中考数学预测试题(六)及答案

合集下载

陕西省西安市长安区2024届中考数学模拟预测题含解析

陕西省西安市长安区2024届中考数学模拟预测题含解析

陕西省西安市长安区2024届中考数学模拟预测题注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.二元一次方程组632x yx y+=⎧⎨-=-⎩的解是()A.51xy=⎧⎨=⎩B.42xy=⎧⎨=⎩C.51xy=-⎧⎨=-⎩D.42xy=-⎧⎨=-⎩2.下列所述图形中,是轴对称图形但不是中心对称图形的是()A.线段B.等边三角形C.正方形D.平行四边形3.下列运算正确的是()A.a4+a2=a4B.(x2y)3=x6y3C.(m﹣n)2=m2﹣n2D.b6÷b2=b34.方程371x x-=+的解是().A.14x=B.34x=C.43x=D.1x=-5.下列说法中正确的是()A.检测一批灯泡的使用寿命适宜用普查.B.抛掷一枚均匀的硬币,正面朝上的概率是12,如果抛掷10次,就一定有5次正面朝上.C.“367人中有两人是同月同日生”为必然事件.D.“多边形内角和与外角和相等”是不可能事件.6.如图,矩形ABCD中,AB=10,BC=5,点E,F,G,H分别在矩形ABCD各边上,且AE=CG,BF=DH,则四边形EFGH周长的最小值为()A.55B.105C.103D.1537.若关于x的不等式组221x mx m->⎧⎨-<-⎩无解,则m的取值范围()A.m>3 B.m<3 C.m≤3D.m≥38.如图,在△ABC中,AB=AC=10,CB=16,分别以AB、AC为直径作半圆,则图中阴影部分面积是()A.50π﹣48 B.25π﹣48 C.50π﹣24 D.9.如图,数轴上有M、N、P、Q四个点,其中点P所表示的数为a,则数-3a所对应的点可能是( )A.M B.N C.P D.Q10.如图,在△ABC中,D、E分别是边AB、AC的中点,若BC=6,则DE的长为()A.2 B.3 C.4 D.611.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是()A.k>12B.k≥12C.k>12且k≠1D.k≥12且k≠112.在平面直角坐标系xOy中,若点P(3,4)在⊙O内,则⊙O的半径r的取值范围是()A.0<r<3 B.r>4 C.0<r<5 D.r>5二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,小军、小珠之间的距离为2.7 m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m,已知小军、小珠的身高分别为1.8 m,1.5 m,则路灯的高为____m.14.如图,在△ABC中,点D、E分别在AB、AC上,且DE∥BC,已知AD=2,DB=4,DE=1,则BC=_____.15.如图所示,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数的图象交于点A 和点B,若点C是x轴上任意一点,连接AC、BC,则△ABC的面积为_________.16.在△ABC中,∠ABC<20°,三边长分别为a,b,c,将△ABC沿直线BA翻折,得到△ABC1;然后将△ABC1沿直线BC1翻折,得到△A1BC1;再将△A1BC1沿直线A1B翻折,得到△A1BC2;…,若翻折4次后,得到图形A2BCAC1A1C2的周长为a+c+5b,则翻折11次后,所得图形的周长为_____________.(结果用含有a,b,c的式子表示)17.已知双曲线k1yx+=经过点(-1,2),那么k的值等于_______.18.如图是由几个相同的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体至少为____个.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在四边形ABCD中,∠A=∠BCD=90°,210BC CD==,CE⊥AD于点E.(1)求证:AE =CE ;(2)若tan D =3,求AB 的长.20.(6分)如图,ABC ∆的顶点是方格纸中的三个格点,请按要求完成下列作图,①仅用无刻度直尺,且不能用直尺中的直角;②保留作图痕迹.在图1中画出AB 边上的中线CD ;在图2中画出ABEF ,使得ABEF ABC S S ∆=.21.(6分)元旦放假期间,小明和小华准备到西安的大雁塔(记为A )、白鹿原(记为B )、兴庆公园(记为C )、秦岭国家植物园(记为D )中的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同. (1)求小明选择去白鹿原游玩的概率;(2)用树状图或列表的方法求小明和小华都选择去秦岭国家植物园游玩的概率.22.(8分)某市政府大力支持大学生创业.李明在政府的扶持下投资销售一种进价为20元的护眼台灯.销售过程中发现,每月销售量Y (件)与销售单价x (元)之间的关系可近似的看作一次函数:y =﹣10x +1.设李明每月获得利润为W (元),当销售单价定为多少元时,每月获得利润最大?根据物价部门规定,这种护眼台灯不得高于32元,如果李明想要每月获得的利润2000元,那么销售单价应定为多少元?23.(8分)如图,在四边形ABCD 中,AB=AD ,BC=DC ,AC 、BD 相交于点O ,点E 在AO 上,且OE=OC .求证:∠1=∠2;连结BE 、DE ,判断四边形BCDE 的形状,并说明理由.24.(10分)我们知道ABC △中,如果3AB =,4AC =,那么当AB AC ⊥时,ABC △的面积最大为6;(1)若四边形ABCD 中,16AD BD BC ++=,且6BD =,直接写出AD BD BC ,,满足什么位置关系时四边形ABCD 面积最大?并直接写出最大面积.(2)已知四边形ABCD 中,16AD BD BC ++=,求BD 为多少时,四边形ABCD 面积最大?并求出最大面积是多少?25.(10分)某中学七、八年级各选派10名选手参加知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀,这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下,其中七年级代表队得6分、10分的选手人数分别为a 、b.队别平均分 中位数 方差 合格率 优秀率 七年级6.7 m 3.41 90% n 八年级7.1 7.5 1.69 80% 10%(1)请依据图表中的数据,求a 、b 的值;(2)直接写出表中的m 、n 的值;(3)有人说七年级的合格率、优秀率均高于八年级;所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.26.(12分)如图,甲、乙两座建筑物的水平距离BC 为78m ,从甲的顶部A 处测得乙的顶部D 处的俯角为48︒,测得底部C 处的俯角为58︒,求甲、乙建筑物的高度AB 和DC (结果取整数).参考数据:tan48 1.11︒≈,tan58 1.60︒≈.27.(12分)如图,Rt △ABC 中,∠C =90°,⊙O 是Rt △ABC 的外接圆,过点C 作⊙O 的切线交BA 的延长线于点E ,BD ⊥CE 于点D ,连接DO 交BC 于点M.(1)求证:BC 平分∠DBA ;(2)若23EA AO =,求DM MO的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解题分析】利用加减消元法解二元一次方程组即可得出答案【题目详解】解:①﹣②得到y=2,把y=2代入①得到x=4,∴42 xy=⎧⎨=⎩,故选:B.【题目点拨】此题考查了解二元一次方程组,解方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.2、B【解题分析】根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【题目详解】解:A、线段,是轴对称图形,也是中心对称图形,故本选项不符合题意;B、等边三角形,是轴对称图形但不是中心对称图形,故本选项符合题意;C、正方形,是轴对称图形,也是中心对称图形,故本选项不符合题意;D、平行四边形,不是轴对称图形,是中心对称图形,故本选项不符合题意.故选:B.【题目点拨】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3、B【解题分析】分析:根据合并同类项,积的乘方,完全平方公式,同底数幂相除的性质,逐一计算判断即可.详解:根据同类项的定义,可知a4与a2不是同类项,不能计算,故不正确;根据积的乘方,等于个个因式分别乘方,可得(x2y)3=x6y3,故正确;根据完全平方公式,可得(m-n)2=m2-2mn+n2,故不正确;根据同底数幂的除法,可知b6÷b2=b4,不正确.故选B.点睛:此题主要考查了合并同类项,积的乘方,完全平方公式,同底数幂相除的性质,熟记并灵活运用是解题关键.4、B【解题分析】直接解分式方程,注意要验根.【题目详解】解:371x x-+=0,方程两边同时乘以最简公分母x(x+1),得:3(x+1)-7x=0,解这个一元一次方程,得:x=34,经检验,x=34是原方程的解.故选B.【题目点拨】本题考查了解分式方程,解分式方程不要忘记验根.5、C【解题分析】【分析】根据相关的定义(调查方式,概率,可能事件,必然事件)进行分析即可. 【题目详解】A. 检测一批灯泡的使用寿命不适宜用普查,因为有破坏性;B. 抛掷一枚均匀的硬币,正面朝上的概率是12,如果抛掷10次,就可能有5次正面朝上,因为这是随机事件;C. “367人中有两人是同月同日生”为必然事件.因为一年只有365天或366天,所以367人中至少有两个日子相同;D. “多边形内角和与外角和相等”是可能事件.如四边形内角和和外角和相等.故正确选项为:C【题目点拨】本题考核知识点:对(调查方式,概率,可能事件,必然事件)理解. 解题关键:理解相关概念,合理运用举反例法.6、B【解题分析】作点E 关于BC 的对称点E′,连接E′G 交BC 于点F ,此时四边形EFGH 周长取最小值,过点G 作GG′⊥AB 于点G′,如图所示,∵AE=CG ,BE=BE′,∴E′G′=AB=10,∵GG′=AD=5,∴2255E G GG ''+'=∴C 四边形EFGH 5故选B .【题目点拨】本题考查了轴对称-最短路径问题,矩形的性质等,根据题意正确添加辅助线是解题的关键.7、C【解题分析】根据“大大小小找不着”可得不等式2+m≥2m -1,即可得出m 的取值范围.【题目详解】221x m x m ->⎧⎨-<-⎩①② , 由①得:x >2+m ,由②得:x <2m ﹣1,∵不等式组无解,∴2+m≥2m﹣1,∴m≤3,故选C.【题目点拨】考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则得出是解题关键.8、B【解题分析】设以AB、AC为直径作半圆交BC于D点,连AD,如图,∴AD⊥BC,∴BD=DC=BC=8,而AB=AC=10,CB=16,∴AD===6,∴阴影部分面积=半圆AC的面积+半圆AB的面积﹣△ABC的面积,=π•52﹣•16•6,=25π﹣1.故选B.9、A【解题分析】解:∵点P所表示的数为a,点P在数轴的右边,∴-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍,∴数-3a所对应的点可能是M,故选A.点睛:本题考查了数轴,解决本题的关键是判断-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍.10、B【解题分析】根据三角形的中位线等于第三边的一半进行计算即可.【题目详解】∵D、E分别是△ABC边AB、AC的中点,∴DE是△ABC的中位线,∵BC=6,∴DE=BC=1.故选B.【题目点拨】本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.11、C【解题分析】根据题意得k-1≠0且△=2²-4(k-1)×(-2)>0,解得:k>12且k≠1.故选C【题目点拨】本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac,关键是熟练掌握:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.12、D【解题分析】先利用勾股定理计算出OP=1,然后根据点与圆的位置关系的判定方法得到r的范围.【题目详解】∵点P的坐标为(3,4),∴OP2234=+=1.∵点P(3,4)在⊙O内,∴OP<r,即r>1.故选D.【题目点拨】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、3【解题分析】试题分析:如图,∵CD∥AB∥MN,∴△ABE∽△CDE,△ABF∽△MNF,∴,CD DE FN MN AB BE FB AB==, 即1.8 1.8 1.5 1.5,1.8 1.5 2.7AB BD AB BD ==++-, 解得:AB=3m ,答:路灯的高为3m .考点:中心投影.14、1【解题分析】先由DE ∥BC ,可证得△ADE ∽△ABC ,进而可根据相似三角形得到的比例线段求得BC 的长.【题目详解】解:∵DE ∥BC ,∴△ADE ∽△ABC ,∴DE :BC =AD :AB ,∵AD =2,DB =4,∴AB =AD +BD =6,∴1:BC =2:6,∴BC =1,故答案为:1.【题目点拨】考查了相似三角形的性质和判定,关键是求出相似后得出比例式,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.15、1.【解题分析】设P (0,b ),∵直线APB ∥x 轴,∴A ,B 两点的纵坐标都为b ,而点A 在反比例函数y=4x -的图象上, ∴当y=b ,x=-4b ,即A 点坐标为(-4b,b ), 又∵点B 在反比例函数y=2x的图象上, ∴当y=b ,x=2b ,即B 点坐标为(2b,b ), ∴AB=2b -(-4b )=6b , ∴S △ABC =12•AB•OP=12•6b•b=1. 16、2a+12b【解题分析】如图2,翻折4次时,左侧边长为c ,如图2,翻折5次,左侧边长为a ,所以翻折4次后,如图1,由折叠得:AC =A 1C = 11A C =12A C =22A C b =,所以图形2112A BCAC AC 的周长为:a+c+5b ,因为∠ABC <20°,所以()9120200360+⨯︒=︒<︒, 翻折9次后,所得图形的周长为: 2a +10b ,故答案为: 2a +10b .17、-1【解题分析】分析:根据点在曲线上点的坐标满足方程的关系,将点(-1,2)代入k 1y x +=,得:k 121+=-,解得:k =-1. 18、8【解题分析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.【题目详解】由俯视图可知:底层最少有5个小立方体,由主视图可知:第二层最少有2个小立方体,第三层最少有1个小正方体,∴搭成这个几何体的小正方体的个数最少是5+2+1=8(个).故答案为:8【题目点拨】考查了由三视图判断几何体的知识,根据题目中要求的以最少的小正方体搭建这个几何体,可以想象出左视图的样子,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)见解析;(2)AB =4【解题分析】(1)过点B 作BF ⊥CE 于F ,根据同角的余角相等求出∠BCF=∠D ,再利用“角角边”证明△BCF 和△CDE 全等,根据全等三角形对应边相等可得BF=CE ,再证明四边形AEFB 是矩形,根据矩形的对边相等可得AE=BF ,从而得证;(2)由(1)可知:CF=DE ,四边形AEFB 是矩形,从而求得AB=EF ,利用锐角三角函数的定义得出DE 和CE 的长,即可求得AB 的长.【题目详解】(1)证明:过点B 作BH ⊥CE 于H ,如图1.∵CE ⊥AD ,∴∠BHC =∠CED =90°,∠1+∠D =90°.∵∠BCD =90°,∴∠1+∠2=90°,∴∠2=∠D .又BC =CD∴△BHC ≌△CED (AAS ).∴BH =CE .∵BH ⊥CE ,CE ⊥AD ,∠A =90°,∴四边形ABHE 是矩形,∴AE =BH .∴AE =CE .(2)∵四边形ABHE 是矩形,∴AB =HE .∵在Rt △CED 中,tan 3CE D DE==, 设DE =x ,CE =3x ,∴10210==.CD x∴x=2.∴DE=2,CE=3.∵CH=DE=2.∴AB=HE=3-2=4.【题目点拨】本题考查了全等三角形的判定与性质,矩形的判定与性质,锐角三角函数的定义,难度中等,作辅助线构造出全等三角形与矩形是解题的关键.20、(1)见解析;(2)见解析.【解题分析】(1)利用矩形的性质得出AB的中点,进而得出答案.(2)利用矩形的性质得出AC、BC的中点,连接并延长,使延长线段与连接这两个中点的线段相等.【题目详解】(1)如图所示:CD即为所求.(2)【题目点拨】本题考查应用设计与作图,正确借助矩形性质和网格分析是解题关键.21、(1)14;(2)116【解题分析】(1)利用概率公式直接计算即可;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小华都选择去同一个地方游玩的情况,再利用概率公式即可求得答案.【题目详解】(1)∵小明准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,∴小明选择去白鹿原游玩的概率=14;(2)画树状图分析如下:两人选择的方案共有16种等可能的结果,其中选择同种方案有1种,所以小明和小华都选择去秦岭国家植物园游玩的概率=1 16.【题目点拨】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.22、(1)35元;(2)30元.【解题分析】(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,利润=(定价-进价)×销售量,从而列出关系式,利用配方法得出最值;(2)令w=2000,然后解一元二次方程,从而求出销售单价.【题目详解】解:(1)由题意,得:W=(x-20)×y=(x-20)(-10x+1)=-10x2+700x-10000=-10(x-35)2+2250∴ 当x=35时,W 取得最大值,最大值为2250,答:当销售单价定为35元时,每月可获得最大利润为2250元;(2)由题意,得:210700100002000x x -+-=,解得:130x =,240x =,销售单价不得高于32元,∴ 销售单价应定为30元.答:李明想要每月获得2000元的利润,销售单价应定为30元.【题目点拨】本题考查二次函数的性质及其应用,还考查抛物线的基本性质,另外将实际问题转化为求函数最值问题,从而来解决实际问题.23、(1)证明见解析;(2)四边形BCDE 是菱形,理由见解析.【解题分析】(1)证明△ADC ≌△ABC 后利用全等三角形的对应角相等证得结论.(2)首先判定四边形BCDE 是平行四边形,然后利用对角线垂直的平行四边形是菱形判定菱形即可.【题目详解】解:(1)证明:∵在△ADC 和△ABC 中,∴△ADC ≌△ABC (SSS ).∴∠1=∠2.(2)四边形BCDE 是菱形,理由如下:如答图,∵∠1=∠2,DC=BC ,∴AC 垂直平分BD.∵OE=OC ,∴四边形DEBC 是平行四边形.∵AC ⊥BD ,∴四边形DEBC 是菱形.【题目点拨】考点:1.全等三角形的判定和性质;2. 线段垂直平分线的性质;3.菱形的判定.24、 (1)当AD BD ⊥,BC BD ⊥时有最大值1;(2)当8BD =时,面积有最大值32.【解题分析】(1)由题意当AD ∥BC ,BD ⊥AD 时,四边形ABCD 的面积最大,由此即可解决问题.(2)设BD=x ,由题意:当AD ∥BC ,BD ⊥AD 时,四边形ABCD 的面积最大,构建二次函数,利用二次函数的性质即可解决问题.【题目详解】(1) 由题意当AD ∥BC ,BD ⊥AD 时,四边形ABCD 的面积最大, 最大面积为12×6×(16-6)=1. 故当AD BD ⊥,BC BD ⊥时有最大值1;(2)当AD BD ,BC BD ⊥时有最大值,设BD x =, 由题意:当AD ∥BC ,BD ⊥AD 时,四边形ABCD 的面积最大,16AD BD BC ++=16AD BC x ∴+=-ABD CBD ABCD S S S ∴=+四边形1122AD BD BC BD =⋅+⋅ ()12AD BC BD =+⋅ ()1162x x =- ()21=8322x --+ 102-< ∴抛物线开口向下∴当8BD = 时,面积有最大值32.【题目点拨】本题考查三角形的面积,二次函数的应用等知识,解题的关键是学会利用参数构建二次函数解决问题.25、(1)a=5,b=1;(2)6;20%;(3)八年级平均分高于七年级,方差小于七年级.【解题分析】试题分析:(1)根据题中数据求出a 与b 的值即可;(2)根据(1)a 与b 的值,确定出m 与n 的值即可;(3)从方差,平均分角度考虑,给出两条支持八年级队成绩好的理由即可.试题解析:(1)根据题意得:31671819110 6.710{111110a b a b ⨯++⨯+⨯+⨯+=⨯+++++= 解得a=5,b=1;(2)七年级成绩为3,6,6,6,6,6,7,8,9,10,中位数为6,即m=6; 优秀率为111105+==20%,即n=20%; (3)八年级平均分高于七年级,方差小于七年级,成绩比较稳定,故八年级队比七年级队成绩好.考点:1.条形统计图;2.统计表;3.加权平均数;4.中位数;5.方差.26、甲建筑物的高度AB 约为125m ,乙建筑物的高度DC 约为38m .【解题分析】分析:首先分析图形:根据题意构造直角三角形;本题涉及两个直角三角形,应利用其公共边构造关系式,进而可求出答案.详解:如图,过点D 作DE AB ⊥,垂足为E .则90AED BED ∠=∠=︒.由题意可知,78BC =,48ADE ∠=︒,58ACB ∠=︒,90ABC ∠=︒,90DCB ∠=︒.可得四边形BCDE 为矩形.∴78ED BC ==,DC EB =.在Rt ABC 中,tan AB ACB BC∠=, ∴tan5878 1.60125AB BC =⋅︒≈⨯≈. 在Rt AED 中,tan AE ADE ED ∠=, ∴tan48AE ED =⋅︒.∴tan58EB AB AE BC =-=⋅︒ 78 1.6078 1.1138≈⨯-⨯≈.∴38DC EB =≈.答:甲建筑物的高度AB 约为125m ,乙建筑物的高度DC 约为38m .点睛:本题考查解直角三角形的应用--仰角俯角问题,首先构造直角三角形,再借助角边关系、三角函数的定义解题,难度一般.27、 (1)证明见解析;(2)85 【解题分析】 分析: (1)如下图,连接OC ,由已知易得OC ⊥DE ,结合BD ⊥DE 可得OC ∥BD ,从而可得∠1=∠2,结合由OB=OC 所得的∠1=∠3,即可得到∠2=∠3,从而可得BC 平分∠DBA ;(2)由OC ∥BD 可得△EBD ∽△EOC 和△DBM ∽△OCM ,由根据相似三角形的性质可得得EB DM EO MO =,由23EA AO =,设EA=2k ,AO=3k 可得OC=OA=OB=3k ,由此即可得到85DM EB MO EO ==. 详解:(1)证明:连结OC ,∵DE 与⊙O 相切于点C ,∴OC ⊥DE.∵BD ⊥DE ,∴OC ∥BD. .∴∠1=∠2,∵OB=OC ,∴∠1=∠3,∴∠2=∠3,即BC 平分∠DBA. .(2)∵OC ∥BD ,∴△EBD ∽△EOC ,△DBM ∽△OCM ,.∴BD EB BD DM CO EO CO MO==,, ∴EB DM EO MO=, ∵23EA AO =,设EA=2k ,AO=3k , ∴OC=OA=OB=3k.∴85 DM EBMO EO==.点睛:(1)作出如图所示的辅助线,由“切线的性质”得到OC⊥DE结合BD⊥DE得到OC∥BD是解答第1小题的关键;(2)解答第2小题的关键是由OC∥BD得到△EBD∽△EOC和△DBM∽△OCM这样利用相似三角形的性质结合已知条件即可求得所求值了.。

