《机械优化设计》复习题 答案
《机械优化设计》试卷及答案 新 全
《机械优化设计》复习题及答案一、选择题1、下面 方法需要求海赛矩阵。
A 、最速下降法B 、共轭梯度法C 、牛顿型法D 、DFP 法2、对于约束问题()()()()2212221122132min 44g 10g 30g 0f X x x x X x x X x X x =+-+=--≥=-≥=≥根据目标函数等值线和约束曲线,判断()1[1,1]T X =为 ,()251[,]22TX =为 。
A .内点;内点B. 外点;外点C. 内点;外点D. 外点;内点3、内点惩罚函数法可用于求解__________优化问题。
A 无约束优化问题B 只含有不等式约束的优化问题C 只含有等式的优化问题D 含有不等式和等式约束的优化问题4、对于一维搜索,搜索区间为[a ,b],中间插入两个点a 1、b 1,a 1<b 1,计算出f(a 1)<f(b 1),则缩短后的搜索区间为___________。
A [a 1,b 1]B [ b 1,b]C [a1,b]D [a,b1]5、_________不是优化设计问题数学模型的基本要素。
A设计变量B约束条件C目标函数D 最佳步长6、变尺度法的迭代公式为x k+1=x k-αk H k▽f(x k),下列不属于H k必须满足的条件的是________。
A. H k之间有简单的迭代形式B.拟牛顿条件C.与海塞矩阵正交D.对称正定7、函数)(Xf在某点的梯度方向为函数在该点的。
A、最速上升方向B、上升方向C、最速下降方向D、下降方向8、下面四种无约束优化方法中,__________在构成搜索方向时没有使用到目标函数的一阶或二阶导数。
A 梯度法B 牛顿法C 变尺度法D 坐标轮换法9、设)f在R上为凸函数的(X(Xf为定义在凸集R上且具有连续二阶导数的函数,则)充分必要条件是海塞矩阵G(X)在R上处处。
A 正定B 半正定C 负定D 半负定10、下列关于最常用的一维搜索试探方法——黄金分割法的叙述,错误的是,。
机械优化设计试题及答案
机械优化设计试题及答案### 机械优化设计试题及答案#### 一、选择题(每题2分,共10分)1. 机械优化设计的最基本目标是什么?- A. 最小化成本- B. 最大化效率- C. 确保安全性- D. 以上都是2. 以下哪个是优化设计中常用的数学方法?- A. 线性代数- B. 微积分- C. 概率论- D. 几何学3. 在进行机械优化设计时,以下哪个因素通常不是设计变量? - A. 材料选择- B. 尺寸参数- C. 工作温度- D. 制造工艺4. 机械优化设计中,约束条件通常包括哪些类型?- A. 应力约束- B. 位移约束- C. 速度约束- D. 所有上述5. 以下哪个软件不是用于机械优化设计的?- A. ANSYS- B. MATLAB- C. AutoCAD- D. SolidWorks#### 二、简答题(每题10分,共20分)1. 简述机械优化设计的基本步骤。
2. 解释什么是多目标优化,并举例说明其在机械设计中的应用。
#### 三、计算题(每题15分,共30分)1. 假设有一个机械臂设计问题,需要优化其长度以获得最大的工作范围。
如果机械臂的长度 \( L \) 与工作范围 \( R \) 的关系为 \( R = L \times \sin(\theta) \),其中 \( \theta \) 是机械臂与水平面的夹角,\( 0 \leq \theta \leq 90^\circ \),求当 \( \theta = 45^\circ \) 时,机械臂的最佳长度 \( L \)。
2. 考虑一个简单的梁结构,其长度为 \( 10 \) 米,承受均布载荷\( q = 10 \) kN/m。
若梁的弯曲刚度 \( EI \) 为 \( 1 \times10^7 \) Nm²,求梁的最大挠度 \( \delta \)。
#### 四、论述题(每题15分,共30分)1. 论述机械优化设计在现代制造业中的重要性。
《机械优化设计》试卷及答案
《机械优化设计》复习题及答案一、填空题1、用最速下降法求f(X)=100(x 2- x 12) 2+(1- x 1) 2的最优解时,设X (0)=[-0.5,0.5]T ,第一步迭代的搜索方向为[-47;-50] 。
2、机械优化设计采用数学规划法,其核心一是建立搜索方向 二是计算最佳步长因子 。
3、当优化问题是__凸规划______的情况下,任何局部最优解就是全域最优解。
4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 高-低-高 趋势。
5、包含n 个设计变量的优化问题,称为 n 维优化问题。
6、函数 C X B HX X T T ++21的梯度为 HX+B 。
