=CE;(2)若AB=4,BF是∠DBC的角平分线,求OG的长.参考答案1.D2.A3.B4.A5.C6.B7.D8.C9.310.(0,—4)11.612.1613.2√1314.证明:∵EF垂直平分AC∴AF=CF,AE=CE,OA=OC∵四边形ABCD是平行四边形∴AD∥BC∴∠CFO=∠AEO在△COF和△AOE中{∠CFO=∠AEO∠COF=∠AOEOC=OA∴△COF≌△AOE(AAS)∴CF=AE∴AF=CF=CE=AE∴四边形AFCE是菱形.15.(1)证明:∵四边形ABCD是菱形∴OB=OD.∵E是AD的中点∴OE是△ABD的中位线.∴OE∥FG.∵OG∥EF∴四边形OEFG是平行四边形.∵EF⊥AB,∴∠EFG=90°.∴平行四边形OEFG是矩形.(2)解:∵四边形ABCD是菱形∴BD⊥AC,AB=AD=12.∴∠AOD=90°.∵E是AD的中点AD=6.∴OE=AE=12由(1),知四边形OEFG是矩形∴FG=OE=6.∵EF⊥AB∴∠EFA=90°.∴AF=√AE2−EF2=√62−(4√2)2=2. ∴BG=AB-AF-FG=12-2-6=4. 16.(1)证明:∵AE∥BD,BE∥AC ∴四边形AEBO是平行四边形∵四边形ABCD是矩形∴AO=CO,BO=DO,AC=BD∴OA=OB∴四边形AEBO是菱形;(2)解:∵四边形ABCD是矩形∴∠DAB=90°,BO=DO∵OB=3,AB=2∴BD=6由勾股定理得:AD=√BD2−AB2=√62−22=4√2连接EO交AB与M,如图所示由(1)知四边形AEBO是菱形∴OE⊥AB,AM=BM,EM=OM∴BM=1由勾股定理得:OM=√OB2−BM2=√32−12=2√2∴OE=4√2∴S菱形AEBO =12EO×AB=12×4√2×2=4√2.17.(1)证明:(证法不唯一)∵四边形ABCD是矩形∴AB∥CD,AC=BD∴BE∥CD.∵BD∥CE∴四边形BDCE是平行四边形∴BD=CE∴AC=CE.(2)解:∵四边形ABCD是矩形∴OA=OB,∠ABC=90°∴∠OAB=∠OBA=30°.∵CE=4∴AC=CE=4∴BC=2∴AB=√AC2−BC2=2√318.(1)解:证明:∵正方形ABCD中,AC、BD相交于O ∴BO=CO,BO⊥CO ∵BF⊥EC∴∠5=∠6=∠7=90°∵∠3=∠4∴∠1=∠2∴△BOG≅△CEO∴BG=CE.(2)解:∵BF是∠DBC的角平分线,∴∠1=∠8∵BF=BF∠9=∠6=90°∴△BEF≅△BCF(ASA)∴BE=BC=4∵四边形BCD是正方形∴∠AOB=90°AO=BO设AO为x,由勾股定理,得2x2=42解得x=2√2.∵△BOG≅△COE∴OG=OE∵OE=BE−BO=4−2√2∴OG=4−2√2.。
第一章 特殊平行四边形 单元测试(含答案解析)
初中数学北师大版九年级上学期第一章单元测试一、单选题1.已知四边形是平行四边形,,相交于点O,下列结论错误的是()A. ,B. 当时,四边形是菱形C. 当时,四边形是矩形D. 当且时,四边形是正方形2.如图,四边形是菱形,对角线,相交于点O,,,点E是上一点,连接,若,则的长是()A. 2B.C. 3D. 43.如图,面积为S的菱形ABCD中,点O为对角线的交点,点E是线段BC单位中点,过点E作EF⊥BD于F,EG⊥AC与G,则四边形EFOG的面积为()A. B. C. D.4.如图,菱形ABCD中,对角线AC,BD相交于点O,E为AB的中点.若菱形ABCD的周长为32,则OE的长为()A. 3B. 4C. 5D. 65.如图,正方形的面积为1,是的中点,则图中阴影部分的面积是()A. B. C. D.6.如图,正方形ABCD的边长AB=8,E为平面内一动点,且AE=4,F为CD上一点,CF=2,连接EF,ED,则2EF+ED的最小值为( )A. 12B. 12C. 12D. 10二、填空题7.如图,在菱形中,,点E在上,若,则________.8.如图,在矩形中,分别为边,的中点,与,分别交于点M,N.已知,,则的长为________.9.如图,在矩形ABCD中,AB=9,,点P是边BC上的动点(点P不与点B,点C重合),过点P作直线PQ∥BD,交CD边于Q点,再把△PQC沿着动直线PQ对折,点C 的对应点是R点,则∠CQP=________.10.如图,正方形ABCD中,点E为对角线AC上一点,且AE=AB,则∠BEA的度数是________度.三、作图题11.在正方形ABCD中,E是CD边上的点,过点E作EF⊥BD于F.(1)尺规作图:在图中求作点E,使得EF=EC;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接FC,求∠BCF的度数.四、综合题12.如图,的对角线AC,BD相交于点O,过点O作,分别交AB,DC于点E、F,连接AF、CE.(1)若,求EF的长;(2)判断四边形AECF的形状,并说明理由.13.如图,在△ABC中,AB=AC,点D、E分别是线段BC、AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:△BDE≌△F AE;(2)求证:四边形ADCF为矩形.14.如图,的对角线,交于点O,过点D作于E,延长到点F,使,连接,.(1)求证:四边形是矩形;(2)若,,,试求的长.15.如图,点是正方形外一点,点是线段上一点,且是等腰直角三角形,其中,连接、.(1)求证:;(2)判断与的位置关系,并说明理由.16.如图,菱形的三个顶点、、分别在正方形的边、、上,连接.(1)求证:;(2)当时,求证:菱形为正方形.答案解析部分一、单选题1. B解析:四边形是平行四边形,,故A正确,四边形是平行四边形,,不能推出四边形是菱形,故错误,四边形是平行四边形,,四边形是矩形,故C正确,四边形是平行四边形,,,四边形是正方形.故D正确.故答案为:B.【分析】(1)根据平行四边形的对角线互相平分可得OA=OC,OB=OD;(2)根据菱形的判定“一组邻边相等的平行四边形是菱形”可知当AB=CD时,四边形ABCD是菱形错误;(3)根据一个角是直角的平行四边形是矩形可知当∠ABC=90°时,四边形是矩形;(4)根据对角线相等且互相垂直的平行四边形是正方形可知,当且时,四边形是正方形.2. B解析:∵四边形ABCD是菱形,AC=8,BD=6,∴CO=AC=4,OD=BD=3,AC⊥BD,∴DC==5,∠EOC+∠DOE=90°,∠DCO+∠ODC=90°,∵OE=CE,∴∠EOC=∠ECO,∴∠DOE=∠ODC,∴DE=OE,∴OE=CD=.故答案为:B.【分析】根据菱形的性质,可得CO=AC=4,OD=BD=3,AC⊥BD,利用勾股定理及等角的余角相等,可得DC=5,∠DOE=∠ODC,可得DE=OE,从而可得DE=OE=CE,继而得出OE=CD,据此即可求出结论.3. B解析:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,S=AC×BD,∵EF⊥BD于F,EG⊥AC于G,∴四边形EFOG是矩形,EF∥OC,EG∥OB,∵点E是线段BC的中点,∴EF、EG都是△OBC的中位线,∴EF=OC=AC,EG=OB=BD,∴矩形EFOG的面积=EF×EG=AC×BD== S;故答案为:B.【分析】由菱形的性质得出OA=OC,OB=OD,AC⊥BD,S=AC×BD,证出四边形EFOG 是矩形,EF∥OC,EG∥OB,得出EF、EG都是△OBC的中位线,则EF=OC=AC,EG=OB=BD,由矩形面积即可得出答案.4. B解析:∵四边形ABCD是菱形,∴AC⊥BD,AB=BC=CD=AD,∴∠AOB=90°,又∵AB+BC+CD+AD=32.∴AB=8,在Rt△AOB中,OE是斜边上的中线,∴OE= AB=4.故答案为:B.【分析】利用菱形的对边相等以及对角线互相垂直,进而利用直角三角形斜边上的中线等于斜边的一半得出答案.5. B解析:如图,过点E作HF⊥AB,∵AM//CD,∴∠DCE=∠EAM,∠CDE=∠EMA,∴△AME∽△CDE,∴AM:DC=EH:EF=1:2,FH=AD=1,∴EH= ,EF= .∴阴影部分的面积=S正方形ABCD-S△AME-S△CDE-S△MBC=1- - - = .故答案为:B.【分析】根据正方形的性质可得到△AME∽△CDE,根据相似三角形的边对应边成比例,求得EH,EF的长,从而即可求得阴影部分的面积.6. B解析:如图,在AD上取点k,使AK=2,连接EK,在△AEK和△ADE中,∠EAK=∠DAE,∴△AEK∽△ADE,∴,即EK= ED,∴EF+ ED=EF+EK,当F、E、K三点共线时,EF+ ED=FK=6 ,∴(2EF+ED)最小=2(EF+ ED)=12 ,故答案为:B。
北师大版九年级数学上册第一章特殊平行四边形单元测试卷-(含答案及解析)
北师大版九年级数学上册单元测试卷第一章 特殊平行四边形1.下列说法正确的是A .对角线垂直的四边形是菱形B .对角线互相平分的四边形是菱形C .菱形的对角线相等且互相平分D .菱形的对角线互相垂直且平分 2.下列说法中,你认为正确的是( )A .四边形具有稳定性B .等边三角形是中心对称图形C .任意多边形的外角和是360D .矩形的对角线一定互相垂直 3.已知下列命题:①矩形是轴对称图形,且有两条对称轴;①两条对角线相等的四边形是矩形;①有两个角相等的平行四边形是矩形;①两条对角线相等且互相平分的四边形是矩形.其中正确的有( )A .4个B .3个C .2个D .1个 4.如图,下列条件中①AC BD ⊥①BAD 90∠=①AB BC =①AC BD =,能使平行四边形ABCD 是菱形的是( )A .①①B .①①C .①①D .①①① 5.已知菱形ABCD ,对角线5AC =,12BD =,则菱形的面积为( )A .60B .50C .40D .30 6.在数学活动课上,为探究四边形瓷砖是否为菱形,以下拟定的测量方案,正确的是( )A .测量一组对边是否平行且相等B .测量四个内角是否相等C .测量两条对角线是否互相垂直D .测量四条边是否相等一、单选题(共30分,每小题3分)7.如图,把长方形ABCD 沿对角线BD 折叠,下列结论:①①ABD 与△EDB 全等;①①ABF 与△EDF 全等;①AF EF =;①①BDF 是等腰三角形.其中正确的有( )A .1个B .2个C .3个D .4个 8.如图,在正方形ABCD 中,E 为对角线BD 上一点,CE 交AD 于点F ,连接AE .若①AEC=140︒,则①DFC 等于( )A .55°B .60°C .65°D .70°9.如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,,AO CO BO DO ==.添加下列条件,可以判定四边形ABCD 是矩形的是( )A .AB AD =B .AC BD =C .AC BD ⊥ D .ABO CBO ∠=∠ 10.如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是( )A .当AB BC =时,它是菱形 B .当AC BD ⊥时,它是菱形C .当90ABC ∠=︒时,它是矩形D .当AC BD =时,它是正方形二、填空题(共30分,每小题3分) 11.矩形的两条对角线的夹角为60,较短的边长为12cm ,则对角线长为________cm . 12.已知菱形的周长为20,一条对角线长为8,则菱形的面积为________.13.如图所示,已知ABCD 中,下列条件:①AC =BD ;①AB =AD ;①①1=①2;①AB ①BC 中,能说明ABCD 是矩形的有______________(填写序号)14.如图,已知菱形ABCD 的对角线AC ,BD 的长分别为6,4,则AB 长为__.15.如图,平行四边形ABCD 是对角线互相垂直的四边形,请你添加一个适当的条件________,使ABCD 成为正方形(只需添加一个即可).16.如图,在矩形ABCD 中,边AB 的长为3,点E ,F 分别在AD ,BC 上,连接BE ,DF ,EF ,BD .若四边形BEDF 是菱形,且EF =AE +FC ,则边BC 的长为____________.17.如图,将两张长为16cm ,宽为4cm 的矩形纸条交叉,使重叠部分是一个菱形,那么菱形周长的最大值与最小值的和是________.18.如图,矩形ABCD 的对角线相交于点O ,DE ①AC ,CE ①BD ,已知AB =6cm ,BC =8cm ,则四边形ODEC 的周长为______cm .19.如图,菱形ABCD 的对角线AC ,BD 相交于O 点,E ,F 分别是AB ,BC 边上的中点,连接EF ,若EF =4BD =,则菱形ABCD 的面积为________.20.如图,将平行四边形ABCD 的边DC 延长到E ,使CE CD =,连接AE 交BC 于F ,AFC n D ∠∠=,当n =______时,四边形ABEC 是矩形.三、解答题(共60分) 21.矩形ABCD 中68AB cm BC cm AE ==,,平分BAC ∠交BC 于E CF ,平分ACD ∠交AD 于F .(共8分)(1)说明四边形AECF 为平行四边形;(2)求四边形AECF 的面积.22.如图,在矩形ABCD中,对角线AC与BD交于点O,且①ADO为等边三角形,过点A 作AE①BD于点E.(共8分)(1)求①ABD的度数;(2)若BD=10,求AE的长.23.已知如图,两个长为8,宽为2的矩形纸条倾斜地重叠着.(共10分)()1求证:两矩形重叠部分为菱形;()2求菱形面积最大和最小值.24.如图,在ABC 中,5AB AC ==,6BC =,AD 为BC 边上的高,过点A 作//AE BC ,过点D 作//DE AC ,AE 与DE 交于点E ,AB 与DE 交于点F ,连结BE .(共10分)()1求证:四边形AEBD 是矩形;()2求四边形AEBD 的面积.25.如图,正方形ABCD中,E、F分别在BC、DC上,且45.∠=试说明:EAF+=.(共12分)BE DF EF26.如图,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA 上,连接CF.(共12分)()1求证:HEA CGF∠=∠;()2当AH DG=时,求证:菱形EFGH为正方形.参考答案:1.D 2.C 3.C 4.A 5.D 6.D 7.D 8.C 9.B 10.D11.24 12.24 13.①① 1415.90ABC∠=16.17.4018.20 19.20.221.(1)见解析;(2)30cm2(1)①四边形ABCD是矩形,①AD①BC(即AF①CE),AB①CD,①①BAC=①ACD,又①AE平分①BAC,CF平分①ACD,①①EAC=①FCA,①AE①CF,①四边形AECF是平行四边形;(2)过点E作EO①AC于点O,①①B=90°,AE平分①BAC,①EO=BO,①AE=AE,①Rt①ABE①Rt①AOE,①AO=AB=6,①在Rt①ABC,10,①OC=AC-AO=4(cm),设CE=x,则EO=BE=BC-CE=8-x,①在Rt①OEC中由勾股定理可得:222-+=,解得:58(x x4)x=,①EC=5,①S四边形AECF=CE·AB=5×6=30(cm2).22.(1)①ABD=30°;(2)AE(1)①四边形ABCD是矩形,①①DAB=90°,①①ADO为等边三角形,①①ADB=60°,①①ABD=180°-①DAB-①ADB=30°;(2)①BD=10,①BAD=90°,①ABD=30°,①AD=12BD=5,①①ADO为等边三角形,①AD=AO=DO=5,①AE①DO,①DE=EO=12DO=2.5,在Rt①AED中,由勾股定理得AE23.(1)详见解析;(2)菱形面积最大和最小值分别是172、4.()1根据题意得:AD//BC,AB//CD,①四边形ABCD是平行四边形.如图1,分别作CD,BC边上的高为AE,AF,①两纸条宽度相同,①AE AF=.①平行四边形ABCD的面积为AE CD BC AF⨯=⨯,①CD BC=.①平行四边形ABCD为菱形;()2如图2,此时菱形ABCD的面积最大.设AB x =,EB 8x =-,AE 2=,则由勾股定理得到:2222(8x)x +-=, 解得 17x 4=, 1717S 242=⨯=最大; 如图3,此时菱形ABCD 的面积最小.S 224=⨯=最小. 综上所述,菱形面积最大和最小值分别是172、4. 24.(1)详见解析;(2)12. ()1①AE //BC ,BE //AC ,①四边形AEDC 是平行四边形. ①AE CD =.在ABC 中,AB AC =,AD 为BC 边上的高, ①ADB 90∠=,BD CD =.①BD AE =.①四边形AEBD 是矩形.()2在Rt ADC 中,ADB 90∠=,AC 5=,1BD CD BC 32===,①AD 4=.①四边形AEBD 的面积BD AD 3412=⋅=⨯=. 25.证明见解析.①四边形ABCD 为正方形①AB=AD,①BAD=①B=①ADF=90°如图,把△ABE 逆时针旋转90°得到△ADG ,①BE =GD ,AE =AG .①ADG=①ABE=90°,①GAD=①BAE ①①ADG+①ADF=180°①G 、D 、F 在同一条直线上.①①EAF =45°,①①F AG =①GAD+①DAF=①BAE+①DAF=①BAD-①EAF=90°﹣45°=45°, ①①EAF =①F AG .在△AEF 和△AGF 中,①AE AG EAF FAG AF AF =⎧⎪∠=∠⎨⎪=⎩,①①AEF ①①AGF (SAS ),①EF =GF ,即EF =GD +DF ,①BE +DF =EF .26.(1)详见解析;(2)详见解析.(1)连接GE ,①AB//CD ,①AEG CGE ∠∠=,①GF//HE ,①HEG FGE ∠∠=,①HEA CGF ∠∠=;()2①四边形ABCD 是正方形, ①D A 90∠∠==, ①四边形EFGH 是菱形, ①HG HE =,在Rt HAE 和Rt GDH 中, AH DG HE HG =⎧⎨=⎩, ①()Rt HAE Rt GDH HL ≅, ①AHE DGH ∠∠=,又DHG DGH 90∠∠+=, ①DHG AHE 90∠∠+=, ①GHE 90∠=, ①菱形EFGH 为正方形;。