2024年浙江省宁波市中考数学模拟试题(六)

2024年浙江省宁波市中考数学模拟试题(六)

2024年浙江省宁波市中考数学模拟试题(六)一、单选题1.下列算式的结果等于6-的是( )A .()122--B .()122÷-C .()42+-D .()42⨯- 2.下列运算正确的是( )AB -C5±D 347=+ 3.下列计算正确的是( )A .23x x x +=B .632x x x ÷=C .()437x x =D .347x x x ⋅= 4.设a b c ,,均为实数,( )A .若a b >,则ac bc >B .若a b =,则ac bc =C .若ac bc >,则a b >D .若ac bc =,则a b =5.某中老年合唱团成员的平均年龄为52岁,方差为210岁,在人员没有变动的情况下,两年后这批成员的( )A .平均年龄为52岁,方差为210岁B .平均年龄为54岁,方差为210岁C .平均年龄为52岁,方差为212岁D .平均年龄为54岁,方差为212岁 6.如图,设O 为ABC V 的边AB 上一点,O e 经过点B 且恰好与边AC 相切于点C .若30,3B AC ∠=︒=,则阴影部分的面积为( )A 2πB 2πC πD π- 7.在面积等于3的所有矩形卡片中,周长不可能是( )A .12B .10C .8D .68.如图,锐角三角形ABC 中,AB AC =,D ,E 分别在边AB ,AC 上,连接BE ,CD ,下列命题中,假命题是( )A .若CD BE =,则DCB EBC ∠=∠B .若DCB EBC ∠=∠,则CD BE =C .若BD CE =,则DCB EBC ∠=∠D .若DCB EBC ∠=∠,则BD CE =9.四名同学在研究函数22y x bx c =++(b c ,为已知数)时,甲发现该函数的图象经过点()1,0;乙发现当2x =时,该函数有最小值;丙发现3x =是方程222x bx c ++=的一个根;丁发现该函数图象与y 轴交点的坐标为()0,6.已知这四名同学中只有一人发现的结论是错误的( )A .甲B .乙C .丙D .丁10.如图,ABC V 的两条高线AD BE ,交于点F ,过B ,C ,E 三点作O e ,延长AD 交O e 于点G ,连接GO GC ,.设53AF DF ==,,则下列线段中可求长度的是( )A .GB B .GDC .GOD .GC二、填空题11.分解因式:224x y -+=.12.在一个不透明的纸箱中装有4个白球和n 个黄球,它们只有颜色不同.为了估计黄球的个数,杨老师进行了如下试验:每次从中随机摸出1个球,杨老师发现摸到白球的频率稳定在13附近,则纸箱中大约有黄球个. 13.某种罐装凉茶一箱的价格为84元,某商场实行促销活动,买一箱送四罐,每罐的价格比原来便宜0.8元,设每箱中有凉茶x 罐,则可列方程:.14.如图,在Rt ABC V 中,已知90C ∠=︒,3CD BD =,cos ABC ∠sin BAD ∠=.15.第二十四届国际数学家大会会徽的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图,在由四个全等的直角三角形(Rt DAE V ,Rt ABF V ,Rt BCG V ,Rt CDH △)和中间一个小正方形EFGH 拼成的大正方形ABCD 中,连接BE .设BAF α∠=,BEF β∠=,正方形EFGH 和正方形ABCD 的面积分别为1S 和2S ,若90αβ+=︒,则21S S =:.16.已知关于x 的一元二次方程20x ax b ++=有两个根1x ,2x ,且满足1212x x <<<.记=+t a b ,则t 的取值范围是 .三、解答题17.(1)计算:212tan 6012-⎛⎫︒+ ⎪⎝⎭; (2)已知2410x x --=,求代数式()()()22311x x x --+-的值. 18.圆圆和方方在做一道练习题:已知0a b <<,试比较a b 与11a b ++的大小. 圆圆说:“当12a b ==,时,有12a b =,1213a b +=+;因为1223<,所以11a ab b +<+”. 方方说:“圆圆的做法不正确,因为12a b ==,只是一个特例,不具一般性.可以……”请你将方方的做法补充完整.19.某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理和分析,部分信息如下:a .七年级成绩频数分布直方图;b .七年级成绩在7080x ≤<这一组的是:70,72,74,75,76,76,77,77,77,77,78;c .七、八年级成绩的平均数、中位数如表:根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有 人,表中m 的值为 ;(2)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级50名测试学生中的排名谁更靠前;(3)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.8分的人数. 20.某同学尝试在已知的ABCD Y 中利用尺规作出一个菱形,如图所示.(1)根据作图痕迹,能确定四边形AECF 是菱形吗?请说明理由.(2)若=60B ∠︒,2BA =,4BC =,求四边形AECF 的面积.21.小丽家饮水机中水的温度为20℃,通电开机后,饮水机自动开始加热,此过程中水温()y ℃与开机时间()min x 满足一次函数关系,随后水温开始下降,此过程中水温()y ℃与开机时间()min x 成反比例关系,当水温降至20℃时,根据图中提供的信息,解答问题.(1)当010x ≤≤时,求水温()y ℃关于开机时间()min x(2)求图中t 的值.(3)若小丽在将饮水机通电开机后外出散步,请你预测小丽散步70min 回到家时,饮水机中水的温度.22.在等边三角形ABC 外侧作直线AP ,点B 关于直线AP 的对称点为D ,连接CD ,交AP 于点E ,连接BE .(1)依题意补全如图;(2)若20PAB ∠=︒,求ACE ∠;(3)若060PAB ︒<∠<︒,用等式表示线段DE ,EC ,CA 之间的数量关系并证明.23.已知二次函数214y x bx c =-++的图象经过原点O 和点()8,0A t +,其中0t ≥. (1)当0t =时.①求y 关于x 的函数解析式,求出当x 为何值时,y 有最大值?最大值为多少? ②当x a =和x b =时()a b ≠,函数值相等,求a 的值.(2)当0t >时,在08x ≤≤范围内,y 有最大值18,求相应的t 和x 的值.24.如图,作半径为3的O e 的内接矩形ABCD ,设E 是弦BC 的中点,连接AE 并延长,交O e 于点F ,G 是»AB 的中点,CG 分别交AB AF ,于点H ,P ,若4BC =.(1)求BH ;(2)求:AP PE .(3)求tan APH .。

原创2023学年广州地区中考数学预测模拟考试卷 (含解析)

原创2023学年广州地区中考数学预测模拟考试卷 (含解析)

绝密*启用前数学本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分,考试用时102分钟注意事项:1.答卷前,考生务必在答题卡第1面、第三面、第五面上用黑色字迹的钢笔或签字笔走宝自已的考生号、姓名;走宝考场室号、座位号,再用2B铅笔把对应这两个号码的标号涂黑。