7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足(d 0)T Gd 1=0,则d 0、d 1之间存在_共轭_____关系。
8、 设计变量 、 约束条件 、 目标函数 是优化设计问题数学模型的基本要素。
9、对于无约束二元函数),(21x x f ,若在),(x 20100x x 点处取得极小值,其必要条件是 梯度为零 ,充分条件是 海塞矩阵正定 。
10、 库恩-塔克 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。
11、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 [-2.36,2.36] 。
12、优化设计问题的数学模型的基本要素有设计变量 、约束条件 目标函数 、13、牛顿法的搜索方向d k = ,其计算量 大 ,且要求初始点在极小点 逼近 位置。
14、将函数f(X)=x 12+x 22-x 1x 2-10x 1-4x 2+60表示成C X B HX X T T ++21的形式 。
15、存在矩阵H ,向量 d 1,向量 d 2,当满足 (d1)TGd2=0 ,向量 d 1和向量 d 2是关于H 共轭。
机械优化设计复习题答案
《机械优化设计》复习题解答一、填空题1、用最速下降法求f(X)=100(x 2- x 12) 2+(1- x 1) 2的最优解时,设X (0)=[-0.5,0.5]T ,第一步迭代的搜索方向为 [-47,-50]T 。
2、机械优化设计采用数学规划法,其核心一是寻找搜索方向,二是计算最优步长。
3、当优化问题是凸规划的情况下,任何局部最优解就是全域最优解。
4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 高-低-高 趋势。
5、包含n 个设计变量的优化问题,称为 n 维优化问题。
6、函数C X B HX X T T++21的梯度为B 。
7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足(d 0)T Gd 1=0,则d 0、d 1之间存在共轭关系。
8、 设计变量 、 目标函数 、 约束条件 是优化设计问题数学模型的基本要素。
9、对于无约束二元函数),(21x x f ,若在),(x 20100x x 点处取得极小值,其必要条件是 ∇f(x 10,x 20)=0 ,充分条件是 ∇2f (x 10,x 20)=0正定 。
10、 K-T 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。
11、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 [-2.36 10] 。
12、优化设计问题的数学模型的基本要素有设计变量、 目标函数 、 约束条件。
13、牛顿法的搜索方向d k= ,其计算量大 ,且要求初始点在极小点 附近 位置。
14、将函数f(X)=x 12+x 22-x 1x 2-10x 1-4x 2+60表示成C X B HX X T T++21的形式 12[x 1x 2][2−1−12][x 1x 2]+[−10−4][x 1x 2]+60 。
《机械优化设计》复习题答案
《机械优化设计》复习题答案SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#《机械优化设计》复习题解答一、填空题1、用最速下降法求f(X)=100(x 2- x 12) 2+(1- x 1) 2的最优解时,设X (0)=[,]T ,第一步迭代的搜索方向为 [-47,-50]T 。
2、机械优化设计采用数学规划法,其核心一是寻找搜索方向,二是计算最优步长。
3、当优化问题是凸规划的情况下,任何局部最优解就是全域最优解。
4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 高-低-高 趋势。
5、包含n 个设计变量的优化问题,称为 n 维优化问题。
6、函数C X B HX X T T++21的梯度为B 。
7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足(d 0)T Gd 1=0,则d 0、d 1之间存在共轭关系。
8、 设计变量 、 目标函数 、 约束条件 是优化设计问题数学模型的基本要素。
9、对于无约束二元函数),(21x x f ,若在),(x 20100x x 点处取得极小值,其必要条件是 ?f (x 10,x 20)=0 ,充分条件是 ?2f (x 10,x 20)=0正定 。
10、 K-T 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。