北师大版九年级上学期第1章《特殊的平行四边形》单元测练习(含答案)
《特殊的平行四边形》单元测试卷一.选择题1.如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()A.8 B.7 C.4 D.32.如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A.24 B.18 C.12 D.93.菱形不具备的性质是()A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形4.如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠25.矩形ABCD与CEFG如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A .1B .C .D .6.矩形具有而平行四边形不一定具有的性质是( ) A .对边相等 B .对角相等C .对角线相等D .对角线互相平分7.如图,矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB 、CD 交于点E 、F ,连结BF 交AC 于点M ,连结DE 、BO .若∠COB =60°,FO =FC ,则下列结论:①FB 垂直平分OC ;②△EOB ≌△CMB ;③DE =EF ;④S △AOE :S △BCM =2:3.其中正确结论的个数是( )A .4个B .3个C .2个D .1个8.已知平行四边形ABCD ,下列条件中,不能判定这个平行四边形为矩形的是( ) A .∠A =∠BB .∠A =∠CC .AC =BDD .AB ⊥BC9.在△ABC 中,点D 是边BC 上的点(与B ,C 两点不重合),过点D 作DE ∥AC ,DF ∥AB ,分别交AB ,AC 于E ,F 两点,下列说法正确的是( )A .若AD ⊥BC ,则四边形AEDF 是矩形B .若AD 垂直平分BC ,则四边形AEDF 是矩形 C .若BD =CD ,则四边形AE DF 是菱形 D .若AD 平分∠BAC ,则四边形AEDF 是菱形10.如图,平行四边形ABCD 中,∠B =60°.G 是CD 的中点,E 是边AD 上的动点,EG 的延长线与BC 的延长线交于点F ,连结CE ,DF ,下列说法不正确的是( )A .四边形CEDF 是平行四边形B .当CE ⊥AD 时,四边形CEDF 是矩形C .当∠AEC =120°时,四边形CEDF 是菱形D .当AE =ED 时,四边形CEDF 是菱形11.如图,正方形ABCD 的边长为1,点E ,F 分别是对角线AC 上的两点,EG ⊥AB .EI ⊥AD ,FH ⊥AB ,FJ ⊥AD ,垂足分别为G ,I ,H ,J .则图中阴影部分的面积等于 ( )A .1B .C .D .12.如图,在正方形ABCD 中,AC 为对角线,E 为AB 上一点,过点E 作EF ∥AD ,与AC 、DC 分别交于点G ,F ,H 为CG 的中点,连接DE ,EH ,DH ,FH .下列结论:①EG =DF ;②∠AEH +∠ADH =180°;③△EHF ≌△DHC ;④若=,则3S △EDH =13S △DHC ,其中结论正确的有( )A .1个B .2个C .3个D .4个13.在平面直角坐标系中,正方形A 1B 1C 1D 1、D 1E 1E 2B 2、A 2B 2C 2D 2、D 2E 3E 4B 3、A 3B 3C 3D 3…按如图所示的方式放置,其中点B 1在y 轴上,点C 1、E 1、E 2、C 2、E 3、E 4、C 3…在x 轴上,已知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3…则正方形A 2015B 2015C 2015D 2015的边长是( )A .()2014B .()2015C .()2015D .()201414.关于▱ABCD 的叙述,正确的是( )A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形15.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF16.如图,两把完全一样的直尺叠放在一起,重合的部分构成一个四边形,这个四边形一定是()A.矩形B.菱形C.正方形D.无法判断二.填空题17.如图,四边形ABCD是菱形,AC=16,DB=12,DH⊥AB于H,则DH等于.18.在菱形ABCD中,∠A=60°,其所对的对角线长为4,则菱形ABCD的面积是.19.顺次连接四边形ABCD各边中点形成一个菱形,则原四边形对角线AC、BD的关系是.20.如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB的面积为4cm2.则OC的长为cm.21.如图,在矩形ABCD中,AB=3,AD=4,P为AD上一动点,PE⊥AC于E,PF⊥BD于F,则PE+PF的值为.22.如图,矩形ABCD的对角线AC、BD相交于点O,DE∥AC,CE∥BD,若BD=5,则四边形DOCE的周长为.23.如图,矩形ABCD中, AE平分∠BAD交BC于E,∠CAE=15°,则下列结论:①△ODC是等边三角形;②BC=2AB;③∠AOE=135°;④S△AOE =S△COE,其中正确的结论的序号是.24.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加条件,才能保证四边形EFGH是矩形.25.在△ABC中,AB=6cm,AC=8cm,BC=10cm,P为边BC上一动点,PE⊥AB于E,PF⊥AC 于F,连接EF,则EF的最小值为cm.26.如图,在矩形ABCD中,BC=20cm,点P和点Q分别从点B和点D出发,按逆时针方向沿矩形ABCD的边运动,点P和点Q的速度分别为3cm/s和2cm/s,则最快s后,四边形ABPQ成为矩形.27.如图,点A,B,E在同一条直线上,正方形ABCD,BEFG的边长分别为3,4,H为线段DF的中点,则BH=.28.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去第n个正方形的边长为.29.▱ABCD的对角线AC与BD相交于点O,且AC⊥BD,请添加一个条件:,使得▱ABCD 为正方形.30.如图,在四边形ABCD中,AD∥BC(BC>AD),∠D=90°,∠ABE=45°,BC=CD,若AE=5,CE=2,则BC的长度为.31.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD 的面积是18,则DP的长是.三.解答题32.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE 的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.33.如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.34.如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC 的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,则菱形ABCD的面积是.35.如图,菱形ABCD的对角线AC,BD相交于点O,且DE∥AC,AE∥BD.求证:四边形AODE 是矩形.36.在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.(1)求证:△ABE≌△ADF;(2)试判断四边形AECF的形状,并说明理由.37.如图,在△ABC中,点O是边AC上一个动点,过点O作直线EF∥BC分别交∠ACB、外角∠ACD的平分线于点E、F.(1)若CE=8,CF=6,求OC的长;(2)连接AE、AF.问:当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.38.如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.(1)四边形ABEF是;(选填矩形、菱形、正方形、无法确定)(直接填写结果)(2)AE,BF相交于点O,若四边形ABEF的周长为40,BF=10,则AE的长为,∠ABC=°.(直接填写结果)39.如图,已知正方形ABCD中,边长为10厘米,点E在AB边上,BE=6厘米.(1)如果点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CD 上由C点向D点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPE与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPE与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动,求经过多长时间点P与点Q第一次在正方形ABCD边上的何处相遇?40.如图,△ABC的中线AD、BE、CF相交于点G,H、I分别是BG、CG的中点.(1)求证:四边形EFHI是平行四边形;(2)①当AD与BC满足条件时,四边形EFHI是矩形;②当AG与BC满足条件时,四边形EFHI是菱形.参考答案1.解:∵四边形ABCD是菱形,∴OA=OC=3,OB=OD,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OB===4,∴BD=2OB=8,故选:A.2.解:∵E是AC中点,∵EF∥BC,交AB于点F,∴EF是△ABC的中位线,∴EF=BC,∴BC=6,∴菱形ABCD的周长是4×6=24.故选:A.3.解:菱形的四条边相等,是轴对称图形,也是中心对称图形,对角线垂直不一定相等,故选:B.4.解:A、正确.对角线垂直的平行四边形的菱形.B、正确.邻边相等的平行四边形是菱形.C、错误.对角线相等的平行四边形是矩形,不一定是菱形.D、正确.可以证明平行四边形ABCD的邻边相等,即可判定是菱形.故选:C.5.解:如图,延长GH交AD于点P,∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵,∴△APH≌△FGH(ASA),∴AP=GF=1,GH=PH=PG,∴PD=AD﹣AP=1,∵C G=2、CD=1,∴DG=1,则GH=PG=×=,故选:C.6.解:矩形的对角线相等,而平行四边形的对角线不一定相等.故选:C.7.解:①∵矩形ABCD中,O为AC中点,∴OB=OC,∵∠COB=60°,∴△OBC是等边三角形,∴OB=BC,∵FO=FC,∴FB垂直平分OC,故①正确;②∵△BOC为等边三角形,FO=FC,∴BO⊥EF,BF⊥OC,∴∠CMB=∠EOB=90°,∴BO≠BM,∴△EOB与△CMB不全等;故②错误;③易知△ADE≌△CBF,∠1=∠2=∠3=30°,∴∠ADE=∠CBF=30°,∠BEO=60°,∴∠CDE=60°,∠DFE=∠BEO=60°,∴∠CDE=∠DFE,∴DE=EF,故③正确;④易知△AOE≌△COF,∴S△AOE =S△COF,∵S△COF =2S△CMF,∴S△AOE :S△BCM=2S△CMF:S△BCM=,∵∠FCO=30°,∴FM=,BM=CM,∴=,∴S△AOE :S△BCM=2:3,故④正确;所以其中正确结论的个数为3个;故选:B.8.解:A、∠A=∠B,∠A+∠B=180°,所以∠A=∠B=90°,可以判定这个平行四边形为矩形,正确;B、∠A=∠C不能判定这个平行四边形为矩形,错误;C、AC=BD,对角线相等,可推出平行四边形ABCD是矩形,故正确;D、AB⊥BC,所以∠B=90°,可以判定这个平行四边形为矩形,正确;故选:B.9.解:若AD⊥BC,则四边形AEDF是平行四边形,不一定是矩形;选项A错误;若AD垂直平分BC,则四边形AEDF是菱形,不一定是矩形;选项B错误;若BD=CD,则四边形AEDF是平行四边形,不一定是菱形;选项C错误;若AD平分∠BAC,则四边形AEDF是菱形;正确;故选:D.10.解:A、∵四边形ABCD是平行四边形,∴CF∥ED,∴∠FCG=∠EDG,∵G是CD的中点,∴CG=DG,在△FCG和△EDG中,,∴△FCG≌△EDG(ASA)∴FG=EG,∵CG=DG,∴四边形CEDF是平行四边形,正确;B、∵四边形CEDF是平行四边形,∵CE⊥AD,∴四边形CEDF是矩形,正确;C 、∵四边形CEDF 是平行四边形,∵∠AEC =120°,∴∠CED =60°,∴△CDE 是等边三角形,∴CE =DE ,∵四边形CEDF 是平行四边形,∴四边形CEDF 是菱形,正确;D 、当AE =ED 时,不能得出四边形CEDF 是菱形,错误;故选:D .11.解:∵四边形ABCD 是正方形,∴直线AC 是正方形ABCD 的对称轴,∵EG ⊥AB .EI ⊥AD ,FH ⊥AB ,FJ ⊥AD ,垂足分别为G ,I ,H ,J .∴根据对称性可知:四边形EFHG 的面积与四边形EFJI 的面积相等,△AIE 的面积=△AEG 的面积,∴S 阴=S 正方形ABCD =,故选:B .12.解:①∵四边形ABCD 为正方形,EF ∥AD ,∴EF =AD =CD ,∠ACD =45°,∠GFC =90°,∴△CFG 为等腰直角三角形,∴GF =FC ,∵EG =EF ﹣GF ,DF =CD ﹣FC ,∴EG =DF ,故①正确;②∵△CFG 为等腰直角三角形,H 为CG 的中点,∴FH =CH ,∠GFH =∠GFC =45°=∠HCD ,在△EHF 和△DHC 中,,∴△EHF ≌△DHC (SAS ),∴∠HEF =∠HDC , ∴∠AEH +∠ADH =∠AEF +∠HEF +∠ADF ﹣∠HDC =∠AEF +∠ADF =180°,故②正确;③∵△CFG 为等腰直角三角形,H 为CG 的中点,∴FH =CH ,∠GFH =∠GFC =45°=∠HCD ,在△EHF 和△DHC 中,,∴△EHF ≌△DHC (SAS ),故③正确;④∵=, ∴AE =2BE ,∵△CFG 为等腰直角三角形,H 为CG 的中点,∴FH =GH ,∠FHG =90°,∵∠EGH =∠FHG +∠HFG =90°+∠HFG =∠HFD ,在△EGH 和△DFH 中,, ∴△EGH ≌△DFH (SAS ),∴∠EHG =∠DHF ,EH =DH ,∠DHE =∠EHG +∠DHG =∠DHF +∠DHG =∠FHG =90°, ∴△EHD 为等腰直角三角形,过H 点作HM 垂直于CD 于M 点,如图所示:设HM =x ,则DM =5x ,DH =x ,CD =6x ,则S △DHC =×HM ×CD =3x 2,S △EDH =×DH 2=13x 2,∴3S △EDH =13S △DHC ,故④正确;故选:D .13.