2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B铅笔画图,答案必须写在答题卡各题目指定区域内的相应位置上,如需改动,先划掉原来的答案,然后再写上新的答案,改动的答案也不能超出指定的区域,不准使用铅笔,圆珠笔和涂改液,不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共30分)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.(2023学年胡文广东广州,1,3分)如果+10%表示“增加10%”,那么“减少8%”可以记作()A.-18%B.-8%C.+2%D.+8%【分析】正数和负数可以表示一对相反意义的量,在本题中“增加”和“减小”就是一对相反意义的量,既然增加用正数表示,那么减少就用负数来表示,后面的百分比的值不变.【答案】B【涉及知识点】负数的意义【点评】本题属于基础题,主要考查学生对概念的掌握是否全面,考查知识点单一,有利于提高本题的信度.【推荐指数】★2.(2023学年胡文广东广州,2,3分)将图1所示的直角梯形绕直线l旋转一周,得到的立体图开是()lA. B.C.D.图1【分析】图1是一个直角题型,上底短,下底长,绕对称轴旋转后上底形成的圆小于下底形成的圆,因此得到的立体图形应该是一个圆台.【答案】C【涉及知识点】面动成体【点评】本题属于基础题,主要考查学生是否具有基本的识图能力,以及对点线面体之间关系的理解,考查知识点单一,有利于提高本题的信度.【推荐指数】★3.(2023学年胡文广东广州,3,3分)下列运算正确的是()A.-3(x-1)=-3x-1 B.-3(x-1)=-3x+1C.-3(x-1)=-3x-3 D.-3(x-1)=-3x+3【分析】去括号时,要按照去括号法则,将括号前的-3与括号内每一项分别相乘,尤其需要注意,-3与-1相乘时,应该是+3而不是减3.【答案】D【涉及知识点】去括号【点评】本题属于基础题,主要考查去括号法则,理论依据是乘法分配律,容易出错的地方有两处,一是-3只与x 相乘,忘记乘以-1;二是-3与-1相乘时,忘记变符号.本题直指去括号法则,没有任何其它干扰,掌握了去括号法则就能得分,不掌握就不能得分,信度相当好.【推荐指数】★★4. (2023学年胡文广东广州,4,3分)在△ABC 中,D 、E 分别是边AB 、AC 的中点,若BC =5,则DE 的长是( )A .2.5B .5C .10D .15【分析】由D 、E 分别是边AB 、AC 的中点可知,DE 是△ABC 的中位线,根据中位线定理可知,DE =12BC =2.5. 【答案】A【涉及知识点】中位线【点评】本题考查了中位线的性质,三角形的中位线是指连接三角形两边中点的线段,中位线的特征是平行于第三边且等于第三边的一半.【推荐指数】★★5. (2023学年胡文广东广州,5,3分)不等式110320.x x ⎧+>⎪⎨⎪-⎩,≥的解集是( ) A .-31<x ≤2 B .-3<x ≤2 C .x ≥2 D .x <-3【分析】解不等式①,得:x >-3;解不等式②,得:x ≤2,所以不等式组的解集为-3<x <2.【答案】B【涉及知识点】解不等式组【点评】解不等式组是考查学生的基本计算能力,求不等式组解集的时候,可先分别求出组成不等式组的各个不等式的解集,然后借助数轴或口诀求出所有解集的公共部分.【推荐指数】★★★6. (2023学年胡文广东广州,6,3分)从图2的四张印有汽车品牌标志图案的卡片中任取一张,取出印有汽车品牌标志的图案是中心对称称图形的卡片的概率是( )图2A .41B .21C .43D .1【分析】在这四个图片中只有第三幅图片是中心对称图形,因此是中心对称称图形的卡片的概率是41.【答案】A【涉及知识点】中心对称图形 概率【点评】本题将两个简易的知识点,中心对称图形和概率组合在一起,是一个简单的综合问题,其中涉及的中心对称图形是指这个图形绕着对称中心旋转180°后仍然能和这个图形重合的图形,简易概率求法公式:P (A )=m n,其中0≤P (A )≤1.【推荐指数】★★★★7. (2023学年胡文广东广州,7,3分)长方体的主视图与俯视图如图所示,则这个长方体的体积是( )A .52B .32C .24D .9主视图 俯视图【分析】由主视图可知,这个长方体的长和高分别为4和3,由俯视图可知,这个长方体的长和宽分别为4和2,因此这个长方体的长、宽、高分别为4、2、3,因此这个长方体的体积为4×2×3=24平方单位.【答案】C【涉及知识点】三视图【点评】三视图问题一直是中考考查的高频考点,一般题目难度中等偏下,本题是由两种视图来推测整个正方体的特征,这种类型问题在中考试卷中经常出现,本题所用的知识是:主视图主要反映物体的长和高,左视图主要反映物体的宽和高,俯视图主要反映物体的长和宽.【推荐指数】★★★★8. (2023学年胡文广东广州,8,3分)下列命题中,正确的是( )A .若a ·b >0,则a >0,b >0B .若a ·b <0,则a <0,b <0C .若a ·b =0,则a =0,且b =0D .若a ·b =0,则a =0,或b =0【分析】A 项中a ·b >0可得a 、b 同号,可能同为正,也可能同为负;B 项2中a·b<0可得a、b异号,所以错误;C项中a·b=0可得a、b中必有一个字母的值为0,但不一定同时为零.【答案】D【涉及知识点】乘法法则命题真假【点评】本题主要考查乘法法则,只有深刻理解乘法法则才能求出正确答案,需要考生具备一定的思维能力.【推荐指数】★★9.(2023学年胡文广东广州,9,3分)若a<11=()A.a﹣2B.2﹣a C.a D.﹣aa =1=11a--,由于a<1,所以a-1<0,因此11a--=(1-a)-1=-a.【答案】D【涉及知识点】二次根式的化简【点评】本题主要考查二次根式的化简,难度中等偏难.【推荐指数】★★★10.(2023学年胡文广东广州,10,3分)为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知有一种密码,将英文26个小写字母a,b,c,…,z依次对应0,1,2,…,25这26个自然数(见表格),当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s对应密文c按上述规定,将明文“maths”译成密文后是()A.wkdrc B.wkhtc C.eqdjc D.eqhjc【分析】m对应的数字是12,12+10=22,除以26的余数仍然是22,因此对应的字母是w;a对应的数字是0,0+10=10,除以26的余数仍然是10,因此对应的字母是k;t对应的数字是19,19+10=29,除以26的余数仍然是3,因此对应的字母是d;…,所以本题译成密文后是wkdrc.【答案】A【涉及知识点】阅读理解【点评】本题是阅读理解题,解决本题的关键是读懂题意,理清题目中数字和字母的对应关系和运算规则,然后套用题目提供的对应关系解决问题,具有一定的区分度.【推荐指数】★★★★第二部分(非选择题共120分)二、填空题(本大题共6小题,每小题3分,满分18分.)11.(2023学年胡文广东广州,11,3分)“激情盛会,和谐亚洲”第16届亚运会将于2023学年胡文年11月在广州举行,广州亚运城的建筑面积约是358000平方米,将358000用科学记数法表示为_______.【分析】358000可表示为3.58×100000,100000=105,因此358000=3.58×105.【答案】3.58×105【涉及知识点】科学记数法【点评】科学记数法是每年中考试卷中的必考问题,把一个数写成a ×10n 的形式(其中1≤a <10,n 为整数,这种计数法称为科学记数法),其方法是(1)确定a ,a 是只有一位整数的数;(2)确定n ;当原数的绝对值≥10时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值<1时,n 为负整数,n 的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).【推荐指数】★★★★★12.(2023学年胡文广东广州,12,3分)若分式51-x 有意义,则实数x 的取值范围是_______.【分析】由于分式的分母不能为0,x -5在分母上,因此x -5≠0,解得x ≠5.【答案】5≠x【涉及知识点】分式的意义【点评】初中阶段涉及有意义的地方有三处,一是分式的分母不能为0,二是二次根式的被开方数必须是非负数,三是零指数的底数不能为零.【推荐指数】★★★13.(2023学年胡文广东广州,13,3分)老师对甲、乙两人的五次数学测验成绩进行统计,得出两人五次测验成绩的平均分均为90分,方差分别是2甲S =51、2乙S =12.则成绩比较稳定的是_______(填“甲”、“乙”中的一个).【分析】由于两人的平均分一样,因此两人成绩的水平相同;由于2甲S >2乙S ,所以乙的成绩比甲的成绩稳定.【答案】乙【涉及知识点】数据分析【点评】平均数是用来衡量一组数据的一般水平,而方差则用了反映一组数据的波动情况,方差越大,这组数据的波动就越大.【推荐指数】★★★14.(2023学年胡文广东广州,14,3分)一个扇形的圆心角为90°.半径为2,则这个扇形的弧长为________. (结果保留π) 【分析】扇形弧长可用公式:180n r l π=求得,由于本题n =90°,r =2,因此这个扇形的弧长为π.【答案】π【涉及知识点】弧长公式【点评】与圆有关的计算一直是中考考查的重要内容,主要考点有:弧长和扇形面积及其应用等.【推荐指数】★★★★15.(2023学年胡文广东广州,15,3分)因式分解:3ab 2+a 2b =_______.【分析】3ab 2+a 2b =ab (3b +a ).【答案】ab (3b +a )【涉及知识点】提公因式法因式分解【点评】本题是对基本运算能力的考查,因式分解是整式部分的重要内容,也是分式运算和二次根式运算的基础,因式分解的步骤,一提(提公因式),二套(套公式,主要是平方差公式和完全平方公式),三分组(对于不能直接提公因式和套公式的题目,我们可将多项式先分成几组后后,分组因式分解).【推荐指数】★★★16.(2023学年胡文广东广州,16,3分)如图4,BD 是△ABC 的角平分线,∠ABD =36°,∠C =72°,则图中的等腰三角形有_____个.AB C D【分析】由于BD 是△ABC 的角平分线,所以∠ABC =2∠ABD =72°,所以∠ABC =∠C =72°,所以△ABC 是等腰三角形.∠A =180°-2∠ABC =180°-2×72°=36°,故∠A =∠ABD ,所以△ABD 是等腰三角形∠DBC =∠ABD =36°,∠C =72°,可求∠BDC =72°,故∠BDC =∠C ,所以△BDC 是等腰三角形.【答案】3【涉及知识点】等腰三角形的判定【点评】要想说明一个三角形是等腰三角形,只要能找到两个相等的角或两条相等的边即可,本题主要考查的“等角对等边”的应用,本题难度中等,只要细心,很容易拿分.【推荐指数】★★★★三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤)17.(2023学年胡文广东广州,17,9分)解方程组.1123,12⎩⎨⎧=-=+y x y x 【答案】.112312⎩⎨⎧=-=+②①y x y x ①+②,得4x =12,解得:x =3.将x =3代入①,得9-2y =11,解得y =-1.所以方程组的解是⎩⎨⎧-==13y x .【点评】对二元一次方程组的考查主要突出基础性,题目一般不难,系数比较简单,主要考查方法的掌握. 【推荐指数】★★★18.(2023学年胡文广东广州,18,9分)如图5,在等腰梯形ABCD 中,AD ∥BC .求证:∠A +∠C =180°AB CD【分析】由于AD ∥BC ,所以∠A +∠B =180°,要想说明∠A +∠C =180°,只需根据等腰梯形的两底角相等来说明∠B =∠C 即可. 【答案】证明:∵梯形ABCD 是等腰梯形,∴∠B =∠C 又∵AD ∥BC , ∴∠A +∠B =180° ∴∠A +∠C =180°【涉及知识点】等腰梯形性质【点评】本题是一个简单的考查等腰梯形性质的解答题,属于基础题. 【推荐指数】★★★19.(2023学年胡文广东广州,19,10分)已知关于x 的一元二次方程)0(012≠=++a bx ax 有两个相等的实数根,求4)2(222-+-b a ab 的值。

2024年广东省中考数学模拟押题预测试题

2024年广东省中考数学模拟押题预测试题

2024年广东省中考数学模拟押题预测试题一、单选题1.12--的倒数的相反数是( )A .12B .2C .2-D .12-2.如图所示,这是我国四所著名大学的校微图案,如果忽略各个图案中的文字、字母和数字,只关注图形.其中不是轴对称图形的是( )A .B .C .D .3x 的值可以是( ) A .0B .1C .2D .34.下列计算正确的是( ) A .325a a a +=B .22a a a -=C .()236a a -=D .3332a a a ÷=5.为了丰富校园生活,培养学生特长,学校开展了特色课程.小明与小华从感兴趣的“花样跳绳”“天文地理”“艺术插花”“象棋博交”4门课程中随机选择一门学习.小明与小华恰好选中同一门课程的概率为( ) A .116B .14C .13D .126.已知点()1,A a -,()1,B b ,()2,C c 在反比例函数21k y x+=(k 为常数)的图象上,则下列判断正确的是( ) A .a b c <<B .b a c <<C .a c b <<D .c b a <<7.如图,正方形网格中,点A ,O ,B ,E 均在格点上,O e 过点A ,E 且与AB 交于点C ,点D 是O e 上一点,则tan CDE ∠=( )A B C .12D .28.乘坐高铁现在是人们非常方便快捷的一种出行方式,甲、乙两城市之间的铁路距离约2800km ,乘坐高铁列车比普通快车能提前8h 到达,已知高铁列车的平均行驶速度是普通快车的2倍,设普通快车的平均行驶速度为km /h x ,根据题意所列出的方程为( ) A .2800280028x x ⨯=+ B .2800228008x x ⨯=+ C .2800280082x x-= D .2800280082x x-= 9.如图,一条河两岸互相平行,为测得此河的宽度PT (PT 与河岸PQ 垂直),测P 、Q 两点距离为m 米,PQT α∠=,则河宽PT 的长度是( )A .sin m αB .cos m αC .tan m αD .tan mα10.如图,在平面直角坐标系中,点O 为坐标原点,矩形OABC 的顶点C 、A 分别在x 轴、y 轴的正半轴上,点D 在AB 上,且14AD AB =,反比例函数(0)k y k x=>的图象经过点D 及矩形OABC 的对称中心M ,连结OD 、OM 、DM .若ODM △的面积为3,则k 的值为( )A .2B .3C .4D .5二、填空题11.神舟十八号载人飞船是中国载人航天工程发射的第十八艘飞船,于2024年4月25日在酒泉卫星发射中心发射,总重量400000多千克,总高度近60米.400000用科学记数法表示为.12.因式分解25105a a -+-=.13.若关于x 的方程2690kx x --=有实数根,则k 的取值范围是.14.如图,在ABC V 中,40B ∠=,点D 是AB 的垂直平分线与BC 的交点,将ABD V 沿着AD 翻折得到AED V ,则CDE ∠=.15.如图,在矩形ABCD 中,8AB =,6AD =,将矩形ABCD 绕点A 逆时针旋转得到矩形AEFG ,AE 交CD 于点H ,且DH EH =,则AH 的长为.16.如图1,点P 从ABC V 的顶点A 出发,沿A B C →→匀速运动到点C ,图2是点P 运动时,线段AP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则ABC V 的面积为 .三、解答题17.解不等式组:()2340113x x x ⎧+-≥⎪⎨+>-⎪⎩,并写出它的所有整数解.18.如图,CD 是平行四边形 CEDF 的对角线,点 A 、点 B 是直线 CD 上的两点,且满足 AC BD =,求证: A B ∠=∠.19.先化简,再求值:2222221211x x x x x x x x x ⎛⎫+--÷⎪--++⎝⎭,其中()1012| 3.1412x π-⎛⎫=+-- ⎪⎝⎭.20.学校把学生参与劳动教育情况纳入积分考核.学校抽取了部分学生的劳动积分(积分用x 表示)进行调查,整理得到如下不完整的统计表和扇形统计图.请根据图表信息,解答下列问题:(1)统计表中m =,A 等级对应扇形的圆心角的度数为;(2)学校规定劳动积分大于等于80的学生为“劳动之星”.若该学校共有学生3000人,请估计该学校“劳动之星”大约有多少人;(3)A 等级中有两名男同学和两名女同学,学校从A 等级中随机选取2人进行经验分享,请用列表法或画树状图法,求恰好抽取一名男同学和一名女同学的概率.21.如图,小岛A ,B ,C 在同一条南北方向的直线上.一艘轮船位于灯塔M 的正西方向,距离灯塔M 30海里的A 处,它沿正北方向航行一段时间后,到达位于灯塔M 的西北方向上的B 处,轮船沿北偏东30︒方向航行到达小岛D ,这时测得灯塔M 位于D 的南偏东 14︒方向上,C 在D 处的正西方向.(1)求小岛A ,B 之间的距离AB 的长;(2)设小岛C ,D 之间的距离CD 为h (单位:海里); ①用含有h 的式子表示线段AC 的长(结果保留根号);②求小岛C ,D 之间的距离.(sin140.24︒≈,cos140.97︒≈,tan140.25︒≈1.73,结果精确到0.1) 22.设函数11k y x=,函数22y k x b =+(1k ,2k ,b 是常数,120k k ≠). (1)若函数1y 和函数2y 的图象交于点()1,A m ,点()3,1B . ①求函数1y ,2y 的表达式;②在第一象限内,当12y y <时,直接写出x 的取值范围.(2)将点A 、点B 同时向下移动m 单位,向左移动n 个单位,得到的对应点分别是A '、B ',若A '、B '都在函数1y 的图象上,求m n 、的值. 23.(1)探究规律:已知:如图,点P 为平行四边形ABCD 内一点,PAB V 、 PCD △ 的面积分别记为 1S 、2S ,平行四边形ABCD 的面积记为S ,试探究12S S +与S 之间的关系.(2)解决问题:如图矩形ABCD 中,4AB =,7BC =,点E 、F 、G 、H 分别在AB 、BC 、CD 、DA 上,且3AE CG ==,2AH CF ==.点P 为矩形内一点,四边形AEPH 、四边形 CGPF 的面积分别记为1S 、2S ,求12S S +.24.如图,O e 是ABC V 的外接圆,点O 在BC 边上,BAC ∠的平分线交O e 于点D ,连接BD 、CD ,过点D 作BC 的平行线与AC 的延长线相交于点P .(1)求证:PD 是O e 的切线; (2)求证:ABD DCP △∽△;(3)当12AB =,16AC =时,求CD 和DP 的长.25.如图,已知抛物线2y x bx c =++与x 轴交于0()1,A -,B 两点,与y 轴交于点C (0,3)-.(1)求抛物线的解析式;(2)如图1,点P是抛物线上位于第四象限内一动点,PD BC⊥于点D,求PD的最大值及此时点P的坐标;(3)如图2,点E是抛物线的顶点,点M是线段BE上的动点(点M不与B重合),过点M作MN xV为直角三角形?若存在,求出点M的坐标;若不⊥轴于N,是否存在点M,使C M N存在,请说明理由.。