11、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 [ 10] 。
12、优化设计问题的数学模型的基本要素有设计变量、 目标函数 、 约束条件。
13、牛顿法的搜索方向d k=,其计算量大 ,且要求初始点在极小点 附近 位置。
14、将函数f(X)=x 12+x 22-x 1x 2-10x 1-4x 2+60表示成C X B HX X T T++21的形式 12[x 1x 2][2−1−12][x 1x 2]+[−10−4][x 1x 2]+60 。
《机械优化设计》复习题 答案
《机械优化设计》复习题解答一、填空题1、用最速下降法求f(X)=100(x 2- x 12) 2+(1- x 1) 2的最优解时,设X (0)=[-0.5,0.5]T ,第一步迭代的搜索方向为 [-47,-50]T 。
2、机械优化设计采用数学规划法,其核心一是寻找搜索方向,二是计算最优步长。
3、当优化问题是凸规划的情况下,任何局部最优解就是全域最优解。
4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 高-低-高 趋势。
5、包含n 个设计变量的优化问题,称为 n 维优化问题。
6、函数C X B HX X T T++21的梯度为B 。
7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足(d 0)T Gd 1=0,则d 0、d 1之间存在共轭关系。
8、 设计变量 、 目标函数 、 约束条件 是优化设计问题数学模型的基本要素。
9、对于无约束二元函数),(21x x f ,若在),(x 20100x x 点处取得极小值,其必要条件是,充分条件是(正定 。
10、 K-T 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。
11、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 [-2.36 10] 。
12、优化设计问题的数学模型的基本要素有设计变量、 目标函数 、 约束条件。
13、牛顿法的搜索方向d k = ,其计算量大 ,且要求初始点在极小点 附近 位置。
14、将函数f(X)=x 12+x 22-x 1x 2-10x 1-4x 2+60表示成C X B HX X T T++21的形式 。
15、存在矩阵H ,向量 d 1,向量 d 2,当满足d 1T Hd 2=0,向量 d 1和向量 d 2是关于H 共轭。
机械优化设计复习题及答案
机械优化设计复习题一.单项选择题1.一个多元函数()F X在X* 附近偏导数连续,则该点位极小值点的充要条件为()A.()*0F X∇= B. ()*0F X∇=,()*H X为正定C.()*0H X= D. ()*0F X∇=,()*H X为负定2.为克服复合形法容易产生退化的缺点,对于n维问题来说,复合形的顶点数K应()A.1K n≤+ B. 2K n≥ C. 12n K n+≤≤ D. 21n K n≤≤-3.目标函数F(x)=4x21+5x22,具有等式约束,其等式约束条件为h(x)=2x1+3x2-6=0,则目标函数的极小值为()A.1 B. 19.05 C.0.25 D.0.14.对于目标函数F(X)=ax+b受约束于g(X)=c+x≤0的最优化设计问题,用外点罚函数法求解时,其惩罚函数表达式Φ(X,M(k))为( )。
A. ax+b+M(k){min[0,c+x]}2,M(k)为递增正数序列B. ax+b+M(k){min[0,c+x]}2,M(k)为递减正数序列C. ax+b+M(k){max[c+x,0]}2,M(k)为递增正数序列hnD. ax+b+M (k){max [c+x,0]}2,M (k)为递减正数序列1.B2.C3.B4.B5.A6.B7.D8.B9.A 10C.11.B 12.C 13A 14.B 15.B 16 D 17.D 18.A0.186 C6.F(X)在区间[x 1,x 3]上为单峰函数,x 2为区间中一点,x 4为利用二次插值法公式求得的近似极值点。
如x 4-x 2>0,且F(x 4)>F(x 2),那么为求F(X)的极小值,x 4点在下一次搜索区间内将作为( )。
A.x 1 B.x 3 C.x 2D.x 47.已知二元二次型函数F(X)=AX X 21T ,其中A=⎥⎦⎤⎢⎣⎡4221,则该二次型是( )的。
A.正定 B.负定 C.不定 D.半正定 8.内点罚函数法的罚因子为( )。
~机械优化设计复习题及答案