方法一:解:如图所示:∵正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3… ∴D 1E 1=B 2E 2,D 2E 3=B 3E 4,∠D 1C 1E 1=∠C 2B 2E 2=∠C 3B 3E 4=30°,∴D 1E 1=C 1D 1sin30°=,则B 2C 2=()1,同理可得:B 3C 3==()2,故正方形A n B n ∁n D n 的边长是:()n ﹣1.则正方形A 2015B 2015C 2015D 2015的边长是:()2014. 故选:D .方法二:∵正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,∴D 1E 1=B 2E 2=,∵B 1C 1∥B 2C 2∥B 3C 3…∴∠E 2B 2C 2=60°,∴B 2C 2=,同理:B 3C 3=×=…∴a 1=1,q =,∴正方形A 2015B 2015C 2015D 2015的边长=1×. 14.解:∵▱ABCD 中,AB ⊥BC ,∴四边形ABCD 是矩形,不一定是菱形,选项A 错误;∵▱ABCD 中,AC ⊥BD ,∴四边形ABCD 是菱形,不一定是正方形,选项B 错误;∵▱ABCD 中,AC =BD ,∴四边形ABCD 是矩形,选项C 正确;∵▱ABCD 中,AB =AD ,∴四边形ABCD 是菱形,不一定是正方形,选项D 错误.故选:C .15.解:∵EF 垂直平分BC ,∴BE=EC,BF=CF,∵BF=BE,∴BE=EC=CF=BF,∴四边形BECF是菱形;当BC=AC时,∵∠ACB=90°,则∠A=45°时,菱形BECF是正方形.∵∠A=45°,∠ACB=90°,∴∠EBC=45°∴∠EBF=2∠EBC=2×45°=90°∴菱形BECF是正方形.故选项A正确,但不符合题意;当CF⊥BF时,利用正方形的判定得出,菱形BECF是正方形,故选项B正确,但不符合题意;当BD=DF时,利用正方形的判定得出,菱形BECF是正方形,故选项C正确,但不符合题意;当AC=BF时,无法得出菱形BECF是正方形,故选项D错误,符合题意.故选:D.16.解:过点D作DE⊥AB于E,DF⊥BC于F.∵两张长方形纸条的宽度相等,∴DE=DF.又∵平行四边形ABCD的面积=AB•DE=BC•DF,∴AB=BC,∴平行四边形ABCD为菱形.故选:B.二.填空题(共15小题)17.解:∵四边形ABCD是菱形,∴OA=OC=8,OB=OD=6,AC⊥BD,在Rt△AOB中,AB==10,=•AC•BD,∵S菱形ABCDS=DH•AB,菱形ABCD∴DH•10=×12×16,∴DH=.故答案为:.18.解:如图所示:∵在菱形ABCD中,∠BAD=60°,其所对的对角线长为4,∴可得AD=AB,故△ABD是等边三角形,则AB=AD=4,故BO=DO=2,则AO==2,故AC=4,则菱形ABCD的面积是:×4×4=8.故答案为:8.19.解:∵EFGH为菱形∴EH=EF又∵E、F、G、H为四边中点∴AC=2EH,BD=2FE∴AC=BD.故答案为AC=BD.20.解:根据作图,AC =BC =OA , ∵OA =OB ,∴OA =OB =BC =AC ,∴四边形OACB 是菱形,∵AB =2cm ,四边形OACB 的面积为4cm 2,∴AB •OC =×2×OC =4,解得OC =4cm .故答案为:4.21.解:连接OP ,∵四边形ABCD 是矩形,∴∠BAD =90°,AC =BD ,OA =OC ,OB =OD ,∴OA =OD =BD ,S △AOD =S △AOB ,∵AB =3,AD =4,∴S 矩形ABCD =3×4=12,BD =5,∴S △AOD =S 矩形ABCD =3,OA =OC =,∵S △AOD =S △AOP +S △DOP =OA •PE +OD •PF =××PE +××PF =(PE +PF )=3, ∴PE +PF =.故答案为.22.解:∵CE ∥BD ,DE ∥AC ,∴四边形CODE 是平行四边形,∵四边形ABCD是矩形,∴AC=BD=4,OA=OC,OB=OD,∴OC=OD=BD=,∴四边形CODE是菱形,∴四边形CODE的周长为:4OC=4×=10.故答案为:10.23.解:∵矩形ABCD中,AE平分∠BAD,∴∠BAE=45°,∵∠CAE=15°,∴∠BAO=∠BAE+∠CAE=45°+15°=60°,又∵矩形中OA=OB=OC=OD,∴△AOB是等边三角形,∴∠AOB=∠COD=60°,∴△ODC是等边三角形,故①正确;由等边三角形的性质,AB=OA,∴AC=2AB,由垂线段最短BC<AC,∴BC<2AB,故②错误;∵∠BAE=45°,∠ABE=90°,∴△ABE是等腰直角三角形,∴AB=BE,∴BO=BE,∵∠COB=180°﹣60°=120°,∴∠BOE=(180°﹣30°)=75°,∴∠AOE=∠AOB+∠BOE=60°+75°=135°,故③正确;∵△AOE和△COE的底边AO=CO,点E到AC的距离相等,∴S△AOE =S△COE,故④正确;综上所述,正确的结论是①③④.故答案为:①③④.24.解:∵G、H、E分别是BC、CD、AD的中点,∴HG∥BD,EH∥AC,∴∠EHG=∠1,∠1=∠2,∴∠2=∠EHG,∵四边形EFGH是矩形,∴∠EHG=90°,∴∠2=90°,∴AC⊥BD.故还要添加AC⊥BD,才能保证四边形EFGH是矩形.25.解:∵AB=6cm,AC=8cm,BC=10cm,∴AB2+AC2=BC2,∴△ABC为直角三角形,∠A=90°,∵PE⊥AB于E,PF⊥AC于F,∴∠AEP=∠AFP=90°,∴四边形AEPF为矩形,连接AP,如图,EF=AP,当AP的值最小时,EF的值最小,当AP⊥BC时,AP的值最,此时AP==,∴EF的最小值为.故答案为.26.解;设最快x秒,四边形ABPQ成为矩形,由BP=AQ得3x=20﹣2x.解得x=4,故答案为:4.27.解:连接BD、BF,∵四边形ABCD,BEFG是正方形,且边长分别为3和4,∴∠DBC=∠GBF=45°,BD=3,BF=4,∴∠DBF=90°,由勾股定理得:DF==5,∵H为线段DF的中点,∴BH=DF=.故答案为:.28.解:∵四边形ABCD为正方形,∴AB=BC=1,∠B=90°,∴AC2=12+12,AC=同理可得:AE=()2,AG=()3…,∴第n个正方形的边长a n=()n﹣1.故答案为()n﹣1.29.解:∵▱ABCD的对角线AC与BD相交于点O,且AC⊥BD,∴▱ABCD是菱形,当∠BAD=90°时,▱ABCD为正方形.故答案为:∠BAD=90°.30.解:过点B作BF⊥AD于点F,延长DF使FG=EC,∵AD∥BC,∠D=90°,∴∠C=∠D=90°,BF⊥AD∴四边形CDFB是矩形∵BC=CD∴四边形CDFB是正方形∴CD=BC=DF=BF,∠CBF=90°=∠C=∠BFG,∵BC=BF,∠BFG=∠C=90°,CE=FG∴△BCE≌△BFG(SAS)∴BE=BG,∠CBE=∠FBG∵∠ABE=45°,∴∠CBE+∠ABF=45°,∴∠ABF+∠FBG=45°=∠ABG∴∠ABG=∠ABE,且AB=AB,BE=BG∴△ABE≌△ABG(SAS)∴AE=AG=5,∴A F=AG﹣FG=5﹣2=3在Rt△ADE中,AE2=AD2+DE2,∴25=(DF﹣3)2+(DF﹣2)2,∴DF=6∴BC=6故答案为:631.解:如图,过点D作DE⊥DP交BC的延长线于E,∵∠ADC=∠ABC=90°,∴四边形DPBE是矩形,∵∠CDE+∠CDP=90°,∠ADC=90°,∴∠ADP+∠CDP=90°,∴∠ADP=∠CDE,∵DP⊥AB,∴∠APD=90°,∴∠APD=∠E=90°,在△ADP和△CDE中,,∴△ADP≌△CDE(AAS),∴DE=DP,四边形ABCD的面积=四边形DPBE的面积=18,∴矩形DPBE是正方形,∴DP==3.故答案为:3.三.解答题(共9小题)32.(1)证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,∴AE=DE,在△AFE和△DBE中,∴△AFE≌△DBE(AAS);(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.∵AD为BC边上的中线∴DB=DC,∴AF=CD.∵AF∥BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,E是AD的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(3)连接DF,∵AF∥BD,AF=BD,∴四边形ABDF是平行四边形,∴DF=AB=5,∵四边形ADCF是菱形,=AC▪DF=×4×5=10.∴S菱形ADCF33.解:(1)∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(2)∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=2,∴OB=BD=1,在Rt△AOB中,AB=,OB=1,∴OA==2,∴OE=OA=2.34.(1)证明:∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四边形OCED是平行四边形,又∠COD=90°,∴平行四边形OCED是矩形;(2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2.∵四边形ABCD是菱形,∴AC=2OC=4,BD=2OD=2,∴菱形ABCD的面积为: AC•BD=×4×2=4.故答案是:4.35.证明:∵四边形ABCD为菱形,∴AC⊥BD,∴∠AOD=90°,∵DE∥AC,AE∥BD,∴四边形AODE为平行四边形,∴四边形AODE是矩形.36.证明:(1)∵正方形ABCD,∴AB=AD,∴∠ABD=∠ADB,∴∠ABE=∠ADF,在△ABE与△ADF中,∴△ABE≌△ADF(SAS);(2)连接AC,四边形AECF是菱形.理由:∵正方形ABCD,∴OA=OC,OB=OD,AC⊥EF,∴OB+BE=OD+DF,即OE=OF,∵OA=OC,OE=OF,∴四边形AECF是平行四边形,∵AC⊥EF,∴四边形AECF是菱形.37.(1)证明:∵EF交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠OCE=∠BCE,∠OCF=∠DCF,∵EF∥BC,∴∠OEC=∠BCE,∠OFC=∠DCF,∴∠OEC=∠OCE,∠OFC=∠OCF,∴OE=OC,OF=OC,∴OE=OF;∵∠OCE+∠BCE+∠OCF+∠DCF=180°,∴∠ECF=90°,在Rt△CEF中,由勾股定理得:EF==10,∴OC=OE=EF=5;(2)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:连接AE、AF,如图所示:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.38.解:(1)在△AEB和△AEF中,,∴△AEB≌△AEF,∴∠EAB=∠EAF,∵AD∥BC,∴∠EAF=∠AEB=∠EAB,∴BE=AB=AF.∵AF∥BE,∴四边形ABEF是平行四边形∵AB=AF,∴四边形ABEF是菱形.故答案为菱形.(2)∵四边形ABEF是菱形,∴AE⊥BF,BO=OF=5,∠ABO=∠EBO,∵AB=10,∴AB=2BO,∵∠AOB=90°∴∠BA0=30°,∠ABO=60°,∴AO=BO=5,∠ABC=2∠ABO=120°.故答案为,120.39.解:(1)①∵t=1秒,∴BP=CQ=4×1=4厘米,(1分)∵正方形ABCD中,边长为10厘米∴PC=BE=6厘米,(1分)又∵正方形ABCD,∴∠B=∠C,(1分)∴△BPE≌△CQP(1分)②∵V P≠V Q,∴BP≠CQ,又∵△BPE≌△CQP,∠B=∠C,则BP=PC,而BP=4t,CP=10﹣4t,∴4t=10﹣4t(2分)∴点P,点Q运动的时间秒,(1分)∴厘米/秒.(1分)(2)设经过x秒后点P与点Q第一次相遇,由题意,得4.8x﹣4x=30,(1分)解得秒.(1分)∴点P共运动了厘米(1分)∴点P、点Q在A点相遇,∴经过秒点P与点Q第一次在A点相遇.(1分)40.(1)证明:∵BE,CF是△ABC的中线,∴EF是△ABC的中位线,∴EF∥BC且EF=BC.∵H、I分别是BG、CG的中点.,∴HI是△BCG的中位线,∴HI∥BC且HI=BC,∴EF∥HI且EF=HI.∴四边形EFHI是平行四边形.(2)解:①当AD与BC满足条件AD⊥BC时,四边形EFHI是矩形;理由如下:同(1)得:FH是△ABG的中位线,∴FH∥AG,FH=AG,∴FH∥AD,∵EF∥BC,AD⊥BC,∴EF⊥FH,∴∠EFH=90°,∵四边形EFHI是平行四边形,∴四边形EFHI是矩形;故答案为:AD⊥BC;②当AG=BC时,四边形DEFI是菱形.理由:∵△ABC的两条中线BE与CF交于点G、H、I分别是BG、CG的中点,∴FH=AG,∵EF=BC,∴当AG=BC时,FH=EF,∵四边形EFHI为平行四边形,∴▱EFHI为菱形;故答案为:AG=BC.。
2022-2023学年北师大版九年级数学上册第1章《特殊的平行四边形》单元测试卷含答案