2010年青海省中考数学预测试题

2010年青海省中考数学预测试题

2010年青海省中考数学预测试题一、填空题(本大题共12小题,每空2分,共30分) 1.(2010青海,1, 4分) -4的绝对值是 , 81的平方根是 .【分析】负数的绝对值是它的相反数,即-4的相反数是4;正数的平方根有两个,而且是互为相反数,即81的平方根是±9【答案】4;±92.(2010青海,2, 4分) 分解因式:a 3-25a = ;计算:(1)-1+(π0= .(π0=1,原式=3+1-4=0【答案】a(a +5)(a -5) ;0 3.(2010青海,3, 2分) 15-x a y 与-3x 2y b -3是同类项,则a +b = . 【分析】由15-x a y 与-3x 2yb -3是同类项,得a=2,b -3=1则b=4,所以a +b=6【答案】64.(2010青海,4, 2分) 圆锥的底面直径为12cm ,母线长为30cm ,则圆锥的侧面积为 cm 2(结果用π表示).【分析】圆锥的底面周长C= πd=12π,圆锥的侧面积S=21cl=21³12π³30=180π【答案】180π5.(2010青海,5, 2分) 不等式组52110x x ->-⎧⎨-≥⎩的解集是 .【分析】解不等式①,得:x <3;解不等式②,得:x ≥1,所以不等式组的解集为1≤x <3.【答案】B6.(2010青海,6, 2分) 如图1,AB ∥CD,FG 平分∠EFD ,∠1=70°,则∠2是 度.【分析】由AB ∥CD 得∠EFD=∠1=70°,由FG 平分∠EFD 得,∠2是35度. 【答案】357.(2010青海,7,2分) 在函数xx y 2+=中,自变量x 的取值范围是 .【分析】由于二次根式的被开方数必须是非负数,则x+2≥0即x ≥-2;分式的分母不能为0,x 在分母上,因此x ≠0;所以x ≥-2且x ≠0【答案】2-≥x 且0≠x8.(2010青海,8, 2分) 等腰三角形的两边长分别为4和9,则这个三角形的周长为_______ .【分析】若4为腰长,由于4+4<9 ,则三角形不存在;若9为腰长,则这个三角形的周长为9+9+4=22【答案】229.(2010青海,9, 2分) 一个多边形的内角和是外角和的2倍,则这个多边形是 边形.【分析】多边形的外角和是360°,因为内角和是外角和的2倍,所以内角和为720°,由(n -2)×180°=720°,得n=6【答案】六10.(2010青海,10, 2分)分式方程1316112-=-++x xx的解为 .【分析】先确定最简公分母 x2―1,去分母得x ―1―6(x+1)=3,化分式方程为整式方程求解得x=―2【答案】2-图111.(2010青海,11, 2分) 如图2,点A 、B 、C 、D 是⊙O 上四点,060=∠AOD ,BD 平分ABC ∠,P 是BD 上一点,PE ∥AB 交BC 于点C ,且5=BE ,则点P 到弦AB 的距离为 .【分析】由060=∠AOD ,得∠ABD=30°,又由BD 平分ABC ∠,得∠DBC=30°.过点E 做E F ⊥BD ,垂足为F .BF=5³cos30°=325,则BP 等于53.则点P 到弦AB 的距离为BP ²sin30°,等于325. 当然此题也可以过点P 做BC 的垂线,利用角平分线的性质来解.【答案】32512.(2010青海,12, 4分) 将一些小圆点按如图3所示的规律摆放,第1个图形中有6个小圆点,第2个图形中有10个小圆点,第3个图形中有16个小圆点,第4个图形中有24个小圆点,……,依次规律,第6个图形有 个小圆点,第n 个图形有 个小圆点.【分析】先观察每个图形的最外侧都有4个小圆点,再观察每个图形内部圆点的行数和列数,则有第1个图形中有个4+1³2=6小圆点,第2个图形中有4+2³3=10个小圆点,第3个图形中有4+3³4=16个小圆点,第4个图形中有4+4³5=24个小圆点,依次规律,第6个图形有4+6³7=46个小圆点,第n 个图形有4+n (n+1)个小圆点.【答案】46;)4)(1(42++++n n n n 或图3图2二、选择(本大题共8小题,每小题3分,共24分,第小题给出的四个选项中,只有一个选项符合要求,请把正角的选项序号填入下面相应题号的表格内)13.(2010青海,13, 3分) 下列图形既是轴对称图形,又是中心对称图形的是( )A .平行四边形B .正方形C .等腰梯形D .等边三角形【分析】平行四边形不是轴对称图形,是中心对称图形;正方形既是轴对称图形,又是中心对称图形;等腰梯形是轴对称图形,不是中心对称图形的是 ;等边三角形是轴对称图形,不是中心对称图形.【答案】B14.(2010青海,14,3分) 2009年某市生产总值为13465000万元,用科学记数法表示为(保留3个有效数字)( )A .71035.1⨯万元 B .71034.1⨯万元C .71030.1⨯万元D .810135.0⨯万元【分析】13465000可表示为1.3465³10000000,100000=107,因此13465000=1.3465³107.再保留3个有效数字为1.35³107【答案】A15.(2010青海,15, 3分) 某施工队挖掘一条长90米的隧道,开工后每天比原计划多挖1米,结果提前3天完成任务,原计划每天挖多少米?若设原计划每天挖x 米,则依题意列出正确的方程为( )【分析】若设原计划每天挖x 米,则开工后每天挖(x+1)米,那么原计划用的时间为x90,开工后用的时间为190+x ,因为提前3天完成任务,所以得319090=+-x x【答案】 C16.(2010青海,16, 3分) 下列运算正确的是( )A.3a-(2a-b)=a-b B.C.D.【分析】A项中去括号时,要按照去括号法则,将括号前的-1与括号内每一项分别相乘,尤其需要注意,-1与-b相乘时,应该是+b而不是-b;B项中多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加,应等于a2b-2a;C项是平方差公式的a2-4b2 ;D项是积的乘方,等于把积的每个因式分别乘方,再把所得的幂相乘,答案正确.【答案】D17.(2010青海,17, 3分)下列几何体中,同一个几何体的主视图与俯视图不同的是()【分析】A项中圆柱的主视图与俯视图都是矩形;B项中正方体的主视图与俯视图都是正方形;C项中球的主视图与俯视图都是圆;D项中圆锥的主视图是三角形而俯视图是圆.【答案】D18.(2010青海,18, 3分)已知⊙O1与⊙O2的半径分别为2和3,圆心距O1O2=4,则这两圆的位置关系是()A.相交B.相离C.内切 D.外切【分析】因为3﹣2<4<3+2,所以这两圆的位置关系是相交【答案】A19. (2010青海,19,3分)图4是根据某班38名同学一周的体育锻炼情况绘制的条形统计图,下面关于该班38名同学一周体育锻炼的时间..说法正确的是()A.极差是4 B.中位数为7 C.众数是8 D.锻炼时间超过7小时的有20人图4【分析】A 项中极差是9﹣6=3;B 项中中位数为第19和第20个数的平均数,即8288=+ ;C 项中参加体育锻炼的时间7小时的人最多,所以众数是7;D 项中锻炼时间超过7小时的有13+7=20人【答案】D20.(2010青海,20, 3分) 如图5.从热气球C 上测定建筑物A 、B 底部的俯角分别为30°和60°,如果这时气球的高度CD 为150米,且点A 、D 、B 在同一直线上,建筑物A 、B 间的距离为( )A .150B .180米C .米D .米图5【分析】由题意得∠A =30°,∠B =60°,AD =ACD tan BD =BCD tan ,则AB=AD+BD【答案】C三、(本大题共3小题,每小题7分,共21分)21.(2010青海,21,7分) 先化简,再求值:22()a b ab ba a a--÷-,其中a=2010.,b=2009.【分析】原式=22()a b ab ba aa--÷-遇到有括号的,先算括号里面的得222a b a ab baa--+÷……………2分分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘得2()a b a aa b -⨯- ……………4分约分得1a b- ……………5分当a=2010.,b=2009时, 原式=120102009- ……………6分=1 ……………7分 【答案】122.(2010青海,22, 7分) 如图6,已知一次函数1y kx b =+的图象与反比例函数2a y x=的图象交与A (2,4)和B (-4,m )两点.(1)求这两个函数的解析式; (2)求A O B 的面积;(3)根据图象直接写出,当1y >2y 时,x 的取值范围.【分析】(1)解析式的求法,把点代入即可(2)求三角形的面积或割或补,此题割比较容易(3)抓住A 、B 两点,找出分界线.图6【答案】解:(1)∵点A(2,4)在反比例函数2a y x=的图象∴248a =⨯= ∴28y x=……………………………1分当4x =-时,824m ==--∴B 点坐标为(-4,-2)∵直线1y kx b =+ 经过A (2,4)和B (-4,m ) ∴2442k b k b +=⎧⎨-+=-⎩解得:1k =,2b =∴12y x =+ ……………………………3分 (2)设直线12y x =+与x 轴交点为C. 则20x +=,2x =- ∴ 点C (2-,0) ∴AOB AOC BOC S S S =+ =112422622⨯⨯+⨯⨯=……………………………5分(3)当-4<x <0或x >2时,1y >2y .23.(2010青海,23, 7分) 梯形ABCD 的四个顶点分别为A (0,6),B (2,2),C (4,2)D (6,6).按下列要求画图.(1)在平面直角坐标系中,画出以原点O 为位似中心,相似比为12的位似图形1111A B C D ;(2)画出位似图形1111A B C D 向下平移五个单位长度后的图形2222A B C D.【分析】(1)把原图形缩小到原来的21,也就是使新图形上各顶点到位似中心的距离与原图形各对应顶点到位似中心的距离之比为1∶2 ;(2)向下平移五个单位长度也就是纵坐标相应的减5.解:(1)图形1111A B C D 正确得 4分 (2)图形2222A B C D 正确得 3 分四、(本大题共3小题,每小题8分,共24分)24.(2010青海,24, 8分) 某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少10千克.(1)现该商场要保证每天盈利1500元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济利益角度考虑,这种水果每千克涨价多少元,能使商场获利最多?【分析】(1)根据利润的等量关系,列出方程,再根据题意,舍掉x 1(2)代入-=x ab 2即可解:(1)设每千克应涨价x 元,列方程得:(5+x)(200-x)=1500 解得:x 1=10 x 2=5 因为顾客要得到实惠,5<10 所以 x=5答:每千克应涨价5元.(2)设商场每天获得的利润为y 元,则根据题意,得 y=( x +5)(200-10x)= -10x 2+150x -500 当x=5.7)10(21502=-⨯-=-ab 时,y 有最大值.因此,这种水果每千克涨价7.5元时,能使商场获利最多25.(2010青海,25, 8分) 如图7,正方形ABCD 的对角线AC 和BD 相交于点O ,O 又是正方形A 1B 1C 1O 的一个顶点,O A 1交AB 于点E ,OC 1交BC 于点F.(1)求证:△AOE ≌△BOF(2)如果两个正方形的边长都为a ,那么正方形A 1B 1C 1O 绕O 点转动,两个正方形重叠部分的面积等于多少?为什么?【分析】根据ASA 证明全等,全等则面积相等,从而求得重叠部分的面积. 证明(1):在正方形ABCD 中,AO=BO ,∠AOB=90°,∠OAB=∠OBC=45° ∵∠AOE+∠EOB=90°, ∠BOF+∠EOB=90° ∴∠AOE=∠BOF 在△AOE 和△BOF 中 ⎪⎩⎪⎨⎧∠=∠=∠=∠BOF AOE OBOA OBF OAE ∴△AOE ≌△BOF(2)答:两个正方形重叠部分面积等于41因为△AOE ≌△BOF 所以:S 四边形OEBF=S △EOB +S △OBF = S △EOB +S △AOE =S △AOB =41S 正方形ABCD =241a26.(2010青海,26, 8分) 如图8,两个可以自由转动的转盘,甲转盘被等分成3个扇形,乙转盘被等分成4个扇形,每一个扇形上都标有相应的数字.图7小明和小红利用它们做游戏,游戏规则是:同时转动两个转盘,当转盘停止后,指针所指区域内的数字之和小于9,小明获胜;指针所指区域内的数字之和等于9,为平局;指针所指区域内数字之和大于9,小红获胜.(如果指针恰好指在分割线上,那么再转一次,直到指针指向一个数字为止)(1)请你通过画树形图或列表法求小明获胜的概率;(2)你认为该游戏规则是否公平,若游戏规则公平,请说明理由;若游戏规则不公平,请你设计一种公平的游戏规则.【分析】求概率通常使用的方法有画树形图或列表法,在此题中两者都可,再由概率不相等得到游戏不公平.【答案】解: (1)列表法树形图根据列表或树形图可知,小明获胜的概率为61122P ==(2)这个游戏不公平,因为小明获胜的概率为12P =小红获胜的概率为31124P ==,1124≠,所以,这个游戏对小红不公平,图8设计游戏规则:当指针所指区域数字之和小于9,小明获胜;指针所指区域数字之和不小于9,小红获胜.五、(本大题共2小题,27小题10分,28小题11分,共21分)27.(2010青海,27, 10分)观察控究,完成证明和填空.如图,四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,顺次连接E、F、G、H,得到的四边形EFGH叫中点四边形.(1)求证:四边形EFGH是平行四边形;(2)如图,当四边形ABCD变成等腰梯形时,它的中点四边形是菱形,请你探究并填空:当四边形ABCD变成平行四边形时,它的中点四边形是__________;当四边形ABCD变成矩形时,它的中点四边形是__________;当四边形ABCD变成菱形时,它的中点四边形是__________;当四边形ABCD变成正方形时,它的中点四边形是__________;(3)根据以上观察探究,请你总结中点四边形的形状由原四边形的什么决定的?【分析】(1)利用三角形中位线推出所得四边形对边分别平行,故为平行四边形.(2)顺次连接对角线相等的四边形各边中点所得的四边形为菱形;顺次连接对角线互相垂直的四边形各边中点所得的四边形为矩形;顺次连接对角线相等且互相垂直的四边形各边中点所得的四边形为正方形.谨记以上原则回答即可.(3)由以上法则可知,中点四边形的形状由原四边形的对角线的关系来决定的.【答案】(1)证明:连接BD∵E、H分别是AB、AD的中点,∴EH是△ABD的中位线∴EH=12BD,EH∥12BD 2分同理得FG=12BD,FG∥12BD∴EH=FG,EH∥FG 3分∴四边形EFGH是平行四边形4分(2)填空依次为平行四边形,菱形,矩形,正方形8分(3)中点四边形的形状由原四边形的对角线的关系来决定的.10分28.(2010青海,28, 11分)如图10,已知点A(3,0),以A为圆心作⊙A与Y轴切于原点,与x轴的另一个交点为B,过B作⊙A的切线l.(1)以直线l为对称轴的抛物线过点A及点C(0,9),求此抛物线的解析式;(2)抛物线与x轴的另一个交点为D,过D作⊙A的切线DE,E为切点,求此切线长;(3)点F是切线DE上的一个动点,当△BFD与EAD△相似时,求出BF的长.【分析】(1)设顶点式,把A、C代入求出(2)见切点时,常做过切点的半径构造直角三角形(3)由相似得到对应线段成比例,从而求出BF的长.【答案】解:(1)设抛物线的解析式为2(6)y a x k=-+图10∵抛物线经过点A (3,0)和C (0,9) ∴90369a k a k +=⎧⎨+=⎩解得:1,33a k ==-∴21(6)33y x =--(2)连接AE∵DE 是⊙A 的切线,∴∠AED=90°,AE=3∵直线l 是抛物线的对称轴,点A ,D 是抛物线与x 轴的交点 ∴AB=BD=3 ∴AD=6在R t △ADE 中,222226327DE AD AE =-=-=∴D E =(3)当B F ⊥ED 时 ∵∠AED=∠BFD=90° ∠ADE=∠BDF ∴△AED ∽△BFD ∴A E A D B F B D =即363B F=∴32B F =当F B ⊥AD 时∵∠AED=∠FBD=90° ∠ADE=∠FDB ∴△AED ∽△FBD ∴A E E DB FB D=即BF ==3 2.∴BF的长为。

2019年、2020年山东省中考试题分类数学(6)——坐标系与一次函数(含答案)

2019年、2020年山东省中考试题分类数学(6)——坐标系与一次函数(含答案)