机械优化设计复习题一.单项选择题1.一个多元函数()F X 在X *附近偏导数连续,则该点位极小值点的充要条件为( ) A .()*0F X ∇= B. ()*0F X ∇=,()*H X 为正定C .()*0H X = D. ()*0F X ∇=,()*H X 为负定2.为克服复合形法容易产生退化的缺点,对于n 维问题来说,复合形的顶点数K 应( )A . 1K n ≤+ B. 2K n ≥ C. 12n K n +≤≤ D. 21n K n ≤≤-3.目标函数F (x )=4x 21+5x 22,具有等式约束,其等式约束条件为h(x)=2x 1+3x 2-6=0,则目标函数的极小值为( )A .1B . 19.05C .0.25D .0.14.对于目标函数F(X)=ax+b 受约束于g(X)=c+x ≤0的最优化设计问题,用外点罚函数法求解时,其惩罚函数表达式Φ(X,M (k))为( )。
A. ax+b+M (k){min [0,c+x ]}2,M (k)为递增正数序列B. ax+b+M (k){min [0,c+x ]}2,M (k)为递减正数序列C. ax+b+M (k){max [c+x,0]}2,M (k)为递增正数序列hnD. ax+b+M (k){max [c+x,0]}2,M (k)为递减正数序列1.B2.C3.B4.B5.A6.B7.D8.B9.A 10C.11.B 12.C 13A 14.B 15.B 16 D 17.D 18.A19.B.20.D 21.A 22.D 23.C 24.B 25.D 26.D 27.A 28.B 29.B 30.B5.黄金分割法中,每次缩短后的新区间长度与原区间长度的比值始终是一个常数,此常数是( )。
A.0.382 B.0.186 C.0.618 D.0.8166.F(X)在区间[x 1,x 3]上为单峰函数,x 2为区间中一点,x 4为利用二次插值法公式求得的近似极值点。
机械优化设计试卷及答案
百度文库《机械优化设计》复习题及答案一、填空题1、用最速下降法求f(X)=100(X2-X12)2+(1- X1)2的最优解时,设X(0)=[,]T,第一步迭代的搜索方向为[-47;-50]。
2、机械优化设计采用数学规划法,其核心一是建立搜索方向二是计算最佳步长因子。
3、当优化问题是—凸规划的情况下,任何局部最优解就是全域最优解。
4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成高-低-高趋势。
5、包含n个设计变量的优化问题,称为J 维优化问题。
6、函数1X T HX + B T X + C的梯度为HX+B。
7、设G为nxn对称正定矩阵,若n维空间中有两个非零向量d。
,d i,满足(d0)T Gd i=0,则d0、d i之间存在-共轭关系。
8、设计变量、约束条件、目标函数是优化设计问题数学模型的基本要素。
9、对于无约束二元函数f (x ,x2),若在x°(x w,x20)点处取得极小值,其必要条件是梯度为零,充分条件是2海塞矩阵正定。
10、库恩-塔克条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。
11、用黄金分割法求一元函数f (x ) = x 2 -10 x + 36的极小点,初始搜索区间[a,b] = [-10,10],经第一次区间消去后得到的新区间为□。
12、优化设计问题的数学模型的基本要素有设计变量、约束条件目标函数、13、牛顿法的搜索方向d k=,其计算量大,且要求初始点在极小点逼近位置。
14、将函数f(X)=X]2+Xo2-X1X0-10X]-4Xo+60 表示成1X T HX + B T X + C的形12 1212 2式。
15、存在矩阵H,向量d1,向量d2,当满足(d1)TGd2=0 ,向量d1和向量d2是关于H共轭。
16、采用外点法求解约束优化问题时,将约束优化问题转化为外点形式时引入的惩罚因子r数列,具有由小到大趋于无穷特点。
《机械优化设计》复习题答案
《机械优化设计》复习题解答一、填空题1、用最速下降法求f(X)=100(x 2- x 12) 2+(1- x 1) 2的最优解时,设X (0)=[-0.5,0.5]T ,第一步迭代的搜索方向为 [-47,-50]T 。
2、机械优化设计采用数学规划法,其核心一是寻找搜索方向,二是计算最优步长。
3、当优化问题是凸规划的情况下,任何局部最优解就是全域最优解。
4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 高-低-高 趋势。
5、包含n 个设计变量的优化问题,称为 n 维优化问题。
6、函数C X B HX X T T++21的梯度为HX+B 。
7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足(d 0)T Gd 1=0,则d 0、d 1之间存在共轭关系。
8、 设计变量 、 目标函数 、 约束条件 是优化设计问题数学模型的基本要素。
9、对于无约束二元函数),(21x x f ,若在),(x 20100x x 点处取得极小值,其必要条件是,充分条件是(正定 。