第1章特殊的平行四边形一.选择题(共8小题,满分32分)1.如图,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,动点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC 沿BC翻折,点P的对应点为点P′.设Q点运动的时间为t秒,若四边形QP′CP为菱形,则t的值为()A.B.2C.D.32.如图.若要使平行四边形ABCD成为菱形.则需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD3.如图,Rt△ABC中,DC是斜边AB上的中线,EF过点C且平行于AB.若∠BCF=35°,则∠ACD的度数是()A.35°B.45°C.55°D.65°4.如图,在矩形ABCD中,AB=3,AD=4,点P在AB上,PE⊥AC于E,PF⊥BD于F,则PE+PF等于()A.B.C.D.5.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为()A.2B.2.2C.2.4D.2.56.四边形ABCD的对角线AC,BD相交于点O,能判定它为正方形的条件是()A.AO=CD B.AO=CO=BO=DOC.AO=CO,BO=DO,AC⊥BD D.AO=BO=CO=DO,AC⊥BD7.顺次连接等腰梯形四边中点得到一个四边形,再顺次连接所得四边形四边中点得到的图形是()A.等腰梯形B.正方形C.菱形D.矩形8.如图,在边长为2的等边三角形ABC的外侧作正方形ABED,过点D作DF⊥BC,垂足为F,则DF的长为()A.2+2B.5﹣C.3﹣D.+1二.填空题(共10小题,满分30分)9.如图,以边长为1的正方形的四边中点为顶点作四边形,再以所得四边形四边中点为顶点作四边形,…依次作下去,图中所作的第三个四边形的周长为;所作的第n个四边形的周长为.10.如图,菱形ABCD的对角线相交于点O,请你添加一个条件:,使得该菱形为正方形.11.如图,△ABC是以AB为斜边的直角三角形,AC=4,BC=3,P为AB上一动点,且PE⊥AC于E,PF⊥BC于F,则线段EF长度的最小值是.12.如图是一个矩形桌子,一小球从P撞击到Q,反射到R,又从R反射到S,从S反射回原处P,入射角与反射角相等(例如∠PQA=∠RQB等),已知AB=8,BC=15,DP=3.则小球所走的路径的长为.13.如图,在Rt△ABC中,∠C=90°,AB=10,若以点C为圆心,CB长为半径的圆恰好经过AB的中点D,则AC的长等于.14.如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB 的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD其中正确结论的为(请将所有正确的序号都填上).15.如图,在菱形ABCD中,对角线AC、BD相交于点O.AC=8cm,BD=6cm,点P为AC上一动点,点P以1cm/s的速度从点A出发沿AC向点C运动.设运动时间为ts,当t=s时,△PAB为等腰三角形.16.如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE =AP =1,PB =.下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为;③EB ⊥ED ;④S △APD +S △APB =1+;⑤S 正方形ABCD =4+.其中正确结论的序号是 .17.如图,在3×4的矩形方格图中,不包含阴影部分的矩形个数是 个.18.如图,在四边形ABCD 中,AC =BD =6,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,则EG 2+FH 2= .三.解答题(共7小题,满分88分)19.在等腰△ABC 中,AB =AC =8,∠BAC =100°,AD 是∠BAC 的平分线,交BC 于D ,点E 是AB 的中点,连接DE .(1)求∠BAD 的度数;(2)求∠B 的度数;(3)求线段DE 的长.20.如图,在▱ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.21.如图,△ABC中,∠BAC=90°,点D是BC的中点,AE∥DC,EC∥AD,连接DE交AC于点O,(1)求证:四边形ADCE是菱形;(2)若AB=AO,求tan∠OCE的值.22.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACD的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.23.已知▱ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,AB=4cm,求这个平行四边形的面积.24.如图,四边形ABCD是矩形,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED.求证:四边形ABCD 是正方形.25.已知,如图,矩形ABCD中,AD=6,DC=7,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA上,AH=2,连接CF.(1)若DG=2,求证四边形EFGH为正方形;(2)若DG=6,求△FCG的面积;(3)当DG为何值时,△FCG的面积最小.参考答案与试题解析一.选择题(共8小题,满分32分)1.解:连接PP′交BC于O,∵若四边形QPCP′为菱形,∴PP′⊥QC,∴∠POQ=90°,∵∠ACB=90°,∴PO∥AC,∴=,∵设点Q运动的时间为t秒,∴AP=t,QB=t,∴QC=6﹣t,∴CO=3﹣,∵AC=CB=6,∠ACB=90°,∴AB=6,∴=,解得:t=2,故选:B.2.解:因为一组邻边相等的平行四边形是菱形,对角线互相垂直平分的四边形是菱形,那么可添加的条件是:AB=BC.故选:C.3.解:∵EF∥AB,∴∠BCF=∠B,∵∠BCF=35°,∴∠B=35°,∵DC是斜边AB上的中线,∴AD=BD=CD,∴∠B=∠BCD,∠ACD=∠CAD,∵∠ADC =∠B +∠BCD ,∴∠ADC =70°,∴∠ACD =(180°﹣70°)=55°,故选:C .4.解:方法一:设AP =x ,PB =3﹣x .∵∠EAP =∠EAP ,∠AEP =∠ABC ;∴△AEP ∽△ABC ,故=①; 同理可得△BFP ∽△DAB ,故=②.①+②得=, ∴PE +PF =. 方法二:(面积法)如图,作BM ⊥AC 于M ,则BM ==,∵S △AOB =S △AOP +S △POB ,∴•AO •BM =•AO •PE +•OB •PF ,∵OA =OB ,∴PE +PF =BM =.故选:B .5.解:∵在△ABC 中,AB =3,AC =4,BC =5,∴AB 2+AC 2=BC 2,即∠BAC =90°.又∵PE ⊥AB 于E ,PF ⊥AC 于F ,∴四边形AEPF 是矩形,∴EF =AP .因为AP 的最小值即为直角三角形ABC 斜边上的高,即2.4,∴EF 的最小值为2.4,故选:C.6.解:A、不能判定为特殊的四边形;B、只能判定为矩形;C、只能判定为菱形;D、能判定为正方形;故选:D.7.解:∵等腰梯形的两条对角线相等,∴顺次连接等腰梯形四边中点得到的四边形是菱形,∵菱形的对角线互相垂直,∴再顺次连接所得四边形四边的中点得到的图形是矩形.故选:D.8.解:方法一:如图,延长DA、BC交于点G,∵四边形ABED是正方形,∴∠BAD=90°,AD=AB,∴∠BAG=180°﹣90°=90°,∵△ABC是边长为2的等边三角形,∴AB=2,∠ABC=60°,∴AG=AB•tan∠ABC=2×tan60°=2,∴DG=AD+AG=2+2,∵∠G=90°﹣60°=30°,DF⊥BC,∴DF=DG=×(2+2)=1+,故选D.方法二:如图,过点E作EG⊥DF于点G,作EH⊥BC于点H,则∠BHE=∠DGE=90°,∵△ABC是边长为2的等边三角形,∴AB=2,∠ABC=60°,∵四边形ABED是正方形,∴BE=DE=2,∠ABE=∠BED=90°,∴∠EBH=180°﹣∠ABC﹣∠ABE=180°﹣60°﹣90°=30°,∴EH=BE•sin∠EBH=2•sin30°=2×=1,BH=BE•cos∠EBH=2cos30°=,∵EG⊥DF,EH⊥BC,DF⊥BC,∴∠EGF=∠EHB=∠DFH=90°,∴四边形EGFH是矩形,∴FG=EH=1,∠BEH+∠BEG=∠GEH=90°,∵∠DEG+∠BEG=90°,∴∠BEH=∠DEG,在△BEH和△DEG中,,∴△BEH≌△DEG(AAS),∴DG=BH=,∴DF=DG+FG=+1,故选:D.二.填空题(共10小题,满分30分)9.解:根据三角形中位线定理得,第一个四边形的边长为=,周长为2,第二个四边形的周长为=4,第三个四边形的周长是:4()3=,第n个四边形的周长为4()n,故答案为,4()n.10.解:根据对角线相等的菱形是正方形,可添加:AC=BD;根据有一个角是直角的菱形是正方形,可添加的:AB⊥BC;故添加的条件为:AC=BD或AB⊥BC.11.解:连接PC.∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠C=90°;又∵∠ACB=90°,∴四边形ECFP是矩形,∴EF=PC,∴当PC最小时,EF也最小,即当CP⊥AB时,PC最小,∵AC=4,BC=3,∴AB=5,∴AC•BC=AB•PC,∴PC=.∴线段EF长的最小值为;故答案是:.12.解:∵入射角与反射角相等,∴∠BQR=∠AQP,∠APQ=∠SPD,∠CSR=∠DSP,∠CRS=∠BRQ,∵四边形ABCD是矩形,∴∠A=∠B=∠C=∠D=90°,∴∠DPS+∠DSP=90°,∠AQP+∠APQ=90°,∴∠DSP=∠AQP=∠CSR=∠BQR,∴∠RSP=∠RQP,同理∠SRQ=∠SPQ,∴四边形SPQR是平行四边形,∴SR=PQ,PS=QR,在△DSP和△BQR中∴△DSP≌△BQR,∴BR=DP=3,BQ=DS,∵四边形ABCD是矩形,∴AB=CD=8,BC=AD=15,∴AQ=8﹣DS,AP=15﹣3=12,∵∠SPD=∠APQ,∴△SDP∽△QAP,∴=∴=,DS=,在Rt△DSP中,由勾股定理得:PS=QR==,同理PQ=RS=,∴QP+PS+SR+QR=2×+2×=34,故答案为:34.13.解:如图,∵∠C=90°,点D为AB的中点,∴AB=2CD=10,∴CD=5,∴BC=CD=5,在Rt△ABC中,AC===5.故答案为:5.14.解:∵△ACE是等边三角形,∴∠EAC=60°,AE=AC,∵∠BAC=30°,∴∠FAE=∠ACB=90°,AB=2BC,∵F为AB的中点,∴AB=2AF,∴BC=AF,∴△ABC≌△EFA,∴FE=AB,∴∠AEF=∠BAC=30°,∴EF⊥AC,故①正确,∵EF⊥AC,∠ACB=90°,∴HF∥BC,∵F是AB的中点,∴HF=BC,∵BC=AB,AB=BD,∴HF=BD,故④说法正确;∵AD=BD,BF=AF,∴∠DFB=90°,∠BDF=30°,∵∠FAE=∠BAC+∠CAE=90°,∴∠DFB=∠EAF,∵EF⊥AC,∴∠AEF=30°,∴∠BDF=∠AEF,∴△DBF≌△EFA(AAS),∴AE=DF,∵FE=AB,∴四边形ADFE为平行四边形,∵AE≠EF,∴四边形ADFE不是菱形;故②说法不正确;∴AG=AF,∴AG=AB,∵AD=AB,则AD=4AG,故③说法正确,故答案为:①③④.15.解:∵四边形ABCD是菱形,AC=8cm,BD=6cm,∴AC⊥BD,AO=OC=4cm,BO=OD=3cm,由勾股定理得:BC=AB=AD=CD=5cm,分为三种情况:①如图1,当PA=AB=5cm时,t=5÷1=5;②如图2,当P和C重合时,PB=AB=5cm,t=8÷1=8;③如图3,作AB的垂直平分线交AC于P,此时PB=PA,连接PB,在Rt△BOP中,由勾股定理得:BP2=BO2+OP2,AP2=32+(4﹣AP)2,AP=;t=÷1=,故答案为:5或8或.16.解:①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠EAB=∠PAD,又∵AE=AP,AB=AD,∵在△APD和△AEB中,,∴△APD≌△AEB(SAS);故此选项成立;③∵△APD≌△AEB,∴∠APD=∠AEB,∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,∴∠BEP=∠PAE=90°,∴EB ⊥ED ;故此选项成立;②过B 作BF ⊥AE ,交AE 的延长线于F ,∵AE =AP ,∠EAP =90°,∴∠AEP =∠APE =45°,又∵③中EB ⊥ED ,BF ⊥AF ,∴∠FEB =∠FBE =45°,又∵BE ===,∴BF =EF =, 故此选项不正确;④如图,连接BD ,在Rt △AEP 中,∵AE =AP =1,∴EP =, 又∵PB =, ∴BE =,∵△APD ≌△AEB ,∴PD =BE =,∴S △ABP +S △ADP =S △ABD ﹣S △BDP =S正方形ABCD ﹣×DP ×BE =×(4+)﹣××=+.故此选项不正确.⑤∵EF =BF =,AE =1, ∴在Rt △ABF 中,AB 2=(AE +EF )2+BF 2=4+,∴S 正方形ABCD =AB 2=4+, 故此选项正确.故答案为:①③⑤.17.解:第一行有1个矩形,第二行有1个矩形,第三行有6个,第一列有3个,第二列有1个,第四列有3个,那么共有1+1+6+3+1+3=15个,图中还有11个正方形,因为正方形也是矩形的一种,因此共有26个矩形.故答案为26.18.解:如右图,连接EF,FG,GH,EH,∵E、H分别是AB、DA的中点,∴EH是△ABD的中位线,∴EH=BD=3,同理可得EF,FG,GH分别是△ABC,△BCD,△ACD的中位线,∴EF=GH=AC=3,FG=BD=3,∴EH=EF=GH=FG=3,∴四边形EFGH为菱形,∴EG⊥HF,且垂足为O,∴EG=2OE,FH=2OH,在Rt△OEH中,根据勾股定理得:OE2+OH2=EH2=9,等式两边同时乘以4得:4OE2+4OH2=9×4=36,∴(2OE)2+(2OH)2=36,即EG2+FH2=36.故答案为:36.三.解答题(共7小题,满分88分)19.解:(1)∵AD是∠BAC的平分线,∴∠BAD=∠CAD,∵∠BAC=100°,∴∠BAD=50°;(2)∵AB=AC,∴∠B=∠C,∴∠;(3)∵AB=AC,AD平分∠BAC,∴AD是等腰△ABC底边BC上的高,即∠ADB=90°在直角三角形ABD中,点E是AB的中点,∴DE为斜边AB边上的中线,∴DE=.20.(1)证明:∵在▱ABCD中,AB=CD,∴BC=AD,∠ABC=∠CDA.又∵BE=EC=BC,AF=DF=AD,∴BE=DF.∴△ABE≌△CDF.(2)解:∵四边形AECF为菱形,∴AE=EC.又∵点E是边BC的中点,∴BE=EC,即BE=AE.又∵BC=2AB=4,∴AB=BC=BE,∴AB=BE=AE,即△ABE为等边三角形,如图,过点A作AH⊥BC于H,∴BH=BE=1,根据勾股定理得,AH=∴菱形AECF的面积为2.21.(1)证明:∵AE∥DC,EC∥AD,∴四边形ADCE是平行四边形,∵∠BAC=90°,点D是BC的中点,∴AD=BD=CD,∴平行四边形ADCE是菱形;(2)解:∵四边形ADCE是菱形,∴∠EOC=90°,AO=CO,∠ACE=∠ACD,∴tan∠ACB==,∴tan∠OCE=.22.(1)证明:∵MN交∠ACB的平分线于点E,交∠ACD的外角平分线于点F,∴∠2=∠5,∠4=∠6,∵MN∥BC,∴∠1=∠5,∠3=∠6,∴∠1=∠2,∠3=∠4,∴EO=CO,FO=CO,∴OE=OF;(2)解:∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°,∵CE=12,CF=5,∴EF==13,∴OC=EF=6.5;(3)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.证明:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.23.解:∵四边形ABCD是平行四边形,∴AO=OC=AC,BO=OD=BD,∵△AOB是等边三角形,∴AO=BO.∴AC=BD.∴平行四边形ABCD是矩形,在Rt△ABC中,∵AB=4cm,AC=2AO=8cm,∴BC==4cm,=AB×BC=4cm×4cm=16cm2.∴S平行四边形ABCD24.证明:∵∠CED是△BCE的外角,∠AED是△ABE的外角,∴∠CED=∠CBE+∠BCE,∠AED=∠BAE+∠ABE,∵∠BAE=∠BCE,∠AED=∠CED,∴∠CBE=∠ABE,∵四边形ABCD是矩形,∴∠ABC=∠BCD=∠BAD=90°,AB=CD,∴∠CBE=∠ABE=45°,∴△ABD与△BCD是等腰直角三角形,∴AB=AD=BC=CD,∴四边形ABCD是正方形.25.解:(1)∵四边形ABCD为矩形,四边形HEFG为菱形,∴∠D=∠A=90°,HG=HE,又AH=DG=2,∴Rt△AHE≌Rt△DGH(HL),∴∠DHG=∠HEA,∵∠AHE+∠HEA=90°,∴∠AHE+∠DHG=90°,∴∠EHG=90°,∴四边形HEFG为正方形;(2)过F作FM⊥DC,交DC延长线于M,连接GE,∵AB∥CD,∴∠AEG=∠MGE,∵HE∥GF,∴∠HEG=∠FGE,∴∠AEH=∠MGF,在△AHE和△MFG中,∠A=∠M=90°,HE=FG,∴△AHE≌△MFG,∴FM=HA=2,即无论菱形EFGH如何变化,点F到直线CD的距离始终为定值2,因此;(3)设DG=x,则由第(2)小题得,S=7﹣x,在△AHE中,AE≤AB=7,△FCG∴HE2≤53,∴x2+16≤53,∴x≤,∴S的最小值为,此时DG=,△FCG∴当DG=时,△FCG的面积最小为().。
第一章 特殊平行四边形 单元测试卷(含答案) 北师大版九年级上册数学
共有( )
A.1 对
B.2 对
C.3 对
D.4 对
3.如图,AC、BD 是四边形 ABCD 的两条对角线,顺次连接四边形 ABCD 各边中点得到四边形 EFGH,要使四边
形 EFGH 为矩形,应添加的条件是( )
A.AC⊥BD
B.AB=CD
C.AB∥CD
D.AC=BD
4.如图,在正方形 ABCD 中, CE MN , MCE 36 ,那么 ANM 等于( )
的最小值为
.