2019年、2020年山东省数学中考试题分类(6)——坐标系与一次函数一.点的坐标(共1小题)1.(2020•滨州)在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为()A.(﹣4,5)B.(﹣5,4)C.(4,﹣5)D.(5,﹣4)二.规律型:点的坐标(共1小题)2.(2019•菏泽)在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2……第n次移动到点A n,则点A2019的坐标是()A.(1010,0)B.(1010,1)C.(1009,0)D.(1009,1)三.坐标确定位置(共1小题)3.(2020•威海)如图①,某广场地面是用A,B,C三种类型地砖平铺而成的.三种类型地砖上表面图案如图②所示.现用有序数对表示每一块地砖的位置:第一行的第一块(A 型)地砖记作(1,1),第二块(B型)地砖记作(2,1)…若(m,n)位置恰好为A 型地砖,则正整数m,n须满足的条件是.四.坐标与图形性质(共1小题)4.(2020•临沂)我们知道,两点之间线段最短,因此,连接两点间线段的长度叫做两点间的距离;同理,连接直线外一点与直线上各点的所有线段中,垂线段最短,因此,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.类似地,连接曲线外一点与曲线上各点的所有线段中,最短线段的长度,叫做点到曲线的距离.依此定义,如图,在平面直角坐标系中,点A(2,1)到以原点为圆心,以1为半径的圆的距离为.五.函数自变量的取值范围(共1小题)5.(2020•菏泽)函数y=√x−2x−5的自变量x的取值范围是()A.x≠5B.x>2且x≠5C.x≥2D.x≥2且x≠5六.函数值(共1小题)6.(2020•烟台)按如图所示的程序计算函数y的值,若输入的x值为﹣3,则输出y的结果为.七.函数的图象(共1小题)7.(2020•潍坊)若定义一种新运算:a⊗b={a−b(a≥2b)a+b−6(a<2b),例如:3⊗1=3﹣1=2;5⊗4=5+4﹣6=3.则函数y=(x+2)⊗(x﹣1)的图象大致是()A.B.C.D.八.动点问题的函数图象(共2小题)8.(2020•东营)如图1,点P从△ABC的顶点A出发,沿A→B→C匀速运动到点C,图2是点P运动时线段CP的长度y随时间x变化的关系图象,其中点Q为曲线部分的最低点,则△ABC的边AB的长度为()A.12B.8C.10D.13 9.(2020•淄博)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M是曲线部分的最低点,则△ABC的面积是()A.12B.24C.36D.48九.函数的表示方法(共1小题)10.(2020•威海)下表中y与x的数据满足我们初中学过的某种函数关系.其函数表达式为.x…﹣1013…y…0340…一十.一次函数的性质(共1小题)11.(2019•临沂)下列关于一次函数y=kx+b(k<0,b>0)的说法,错误的是()A.图象经过第一、二、四象限B.y随x的增大而减小C.图象与y轴交于点(0,b)D.当x>−bk时,y>0一十一.一次函数图象与系数的关系(共1小题)12.(2020•东营)已知一次函数y=kx+b(k≠0)的图象经过A(1,﹣1)、B(﹣1,3)两点,则k0(填“>”或“<”).一十二.一次函数图象上点的坐标特征(共3小题)13.(2019•枣庄)如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过点P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为8,则该直线的函数表达式是()A.y=﹣x+4B.y=x+4C.y=x+8D.y=﹣x+814.(2020•临沂)点(−12,m)和点(2,n)在直线y=2x+b上,则m与n的大小关系是.15.(2019•泰安)在平面直角坐标系中,直线l:y=x+1与y轴交于点A1,如图所示,依次作正方形OA1B1C1,正方形C1A2B2C2,正方形C2A3B3C3,正方形C3A4B4C4,……,点A1,A2,A3,A4,……在直线l上,点C1,C2,C3,C4,……在x轴正半轴上,则前n 个正方形对角线长的和是.一十三.一次函数与一元一次方程(共1小题)16.(2020•济宁)数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y =ax+b相交于点P,根据图象可知,方程x+5=ax+b的解是()A.x=20B.x=5C.x=25D.x=15一十四.一次函数与一元一次不等式(共2小题)17.(2019•烟台)如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解为.18.(2019•滨州)如图,直线y=kx+b(k<0)经过点A(3,1),当kx+b<13x时,x的取值范围为.一十五.两条直线相交或平行问题(共2小题)19.(2019•东营)如图,在平面直角坐标系中,函数y=√33x和y=−√3x的图象分别为直线l1,l2,过l1上的点A1(1,√33)作x轴的垂线交l2于点A2,过点A2作y轴的垂线交l1于点A3,过点A3作x轴的垂线交l2于点A4,…依次进行下去,则点A2019的横坐标为.20.(2020•滨州)如图,在平面直角坐标系中,直线y=−12x﹣1与直线y=﹣2x+2相交于点P,并分别与x轴相交于点A、B.(1)求交点P的坐标;(2)求△P AB的面积;(3)请把图象中直线y=﹣2x+2在直线y=−12x﹣1上方的部分描黑加粗,并写出此时自变量x的取值范围.一十六.一次函数的应用(共11小题)21.(2019•东营)甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程s(米)与时间t(秒)之间的函数图象如图所示,请你根据图象判断,下列说法正确的是()A.乙队率先到达终点B.甲队比乙队多走了126米C.在47.8秒时,两队所走路程相等D.从出发到13.7秒的时间段内,乙队的速度慢22.(2019•聊城)某快递公司每天上午9:00﹣10:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y(件)与时间x(分)之间的函数图象如图所示,那么当两仓库快递件数相同时,此刻的时间为()A.9:15B.9:20C.9:25D.9:30 23.(2019•济南)某市为提倡居民节约用水,自今年1月1日起调整居民用水价格.图中l1、l2分别表示去年、今年水费y(元)与用水量x(m3)之间的关系.小雨家去年用水量为150m3,若今年用水量与去年相同,水费将比去年多元.24.(2020•东营)2020年初,新冠肺炎疫情爆发,市场上防疫口罩热销,某医药公司每月生产甲、乙两种型号的防疫口罩共20万只,且所有口罩当月全部售出,其中成本、售价如下表:型号价格(元/只)项目甲乙成本 12 4 售价186(1)若该公司三月份的销售收入为300万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?(2)如果公司四月份投入成本不超过216万元,应怎样安排甲、乙两种型号防疫口罩的产量,可使该月公司所获利润最大?并求出最大利润.25.(2020•烟台)新冠疫情期间,口罩成为了人们出行必备的防护工具.某药店三月份共销售A ,B 两种型号的口罩9000只,共获利润5000元,其中A ,B 两种型号口罩所获利润之比为2:3.已知每只B 型口罩的销售利润是A 型口罩的1.2倍. (1)求每只A 型口罩和B 型口罩的销售利润;(2)该药店四月份计划一次性购进两种型号的口罩共10000只,其中B 型口罩的进货量不超过A 型口罩的1.5倍,设购进A 型口罩m 只,这10000只口罩的销售总利润为W 元.该药店如何进货,才能使销售总利润最大?26.(2020•青岛)为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m 3,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变.同时打开甲、乙两个进水口注水,游泳池的蓄水量y (m 3)与注水时间t (h )之间满足一次函数关系,其图象如图所示.(1)根据图象求游泳池的蓄水量y (m 3)与注水时间t (h )之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;(2)现将游泳池的水全部排空,对池内消毒后再重新注水.已知单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的43倍.求单独打开甲进水口注满游泳池需多少小时?27.(2020•聊城)今年植树节期间,某景观园林公司购进一批成捆的A ,B 两种树苗,每捆A种树苗比每捆B种树苗多10棵,每捆A种树苗和每捆B种树苗的价格分别是630元和600元,而每棵A种树苗和每棵B种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍.(1)求这一批树苗平均每棵的价格是多少元?(2)如果购进的这批树苗共5500棵,A种树苗至多购进3500棵,为了使购进的这批树苗的费用最低,应购进A种树苗和B种树苗各多少棵?并求出最低费用.28.(2020•德州)小刚去超市购买画笔,第一次花60元买了若干支A型画笔,第二次超市推荐了B型画笔,但B型画笔比A型画笔的单价贵2元,他又花100元买了相同支数的B型画笔.(1)超市B型画笔单价多少元?(2)小刚使用两种画笔后,决定以后使用B型画笔,但感觉其价格稍贵,和超市沟通后,超市给出以下优惠方案:一次购买不超过20支,则每支B型画笔打九折;若一次购买超过20支,则前20支打九折,超过的部分打八折.设小刚购买的B型画笔x支,购买费用为y元,请写出y关于x的函数关系式.(3)在(2)的优惠方案下,若小刚计划用270元购买B型画笔,则能购买多少支B型画笔?29.(2019•临沂)汛期到来,山洪暴发.下表记录了某水库20h内水位的变化情况,其中x 表示时间(单位:h),y表示水位高度(单位:m),当x=8(h)时,达到警戒水位,开始开闸放水.x/h02468101214161820 y/m141516171814.41210.3987.2(1)在给出的平面直角坐标系中,根据表格中的数据描出相应的点.(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到6m.30.(2019•济宁)小王骑车从甲地到乙地,小李骑车从乙地到甲地,小王的速度小于小李的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离y(km)与小王的行驶时间x(h)之间的函数关系.请你根据图象进行探究:(1)小王和小李的速度分别是多少?(2)求线段BC所表示的y与x之间的函数解析式,并写出自变量x的取值范围.31.(2019•德州)下表中给出A,B,C三种手机通话的收费方式.收费方式月通话费/元包时通话时间/h超时费/(元/min)A30250.1B50500.1C100不限时(1)设月通话时间为x小时,则方案A,B,C的收费金额y1,y2,y3都是x的函数,请分别求出这三个函数解析式.(2)填空:若选择方式A最省钱,则月通话时间x的取值范围为;若选择方式B最省钱,则月通话时间x的取值范围为;若选择方式C最省钱,则月通话时间x的取值范围为;(3)小王、小张今年5月份通话费均为80元,但小王比小张通话时间长,求小王该月的通话时间.2019年、2020年山东省数学中考试题分类(6)——坐标系与一次函数参考答案与试题解析一.点的坐标(共1小题)1.【解答】解:∵在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,∴点M的纵坐标为:﹣4,横坐标为:5,即点M的坐标为:(5,﹣4).故选:D.二.规律型:点的坐标(共1小题)2.【解答】解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),…,2019÷4=504…3,所以A2019的坐标为(504×2+1,0),则A2019的坐标是(1009,0).故选:C.三.坐标确定位置(共1小题)3.【解答】解:观察图形,A型地砖在列数为奇数,行数也为奇数的位置上或列数为偶数,行数也为偶数的位置上,若(m,n)位置恰好为A型地砖,正整数m,n须满足的条件为m、n同为奇数或m、n 同为偶数.故答案为m、n同为奇数或m、n同为偶数.四.坐标与图形性质(共1小题)4.【解答】解:连接AO交⊙O于B,则线段AB的长度即为点A(2,1)到以原点为圆心,以1为半径的圆的距离,∵点A(2,1),∴OA=√22+12=√5,∵OB=1,∴AB=√5−1,即点A(2,1)到以原点为圆心,以1为半径的圆的距离为√5−1,故答案为:√5−1.五.函数自变量的取值范围(共1小题)5.【解答】解:由题意得x﹣2≥0且x﹣5≠0,解得x≥2且x≠5.故选:D.六.函数值(共1小题)6.【解答】解:∵﹣3<﹣1,把x=﹣3代入y=2x2,得y=2×9=18,故答案为:18.七.函数的图象(共1小题)7.【解答】解:∵当x+2≥2(x﹣1)时,x≤4,∴当x≤4时,(x+2)⊗(x﹣1)=(x+2)﹣(x﹣1)=x+2﹣x+1=3,即:y=3,当x>4时,(x+2)⊗(x﹣1)=(x+2)+(x﹣1)﹣6=x+2+x﹣1﹣6=2x﹣5,即:y=2x﹣5,∴k=2>0,∴当x>4时,y=2x﹣5,函数图象从左向右逐渐上升,y随x的增大而增大,综上所述,A选项符合题意.故选:A.八.动点问题的函数图象(共2小题)8.【解答】解:根据图2中的曲线可知:当点P在△ABC的顶点A处,运动到点B处时,图1中的AC=BC=13,当点P运动到AB中点时,此时CP ⊥AB ,根据图2点Q 为曲线部分的最低点,得CP =12,所以根据勾股定理,得此时AP =√132−122=5.所以AB =2AP =10.故选:C .9.【解答】解:由图2知,AB =BC =10,当BP ⊥AC 时,y 的值最小,即△ABC 中,AC 边上的高为8(即此时BP =8),当y =8时,PC =√BC 2−BP 2=√102−82=6,△ABC 的面积=12×AC ×BP =12×8×12=48, 故选:D .九.函数的表示方法(共1小题)10.【解答】解:根据表中y 与x 的数据设函数关系式为:y =ax 2+bx +c ,将表中(1,4)、(﹣1,0)、(0,3)代入函数关系式,得∴{a +b +c =4a −b +c =0c =3,解得{a =−1b =2c =3,∴函数表达式为y =﹣x 2+2x +3.当x =3时,代入y =﹣x 2+2x +3=0,∴(3,0)也适合所求得的函数关系式.故答案为:y =﹣x 2+2x +3.一十.一次函数的性质(共1小题)11.【解答】解:∵y =kx +b (k <0,b >0),∴图象经过第一、二、四象限,A 正确;∵k <0,∴y 随x 的增大而减小,B正确;令x=0时,y=b,∴图象与y轴的交点为(0,b),∴C正确;令y=0时,x=−b k,当x>−bk时,y<0;D不正确;故选:D.一十一.一次函数图象与系数的关系(共1小题)12.【解答】解:设直线AB的解析式为:y=kx+b(k≠0),把A(1,﹣1),B(﹣1,3)代入y=kx+b得,{−1=k+b3=−k+b,解得:k=﹣2,b=1,∴k<0,解法二:由A(1,﹣1)、B(﹣1,3)可知,随着x的减小,y反而增大,所以有k<0.故答案为:<.一十二.一次函数图象上点的坐标特征(共3小题)13.【解答】解:如图,过P点分别作PD⊥x轴,PC⊥y轴,垂足分别为D、C,设P点坐标为(x,y),∵P点在第一象限,∴PD=y,PC=x,∵矩形PDOC的周长为8,∴2(x+y)=8,∴x+y=4,即该直线的函数表达式是y=﹣x+4,故选:A.14.【解答】解:∵直线y=2x+b中,k=2>0,∴此函数y随着x的增大而增大,∵−12<2,∴m<n.故答案为m<n.15.【解答】解:由题意可得,点A1的坐标为(0,1),点A2的坐标为(1,2),点A3的坐标为(3,4),点A4的坐标为(7,8),……,∴OA1=1,C1A2=2,C2A3=4,C3A4=8,……,∴前n个正方形对角线长的和是:√2(OA1+C1A2+C2A3+C3A4+…+C n﹣1A n)=√2(1+2+4+8+…+2n﹣1),设S=1+2+4+8+…+2n﹣1,则2S=2+4+8+…+2n﹣1+2n,则2S﹣S=2n﹣1,∴S=2n﹣1,∴1+2+4+8+…+2n﹣1=2n﹣1,∴前n个正方形对角线长的和是:√2×(2n﹣1),故答案为:√2(2n﹣1),一十三.一次函数与一元一次方程(共1小题)16.【解答】解:∵直线y=x+5和直线y=ax+b相交于点P(20,25)∴方程x+5=ax+b的解为x=20.故选:A.一十四.一次函数与一元一次不等式(共2小题)17.【解答】解:点P(m,3)代入y=x+2,∴m=1,∴P(1,3),结合图象可知x +2≤ax +c 的解为x ≤1;故答案为x ≤1;18.【解答】解:∵正比例函数y =13x 也经过点A ,∴kx +b <13x 的解集为x >3,故答案为:x >3.一十五.两条直线相交或平行问题(共2小题)19.【解答】解:由题意可得,A 1(1,√33),A 2(1,−√3),A 3(﹣3,−√3),A 4(﹣3,3√3),A 5(9,3√3),A 6(9,﹣9√3),…,可得A 2n +1的横坐标为(﹣3)n∵2019=2×1009+1,∴点A 2019的横坐标为:(﹣3)1009=﹣31009,故答案为:﹣31009.20.【解答】解:(1)由{y =−12x −1y =−2x +2解得{x =2y =−2, ∴P (2,﹣2);(2)直线y =−12x ﹣1与直线y =﹣2x +2中,令y =0,则−12x ﹣1=0与﹣2x +2=0, 解得x =﹣2与x =1,∴A (﹣2,0),B (1,0),∴AB =3,∴S △P AB =12AB ⋅|y P |=12×3×2=3; (3)如图所示:自变量x 的取值范围是x <2.一十六.一次函数的应用(共11小题)21.【解答】解:A 、由函数图象可知,甲走完全程需要82.3秒,乙走完全程需要90.2秒,甲队率先到达终点,本选项错误;B 、由函数图象可知,甲、乙两队都走了300米,路程相同,本选项错误;C 、由函数图象可知,在47.8秒时,两队所走路程相等,均为174米,本选项正确;D 、由函数图象可知,从出发到13.7秒的时间段内,甲队的速度慢,本选项错误; 故选:C .22.【解答】解:设甲仓库的快件数量y (件)与时间x (分)之间的函数关系式为:y 1=k 1x +40,根据题意得60k 1+40=400,解得k 1=6,∴y 1=6x +40;设乙仓库的快件数量y (件)与时间x (分)之间的函数关系式为:y 2=k 2x +240,根据题意得60k 2+240=0,解得k 2=﹣4,∴y 2=﹣4x +240,联立{y =6x +40y =−4x +240,解得{x =20y =160, ∴此刻的时间为9:20.故选:B .23.【解答】解:设当x >120时,l 2对应的函数解析式为y =kx +b ,{120k +b =480160k +b =720,得{k =6b =−240, 即当x >120时,l 2对应的函数解析式为y =6x ﹣240,当x =150时,y =6×150﹣240=660,由图象可知,去年的水价是480÷160=3(元/m 3),故小雨家去年用水量为150m 3,需要缴费:150×3=450(元),660﹣450=210(元),即小雨家去年用水量为150m 3,若今年用水量与去年相同,水费将比去年多210元, 故答案为:210.24.【解答】解:(1)设生产甲、乙两种型号的防疫口罩分别是x 万只和y 万只,由题意可得:{18x +6y =300x +y =20, 解得:{x =15y =5,答:生产甲、乙两种型号的防疫口罩分别是15万只和5万只;(2)设四月份生产甲、乙两种型号的防疫口罩分别是a 万只和(20﹣a )万只,利润为w 万元,由题意可得:12a +4(20﹣a )≤216,∴a ≤17,∵w =(18﹣12)a +(6﹣4)(20﹣a )=4a +40是一次函数,w 随a 的增大而增大, ∴a =17时,w 有最大利润=108(万元),答:安排生产甲种型号的防疫口罩17万只,乙种型号的防疫口罩3万只,最大利润为108万元.25.【解答】解:设销售A 型口罩x 只,销售B 型口罩y 只,根据题意得:{x +y =90002000x ×1.2=3000y,解得{x =4000y =5000, 经检验,x =4000,y =5000是原方程组的解,∴每只A 型口罩的销售利润为:20004000=0.5(元),每只B 型口罩的销售利润为:0.5×1.2=0.6(元).答:每只A 型口罩和B 型口罩的销售利润分别为0.5元,0.6元.(2)根据题意得,W =0.5m +0.6(10000﹣m )=﹣0.1m +6000,10000﹣m ≤1.5m ,解得m ≥4000,∵﹣0.1<0,∴W 随m 的增大而减小,∵m 为正整数,∴当m =4000时,W 取最大值,则﹣0.1×4000+6000=5600,即药店购进A 型口罩4000只、B 型口罩6000只,才能使销售总利润最大,最大利润为5600元.26.【解答】解:(1)设y 与t 的函数解析式为y =kt +b ,{b =1002k +b =380, 解得,{k =140b =100, 即y 与t 的函数关系式是y =140t +100,同时打开甲、乙两个进水口的注水速度是:(380﹣100)÷2=140(m 3/h );(2)∵单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的43倍. ∴甲进水口进水的速度是乙进水口进水速度的34, ∵同时打开甲、乙两个进水口的注水速度是140m 3/h ,∴甲进水口的进水速度为:140÷(34+1)×34=60(m 3/h ), 480÷60=8(h ),即单独打开甲进水口注满游泳池需8h .27.【解答】解:(1)设这一批树苗平均每棵的价格是x 元,根据题意列方程,得: 6300.9x −6001.2x =10,解这个方程,得x =20,经检验,x =20是原分式方程的解,并符合题意,答:这一批树苗平均每棵的价格是20元;(2)由(1)可知A 种树苗每棵的价格为:20×0.9=18(元),B 种树苗每棵的价格为:20×1.2=24(元),设购进A 种树苗t 棵,这批树苗的费用为w 元,则:w =18t +24(5500﹣t )=﹣6t +132000,∵w 是t 的一次函数,k =﹣6<0,∴w 随t 的增大而减小,又∵t ≤3500,∴当t =3500棵时,w 最小,此时,B 种树苗有:5500﹣3500=2000(棵),w =﹣6×3500+132000=111000,答:购进A 种树苗3500棵,B 种树苗2000棵时,能使得购进这批树苗的费用最低,最低费用为111000元.28.【解答】解:(1)设超市B 型画笔单价为a 元,则A 型画笔单价为(a ﹣2)元. 根据题意得,60a−2=100a ,解得a =5.经检验,a=5是原方程的解.答:超市B型画笔单价为5元;(2)由题意知,当小刚购买的B型画笔支数x≤20时,费用为y=0.9×5x=4.5x,当小刚购买的B型画笔支数x>20时,费用为y=0.9×5×20+0.8×5(x﹣20)=4x+10.所以,y关于x的函数关系式为y={4.5x(1≤x≤20)4x+10(x>20)(其中x是正整数);(3)当4.5x=270时,解得x=60,∵60>20,∴x=60不合题意,舍去;当4x+10=270时,解得x=65,符合题意.答:若小刚计划用270元购买B型画笔,则能购买65支B型画笔.29.【解答】解:(1)在平面直角坐标系中,根据表格中的数据描出相应的点,如图所示.(2)观察图象当0<x<8时,y与x可能是一次函数关系:设y=kx+b,把(0,14),(8,18)代入得{b=148k+b=18解得:k=12,b=14,y与x的关系式为:y=12x+14,经验证(2,15),(4,16),(6,17)都满足y=12x+14因此放水前y与x的关系式为:y=12x+14 (0<x<8)观察图象当x>8时,y与x就不是一次函数关系:通过观察数据发现:8×18=10×14.4=12×12=16×9=18×8=144.因此放水后y与x的关系最符合反比例函数,关系式为:y=144x.(x>8)所以开闸放水前和放水后最符合表中数据的函数解析式为:y=12x+14 (0<x<8)和y=144x.(x>8)(3)当y=6时,6=144x,解得:x=24,因此预计24h水位达到6m.30.【解答】解:(1)由图可得,小王的速度为:30÷3=10km /h ,小李的速度为:(30﹣10×1)÷1=20km /h ,答:小王和小李的速度分别是10km /h 、20km /h ;(2)小李从乙地到甲地用的时间为:30÷20=1.5h ,当小李到达甲地时,两人之间的距离为:10×1.5=15km ,∴点C 的坐标为(1.5,15),设线段BC 所表示的y 与x 之间的函数解析式为y =kx +b ,{k +b =01.5k +b =15,得{k =30b =−30, 即线段BC 所表示的y 与x 之间的函数解析式是y =30x ﹣30(1≤x ≤1.5).31.【解答】解:(1)∵0.1元/min =6元/h ,∴由题意可得,y 1={30(0≤x ≤25)6x −120(x >25), y 2={50(0≤x ≤50)6x −250(x >50), y 3=100(x ≥0);(2)作出函数图象如图:结合图象可得:若选择方式A 最省钱,则月通话时间x 的取值范围为:0≤x <853, 若选择方式B 最省钱,则月通话时间x 的取值范围为:853<x <1753, 若选择方式C 最省钱,则月通话时间x 的取值范围为:x >1753. 故答案为:0≤x <853,853<x <1753,x >1753. (3)∵小王、小张今年5月份通话费均为80元,但小王比小张通话时间长, ∴结合图象可得:小张选择的是方式A ,小王选择的是方式B ,将y =80分别代入y 2={50(0≤x ≤50)6x −250(x >50),可得 6x ﹣250=80,解得:x =55,∴小王该月的通话时间为55小时.。