10、 库恩-塔克 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。
11、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 [-2.36 10] 。
12、优化设计问题的数学模型的基本要素有设计变量、 目标函数 、 约束条件。
13、牛顿法的搜索方向d k =,其计算量大 ,且要求初始点在极小点 附近 位置。
14、将函数f(X)=x 12+x 22-x 1x 2-10x 1-4x 2+60表示成C X B HX X T T++21的形式 。
15、存在矩阵H ,向量 d 1,向量 d 2,当满足d 1T Hd 2=0,向量 d 1和向量 d 2是关于H 共轭。
机械优化设计试题及答案
机械优化设计试题及答案一、单项选择题(每题2分,共20分)1. 在机械优化设计中,目标函数通常代表的是()。
A. 设计变量B. 约束条件C. 优化目标D. 优化方法答案:C2. 以下哪一项不是机械优化设计的约束条件?()A. 几何约束B. 材料约束C. 经济约束D. 工艺约束答案:A3. 机械优化设计中,常用的优化算法有()。
A. 梯度法B. 遗传算法C. 牛顿法D. 所有选项答案:D4. 在进行机械优化设计时,下列哪个因素不是设计者需要考虑的?()A. 材料成本B. 制造工艺C. 产品重量D. 产品颜色答案:D5. 机械优化设计中,目标函数的最小化问题通常指的是()。
A. 成本最小化B. 重量最小化C. 体积最小化D. 所有选项答案:D6. 以下哪个不是机械优化设计中常用的优化目标?()A. 最小化成本B. 最大化寿命C. 最小化尺寸D. 最大化速度答案:D7. 在机械优化设计中,下列哪一项不是常用的设计变量?()A. 尺寸B. 形状C. 材料D. 颜色答案:D8. 机械优化设计中,以下哪一项不是常用的优化方法?()A. 线性规划B. 非线性规划C. 动态规划D. 静态规划答案:D9. 在机械优化设计中,以下哪一项不是常用的优化算法?()A. 模拟退火B. 遗传算法C. 粒子群优化D. 牛顿迭代法答案:D10. 机械优化设计中,以下哪一项不是常用的约束条件?()A. 强度约束B. 刚度约束C. 稳定性约束D. 颜色约束答案:D二、多项选择题(每题3分,共15分)1. 机械优化设计中,常用的设计变量包括()。
A. 尺寸B. 形状C. 材料D. 颜色答案:ABC2. 机械优化设计中,常用的优化目标包括()。
A. 成本最小化B. 重量最小化C. 寿命最大化D. 速度最大化答案:ABC3. 机械优化设计中,常用的约束条件包括()。
A. 几何约束B. 材料约束C. 经济约束D. 工艺约束答案:ABCD4. 机械优化设计中,常用的优化方法包括()。
机械优化设计复习题答案
机械优化设计复习题答案一、选择题1. 在机械优化设计中,目标函数是()。
A. 需要优化的参数B. 需要优化的性能指标C. 需要优化的约束条件D. 需要优化的变量答案:B2. 机械优化设计中,约束条件的作用是()。
A. 确定设计变量的范围B. 确定目标函数的值C. 确定优化算法的选择D. 确定优化过程的复杂性答案:A3. 以下哪个不是机械优化设计中常用的优化算法()。
A. 遗传算法B. 模拟退火算法C. 牛顿迭代法D. 线性规划法答案:C二、填空题1. 在机械优化设计中,目标函数的最小化或最大化通常需要通过______来实现。
答案:优化算法2. 机械优化设计中的约束条件可以分为等式约束和______。
答案:不等式约束3. 机械优化设计中,设计变量的选择需要考虑______和______。
答案:物理意义;计算可行性三、简答题1. 简述机械优化设计中目标函数的作用。
答案:目标函数在机械优化设计中的作用是定义设计的目标性能指标,它是需要被优化的量,通常表现为最小化或最大化某个性能指标,以满足设计要求。
2. 描述机械优化设计中约束条件的分类及其意义。
答案:机械优化设计中的约束条件可以分为等式约束和不等式约束。
等式约束通常表示设计变量之间必须满足的精确关系,而不等式约束则表示设计变量必须满足的条件范围。
这些约束条件的意义在于确保设计方案在物理和工程上是可行的,并且满足所有的设计要求和限制。
3. 举例说明机械优化设计中设计变量的选择原则。
答案:在机械优化设计中,设计变量的选择原则包括但不限于以下几点:首先,设计变量应具有明确的物理意义,能够直接影响目标函数和约束条件;其次,设计变量的选择应考虑计算的可行性,确保在优化过程中可以有效地进行计算和迭代;最后,设计变量的数量和范围应适中,以避免过度复杂化优化问题,同时保证优化结果的实用性和经济性。
机械优化设计试题及答案