三、解答题(共 6 小题,每题 8 分,满分 48 分) 19.如图,小亮将升旗的绳子拉到杆底端,绳子末刚好接触地面,然后将绳子末端拉到距离旗杆 8m 处,发现此时 绳子末端距离地面 2m .请你求出杆的高度(滑轮上方的高度忽略不计,解题时请在图中标注字母)
20.如图,将一张长方形纸片 ABCD 沿 CE 折叠,使点 B 与 AD 边上的点 B′重合.过点 B′作 B′F//EB 交 CE 于点 F, 连接 EB′与 BF.
24.(1)
y1
2t 0
16 2t
t 4 4 t
8
;
y2
t
0
t
8
(2)①当 0 t 4 时, y1 随时间 t 的增大而增大,当 4 t 8 时, y1 随时间 t 的增大而减小;② 0 t 16
3
周长多 4,则 AC 的长是(
A.2 3
B.4 3
C.2 7
D. 4 7
8.如图,边长为 4 和 10 的两个正方形 ABCD 与 CEFG 并排在一起,连接 BD 并延长交 EF 于 H,交 EG 于 I,则 GI 的长为( )
A.3
B.7
C.3 2
初中数学北师大版九年级上册 第一章 特殊平行四边形 单元测试(含答案)
第一章特殊平行四边形一、单选题1.如图,要使平行四边形ABCD成为菱形,需添加的一个条件是( )A.AB=BC B.AC=BD C.∠ABC=90°D.AC与BD互相平分2.如图,矩形ABCD中,对角线AC,BD交于O点.若∠BOC=120°,AC=8,则AB的长为()A.6B.4C.43D.423.如图在Rt△ABC中,∠ACB=90°,AB=10cm,点D是AB的中点,则CD的长度是()A.7cm B.6cm C.5cm D.4cmCD的长为半径4.如图,矩形ABCD中,AB=10,BC=6,分别以C,D为圆心,以大于12作弧,两弧分别交于G,H两点,作直线GH交CD于点E,连接AE,点D关于AE的对称点为点M,作射线AM交BC于点N,则CN的长为()A .253B .4C .256D .55.如图,在长方形ABCD 中,AB=3,BC=4,若沿折痕EF 折叠,使点C 与点A 重合,则折痕EF 的长为( )A .158B .154C .152D .156.如图,在四边形ABCD 中,AB ∥CD ,AB =CD ,对角线AC 与BD 交于点O ,点E 是AD 的中点,连接OE ,△ABD 的周长为12cm ,则下列结论错误的是( )A .OE ∥ABB .四边形ABCD 是中心对称图形C .△EOD 的周长等于3cmD .若∠ABC =90°,则四边形ABCD 是轴对称图形7.如图,在△ABC 中,AB =5,AC =12,BC =13,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为( )A.6013B.3013C.2413D.12138.如图,正方形ABCD的周长为24,P为对角线AC上的一个动点,E是CD的中点,则PE+PD 的最小值为()A.35B.32C.6D.5二、填空题9.菱形的周长为12cm,它的一个内角为60°,则菱形的面积为.10.如图,在菱形ABCD中,对角线AC,BD相交于点O,H为BC中点,AC=3,BD=4,则线段OH的长为.11.如图,在△ABC中,点D在BC上过点D分别作AB、AC的平行线,分别交AC、AB于点E、F①如果要得到矩形AEDF,那么△ABC应具备条件:;②如果要得到菱形AEDF,那么△ABC应具备条件:.12.已知,如图,四边形ABCD是正方形,BE=AC,则∠BED=度.13.如图,矩形ABCD内有一点P,连接AP,DP,CP,延长CP交AB于点E,若∠APD=90°,AD=8,CP=CD=6,则AE的长是.OA,把矩形OABC沿OB折叠,14.如图,四边形OABC是矩形,点A的坐标为(8,0),AB=12点C落在点D处,BD交OA于点E,则点E的坐标为.15.如图,已知点E在菱形ABCD的边AB上,以BE为边向菱形ABCD外部作菱形BEFG,连接DF,M,N分别是DC,DF的中点,连接MN.若AB=5,BE=2,∠ABC=120°,则MN=.16.如图,在边长为10的正方形ABCD中,E是BC的中点,连接AE,过点B作AE的垂线,交AE于点G,交CD于点H,F是BH上一点,连接EF,若BE=FE,则FH的长为.17.如图,矩形ABCD 中,AB =10,BC =24,点P 在BC 边上,PE ⊥BD ,PF ⊥AC ,则PE +PF = .18.已知:如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE =AP =1,BP =5.下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为2;③S △APD +S △APB =12+62;④S 正方形ABCD =4+6.其中正确结论的序号是 .三、解答题19.如图,四边形ABCD 中,对角线AC 、BD 相交于点O ,AO =CO ,BO =DO ,且∠ABC=90°.(1)求证:四边形ABCD 是矩形.(2)若∠ACB=30°,AB=1,求①∠AOB 的度数;②四边形ABCD 的面积.20.如图,在菱形ABCD中,∠A=60∘,AB=4,O是对角线BD的中点,过O点作OE丄AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长;(3)求菱形ABCD的面积.21.如图,在平行四边形ABCD中,两条对角线相交于点O,EF经过O且垂直于AC,分别与边AD、BC交于点F、E.(1)求证:四边形AECF为菱形;(2)若AD=3,CD=2,且∠ADC=60°,求菱形AECF的面积.22.十一国庆节,某校各班都在开展丰富多彩的庆祝活动,八年级(1)班开展了手工制作竞赛,每个同学都在规定时间内完成一件手工作品.武玥同学在制作手工作品的第一、二个步骤是:①先裁下了一张长BC=20cm,宽AB=16cm的长方形纸片ABCD;②如图,将纸片沿着直线AE折叠,点D恰好落在BC边上的F处.请你根据①②步骤计算EC,FC的长.23.综合与实践:【问题情境】某数学兴趣小组在学完《平行四边形》之后,研究了新人教版数学教材第64页的数学活动1.其内容如下:如果我们身旁没有量角器或三角尺,又需要作60°,30°,15°等大小的角,可以采用下面的方法(如图1);(1)对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平.(2)再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM.同时,得到了线段BN.【知识运用】请根据上述过程完成下列问题:(1)已知矩形纸片ABCD,AB=43,AM=4,求线段BM的长;(2)通过观察猜测∠NBC的度数是多少?并进行证明;【综合提升】(3)乐乐在探究活动的第(2)步基础上再次动手操作(如图2),将MN延长交BC于点G.将△BMG沿MG折叠,点B刚好落在AD边上点H处,连接GH,把纸片再次展平.请判断四边形BGHM的形状,并说明理由.参考答案:1.A2.B3.C4.C5.B6.C7.B8.Acm29.93210.5411.∠BAC=90∘AD平分∠BAC 12.22.513.8314.(5,0)15.67216.517.1201318.①③④19.解:(1)证明:∵AO=CO,BO=DO∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC=90°,∴四边形ABCD是矩形;(2)∵∠ABC=90°,∠ACB=300,AB=1∴∠BAC=60°,AC=2,BC=3又∵矩形ABCD中,OA=OB∴∠AOB=180°-2∠BAC=60°S□ABCD=1×3=320.解:(1)在菱形ABCD中,∵AB=AD,∠A=60∘,∴△ABD为等边三角形,∴∠ABD=60∘;(2)∵O是对角线BD的中点,BD=2,∴OB=12∵∠ABD=60∘,=1;∴BE=OBcos60∘=2×12(3)过D作DF⊥AB于点F,由(2)可得:OE=OBsin60∘=3,∵OE⊥AB,点O为BD中点,∴DF=2OE=23,则S菱形ABCD=AB⋅DF=4×23=83.21.(1)证明:∵四边形ABCD为平行四边形,∴OA=OC,AD∥BC,∴∠FAC=∠ACE,∠AFE=∠CEF,∴△AOF≌△COE,∴AF=CE,∴四边形AECF为平行四边形,∵EF经过O且垂直于AC,∴EF是对角线AC的垂直平分线,∴AF=CF,∴四边形AECF为菱形;(2)解:过C作CH⊥AD于H,则∠CHD=∠CHF=90°,∵∠ADC=60°,∴∠HCD=30°,∴HD=12CD=1,∴CH=CD2−HD2=3,∵AD=3,∴AH=2,∵四边形AECF是菱形,∴AF=CF,设AF=CF=x,则FH=2−x,在Rt△CHF中,由勾股定理得:CF2=FH2+CH2,即x2=(2−x)2+(3)2,解得:x=74,∴AF=CF=74,∴菱形AECF的面积为:AF×CH=74×3=734.22.解:∵△ADE由△AFE关于AE对称,∴△ADE≌△AFE,∴DE=FE,AD=AF,∵四边形ABCD是矩形,∴BC=AD=AF=20cm,AB=CD=16cm,在Rt△ABF中,由勾股定理:BF=AF2−AB2=202−162=12cm,∴CF=BC-BF=20-12=8cm.∵四边形ABCD是矩形,∴∠C=90°.设CE=x,则DE=EF=16-x,在Rt△CEF中,由勾股定理:EF2=CE2+CF2,代入数据:(16-x)2=x2+64,解得:x=6.∴EC=6cm.综上所述,线段EC=6cm,CF=8cm.23.解:(1)∵四边形ABCD为矩形,∴∠A=90°,∵AB=43,AM=4,∴BM=AB2+AM2=8;(2)猜测:∠NBC=30°,证明:连接AN:∵EF为折痕,∴EF垂直平分AB,∴AN=BN,∵△BMN由△BMA折叠所得,∴AB=BN,∴AN=BN=AB,∴△ABN为等边三角形,∴∠ABN=60°,∴∠NBC=90°−60°=30°;(3)四边形BGHM为菱形,理由:∵△BMN由△BMA折叠所得,∴∠ABM=∠NBM,∠BAM=∠MNB=90°,∵∠ABN=∠ABM+∠NBM=60°,∴∠ABM=∠NBM=30°,∵∠NBC=30°,∴∠NBM=∠NBC=30°,∴∠MBG=60°,∴△BMG是等边三角形,∴BM=BG,∵将△BMG沿MG折叠,点B刚好落在AD边上点H处,连接GH,∴△BMG≌△HGM,BH⊥MG,∴MH=BM,∴MH=BM=BG,∵MH∥BG,∴四边形BGHM是平行四边形,∵BM=BG,∴四边形BGHM是菱形.。
北师大版九年级数学上册《第一章特殊平行四边形》单元测试卷(带答案)
北师大版九年级数学上册《第一章特殊平行四边形》单元测试卷(带答案)一、选择题1.菱形的周长为20cm,一条对角线长为8cm,则菱形的面积为()2cm.A.48B.24C.12D.202.菱形具有而矩形不一定具有的性质是()A.对角线相等B.对角线互相垂直C.对角相等D.对边平行3.要检验一个四边形画框是否为矩形,可行的测量方法是()A.测量四边形画框的两个角是否为90︒B.测量四边形画框的对角线是否相等且互相平分C.测量四边形画框的一组对边是否平行且相等D.测量四边形画框的四边是否相等4.如图,在矩形ABCD中,已知AE BD⊥于E,∠BDC=60°,BE=1,则AB的长为()A.3B.2C.3D35.下列条件中,能判定四边形是正方形的是()A.对角线相等的平行四边形B.对角线互相平分且垂直的四边形C.对角线互相垂直且相等的四边形D.对角线相等且互相垂直的平行四边形6.如图,将图1的正方形剪成四块,恰能拼成图2的矩形,则ba=()A 51-B 53+C 51+D 217.如图,在菱形ABCD 中 50ABC ∠=︒ ,对角线AC ,BD 交于点O ,E 为CD 的中点,连接OE ,则 AOE ∠ 的度数是( )A .110°B .112°C .115°D .120°8.如图,在四边形ABCD 中,AB =1,BC =4,CD =6,∠A =90°,∠B =∠C =120°,则AD 的长度为( )A .3B .3C .3D .3+39.如图,点E 、F 在矩形ABCD 的对角线BD 所在的直线上,BE =DF ,则四边形AECF 是( )A .平行四边形B .矩形C .菱形D .正方形10.如图,在边长为2的正方形ABCD 中,点E ,F 分别是边BC ,CD 上的动点,且BE CF =,连接BF ,DE ,则BF DE +的最小值为( )A 3B 5C .3D .512.如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD ,∠A =120°,则A .13.如图,在矩形ABCD 中,E 是BC 边上一点90AED ∠=︒,∠EAD=30°,F 是AD 边的中点2cm EF =则BE = cm .14.如图,在边长为4的正方形ABCD 中,E 是AB 边上的一点,且AE=3,点Q 为对角线AC 上的动点,则∠BEQ 周长的最小值为 .三、解答题15.如图,在矩形ABCD 中,AC ,BD 相交于点O ,AE//BD ,BE//AC .(1)求证:四边形AEBO 是菱形;(2)若2AB =,OB=3,求AD 的长及四边形AEBO 的面积.16.如图,平行四边形ABCD 中,AC=6,BD=8,点P 从点A 出发以每秒1cm 的速度沿射线AC 移动,点Q 从点C 出发以每秒1cm 的速度沿射线CA 移动.(1)经过几秒,以P ,Q ,B ,D 为顶点的四边形为矩形?(2)若BC∠AC 垂足为C ,求(1)中矩形边BQ 的长.17. 如图,在正方形ABCD 中,点E 、F 分别在边BC 、CD 上,且∠EAF =45°,分别连接EF 、BD ,BD 与AF 、AE 分别相交于点M 、N.(1)求证:EF =BE +DF .为了证明“EF =BE +DF ”,小明延长CB 至点G ,使BG =DF ,连接AG ,请画出辅助线并按小明的思路写出证明过程. (2)若正方形ABCD 的边长为6,BE =2,求DF 的长.18.已知:如图,在 Rt ABC 中 90ACB ∠=︒ , CD 是 ABC 的角平分线,DE ⊥BC ,DF ⊥AC ,垂足分別为E 、F.求证:四边形 CEDF 是正方形.四、综合题19.如图,在ABC 中,AB=AC=2,∠BAC=45°,AEF 是由ABC 绕点A 按逆时针方向旋转得到的,连接BE ,CF 相交于点D .(1)求证:BE CF =;(2)当四边形ABDF 为菱形时,求CD 的长.20.