原创2023学年中考数学模拟预测试题(含解析)

原创2023学年中考数学模拟预测试题(含解析)

一、选择题(本大题共10小题,每小题4分,共40分.每小题的四个选项中,只有一项是符合题目要求)1.(4分)(2022•龙岩)计算:5+(﹣2)=()A.3B.﹣3 C.7D.﹣7考点:有理数的加法分析:根据有理数的加法运算法则进行计算即可得解.解答:解:5+(﹣2)=+(5﹣2)=3.故选A.点评:本题考查了有理数的加法,是基础题,熟记运算法则是解题的关键.2.(4分)(2022•龙岩)如图是由四个相同的小正方体组成的立体图形,它的俯视图为()A.B.C.D.考简单组合体的三视图点:分析:俯视图是从物体上面看所得到的图形.解答:解:上面看,是上面2个正方形,左下角1个正方形,故选C.点评:本题考查了三视图的知识,俯视图是从物体上面看所得到的图形,解答时学生易将三种视图混淆而错误地选其它选项.3.(4分)(2022•龙岩)下列计算正确的是()A.a+a=a2 B.a2•a3=a6 C.(﹣a3)2=﹣a6 D.a7÷a5=a2考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方专题:计算题.分析:分别根据合并同类项的法则、同底数幂的乘法与除法法则、幂的乘方法则对各选项进行逐一分析即可.解答:解:A、a+a=2a,故本选项错误;B、a2•a3=a5,故本选项错误;C、(﹣a3)2=a6,故本选项错误;D、a7÷a5=a7﹣5=a2,故本选项正确.故选D.点本题考查的是同底数幂的乘法与除法法则、幂的乘方法则及合并同类项的评:法则,熟知以上知识是解答此题的关键.4.(4分)(2022•龙岩)下列图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形C.正五边形D.正六边形考点:中心对称图形;轴对称图形分析:根据轴对称及中心对称概念,结合选项即可得出答案.解答:解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是中心对称图形,不是轴对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.点评:此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.5.(4分)(2022•龙岩)在九年级某次体育测试中,某班参加仰卧起坐测试的一组女生(每组8人)成绩如下(单位:次/分):45、44、45、42、45、46、48、45,则这组数据的平均数、众数分别为()A.44、45 B.45、45 C.44、46 D.45、46考点:众数;加权平均数专题:计算题.分析:根据平均数的定义计算这组数据的平均数,由于数据中45出现了4次,出现次数最多,则可根据众数的定义得到这组数据的众数为45.解答:解:数据的平均数=(45+44+45+42+45+46+48+45)=45,数据中45出现了4次,出现次数最多,所以这组数据的众数为45.故选B.点评:本题考查了众数:在一组数据中出现次数最多的数据叫做众数.也考查了平均数.6.(4分)(2022•龙岩)如图,A、B、P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为()A.B.2C.2D.4考点:圆周角定理;等腰直角三角形分析:由A、B、P是半径为2的⊙O上的三点,∠APB=45°,可得△OAB是等腰直角三角形,继而求得答案.解答:解:∵A、B 、P是半径为2的⊙O上的三点,∠APB=45°,∴∠AOB=2∠APB=90°,∴△OAB是等腰直角三角形,∴AB=OA=2.故选C.点评:此题考查了圆周角定理以及等腰直角三角形性质.此题难度不大,注意掌握数形结合思想的应用.7.(4分)(2022•龙岩)若我们把十位上的数字比个位和百位上的数字都大的三位数称为凸数,如:786,465.则由1,2,3这三个数字构成的,数字不重复的三位数是“凸数”的概率是()A.B.C.D.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与数字不重复的三位数是“凸数”的情况,再利用概率公式求解即可求得答案.解解:画树状图得:答:∵共有27种等可能的结果,数字不重复的三位数是“凸数”的有9种情况,∴数字不重复的三位数是“凸数”的概率是:=.故选A.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.8.(4分)(2022•龙岩)若二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列选项正确的是()A.a>0 B.c>0 C.a c>0 D.b c<0考点:二次函数图象与系数的关系.专题:计算题.分析:由抛物线开口向下得到a小于0,再根据对称轴在y轴左侧得到a与b同号得到b大于0,由抛物线与y轴交点在负半轴得到c小于0,即可作出判断.解答:解:根据图象得:a<0,c<0,b>0,则ac>0,bc<0,故选C.点评:此题考查了二次函数图象与系数的关系,会利用对称轴的范围求2a与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.9.(4分)(2022•龙岩)如图,边长分别为4和8的两个正方形ABCD和CEFG并排放在一起,连结BD并延长交EG于点T,交FG于点P,则GT=()A.B.2C.2D.1考点:正方形的性质分析:根据正方形的对角线平分一组对角可得∠ADB=∠CGE=45°,再求出∠GDT=45°,从而得到△DGT是等腰直角三角形,根据正方形的边长求出DG,再根据等腰直角三角形的直角边等于斜边的倍求解即可.解解:∵BD、GE分别是正方形ABCD,正方形CEFG的对角线,答:∴∠ADB=∠CGE=45°,∴∠GDT=180°﹣90°﹣45°=45°,∴∠DTG=180°﹣∠GDT﹣∠CGE=180°﹣45°﹣45°=90°,∴△DGT是等腰直角三角形,∵两正方形的边长分别为4,8,∴DG=8﹣4=4,∴GT=×4=2.故选B.点评:本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等腰直角三角形的判定与性质.10.(4分)(2022•龙岩)如图,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A、B、C三点为顶点的三角形是等腰三角形,则点C 的个数是()A.2B.3C.4D.5考点:等腰三角形的判定;坐标与图形性质.分根据线段垂直平分线上的点到线段两端点的距离相等可得AB的垂直平分析:线与直线y=x的交点为点C,再求出AB的长,以点A为圆心,以AB 的长为半径画弧,与直线y=x的交点为点C,求出点B到直线y=x的距离可知以点B为圆心,以AB的长为半径画弧,与直线没有交点.解答:解:如图,AB的垂直平分线与直线y=x相交于点C1,∵A(0,2),B(0,6),∴AB=6﹣2=4,以点A为圆心,以AB的长为半径画弧,与直线y=x的交点为C2,C3,∵0B=6,∴点B到直线y=x的距离为6×=3,∵3>4,∴以点B为圆心,以AB的长为半径画弧,与直线y=x没有交点,所以,点C的个数是1+2=3.故选B.点评:本题考查了等腰三角形的判定,坐标与图形性质,作出图形,利用数形结合的思想求解更形象直观.二、填空题(本大题共7小题,每小题3分,共21分)11.(3分)(2022•龙岩)因式分解:a2+2a= a(a+2).考点:因式分解-提公因式法.分析:直接提公因式法:观察原式a2+2a,找到公因式a,提出即可得出答案.解答:解:a2+2a=a(a+2).点评:考查了对一个多项式因式分解的能力.一般地,因式分解有两种方法,提公因式法,公式法,能提公因式先提公因式,然后再考虑公式法.该题是直接提公因式法的运用.12.(3分)(2022•龙岩)已知x=3是方程x2﹣6x+k=0的一个根,则k= 9 .考点:一元二次方程的解分析:一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.解答:解:把x=3代入方程x2﹣6x+k=0,可得9﹣18+k=0,解得k=9.故答案为9.点评:本题考查的是一元二次方程的根即方程的解的定义,比较简单.13.(3分)(2022•龙岩)若|a﹣2|+=0,则ab= 8 .考点:非负数的性质:算术平方根;非负数的性质:绝对值.3718684分析:根据非负数的性质由|a﹣2|+=0得a﹣2=0,b﹣3=0,求出a,b的值,代入所求代数式计算即可求值.解答:解:∵|a﹣2|+=0,∴a﹣2=0,b﹣3=0,∴a=2,b=3,∴ab=23=8.点评:本题考查了非负数的性质.初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.14.(3分)(2022•龙岩)如图,PA是⊙O的切线,A为切点,B是⊙O上一点,BC⊥AP于点C,且OB=BP=6,则BC= 3 .考点:切线的性质;三角形中位线定理分析:由PA是⊙O的切线,BC⊥AP,可得BC∥OA,又由OB=BP=6,可得BC是△PAO的中位线,OA=6,继而求得答案.解答:解:∵PA是⊙O的切线,∴OA⊥PA,∵BC⊥AP,∴BC∥OA,∵OB=BP=6,∴OA=6,∴BC=OA=3.故答案为:3.点评:此题考查了切线的性质与三角形中位线的性质.此题难度不大,注意掌握数形结合思想的应用.15.(3分)(2022•龙岩)如图,AB∥CD,BC与AD相交于点M,N是射线CD上的一点.若∠B=65°,∠MDN=135°,则∠AMB= 70°.考平行线的性质;三角形的外角性质分析:根据平行线的性质求出∠BAM,再由三角形的内角和定理可得出∠AMB .解答:解:∵AB∥CD,∴∠A+∠MDN=180°,∴∠A=180°﹣∠MDN=45°,在△ABM中,∠AMB=180°﹣∠A﹣∠B=70°.故答案为:70°.点评:本题考查了平行线的性质,解答本题的关键是掌握:两直线平行同胖内角互补,及三角形的内角和定理.16.(3分)(2022•龙岩)下列说法:①对顶角相等;②打开电视机,“正在播放《新闻联播》”是必然事件;③若某次摸奖活动中奖的概率是,则摸5次一定会中奖;④想了解端午节期间某市场粽子的质量情况,适合的调查方式是抽样调查;⑤若甲组数据的方差s2=0.01,乙组数据的方差s2=0.05,则乙组数据比甲组数据更稳定.其中正确的说法是①④.(写出所有正确说法的序号)考点:方差;对顶角、邻补角;全面调查与抽样调查;随机事件;概率的意义.分根据方差、随机事件、对顶角、概率的意义对每个命题进行判断即可.解答:解:①对顶角相等,正确;②打开电视机,“正在播放《新闻联播》”是随机事件,错误;③若某次摸奖活动中奖的概率是,则摸5次不一定会中奖,错误;④想了解端午节期间某市场粽子的质量情况,适合的调查方式是抽样调查,正确;⑤若甲组数据的方差s2=0.01,乙组数据的方差s2=0.05,则甲组数据比乙组数据更稳定,错误.正确的有:①④;故答案为:①④.点评:此题考查了方差、随机事件、对顶角、概率的意义,关键是根据有关定义和性质对每个命题是否正确作出判断.17.(3分)(2022•龙岩)对于任意非零实数a、b,定义运算“⊕”,使下列式子成立:1⊕2=﹣,2⊕1=,(﹣2)⊕5=,5⊕(﹣2)=﹣,…,则a⊕b= .考点:规律型:数字的变化类专题:新定义.分根据已知数字等式得出变化规律,即可得出答案.解答:解:∵1⊕2=﹣=,2⊕1==,(﹣2)⊕5==,5⊕(﹣2)=﹣=,…,∴a⊕b=.故答案为:.点评:此题主要考查了数字变化规律,根据已知得出数字中的变与不变是解题关键.三、解答题(本大题共8小题,共89分)18.(10分)(2022•龙岩)(1)计算:﹣(π﹣3)0+(﹣1)2022+|2﹣|;(2)解方程:.考点:解分式方程;实数的运算;零指数幂.专题:计算题.分析:(1)原式第一项利用立方根的定义化简,第二项利用零指数幂法则计算,第三项利用﹣1的奇次幂为﹣1,最后一项利用绝对值的代数意义化简,计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:(1)原式=2﹣1+(﹣1)+2﹣=2﹣;(2)方程两边同乘(2x+1),得:4=x+2x+1,解得:x=1,检验:把x=1代入2x+1=3≠0,故原分式方程的解为x=1.点评:此题考查了解分式方程,以及实数的运算,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.(8分)(2022•龙岩)先化简,再求值:,其中x=2.考点:分式的化简求值专题:计算题.分析:原式先利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,将x的值代入计算即可求出值.解答:解:原式=••=,当x=2时,原式=.点此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是评:找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.20.(10分)(2022•龙岩)如图,四边形ABCD是平行四边形,E、F是对角线AC 上的两点,∠1=∠2.