机械优化设计试题及答案一、选择题1. 机械优化设计中的“优化”指的是:A. 最小化成本B. 最大化效益B. 达到设计目标D. 以上都是答案:D2. 以下哪项不是机械优化设计的基本步骤?A. 确定设计变量B. 确定目标函数C. 确定约束条件D. 进行材料选择答案:D3. 在机械优化设计中,目标函数通常是用来衡量:A. 设计的可行性B. 设计的安全性C. 设计的经济性D. 设计的最优性答案:D二、填空题4. 机械优化设计通常采用的数学方法包括_______、_______和_______。
答案:线性规划;非线性规划;动态规划5. 机械优化设计中,约束条件可以是等式约束也可以是_______。
答案:不等式约束三、简答题6. 简述机械优化设计中目标函数的作用。
答案:目标函数在机械优化设计中的作用是量化设计目标,为设计提供评价标准,指导设计过程朝着最优解方向进行。
7. 描述机械优化设计中设计变量、目标函数和约束条件之间的关系。
答案:设计变量是优化设计中可以调整的参数;目标函数是设计过程中需要优化或最小化/最大化的量;约束条件是设计过程中必须满足的限制,它们共同定义了优化问题的边界和可行性。
四、计算题8. 假设有一个机械部件的重量W与其尺寸L和宽度H的关系为W = 2LH,成本C与重量W和材料单价P的关系为C = 10W + P。
若L和H 的取值范围均为[1,5],材料单价P为常数,求在满足强度要求的前提下,如何确定L和H的值以最小化成本C。
答案:首先,根据题目给出的关系式,我们可以将成本C表示为C = 10 * 2LH + P = 20LH + P。
由于P为常数,我们只需考虑如何最小化20LH。
由于L和H的取值范围相同,我们可以令L = H,此时C = 20L^2。
在[1,5]的范围内,当L = 1时,C达到最小值,即C_min = 20。
五、论述题9. 论述机械优化设计在现代机械工程中的重要性及其应用前景。
《机械优化设计》试卷规范标准答案
《机械优化设计》复习题一、填空1、用最速下降法求f(X)=100(x 2- x 12) 2+(1- x 1) 2的最优解时,设X (0)=[-0.5,0.5]T ,第一步迭代的搜索方向为[-47;-50] 。
2、机械优化设计采用数学规划法,其核心一是建立搜索方向 二是计算最佳步长因子 。
3、当优化问题是__凸规划______的情况下,任何局部最优解就是全域最优解。
4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 高-低-高 趋势。
5、包含n 个设计变量的优化问题,称为 n 维优化问题。
6、函数C X B HX X T T++21的梯度为 HX+B 。
7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足(d 0)T Gd 1=0,则d 0、d 1之间存在_共轭_____关系。
8、 设计变量 、 约束条件 、 目标函数 是优化设计问题数学模型的基本要素。
9、对于无约束二元函数),(21x x f ,若在),(x 20100x x 点处取得极小值,其必要条件是 梯度为零 ,充分条件是 海塞矩阵正定 。
10、 库恩-塔克 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。
11、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 [-2.36,2.36] 。
12、优化设计问题的数学模型的基本要素有设计变量 、约束条件 目标函数 、 13、牛顿法的搜索方向d k = ,其计算量 大 ,且要求初始点在极小点 逼近 位置。
14、将函数f(X)=x 12+x 22-x 1x 2-10x 1-4x 2+60表示成C X B HX X T T++21的形式 。
15、存在矩阵H ,向量 d 1,向量 d 2,当满足 (d1)TGd2=0 ,向量 d 1和向量 d 2是关于H 共轭。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《机械优化设计》复习题解答一、填空题1、用最速下降法求f(X)=100(x 2- x 12) 2+(1- x 1) 2的最优解时,设X (0)=[-0.5,0.5]T ,第一步迭代的搜索方向为 [-47,-50]T 。
2、机械优化设计采用数学规划法,其核心一是寻找搜索方向,二是计算最优步长。
3、当优化问题是凸规划的情况下,任何局部最优解就是全域最优解。
4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 高-低-高 趋势。
5、包含n 个设计变量的优化问题,称为 n 维优化问题。
6、函数C X B HX X T T++21的梯度为B 。
7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足(d 0)T Gd 1=0,则d 0、d 1之间存在共轭关系。