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D 作DE∠AC ,且12DE AC =,连接CE(1)求证:四边形OCED为矩形;(2)连接AE,若DB=6,AC=8,求AE的长.21.已知正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.(1)如图1,连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断∠“在旋转的过程中线段DF与BF的长始终相等.”是否正确,若正确请说明理由,若不正确请举反例说明;(2)若将正方形AEFG绕点A按顺时针方向旋转,连结DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长始终相等.并以图2为例说明理由.22.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图(1),连接AF、CE.①四边形AFCE是什么特殊四边形?说明理由;②求AF的长;(2)如图(2),动点P、Q分别从A、C两点同时出发,沿∠AFB和∠CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,已知点P的速度为每秒5cm,点Q 的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.答案解析部分1.【答案】B【解析】【解答】解:∵菱形周长为20cm∴一条边的边长a=5cm又∵一条对角线长为8cm根据勾股定理可得另一条对角线长的一半22543 b-=∴另一条对角线长为6cm∴2186242m=⨯⨯=菱形的面积故答案为:B.【分析】本题考查菱形的性质、菱形的面积公式以及勾股定理,首先根据菱形的四边相等可知边长为5,又因为菱形的对角线垂直,所以结合一条已知的对角线求出另一条对角线的长度为6,两条对角线长度已知即可求出菱形的面积.2.【答案】B【解析】【解答】矩形的对角线相等,菱形的对角线不一定相等,故A不符合题意;矩形的对角线互相不垂直,菱形的对角线互相垂直,故B符合题意;因为矩形与菱形都是特殊的平行四边形,所以矩形与菱形的对角都相等,故C不符合题意;因为矩形与菱形都是特殊的平行四边形,所以矩形与菱形的对边都平行,故D不符合题意;故答案为:B.【分析】菱形和矩形具有平行四边形的一切性质,菱形特有:四条边都相等,对角线互相垂直且平分一组对角,矩形特有:四个角都是直角,对角线相等,据此逐一判断即可.3.【答案】B【解析】【解答】解:A、测量四边形画框的两个角是否为90°,不能判定为矩形,故选项A不符合题意;B、测量四边形画框的对角线是否相等且互相平分,能判定为矩形,故选项B符合题意;C、测量四边形画框的一组对边是否平行且相等,能判定为平行四边形,不能判定是否为矩形,故选项C 不符合题意;D、测量四边形画框的四边是否相等,能判断四边形是菱形,故选项D不符合题意.【分析】一组对边平行且相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;对角线相等的平行四边形是矩形;有一个角是直角的平行四边形是矩形;四边相等的四边形是菱形,据此一 一判断得出答案.4.【答案】B【解析】【解答】解:四边形ABCD 为矩形60BDC ∠=︒=60ABD ∴∠︒AE BD ⊥30BAE ∴∠=︒AB 2∴=故答案为:B .【分析】由矩形的性质求出∠ABD=90°,利用三角形内角和求出∠BAE=30°,再根据含30°角的直角三角形的性质即可求解.5.【答案】D【解析】【解答】解:A 、对角线相等的平行四边形是矩形,故此选项不符合题意;B 、对角线互相平分且垂直的四边形是菱形,故此选项不符合题意;C 、对角线相等且互相垂直的平行四边形是正方形,故C 选项不符合题意,D 选项符合题意.故答案为:D.【分析】利用对角线互相平分,垂直且相等的四边形是正方形;对角线相等且互相垂直的平行四边形 是正方形,一一判断可得答案.6.【答案】C【解析】【解答】解:依题意得()2()a b b b a b +=++整理得:22222a b ab b ab ++=+则220a b ab -+= 方程两边同时除以2a 2()10b b a a --=152b a +∴=(负值已经舍去)【分析】根据左图可以知道图形是一个正方形,边长为(a+b),右图是一个长方形,长宽分别为(b+a+b)、b,并且它们的面积相等,由此即可列出等式(a+b)2=b(b+a+b),解方程即可求出ba的值.7.【答案】C【解析】【解答】解:∵四边形ABCD是菱形∴AC∠BD,∠CDO= 12∠ADC=12∠ABC=25°∴∠DOC=90°∵点E是CD的中点∴OE=DE= 12CD∴∠DOE=∠CDO=25°∴∠AOE=∠AOD+∠DOE=90°+25°=115°故答案为:C.【分析】根据菱形的性质得出AC∠BD,∠CDO=25°,然后根据直角三角形斜边中线的性质求出OE=DE,则由等腰三角形的性质求出∠DOE=25°,最后根据角的和差关系求∠AOE的度数即可. 8.【答案】A【解析】【解答】解:延长DC、AB,DC、AB的延长线相交于点E∵∠ABC=∠BCD=120°∴∠EBC=∠ECB=60°∴∠BCE是等边三角形∵BC=4,∴EC=BE=BC=4∵AB=1,CD=6∴AE=1+4=5,DE=CD+CE=4+6=10∵∠A=90°∴22221057553DE AE-=-=故答案为:53.【分析】延长DC、AB,DC、AB的延长线相交于点E,结合已知易得∠BCE是等边三角形,由等边三角形的性质可得EC=BE=BC,由线段的构成可求出AE、DE的值,然后在直角三角形ADE中,用勾股定理可求得AD的值.9.【答案】A∴AO=CO BO=DO又BE=DF∴ BO+BE=DO+DF即EO=FO∴ 四边形AECF 是平行四边(对角线互相平分的四边形是平行四边形)故选:A【分析】根据矩形性质得到平行四边形的判定条件。
第一章 特殊的平行四边形 单元检测 2022-2023学年北师大版数学 九年级上册(含答案)
2022-2023北师大版数学九年级上册第一章特殊的平行四边形单元检测一.选择题(共12小题)1.如图,在菱形ABCD中,AC与BD相交于点O,BC的垂直平分线EF分别交BC,AC于点E、F,连接DF,若∠BCD=70°,则∠ADF的度数是()A.60°B.75°C.80°D.110°2.已知四边形ABCD是平行四边形,下列条件:①AB=BC;②∠ABC=90°;③AC=BD;④AC⊥BD.从中选择两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选③④3.下列判断错误的是()A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.两条对角线互相垂直且相等的四边形是正方形D.四条边都相等的四边形是菱形4.如图,在平面直角坐标系中,四边形OABC是矩形,OA=6,将△ABC沿直线AC翻折,使点B落在点D处,AD交x轴于点E,若∠BAC=30°,则点D的坐标为()A.B.C.D.5.菱形具有而矩形不一定有的性质是()A.对角线互相平分B.四条边都相等C.对角相等D.对边平行6.如图,正方形ABCD中,AC与BD相交于点O,F是AB上的任意一点,过点F分别作FE∥BD、FG∥AC,FE交AD于E点,FG交BC于G点.则下列结论错误的是()A.BD垂直平分FFG∥ACG B.EF+FG=ACC.△AFE是等腰直角三角形D.GC+FG=AC7.如图,已知正方形ABCD的边长为2,点O为正方形的中心,点G为AB边上一动点,直线GO交CD于点H,过点D作DE⊥GO,垂足为点E,连接CE,则CE的最小值为()A.2 B.4﹣C.D.﹣18.如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=6,则菱形ABCD的周长为()A.48 B.36 C.24 D.189.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF;②∠DAF=15°,③AC垂直平分EF,④,其中正确结论有()个.A.1 B.2 C.3 D.410.如图,Rt△ABC≌Rt△DCB,其中∠ABC=90°,AB=3,BC=4,O为BC中点,EF过点交AC、BD于点E、F,连接BE、CF,则下列结论错误的是()A.四边形BECF为平行四边形B.当BF=3.5时,四边形BECF为矩形C.当BF=2.5时,四边形BECF为菱形D.四边形BECF不可能为正方形11.如图,将正方形OABC放在平面直角坐标系中,O是原点,点A的坐标为(1,),则点C的坐标为()A.(﹣,1)B.(﹣1,)C.(,1)D.(﹣,﹣1)12.如图,在矩形ABCD中,AC、BD相交于点O,AE平分∠BAD交BC于点E,若∠CAE=15°,则∠BOE 的度数为()A.60°B.75°C.72°D.90°二.填空题(共6小题)13.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=18°,则∠AED等于度.。
九年级数学上册《第一章 特殊平行四边形》单元测试卷带答案(北师大版)
九年级数学上册《第一章 特殊平行四边形》单元测试卷带答案(北师大版)学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.对角线互相垂直平分的四边形是( )A .菱形、正方形B .矩形、菱形C .矩形、正方形D .平行四边形、菱形2.在ABC 中,点D 是边AC 的中点,连结BD 并延长到E ,使DE DB =,连结AE ,CE .则下列说法不正确的是( )A .四边形ABCE 是平行四边形B .当90ABC ∠=︒时,四边形ABCE 是矩形C .当AB BC =时,四边形ABCE 是菱形D .当AB BC CA ==时,四边形ABCE 是正方形3.如图,在矩形ABCD 中(AD >AB ),点E 是BC 上一点,且DE=DA ,AF ⊥DE ,垂足为点F ,在下列结论中,不一定正确的是( )A .△AFD ≌△DCEB .AF=12AD C .AB=AF D .BE=AD ﹣DF 4.如图,在菱形ABCD 中,点E 是AB 的中点,点F 是AC 的中点,连接EF ,如果4EF =,那么菱形ABCD 的周长为( )A .4B .8C .16D .325.如图,正方形ABCD 中,AB=6,G 是BC 的中点.将△ABG 沿AG 对折至△AFG ,延长GF 交DC 于点E ,则DE 的长是( )A .1B .1.5C .2D .2.56.如图,在菱形ABCD 中,对角线AC ,BD 分别为16和12,DE AB ⊥于点E ,则DE =( )A .485B .965C .10D .87.如图,在正方形ABCD 中,AB=4,E ,F 分别为边AB BC ,的中点,连接AF DE ,,点G ,H 分别为DE AF ,的中点,连接GH ,则GH 的长为( )A .2B .1CD .28.如图,在矩形ABCD 中,在CD 上取点E ,连接AE ,在AE ,AB 上分别取点F ,G ,连接DF ,GF ,AG GF =将ADF 沿FD 翻折,点A 落在BC 边的A '处,若//GF A D ',且3AB =,AD=5,AF 的长是( )A B C .52 D 二、填空题:(本题共5小题,每小题3分,共15分.)9.菱形的边长为5,一条对角线长为8,则此菱形的面积是 .10.如图,在ABCD 中,对角线AC BD 、相交于点O ,在不添加任何辅助线的情况下,请你加一个条件 ,使ABCD 是菱形.11.如图,点M 是正方形ABCD 内位于对角线BD 上方的一点2MAD ∠=∠,则AMD ∠的度数为 .12.如图,矩形ABCD 中,AB =4,AD =3,点E 是边BC 的中点,连接AE ,把△ABE 沿AE 对折得到△AFE ,延长AF 与CD 交于点G ,则DG 的长为 .13.如图,正方形ABCD 的边长为2,将正方形ABCD 绕点A 逆时针旋转角()α0α180︒<<︒得到正方形A B C D '''',连接D C ',当点B '恰好落在线段D C '上时,线段D C '的长度是 .(结果保留根号)三、解答题:(本题共5题,共45分)14.如图,在菱形ABCD 中,∠BAD =80°,AB 的垂直平分线交对角线AC 于点F ,点E 为垂足,连接DF ,求∠CDF 的度数.15.如图,矩形ABCD 中,AB=4,BC=10,E 在AD 上,连接BE ,CE ,过点A 作AG ∥CE ,分别交BC ,BE 于点G ,F ,连接DG 交CE 于点H .若AE=2,求证:四边形EFGH 是矩形.16.把一张矩形ABCD 纸片按如图方式折叠,使点A 与点E 重合,点C 与点F 重合(E 、F 两点均在BD 上),折痕分别为BH 、DG .(1)求证:△BHE ≌△DGF ;(2)若AB=6cm ,BC=8cm ,求线段FG 的长.17.如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB上,EF⊥AB,OG∥EF.(1)求证:四边形OEFG是矩形;(2)若AD=10,EF=4,求BG的长.18.如图1,在正方形ABCD中,P是对角线BD上的点,点E在AB上,且PA=PE.(1)求证:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,试探究∠CPE与∠ABC之间的数量关系,并说明理由参考答案:1.A 2.D 3.B 4.D 5.C 6.A 7.C 8.A9.2410.AB BC =(答案不唯一)11.135°12.5516136214.解答:解:如图,连接BF ,在△BCF 和△DCF 中,∵CD =CB ,∠DCF =∠BCF ,CF =CF ,∴△BCF ≌△DCF ,∴∠CBF =∠CDF ,∵FE 垂直平分AB ,∠BAF = ×80°=40°∴∠ABF =∠BAF =40°,∵∠ABC =180°-80°=100°,∠CBF =100°-40°=60°,∴∠CDF =60°.15.解:∵四边形ABCD 是矩形∴∠BAD=∠ADC=90°∵AB=4,AE=2∴22AE AB +5,22DE CD +221024-+()5∴BE 2+CE 2=BC 2∴∠BEC=90°∵AG ∥CE ,AE ∥CG∴四边形AECG 是平行四边形∴CG=AE=2,5同理∠AGD=90°∵AG ∥CE∴∠EFG=∠FEH=90°∴四边形EFGH 是矩形.16.