(1)求证:AE=CF;(2)求证:四边形EBFD是平行四边形.考点:平行四边形的判定与性质;全等三角形的判定与性质.专题:证明题.分析:(1)通过全等三角形△ADE≌△CBF的对应边相等证得AE=CF;(2)根据平行四边形的判定定理:对边平行且相等的四边形是平行四边形证得结论.解答:(1)证明:如图:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∠3=∠4,∵∠1=∠3+∠5,∠2=∠4+∠6,∴∠1=∠2∴∠5=∠6∵在△ADE与△CBF中,∴△ADE≌△CBF(ASA),∴AE=CF;(2))证明:∵∠1=∠2,∴DE∥BF.又∵由(1)知△ADE≌△CBF,∴DE=BF,∴四边形EBFD是平行四边形.点评:本题考查了全等三角形的判定与性质、平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.21.(10分)(2022•龙岩)某市在2022年义务教育质量监测过程中,为了解学生的家庭教育情况,就八年级学生平时主要和谁在一起生活进行了抽样调查.下面是根据这次调查情况制作的不完整的频数分布表和扇形统计图.频数分布表代码和谁一起生活频数频率A 父母4200 0.7B 爷爷奶奶660 aC 外公外婆600 0.1D 其它 b 0.09合计6000 1请根据上述信息,回答下列问题:(1)a= 0.11 ,b= 540 ;(2)在扇形统计图中,和外公外婆一起生活的学生所对应扇形圆心角的度数是36°;(3)若该市八年级学生共有3万人,估计不与父母一起生活的学生有9000 人.考点:频数(率)分布表;用样本估计总体;扇形统计图.专题:计算题.分析:(1)由表格中的总计减去其它的数字,即可求出a与b的值;(2)由和外公外婆一起生活的学生的频率为0.1,乘以360度即可得到结果;(3)求出不与父母一起生活学生的频率,乘以30000即可得到结果.解解:(1)根据表格得:a=1﹣(0.7+0.1+0.09)=0.11,b=6000﹣(4200+660+600)答: =540;(2)根据题意得:和外公外婆一起生活的学生所对应扇形圆心角的度数是360°×0.1=36°;(3)根据题意得:30000×(1﹣0.7)=9000(人),则估计不与父母一起生活的学生有9000人.故答案为:(1)0.11;540;(2)36°;(3)9000.点评:此题考查了频数(率)分布直方图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.22.(12分)(2022•龙岩)如图①,在矩形纸片ABCD中,AB=+1,AD=.(1)如图②,将矩形纸片向上方翻折,使点D恰好落在AB 边上的D′处,压平折痕交CD于点E,则折痕AE 的长为;(2)如图③,再将四边形BCED′沿D′E向左翻折,压平后得四边形B′C′ED′,B′C′交AE于点F,则四边形B′FED′的面积为﹣;(3)如图④,将图②中的△AED′绕点E顺时针旋转α角,得△A′ED″,使得EA′恰好经过顶点B,求弧D′D″的长.(结果保留π)考点:翻折变换(折叠问题);矩形的性质;弧长的计算.专题:探究型.分析:(1)先根据图形反折变换的性质得出AD′,D′E的长,再根据勾股定理求出AE的长即可;(2)由(1)知,AD′=,故可得出BD ′的长,根据图形反折变换的性质可得出B′D′的长,再由等腰直角三角形的性质得出B′F的长,根据梯形的面积公式即可得出结论;(3)先根据直角三角形的性质求出∠BEC的度数,由翻折变换的性质可得出∠DEA 的度数,故可得出∠AEA′=75°=∠D′ED″,由弧长公式即可得出结论.解答:解:(1)∵△ADE反折后与△AD′E重合,∴AD′=AD=D′E=DE=,∴AE===;(2)∵由(1)知AD′=,∴BD′=1,∵将四边形BCED′沿D′E向左翻折,压平后得四边形B′C′ED′,∴B′D′=BD′=1,∵由(1)知AD′=AD=D′E=DE=,∴四边形ADED′是正方形,∴B′F=AB′=﹣1,∴S 梯形B′FED′=(B′F+D′E )•B′D′=(﹣1+)×1=﹣;(3)∵∠C=90°,BC=,EC=1,∴tan∠BEC==,∴∠BEC=60°,由翻折可知:∠DEA=45°,∴∠AEA ′=75°=∠D′ED″,∴=•2π•=.故答案为:;﹣.点评:本题考查的是图形的翻折变换,熟知图形翻折不变性的性质是解答此题的关键.23.(12分)(2022•龙岩)某公司欲租赁甲、乙两种设备,用来生产A产品80件、B产品100件.已知甲种设备每天租赁费为400元,每天满负荷可生产A产品12件和B产品10件;乙种设备每天租赁费为300元,每天满负荷可生产A 产品7件和B产品10件.(1)若在租赁期间甲、乙两种设备每天均满负荷生产,则需租赁甲、乙两种设备各多少天恰好完成生产任务?(2)若甲种设备最多只能租赁5天,乙种设备最多只能租赁7天,该公司为确保完成生产任务,决定租赁这两种设备合计10天(两种设备的租赁天数均为整数),问该公司共有哪几种租赁方案可供选择?所需租赁费最少是多少?考一次函数的应用;二元一次方程组的应用;一元一次不等式组的应用.点:分析:(1)设需租赁甲、乙两种设备分别为x 、y天,然后根据生产A、B产品的件数列出方程组,求解即可;(2)设租赁甲种设备a天,表示出乙种设备(10﹣a)天,然后根据租赁两种设备的天数和需要生产的A、B产品的件数列出一元一次不等式组,求出解集,再根据天数a是正整数设计租赁方案,然后求出各种方案的费用或列出关于费用的一次函数,然后根据一次函数的增减性确定租赁费用最少的方案.解答:解:(1)设需租赁甲、乙两种设备分别为x、y天,则依题意得,解得,答:需租赁甲种设备2天、乙种设备8天;(2)设租赁甲种设备a天、乙种设备(10﹣a)天,总费用为w元,根据题意得,,∴3≤a≤5,∵a为整数,∴a=3、4、5,方法一:∴共有三种方案.方案(1)甲3天、乙7天,总费用400×3+300×7=3300;方案(2)甲4天、乙6天,总费用400×4+300×6=3400;方案(3)甲5天、乙5天,总费用400×5+300×5=3500;∵3300<3400<3500,∴方案(1)最省,最省费用为3300元;方法二:则w=400a+300(10﹣a)=100a+3000,∵100>0,∴w随a的增大而增大,∴当a=3时,w最小=100×3+3000=3300,答:共有3种租赁方案:①甲3天、乙7天;②甲4天、乙6天;③甲5天、乙5天.最少租赁费用3300元.点评:本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式组的应用,读懂题目信息,准确找出题中的等量关系和不等量关系是解题的关键.24.(13分)(2022•龙岩)如图,将边长为4的等边三角形AOB放置于平面直角坐标系xoy中,F是AB边上的动点(不与端点A、B重合),过点F的反比例函数y=(k>0,x>)与OA边交于点E,过点F作FC⊥x轴于点C,连结EF、OF.(1)若S△OCF=,求反比例函数的解析式;(2)在(1)的条件下,试判断以点E为圆心,EA长为半径的圆与y轴的位置关系,并说明理由;(3)AB边上是否存在点F,使得EF⊥AE?若存在,请求出BF:FA的值;若不存在,请说明理由.考点:反比例函数综合题.专题:计算题.分析:(1)设F(x,y),得到OC=x与CF=y,表示出三角形OCF的面积,求出xy的值,即为k的值,进而确定出反比例解析式;(2)过E作EH垂直于x轴,EG垂直于y轴,设OH为m,利用等边三角形的性质及锐角三角函数定义表示出EH与OE,进而表示出E的坐标,代入反比例解析式中求出m的值,确定出EG,OE,EH的长,根据EA与EG的大小关系即可对于圆E与y轴的位置关系作出判断;(3)过E作EH垂直于x轴,设FB=x,利用等边三角形的性质及锐角三角函数定义表示出FC与BC,进而表示出AF与OC,表示出AE与OE的长,得出OE与EH的长,表示出E与F坐标,根据E与F都在反比例图象上,得到横纵坐标乘积相等列出方程,求出方程的解得到x的值,即可求出BF 与FA的比值.解解:(1)设F(x,y),(x>0,y>0),则OC=x,CF=y,答:∴S△OCF=xy=,∴xy=2,∴k=2,∴反比例函数解析式为y=(x>0);(2)该圆与y轴相离,理由为:过点E作EH⊥x轴,垂足为H,过点E作EG⊥y轴,垂足为G,在△AOB中,OA=AB=4,∠AOB=∠ABO=∠A=60°,设OH=m,则tan∠AOB==,∴EH=m,OE=2m,∴E坐标为(m,m),∵E在反比例y=图象上,∴m=,∴m1=,m2=﹣(舍去),∴OE=2,EA=4﹣2,EG=,∵4﹣2<,∴EA<EG,∴以E为圆心,EA垂为半径的圆与y轴相离;(3)存在.假设存在点F,使AE⊥FE,过E点作EH⊥OB于点H,设BF=x.∵△AOB是等边三角形,∴AB=OA=OB=4,∠AOB=∠ABO=∠A=60°,∴BC=FB•cos∠FBC=x,FC=FB•sin∠FBC=x,∴AF=4﹣x,OC=OB﹣BC=4﹣x,∵AE⊥FE,∴AE=AF•cosA=2﹣x,∴OE=OA﹣AE=x+2,∴OH=OE•cos∠AOB=x+1,EH=OE•sin∠AOB=x+,∴E(x+1,x+),F(4﹣x,x),∵E、F都在双曲线y=的图象上,∴(x+1)(x+)=(4﹣x)•x,解得:x1=4,x2=,当BF=4时,AF=0,不存在,舍去;当BF=时,AF=,BF:AF=1:4.点评:此题属于反比例函数综合题,涉及的知识有:反比例函数的图象与性质,坐标与图形性质,等边三角形的性质,锐角三角函数定义,熟练掌握反比例函数的图象与性质是解本题的关键.25.(14分)(2022•龙岩)如图,四边形ABCD是菱形,对角线AC与BD交于点O,且AC=80,BD=60.动点M、N分别以每秒1个单位的速度从点A、D同时出发,分别沿A→O→D和D→A运动,当点N到达点A时,M、N同时停止运动.设运动时间为t秒.(1)求菱形ABCD的周长;(2)记△DMN的面积为S,求S关于t的解析式,并求S的最大值;(3)当t=30秒时,在线段OD的垂直平分线上是否存在点P,使得∠DPO=∠DON?若存在,这样的点P有几个?并求出点P到线段OD的距离;若不存在,请说明理由.考点:相似形综合题分析:(1)根据勾股定理及菱形的性质,求出菱形的周长;(2)在动点M、N运动过程中:①当0<t≤40时,如答图1所示,②当40<t≤50时,如答图2所示.分别求出S的关系式,然后利用二次函数的性质求出最大值;(3)如答图3所示,在Rt△PKD 中,DK长可求出,则只有求出tan∠DPK 即可.为此,在△ODM中,作辅助线,构造Rt△OND,作∠NOD平分线OG,则∠GOF=∠DPK.在Rt△OGF中,求出tan∠GOF的值,从而问题解决.解答中提供另外一种解法,请参考.解答:解:(1)在菱形ABCD中,∵AC⊥BD∴AD==50.∴菱形ABCD的周长为200.(2)过点M作MP⊥AD,垂足为点P.①当0<t≤40时,如答图1,∵sin∠OAD===,∴MP=AM•sin∠OAD=t.S=DN•MP=×t×t=t2;②当40<t≤50时,如答图2,MD=70﹣t,∵sin∠ADO===,∴MP=(70﹣t).∴S△DMN=DN•MP=×t×(70﹣t)=t2+28t=(t﹣35)2+490.∴S=当0<t≤40时,S随t的增大而增大,当t=40时,最大值为480.当40<t≤50时,S随t的增大而减小,当t=40时,最大值为480.综上所述,S的最大值为480.(3)存在2个点P,使得∠DPO=∠DON.方法一:如答图3所示,过点N作NF⊥OD于点F,则NF=ND•sin∠ODA=30×=24,DF=ND•cos∠ODA=30×=18.∴OF=12,∴tan∠NOD===2.作∠NOD的平分线交NF于点G,过点G作GH⊥ON于点H,则FG=GH.∴S△ONF=OF•NF=S△OGF+S△OGN=OF•FG+ON•GH=(OF+ON)•FG.∴FG===,∴tan∠GOF===.设OD中垂线与OD的交点为K,由对称性可知:∠DPK=∠DPO=∠DON=∠FOG∴tan∠DPK===,∴PK=.根据菱形的对称性可知,在线段OD的下方存在与点P关于OD轴对称的点P′.∴存在两个点P到OD的距离都是.方法二:答图4所示,作ON的垂直平分线,交OD的垂直平分线EF于点I,连结OI,IN.过点N作NG⊥OD,NH⊥EF,垂足分别为G,H.当t=30时,DN=OD=30,易知△DNG∽△DAO,∴,即.∴NG=24,DG=18.∵EF垂直平分OD,∴OE=ED=15,EG=NH=3.设OI=R,EI=x,则在Rt△OEI中,有R2=152+x2 ①在Rt△NIH中,有R2=32+(24﹣x)2 ②由①、②可得:∴PE=PI+IE=.根据对称性可得,在BD 下方还存在一个点P′也满足条件.∴存在两个点P,到OD的距离都是.(注:只求出一个点P并计算正确的扣(1分).)点评:本题考查了相似三角形的判定与性质、菱形、等腰三角形、中垂线、勾股定理、解直角三角形、二次函数极值等知识点,涉及考点较多,有一定的难度.第(2)问中,动点M在线段AO和OD上运动时,是两种不同的情形,需要分类讨论;第(3)问中,满足条件的点有2个,注意不要漏解.。