8、 设计变量 、 目标函数 、 约束条件 是优化设计问题数学模型的基本要素。
9、对于无约束二元函数),(21x x f ,若在),(x 20100x x 点处取得极小值,其必要条件是,充分条件是(正定 。
10、 K-T 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。
11、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 [-2.36 10] 。
12、优化设计问题的数学模型的基本要素有设计变量、 目标函数 、 约束条件。
13、牛顿法的搜索方向d k= ,其计算量大 ,且要求初始点在极小点 附近 位置。
14、将函数f(X)=x 12+x 22-x 1x 2-10x 1-4x 2+60表示成C X B HX X T T++21的形式 。
15、存在矩阵H ,向量 d 1,向量 d 2,当满足d 1T Hd 2=0,向量 d 1和向量 d 2是关于H 共轭。
16、采用外点法求解约束优化问题时,将约束优化问题转化为外点形式时引入的惩罚因子r 数列,具有单调递增特点。
17、采用数学规划法求解多元函数极值点时,根据迭代公式需要进行一维搜索,即求最1k k H g --优步长。
二、选择题1、下面C 方法需要求海赛矩阵。
A 、最速下降法 B 、共轭梯度法 C 、牛顿型法 D 、DFP 法2、对于约束问题()()()()2212221122132min 44 g 10g 30 g 0f X x x x X x x X x X x =+-+=--≥=-≥=≥根据目标函数等值线和约束曲线,判断()1[1,1]T X =为 ,()251[,]22TX =为 。
D A .内点;内点 B. 外点;外点 C. 内点;外点 D. 外点;内点3、内点惩罚函数法可用于求解B 优化问题。
A 无约束优化问题B 只含有不等式约束的优化问题C 只含有等式的优化问题D 含有不等式和等式约束的优化问题4、对于一维搜索,搜索区间为[a ,b],中间插入两个点a 1、b 1,a 1<b 1,计算出f(a 1)<f(b 1),则缩短后的搜索区间为D 。
A [a 1,b 1] B [ b 1,b] C [a 1,b] D [a ,b 1]5、D 不是优化设计问题数学模型的基本要素。
A设计变量B约束条件C目标函数D 最佳步长6、变尺度法的迭代公式为x k+1=x k-αk H k▽f(x k),下列不属于H k必须满足的条件的是C。
A. H k之间有简单的迭代形式B.拟牛顿条件C.与海塞矩阵正交D.对称正定7、函数)f在某点的梯度方向为函数在该点的A。
(XA、最速上升方向B、上升方向C、最速下降方向D、下降方向8、下面四种无约束优化方法中,D在构成搜索方向时没有使用到目标函数的一阶或二阶导数。
A 梯度法B 牛顿法C 变尺度法D 坐标轮换法9、设)f在R上为凸函数的(Xf为定义在凸集R上且具有连续二阶导数的函数,则)(X充分必要条件是海塞矩阵G(X)在R上处处B。
A 正定B 半正定C 负定D 半负定10、下列关于最常用的一维搜索试探方法——黄金分割法的叙述,错误的是D,假设要求在区间[a,b]插入两点α1、α2,且α1<α2。
A、其缩短率为0.618B、α1=b-λ(b-a)C、α1=a+λ(b-a)D、在该方法中缩短搜索区间采用的是外推法。
11、与梯度成锐角的方向为函数值A方向,与负梯度成锐角的方向为函数值B方向,与梯度成直角的方向为函数值C方向。
A、上升B、下降C、不变D、为零12、二维目标函数的无约束极小点就是B。
A、等值线族的一个共同中心B、梯度为0的点C、全局最优解D、海塞矩阵正定的点13、最速下降法相邻两搜索方向d k和d k+1必为B 向量。
A 相切B 正交C 成锐角D 共轭14、下列关于内点惩罚函数法的叙述,错误的是A。
A 可用来求解含不等式约束和等式约束的最优化问题。
B 惩罚因子是不断递减的正值C初始点应选择一个离约束边界较远的点。
D 初始点必须在可行域内三、问答题(看讲义)1、试述两种一维搜索方法的原理,它们之间有何区别?2、惩罚函数法求解约束优化问题的基本原理是什么?3、试述数值解法求最佳步长因子的基本思路。
4、试述求解无约束优化问题的最速下降法与牛顿型方法的优缺点。
5、写出用数学规划法求解优化设计问题的数值迭代公式,并说明公式中各变量的意义,并说明迭代公式的意义。
6、什么是共轭方向?满足什么关系?共轭与正交是什么关系?四、解答题1、试用梯度法求目标函数f(X)=1.5x12+0.5x22- x1x2-2x1的最优解,设初始点x(0)=[-2,4]T,选代精度ε=0.02(迭代一步)。