(1)证明:∵四边形ABCD 是矩形∴AB=CD ,∠A=∠C=90°,∠ABD=∠BDC∵△BEH 是△BAH 翻折而成∴∠ABH=∠EBH ,∠A=∠HEB=90°,AB=BE∵△DGF 是△DGC 翻折而成∴∠FDG=∠CDG ,∠C=∠DFG=90°,CD=DF∴∠DBH=12∠ABD ,∠BDG=12∠BDC ∴∠DBH=∠BDG∴△BEH 与△DFG 中∠HEB=∠DFG ,BE=DF ,∠DBH=∠BDG∴△BEH ≌△DFG(2)解:∵四边形ABCD 是矩形,AB=6cm ,BC=8cm∴AB=CD=6cm ,AD=BC=8cm∴22BC CD +2286+∵由(1)知,FD=CD ,CG=FG∴BF=10-6=4cm设FG=x ,则BG=8-x在Rt △BGF 中BG 2=BF 2+FG 2,即(8-x )2=42+x 2解得x=3,即FG=3cm .17.(1)解:四边形ABCD 是菱形OB OD ∴= E 是AD 的中点OE ∴是ΔABD 的中位线//OE FG ∴//OG EF∴四边形OEFG 是平行四边形EF AB ⊥90EFG ∴∠=︒∴平行四边形OEFG 是矩形;(2)解:四边形ABCD 是菱形BD AC ∴⊥ 10AB AD ==90AOD ∴∠=︒ E 是AD 的中点152OE AE AD ∴===;由(1)知,四边形OEFG 是矩形5FG OE ∴==5AE = 4EF =223AF AE EF ∴=-=10352BG AB AF FG ∴=--=--=.18.(1)证明:在正方形ABCD 中,AB=BC∠ABP=∠CBP=45°在△ABP 和△CBP 中AB BCABP CBP PB PB=⎧⎪∠=∠⎨⎪=⎩∴△ABP ≌△CBP (SAS )∴PA=PC∵PA=PE∴PC=PE ;(2)解:由(1)知,△ABP ≌△CBP ,∴∠BAP=∠BCP ,∵PA=PE ,∴∠PAE=∠PEA∴∠CPB=∠AEP∵∠AEP+∠PEB=180°,∴∠PEB+∠PCB=180°∴∠ABC+∠EPC=180°∵∠ABC=90°,∴∠EPC=90°(3)∠ABC+∠EPC=180°,理由:解:在菱形ABCD 中,AB=BC ,∠ABP=∠CBP=60°,在△ABP 和△CBP 中,AB BC ABP CBPPB PB =⎧⎪∠=∠⎨⎪=⎩ ,∴△ABP ≌△CBP (SAS ),∴∠BAP=∠BCP ,∵PA=PE∴∠DAP=∠DCP∴∠PAE=∠PEA ,∴∠CPB=∠AEP ,∵∠AEP+∠PEB=180°,∴∠PEB+∠PCB=180°,∴∠ABC+∠EPC=180°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学上册《第一章特殊平行四边形》单元测试卷-附带答案(北师大版)一、选择题(12小题,每小题3分,共36分)1.下列命题中,真命题是()A.两条对角线垂直的四边形是菱形B.对角线垂直且相等的四边形是正方形C.两条对角线相等的四边形是矩形D.两条对角线相等的平行四边形是矩形2.菱形具有而矩形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补3.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形满足条件的是()①平行四边形②菱形③对角线相等的四边形④对角线互相垂直的四边形.A.①③ B.②③ C.③④ D.②④4.既是中心对称图形又是轴对称图形,且只有两条对称轴的四边形是()A.正方形B.矩形 C.菱形 D.矩形或菱形5.(2018•大连)如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()A.8 B.7 C.4 D.36.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A.16 B.17 C.18 D.197.在Rt△ABC中,∠ACB=90°,∠B=30°,AC=cm,则AB边上的中线为()A.1cm B.2cm C.1.5cm D.cm8.如图,在正方形ABCD外侧作等边三角形CDE,AE、BD交于点F,则∠AFB的度数为()A.45°B.55°C.60°D.75°9.如图,▱ABCD中,DE⊥AB,DF⊥BC,垂足分别为E、F,∠EDF=60°,AE=2cm,则AD=()A.4cm B.5cm C.6cm D.7cm10.如图:长方形纸片ABCD中,AD=4cm,AB=10cm,按如图的方式折叠,使点B与点D重合.折痕为EF,则DE长为()A.4.8 cm B.5 cm C.5.8 cm D.6 cm11.如图,将一个长为10cm,宽为8cm的矩形纸片先按照从左向右对折,再按照从下向上的方向对折,沿所得矩形两邻边中点的连线(虚线)剪下(如图(1)),再打开,得到如图(2)所示的小菱形的面积为()A.10cm2B.20cm2C.40cm2D.80cm212.(2018•威海)矩形ABCD与CEFG如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF 的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1 B.C.D.二、填空题(每小题3分,共12分)13.(2018•锦州)如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH,若OB=4,S菱形ABCD=24,则OH的长为.14.(2018•本溪)如图,矩形OABC的顶点A,C分别在坐标轴上,B(8,7),D(5,0),点P是边AB 或边BC上的一点,连接OP,DP,当△ODP为等腰三角形时,点P的坐标为.15.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为.16.如图,正方形ABCD的边长为4,E为BC上的一点,BE=1,F为AB上的一点,AF=2,P为AC上一个动点,则PF+PE的最小值为.三、解答题(共52分)17.(6分)已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE.18.(7分)如图,矩形ABCD的对角线AC、BD交于点O,∠AOD=60°,AB=,AE⊥BD于点E,求OE的长.19.(7分)如图,在△ABC中,AB=BC,BD平分∠ABC.四边形ABED是平行四边形,DE交BC于点F,连接CE.求证:四边形BECD是矩形.20.(8分)如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.(1)求证:AE=DF;(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.21.(8分)如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=2,求AB的长.22.(8分)正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D 逆时针旋转90°,得到△DCM.(1)求证:EF=FM;(2)当AE=1时,求EF的长.23.(8分)已知,如图1,BD是边长为1的正方形ABCD的对角线,BE平分∠DBC交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G.(1)求证:△BCE≌△DCF;(2)求CF的长;(3)如图2,在AB上取一点H,且BH=CF,若以BC为x轴,AB为y轴建立直角坐标系,问在直线BD 上是否存在点P,使得以B、H、P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的P点坐标;若不存在,说明理由.参考答案一、选择题(12小题,每小题3分,共36分)1.下列命题中,真命题是()A.两条对角线垂直的四边形是菱形B.对角线垂直且相等的四边形是正方形C.两条对角线相等的四边形是矩形D.两条对角线相等的平行四边形是矩形【分析】本题要求熟练掌握平行四边形、菱形、矩形、正方形的性质以及之间的相互联系.【解答】解:A、两条对角线垂直并且相互平分的四边形是菱形,故选项A错误;B、对角线垂直且相等的平行四边形是正方形,故选项B错误;C、两条对角线相等的平行四边形是矩形,故选项C错误;D、根据矩形的判定定理,两条对角线相等的平行四边形是矩形,为真命题,故选项D正确;故选D.【点评】本题考查的是普通概念,熟练掌握基础的东西是深入研究的必要准备.2.菱形具有而矩形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补【考点】矩形的性质;菱形的性质.【专题】推理填空题.【分析】根据菱形对角线垂直平分的性质及矩形对交线相等平分的性质对各个选项进行分析,从而得到最后的答案.【解答】解:A、菱形对角线相互垂直,而矩形的对角线则不垂直;故本选项符合要求;B、矩形的对角线相等,而菱形的不具备这一性质;故本选项不符合要求;C、菱形和矩形的对角线都互相平分;故本选项不符合要求;D、菱形对角相等;但菱形不具备对角互补,故本选项不符合要求;故选A.【点评】此题主要考查了学生对菱形及矩形的性质的理解及运用.菱形和矩形都具有平行四边形的性质,但是菱形的特性是:对角线互相垂直、平分,四条边都相等.3.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形满足条件的是()①平行四边形②菱形③对角线相等的四边形④对角线互相垂直的四边形.A.①③ B.②③ C.③④ D.②④【考点】矩形的定义及性质.【分析】已知梯形四边中点得到的四边形是矩形,则根据矩形的性质及三角形的中位线的性质进行分析,从而不难求解.【解答】解:如图点E,F,G,H分别是梯形各边的中点,且四边形EFGH是矩形.∵点E,F,G,H分别是梯形各边的中点,且四边形EFGH是矩形.∴∠FEH=90°,EF∥BD∥HG,FG∥AC∥EH,EF≠GH.∴AC⊥BD.①平行四边形的对角线不一定互相垂直,故①错误;②菱形的对角线互相垂直,故②正确;③对角线相等的四边形,故③错误;④对角线互相垂直的四边形,故④正确.综上所述,正确的结论是:②④.故选:D.【点评】此题主要考查矩形的性质及三角形中位线定理的综合运用,正确掌握矩形的判定方法是解题关键.4.既是中心对称图形又是轴对称图形,且只有两条对称轴的四边形是()A.正方形B.矩形 C.菱形 D.矩形或菱形【考点】菱形的性质,矩形的定义及性质,正方形的定义及性质.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:正方形是轴对称图形,也是中心对称图形,有4条对称轴;矩形是轴对称图形,也是中心对称图形,有2条对称轴;菱形是轴对称图形,也是中心对称图形,有2条对称轴.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.(2018•大连)如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()A.8 B.7 C.4 D.3【考点】L8:菱形的性质.【分析】根据菱形的对角线互相垂直,利用勾股定理列式求出OB即可;【解答】解:∵四边形ABCD是菱形∴OA=OC=3,OB=OD,AC⊥BD在Rt△AOB中,∠AOB=90°根据勾股定理,得:OB===4∴BD=2OB=8故选:A.【点评】本题考查了菱形性质,勾股定理的应用等知识,比较简单,熟记性质是解题的关键.6.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A.16 B.17 C.18 D.19【考点】正方形的性质.【分析】由图可得,S2的边长为3,由AC=BC,BC=CE=CD,可得AC=2CD,CD=2,EC=2;然后,分别算出S1、S2的面积,即可解答.【解答】解:如图设正方形S1的边长为x∵△ABC和△CDE都为等腰直角三角形∴AB=BC,DE=DC,∠ABC=∠D=90°∴sin∠CAB=sin45°==,即AC=BC,同理可得:BC=CE=CD∴AC=BC=2CD又∵AD=AC+CD=6∴CD==2∴EC2=22+22,即EC=2;∴S1的面积为EC2=2×2=8;∵∠MAO=∠MOA=45°∴AM=MO∵MO=MN∴AM=MN∴M为AN的中点∴S2的边长为3∴S2的面积为3×3=9∴S1+S2=8+9=17.故选B.【点评】本题考查了正方形的性质,找到相等的量,再结合三角函数进行解答.7.在Rt△ABC中,∠ACB=90°,∠B=30°,AC=cm,则AB边上的中线为()A.1cm B.2cm C.1.5cm D.cm【考点】直角三角形斜边上的中线.【专题】计算题.【分析】由直角三角形的性质知:斜边上的中线等于斜边的一半;已知了直角三角形的两条直角边,由勾股定理可求得斜边的长,由此得解【解答】解:∵Rt△ABC中,AC=cm,且∠ACB=90°,∠B=30°∴AB=2∴AB边上的中线CD=AB=cm.故选D.【点评】此题主要考查直角三角形斜边上的中线等于斜边的一半等知识点的理解和掌握,难度不大,属于基础题.8.如图,在正方形ABCD外侧作等边三角形CDE,AE、BD交于点F,则∠AFB的度数为()A.45°B.55°C.60°D.75°【考点】正方形的性质.【分析】根据正方形以及等边三角形的性质可得出AD=DE,∠ADF=45°,∠ADC=90°,∠CDE=60°,根据等腰三角形的性质即可得出∠DAE=∠DEA=15°,再结合三角形外角性质即可算出∠AFB的值.【解答】解:∵四边形ABCD为正方形,△CDE为等边三角形∴AD=CD=DE,∠ADF=∠ABF=45°,∠ADC=90°,∠CDE=60°∴∠ADE=150°.∵AD=DE∴∠DAE=∠DEA=15°∴∠AFB=∠ADF+∠DAF=45°+15°=60°.故选C.【点评】本题考查了正方形的性质、等边三角形的性质以及三角形外角的性质,解题的关键是求出∠ADF=45°、∠DAF=15°.本题属于基础题,解决该题型题目时,通过正方形、等边三角形以及等腰三角形的性质计算出角的度数是关键.9.如图,▱ABCD中,DE⊥AB,DF⊥BC,垂足分别为E、F,∠EDF=60°,AE=2cm,则AD=()A.4cm B.5cm C.6cm D.7cm【考点】含30度角的直角三角形;多边形内角与外角;平行四边形的性质.【分析】根据四边形ABCD是平行四边形,得出AB∥CD,∠A=∠C,∠CDE=∠AED,根据DE⊥AB,得出∠AED和∠CDE是直角,求出∠CDF的度数,最后根据DF⊥BC,求出∠C、∠A的度数,最后根据∠ADE=30°,AE=2cm,即可求出答案.【解答】解:∵四边形ABCD是平行四边形∴AB∥CD,∠A=∠C∴∠CDE=∠AED∵DE⊥AB∴∠AED=90°∴∠CDE=90°∵∠EDF=60°∴∠CDF=30°∵DF⊥BC∴∠DFC=90°∴∠C=60°∴∠A=60°∴∠ADE=30°∴AD=2DE∵AE=2∴AD=2×2=4(cm);故选A.【点评】此题考查了平行四边形的性质和含30°角的直角三角形,用到的知识点是平行四边形的性质和垂直的定义30°角的直角三角形的性质,关键是求出∠ADE=30°.10.如图:长方形纸片ABCD中,AD=4cm,AB=10cm,按如图的方式折叠,使点B与点D重合.折痕为EF,则DE长为()A.4.8 cm B.5 cm C.5.8 cm D.6 cm【考点】矩形的定义及性质.【分析】在折叠的过程中,BE=DE,从而设BE=DE=x,即可表示AE,在直角三角形ADE中,根据勾股定理列方程即可求解.【解答】解:设DE=xcm,则BE=DE=x,AE=AB﹣BE=10﹣x在Rt△ADE中,DE2=AE2+AD2即x2=(10﹣x)2+16.解得:x=5.8.故选C.【点评】此题主要考查了翻折变换的问题,解答本题的关键是掌握翻折前后对应线段相等,另外要熟练运用勾股定理解直角三角形.11.如图,将一个长为10cm,宽为8cm的矩形纸片先按照从左向右对折,再按照从下向上的方向对折,沿所得矩形两邻边中点的连线(虚线)剪下(如图(1)),再打开,得到如图(2)所示的小菱形的面积为()A.10cm2B.20cm2C.40cm2D.80cm2【考点】菱形的性质.【分析】利用折叠的方式得出AC,BD的长,再利用菱形面积公式求出面积即可.【解答】解:由题意可得:图1中矩形的长为5cm,宽为4cm∵虚线的端点为矩形两邻边中点∴AC=4cm,BD=5cm∴如图(2)所示的小菱形的面积为:×4×5=10(cm2).故选:A.【点评】此题主要考查了菱形的性质以及剪纸问题,得出菱形对角线的长是解题关键.翻折变换(折叠问题)实质上就是轴对称变换.12.(2018•威海)矩形ABCD与CEFG如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF 的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1 B.C.D.【考点】KQ:勾股定理;LB:矩形的性质.【分析】延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=,从而得出答案.【解答】解:如图,延长GH交AD于点P∵四边形ABCD和四边形CEFG都是矩形∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1∴AD∥GF∴∠GFH=∠P AH又∵H是AF的中点∴AH=FH在△APH和△FGH中∵∴△APH≌△FGH(ASA)∴AP=GF=1,GH=PH=PG∴PD=AD﹣AP=1∵CG=2、CD=1∴DG=1则GH=PG=×=故选:C.【点评】本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.二、填空题(每小题3分,共12分)13.(2018•锦州)如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH,若OB=4,S菱形ABCD=24,则OH的长为3.【考点】L8:菱形的性质.【分析】根据菱形面积=对角线积的一半可求AC,再根据直角三角形斜边上的中线等于斜边的一半.【解答】解:∵ABCD是菱形∴BO=DO=4,AO=CO,S菱形ABCD==24∴AC=6∵AH⊥BC,AO=CO=3∴OH=AC=3.【点评】本题考查了菱形的性质,直角三角形斜边上的中线等于斜边的一半,关键是灵活运用这些性质解决问题.14.(2018•本溪)如图,矩形OABC的顶点A,C分别在坐标轴上,B(8,7),D(5,0),点P是边AB 或边BC上的一点,连接OP,DP,当△ODP为等腰三角形时,点P的坐标为(8,4)或(,7).【分析】分两种情形分别讨论即可解决问题;【解答】解:∵四边形OABC是矩形,B(8,7)∴OA=BC=8,OC=AB=7∵D(5,0)∴OD=5∵点P是边AB或边BC上的一点∴当点P在AB边时,OD=DP=5∵AD=3∴P A==4∴P(8,4).当点P在边BC上时,只有PO=PD,此时P(,7).综上所述,满足条件的点P坐标为(8,4)或(,7).故答案为(8,4)或(,7).【点评】本题考查矩形的性质、坐标与图形性质、等腰三角形的判定等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.15.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为()n﹣1.【分析】首先求出AC、AE、HE的长度,然后猜测命题中隐含的数学规律,即可解决问题.【解答】解:∵四边形ABCD为正方形∴AB=BC=1,∠B=90°∴AC2=12+12,AC=;同理可求:AE=()2,HE=()3…∴第n个正方形的边长a n=()n﹣1.故答案为()n﹣1.【点评】该题主要考查了正方形的性质、勾股定理及其应用问题;应牢固掌握正方形有关定理并能灵活运用.16.如图,正方形ABCD的边长为4,E为BC上的一点,BE=1,F为AB上的一点,AF=2,P为AC上一个动点,则PF+PE的最小值为.【考点】正方形的性质.【分析】作E关于直线AC的对称点E′,连接E′F,则E′F即为所求,过F作FG⊥CD于G,在Rt△E′FG 中,利用勾股定理即可求出E′F的长.【解答】解:作E关于直线AC的对称点E′,连接E′F,则E′F即为所求过F作FG⊥CD于G在Rt△E′FG中GE′=CD﹣BE﹣BF=4﹣1﹣2=1,GF=4所以E′F==.故答案为:.【点评】本题考查的是最短线路问题,熟知两点之间线段最短是解答此题的关键.三、解答题(共52分)17.(6分)已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE.【考点】菱形的性质.【专题】证明题.【分析】在菱形中,由SAS求得△ABE≌△ADF,再由等边对等角得到∠AEF=∠AFE.【解答】证明:∵ABCD是菱形∴AB=AD,∠B=∠D.又∵EB=DF∴△ABE≌△ADF∴AE=AF∴∠AEF=∠AFE.【点评】本题利用了菱形的性质和全等三角形的判定和性质,等边对等角求解.18.(7分)如图,矩形ABCD的对角线AC、BD交于点O,∠AOD=60°,AB=,AE⊥BD于点E,求OE的长.【考点】矩形的性质.【专题】计算题.【分析】矩形对角线相等且互相平分,即OA=OD,根据∠AOD=60°可得△AOD为等边三角形,即OA=AD,∵AE⊥BD,∴E为OD的中点,即可求OE的值.【解答】解:∵对角线相等且互相平分∴OA=OD∵∠AOD=60°∴△AOD为等边三角形,则OA=ADBD=2DO,AB=AD∴AD=2∵AE⊥BD,∴E为OD的中点∴OE=OD=AD=1答:OE的长度为1.【点评】本题考查了勾股定理在直角三角形中的运用,考查了等边三角形的判定和等腰三角形三线合一的性质,本题中求得E为OD的中点是解题的关键.19.(7分)如图,在△ABC中,AB=BC,BD平分∠ABC.四边形ABED是平行四边形,DE交BC于点F,连接CE.求证:四边形BECD是矩形.【考点】矩形的判定.【专题】证明题.【分析】根据已知条件易推知四边形BECD是平行四边形.结合等腰△ABC“三线合一”的性质证得BD⊥AC,即∠BDC=90°,所以由“有一内角为直角的平行四边形是矩形”得到▱BECD是矩形.【解答】证明:∵AB=BC,BD平分∠ABC∴BD⊥AC,AD=CD.∵四边形ABED是平行四边形∴BE∥AD,BE=AD∴BE=CD∴四边形BECD是平行四边形.∵BD⊥AC∴∠BDC=90°∴▱BECD是矩形.【点评】本题考查了矩形的判定.矩形的定义:有一个角是直角的平行四边形是矩形.20.(8分)如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.(1)求证:AE=DF;(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.【考点】菱形的判定.【专题】证明题.【分析】(1)利用AAS推出△ADE≌△DAF,再根据全等三角形的对应边相等得出AE=DF;(2)先根据已知中的两组平行线,可证四边形DEFA是▱,再利用AD是角平分线,结合AE∥DF,易证∠DAF=∠FDA,利用等角对等边,可得AE=DF,从而可证▱AEDF实菱形.【解答】证明:(1)∵DE∥AC,∠ADE=∠DAF同理∠DAE=∠FDA∵AD=DA∴△ADE≌△DAF∴AE=DF;(2)若AD平分∠BAC,四边形AEDF是菱形∵DE∥AC,DF∥AB∴四边形AEDF是平行四边形∴∠DAF=∠FDA.∴AF=DF.∴平行四边形AEDF为菱形.【点评】考查了全等三角形的判定方法及菱形的判定的掌握情况.21.(8分)如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=2,求AB的长.【考点】矩形的性质.【分析】(1)根据矩形的对边平行可得AB∥CD,再根据两直线平行,内错角相等求出∠BAC=∠FCO,然后利用“角角边”证明△AOE和△COF全等,再根据全等三角形的即可得证;(2)连接OB,根据等腰三角形三线合一的性质可得BO⊥EF,再根据矩形的性质可得OA=OB,根据等边对等角的性质可得∠BAC=∠ABO,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.【解答】(1)证明:在矩形ABCD中,AB∥CD∴∠BAC=∠FCO在△AOE和△COF中∴△AOE≌△COF(AAS)∴OE=OF;(2)解:如图,连接OB∵BE=BF,OE=OF∴BO⊥EF∴在Rt△BEO中,∠BEF+∠ABO=90°由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC∴∠BAC=∠ABO又∵∠BEF=2∠BAC即2∠BAC+∠BAC=90°解得∠BAC=30°∵BC=2∴AC=2BC=4∴AB===6.【点评】本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30°角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出∠BAC=30°是解题的关键.22.(8分)正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D 逆时针旋转90°,得到△DCM.(1)求证:EF=FM;(2)当AE=1时,求EF的长.【考点】正方形的性质.【专题】计算题.【分析】(1)由旋转可得DE=DM,∠EDM为直角,可得出∠EDF+∠MDF=90°,由∠EDF=45°,得到∠MDF为45°,可得出∠EDF=∠MDF,再由DF=DF,利用SAS可得出三角形DEF与三角形MDF全等,由全等三角形的对应边相等可得出EF=MF;(2)由第一问的全等得到AE=CM=1,正方形的边长为3,用AB﹣AE求出EB的长,再由BC+CM求出BM的长,设EF=MF=x,可得出BF=BM﹣FM=BM﹣EF=4﹣x,在直角三角形BEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为EF的长.【解答】解:(1)证明:∵△DAE逆时针旋转90°得到△DCM∴∠FCM=∠FCD+∠DCM=180°∴F、C、M三点共线∴DE=DM,∠EDM=90°∴∠EDF+∠FDM=90°∵∠EDF=45°∴∠FDM=∠EDF=45°在△DEF和△DMF中∴△DEF≌△DMF(SAS)∴EF=MF;(2)设EF=MF=x∵AE=CM=1,且BC=3∴BM=BC+CM=3+1=4∴BF=BM﹣MF=BM﹣EF=4﹣x∵EB=AB﹣AE=3﹣1=2在Rt△EBF中,由勾股定理得EB2+BF2=EF2即22+(4﹣x)2=x2解得:x=则EF=.【点评】此题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,以及勾股定理,利用了转化及方程的思想,熟练掌握性质及定理是解本题的关键.23.(8分)已知,如图1,BD是边长为1的正方形ABCD的对角线,BE平分∠DBC交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G.(1)求证:△BCE≌△DCF;(2)求CF的长;(3)如图2,在AB上取一点H,且BH=CF,若以BC为x轴,AB为y轴建立直角坐标系,问在直线BD 上是否存在点P,使得以B、H、P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的P点坐标;若不存在,说明理由.【考点】正方形的性质.【分析】(1)利用正方形的性质,由全等三角形的判定定理SAS即可证得△BCE≌△DCF;(2)通过△DBG≌△FBG的对应边相等知BD=BF=;然后由CF=BF﹣BC=即可求得;(3)分三种情况分别讨论即可求得.【解答】(1)证明:如图1在△BCE和△DCF中∴△BCE≌△DCF(SAS);(2)证明:如图1∵BE平分∠DBC,OD是正方形ABCD的对角线∴∠EBC=∠DBC=22.5°由(1)知△BCE≌△DCF∴∠EBC=∠FDC=22.5°(全等三角形的对应角相等);∴∠BGD=90°(三角形内角和定理)∴∠BGF=90°;在△DBG和△FBG中∴△DBG≌△FBG(ASA)∴BD=BF,DG=FG(全等三角形的对应边相等)∵BD==∴BF=∴CF=BF﹣BC=﹣1;(3)解:如图2,∵CF=﹣1,BH=CF∴BH=﹣1①当BH=BP时,则BP=﹣1∵∠PBC=45°设P(x,x)∴2x2=(﹣1)2解得x=1﹣或﹣1+∴P(1﹣,1﹣)或(﹣1+,﹣1+);②当BH=HP时,则HP=PB=﹣1∵∠ABD=45°∴△PBH是等腰直角三角形∴P(﹣1,﹣1);③当PH=PB时,∵∠ABD=45°∴△PBH是等腰直角三角形∴P(,)综上,在直线BD上是否存在点P,使得以B、H、P为顶点的三角形为等腰三角形,所有符合条件的P点坐标为(1﹣,1﹣)、(﹣1+,﹣1+)、(﹣1,﹣1)、(,).【点评】本题是四边形的综合题,考查了正方形的性质,三角形全等的判定和性质,等腰三角形的判定,熟练掌握性质定理是解题的关键.。