解:首先计算目标函数的梯度函数,计算当前迭代点的梯度向量值梯度法的搜索方向为, 因此在迭代点x(0)的搜索方向为[12,-6]T在此方向上新的迭代点为:===把新的迭代点带入目标函数,目标函数将成为一个关于单变量的函数令,可以求出当前搜索方向上的最优步长新的迭代点为当前梯度向量的长度, 因此继续进行迭代。
第一迭代步完成。
2、试用牛顿法求f( X )=(x1-2)2+(x1-2x2)2的最优解,设初始点x(0)=[2,1]T。
解1:(注:题目出题不当,初始点已经是最优点,解2是修改题目后解法。
)牛顿法的搜索方向为,因此首先求出当前迭代点x(0)的梯度向量、海色矩阵及其逆矩阵不用搜索,当前点就是最优点。
解2:上述解法不是典型的牛顿方法,原因在于题目的初始点选择不当。
以下修改求解题目的初始点,以体现牛顿方法的典型步骤。
以非最优点x(0)=[1,2]T作为初始点,重新采用牛顿法计算牛顿法的搜索方向为,因此首先求出当前迭代点x(0)的梯度向量、以及海色矩阵及其逆矩阵梯度函数:初始点梯度向量:海色矩阵:海色矩阵逆矩阵:当前步的搜索方向为:=新的迭代点位于当前的搜索方向上:====把新的迭代点带入目标函数,目标函数将成为一个关于单变量的函数令,可以求出当前搜索方向上的最优步长新的迭代点为当前梯度向量的长度, 因此继续进行迭代。
第二迭代步:因此不用继续计算,第一步迭代已经到达最优点。
这正是牛顿法的二次收敛性。
对正定二次函数,牛顿法一步即可求出最优点。
3、设有函数f(X)=x12+2x22-2x1x2-4x1,试利用极值条件求其极值点和极值。
解:首先利用极值必要条件找出可能的极值点:令=求得,是可能的极值点。
再利用充分条件正定(或负定)确认极值点。
因此正定, 是极小点,极值为f(X*)=-84、求目标函数f( X )=x12+x1x2+2x22 +4x1+6x2+10的极值和极值点。
解法同上5、试证明函数f( X )=2x12+5x22 +x32+2x3x2+2x3x1-6x2+3在点[1,1,-2]T处具有极小值。
解:必要条件:将点[1,1,-2]T带入上式,可得充分条件=40正定。
因此函数在点[1,1,-2]T处具有极小值6、给定约束优化问题min f(X)=(x1-3)2+(x2-2)2s.t. g1(X)=-x12-x22+5≥0g2(X)=-x1-2x2+4≥0g3(X)= x1≥0g4(X)=x2≥0验证在点T=Kuhn-Tucker条件成立。
2[,1X]解:首先,找出在点TX]=起作用约束:2[,1g1(X) =0g2(X) =0g3(X) =2g4(X) =1因此起作用约束为g1(X)、g2(X)。
然后,计算目标函数、起作用约束函数的梯度,检查目标函数梯度是否可以表示为起作用约束函数梯度的非负线性组合。
==,求解线性组合系数得到 均大于0因此在点T X ]2[,1=Kuhn-Tucker 条件成立7、设非线性规划问题1)(0)(0)(..)2()(min2221322112221≥+-=≥=≥=+-=x x X g x X g x X g t s x x X f用K-T 条件验证[]TX 0,1*=为其约束最优点。
解法同上8、已知目标函数为f(X)= x 1+x 2,受约束于: g 1(X)=-x 12+x 2≥0 g 2(X)=x 1≥0 写出内点罚函数。
解:内点罚函数的一般公式为其中: r (1)>r (2) >r (3)… >r (k) … >0 是一个递减的正值数列 r (k)=Cr (k-1), 0<C <1 因此 罚函数为:9、已知目标函数为f(X)=( x 1-1)2+(x 2+2)2 受约束于:g 1(X)=-x 2-x 1-1≥0g 2(X)=2-x 1-x 2≥0 g 3(X)=x 1≥0g4(X)=x2≥0试写出内点罚函数。
解法同上10、如图,有一块边长为6m的正方形铝板,四角截去相等的边长为x的方块并折转,造一个无盖的箱子,问如何截法(x取何值)才能获得最大容器的箱子。
试写出这一优化问题的数学模型以及用MATLAB软件求解的程序。
11、某厂生产一个容积为8000cm3的平底无盖的圆柱形容器,要求设计此容器消耗原材料最少,试写出这一优化问题的数学模型以及用MATLAB软件求解的程序。
12、一根长l的铅丝截成两段,一段弯成圆圈,另一段弯折成方形,问应以怎样的比例截断铅丝,才能使圆和方形的面积之和为最大,试写出这一优化设计问题的数学模型以及用MATLAB软件求解的程序。
13、求表面积为300m2的体积最大的圆柱体体积。
试写出这一优化设计问题的数学模型以及用MATLAB软件求解的程序。
14、薄铁板宽20cm,折成梯形槽,求梯形侧边多长及底角多大,才会使槽的断面积最大。
写出这一优化设计问题的数学模型,并用matlab软件的优化工具箱求解(写出M文件和求解命令)。
15、已知梯形截面管道的参数是:底边长度为c,高度为h,面积A=64516mm2,斜边与底边的夹角为θ,见图1。