2024山东省济南市中考一模押题预测卷数学试卷及答案

2024山东省济南市中考一模押题预测卷数学试卷及答案

2024年中考第一次模拟考试(山东济南卷)数学(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题(本大题共10个小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.图1所示的正五棱柱,其俯视图是()A .B .C .D .2.2023年10月18日,第三届“一带一路”国际合作高峰论坛在北京举行.国家主席习近平在主旨演讲中声明:“本届高峰论坛期间举行的企业家大会达成了972亿美元的项目合作协议.”将972亿美元用科学记数法表示成元,正确的是()A .29.7210⨯B .99.7210⨯C .109.7210⨯D .119.7210⨯3.如图,直线m n ∥,点A 在直线n 上,点B 在直线m 上,连接AB ,过点A 作AC AB ⊥,交直线m 于点C .若150∠=︒,则2∠的度数为().B .C .D ..三张图片除画面不同外无其他差别,将它们从中间剪断得到三张上部图片和三张下部图片,把三张上部图片放入一个布袋,把三张下部图片放入另一个布袋,再分别从两个布袋中各随机摸取一张,则这两张小图片恰好合成一张完整图片的概率是(16B .C 19D 15.若点()(()1232,1,1,A y B y C y --、、都在反比例函数21k y x+=(k 为常数)的图象上,则23y y 、、的大小关系为()123y y y <<B .31y y <<C 213y y y <<D 312y y y <<中用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(21)(32)++-=-的计算过程,则图2.(13)(23)10-++=B .(31)(32)1-++=.(13)(23)36+++=D .(13)(23)10++-=-C.3+(a,b是常数,且abx.下列结论:第Ⅱ卷二、填空题(本大题共6个小题,每小题4分,共24分)三、解答题(本大题共10个小题,共86分.解答应写出文字说明,证明过程或演算步骤)()2213032-⎛⎫︒--+- ⎪⎝⎭.)10521x x -+><-在数轴上表示出它的解集,并求出它的正整数解.ABCD 中,BCD ∠的平分线交AD ,3EF =,求BC 的长.如图2,求遮阳棚前端B 到墙面AD 的距离;如图3,某一时刻,太阳光线与地面夹角60CFG ∠=︒,求遮阳棚在地面上的遮挡宽度的长(结果精确到1cm ).(参考数据:sin 720.951,cos 720.309,tan 72 3.078,3 1.732︒≈︒≈︒≈≈)分)近年来,网约车给人们的出行带来了便利,林林和数学兴趣小组的同学对“美团网约车司机收入频数分布表:月收入4千元5千元9千元10千元人数(个)3421根据以上信息,分析数据如表:思考问题:1,a a ⎫⎪⎭,1,R b b⎛⎫⎪⎝⎭,求直线OM 的函数解析式(用含a ,b 的代数式表示),并说明OM 上;证明:13MOB AOB ∠=∠.求c 的值及顶点M 的坐标,如图2,将矩形ABCD 沿x 轴正方向平移t 个单位()03t <<得到对应的矩形A B C ''知边C D '',A B ''分别与函数24y x x c =-+的图象交于点P ,Q ,连接PQ ,过点P 作PG 于点G .①当2t =时,求QG 的长;PGQ △1,调整菱形ABCD ,使90A ∠=︒,当点M 在菱形ABCD 外时,在射线BP 上取一点BN DM =,连接CN ,则BMC ∠=,MCMN=操作探究二2024年中考第一次模拟考试(山东济南卷)数学·全解全析第Ⅰ卷一、选择题(本大题共10个小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.图1所示的正五棱柱,其俯视图是()A .B .C .D .【答案】A【分析】找到从上面看所得到的图形即可,注意看见的棱用实线表示.【详解】解:从上面看,是一个矩形,矩形的中间有一条纵向的实线,两条纵向的虚线.故选:A .【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.2.2023年10月18日,第三届“一带一路”国际合作高峰论坛在北京举行.国家主席习近平在主旨演讲中声明:“本届高峰论坛期间举行的企业家大会达成了972亿美元的项目合作协议.”将972亿美元用科学记数法表示成元,正确的是()A .29.7210⨯B .99.7210⨯C .109.7210⨯D .119.7210⨯【答案】C【分析】本题考查了科学记数法:把一个绝对值大于等于10的数表示成10n a ⨯的形式(a 大于或等于1且小于10,n 是正整数);n 的值为小数点向左移动的位数.根据科学记数法的定义,即可求解.【详解】解:972亿10972000000009.7210⨯=,故选:C .3.如图,直线m n ∥,点A 在直线n 上,点B 在直线m 上,连接AB ,过点A 作AC AB ⊥,交直线m 于点C .若150∠=︒,则2∠的度数为().B.C..【答案】B【分析】本题考查了轴对称图形和中心对称图形的识别.根据轴对称图形和中心对称图形的定义判断即可.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称把一个图形绕某一点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【详解】解:A、是轴对称图形,不是中心对称图形,本选项不符合题意;、是轴对称图形,也是中心对称图形,本选项符合题意;、不是轴对称图形,是中心对称图形,本选项不符合题意;、不是轴对称图形,是中心对称图形,本选项不符合题意;.三张图片除画面不同外无其他差别,将它们从中间剪断得到三张上部图片和三张下部图片,把三张下部图片放入另一个布袋,再分别从两个布袋中各随机摸第Ⅱ卷二、填空题(本大题共6个小题,每小题4分,共24分)【答案】2或3/3或2【分析】过点M 作MF ⊥直线l ,交y 轴于点F ,交x 轴于点E ,与直线l 相交于点A ,则点E 、F 为点M 在坐标轴上的对称点,过点M 作MD x ⊥轴于点D ,设直线l 的解析式为y x b =-+,由直线l 与直线y x =-平行可得45OPA ∠=︒,即可证明MDE 与OEF 均为等腰直角三角形,进而可求出点E 、F 的坐标,根据中点坐标公式可求出MF 和ME 的中点坐标,代入y x b =-+可求出b 值,即可得点P 坐标,即可求解.【详解】如图,过点M 作MF ⊥直线l ,交y 轴于点F ,交x 轴于点E ,与直线l 相交于点A ,则点E 、F 为点M 在坐标轴上的对称点.直线l 与直线y x =-平行,∴设直线l 解析式为y x b =-+,过点M 作MD x ⊥轴于点D ,则3OD =,2MD =,直线l 的解析式为y x b =-+,45OPD ∴∠=︒,45OFE OEF ∴∠=∠=︒,MDE ∴ 与OEF 均为等腰直角三角形,2DE MD ∴==,1OE OF ==,三、解答题(本大题共10个小题,共86分.解答应写出文字说明,证明过程或演算步骤),“滴滴”网约车司机收入频数分布表:月收入4千元5千元9千元人数(个)342根据以上信息,分析数据如表:,当点G 在点Q 的下方时,(22224QG t t t t =-+--+52(在03t <<的范围内).或52.【点睛】本题考查了二次函数图象上点的坐标特点、矩形的性质以及三角形的面积等知识,掌握二次函数的图象与性质、灵活应用数形结合思想是解题的关键.2024年中考第一次模拟考试(山东济南卷)数学·参考答案第Ⅰ卷一、选择题(本大题共10个小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)12345678910A C C CB BC A C B第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)三、解答题(本大题共10个小题,共86分.解答应写出文字说明,证明过程或演算步骤),,当点G 在点Q 的下方时,(22224QG t t t t =-+--+52(在03t <<的范围内).或52.(12分)【详解】(1)解: 四边形ABCD 是正方形,CD ,90BCD ∠=︒,。

西安市远东第一中学2024届中考数学模拟预测题含解析

西安市远东第一中学2024届中考数学模拟预测题含解析

西安市远东第一中学2024届中考数学模拟预测题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(共10小题,每小题3分,共30分)1.如图,在Rt △ABC 中,BC=2,∠BAC=30°,斜边AB 的两个端点分别在相互垂直的射线OM ,ON 上滑动,下列结论:①若C ,O 两点关于AB 对称,则OA=23; ②C ,O 两点距离的最大值为4; ③若AB 平分CO ,则AB ⊥CO ; ④斜边AB 的中点D 运动路径的长为π. 其中正确的是( )A .①②B .①②③C .①③④D .①②④2.如图: 在ABC ∆中,CE 平分ACB ∠,CF 平分ACD ∠,且//EF BC 交AC 于M ,若5CM =,则22CE CF +等于( )A .75B .100C .120D .1253.某射手在同一条件下进行射击,结果如下表所示: 射击次数(n )1020 50 100 200 500 …… 击中靶心次数(m )8 194492 178 451 …… 击中靶心频率() 0.80 0.95 0.880.920.890.90……由此表推断这个射手射击1次,击中靶心的概率是( )A.0.6 B.0.7 C.0.8 D.0.94.如图,已知直线PQ⊥MN 于点O,点A,B 分别在MN,PQ 上,OA=1,OB=2,在直线MN 或直线PQ 上找一点C,使△ABC是等腰三角形,则这样的C 点有()A.3 个B.4 个C.7 个D.8 个5.一个多边形内角和是外角和的2倍,它是( )A.五边形B.六边形C.七边形D.八边形6.下列说法:①平分弦的直径垂直于弦;②在n次随机实验中,事件A出现m次,则事件A发生的频率mn,就是事件A的概率;③各角相等的圆外切多边形一定是正多边形;④各角相等的圆内接多边形一定是正多边形;⑤若一个事件可能发生的结果共有n种,则每一种结果发生的可能性是1n.其中正确的个数()A.1 B.2 C.3 D.47.将1、2、3、6按如图方式排列,若规定(m、n)表示第m排从左向右第n个数,则(6,5)与(13,6)表示的两数之积是()A6B.6 C2D38.某校有35名同学参加眉山市的三苏文化知识竞赛,预赛分数各不相同,取前18名同学参加决赛. 其中一名同学知道自己的分数后,要判断自己能否进入决赛,只需要知道这35名同学分数的().A.众数B.中位数C.平均数D.方差9.如图所示,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)、(﹣2,1),将△ABC沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1,2),则点A1,C1的坐标分别是()A .A 1(4,4),C 1(3,2)B .A 1(3,3),C 1(2,1) C .A 1(4,3),C 1(2,3)D .A 1(3,4),C 1(2,2)10.已知抛物线y=x 2-2mx-4(m >0)的顶点M 关于坐标原点O 的对称点为M′,若点M′在这条抛物线上,则点M 的坐标为( ) A .(1,-5)B .(3,-13)C .(2,-8)D .(4,-20)二、填空题(本大题共6个小题,每小题3分,共18分)11.二十四节气列入联合国教科文组织人类非物质文化遗产代表作名录.太阳运行的轨道是一个圆形,古人将之称作“黄道”,并把黄道分为24份,每15度就是一个节气,统称“二十四节气”.这一时间认知体系被誉为“中国的第五大发明”.如图,指针落在惊蛰、春分、清明区域的概率是_____.12.一个正多边形的一个内角是它的一个外角的5倍,则这个多边形的边数是_______________ 13.已知关于x 的方程有两个不相等的实数根,则m 的取值范围是______.14.每一层三角形的个数与层数的关系如图所示,则第2019层的三角形个数为_____.15.一个扇形的圆心角为120°,弧长为2π米,则此扇形的半径是_____米. 16.已知m 、n 是一元二次方程x 2+4x ﹣1=0的两实数根,则11m n+=_____. 三、解答题(共8题,共72分)17.(8分)如图,在ABC 中,A 90∠=,AB AC =,点D 是BC 上任意一点,将线段AD 绕点A 逆时针方向旋转90,得到线段AE ,连结EC .()1依题意补全图形; ()2求ECD ∠的度数;()3若CAE 7.5∠=,AD 1=,将射线DA 绕点D 顺时针旋转60交EC 的延长线于点F ,请写出求AF 长的思路.18.(8分)(本题满分8分)如图,四边形ABCD 中,,E 是边CD 的中点,连接BE 并延长与AD 的延长线相较于点F .(1)求证:四边形BDFC 是平行四边形;(2)若△BCD 是等腰三角形,求四边形BDFC 的面积.19.(8分)如图,四边形ABCD 中,∠A=∠BCD=90°,BC=CD ,CE ⊥AD ,垂足为E ,求证:AE=CE .20.(8分)计算:131|132sin 60(2016)83π-︒︒⎛⎫+-+- ⎪⎝⎭2344111x x x x x ++⎛⎫-+÷ ⎪++⎝⎭,其中22x =.21.(8分)如图,在平面直角坐标系xOy 中,直线y kx k =+与双曲线4=y x(x>0)交于点1)(,Aa .求a ,k 的值;已知直线l 过点(2,0)D 且平行于直线y kx k =+,点P (m ,n )(m>3)是直线l 上一动点,过点P 分别作x 轴、y 轴的平行线,交双曲线4=y x(x>0)于点M 、N ,双曲线在点M 、N 之间的部分与线段PM 、PN 所围成的区域(不含边界)记为W .横、纵坐标都是整数的点叫做整点.①当4m =时,直接写出区域W 内的整点个数;②若区域W 内的整点个数不超过8个,结合图象,求m 的取值范围. 22.(10分)如图,在平行四边形ABCD 中,过点A 作AE ⊥DC ,垂足为点E ,连接BE ,点F 为BE 上一点,连接AF ,∠AFE=∠D .(1)求证:∠BAF=∠CBE ; (2)若AD=5,AB=8,sinD=45.求证:AF=BF .23.(12分)某校有3000名学生.为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图. 种类 A B C D E F 上学方式电动车私家车公共交通自行车步行其他某校部分学生主要上学方式扇形统计图某校部分学生主要上学方式条形统计图根据以上信息,回答下列问题:参与本次问卷调查的学生共有____人,其中选择B 类的人数有____人.在扇形统计图中,求E 类对应的扇形圆心角α的度数,并补全条形统计图.若将A 、C 、D 、E 这四类上学方式视为“绿色出行”,请估计该校每天“绿色出行”的学生人数.24.如图,BD 是△ABC 的角平分线,点E ,F 分别在BC ,AB 上,且DE ∥AB ,BE =AF . (1)求证:四边形ADEF 是平行四边形; (2)若∠ABC =60°,BD =6,求DE 的长.参考答案一、选择题(共10小题,每小题3分,共30分) 1、D 【解题分析】分析:①先根据直角三角形30°的性质和勾股定理分别求AC 和AB ,由对称的性质可知:AB 是OC 的垂直平分线,所以23OA AC ==;②当OC 经过AB 的中点E 时,OC 最大,则C 、O 两点距离的最大值为4;③如图2,当∠ABO =30°时,易证四边形OACB 是矩形,此时AB 与CO 互相平分,但所夹锐角为60°,明显不垂直,或者根据四点共圆可知:A 、C 、B 、O 四点共圆,则AB 为直径,由垂径定理相关推论:平分弦(不是直径)的直径垂直于这条弦,但当这条弦也是直径时,即OC 是直径时,AB 与OC 互相平分,但AB 与OC 不一定垂直; ④如图3,半径为2,圆心角为90°,根据弧长公式进行计算即可. 详解:在Rt △ABC 中,∵°2,30BC BAC ,=∠=∴224,4223AB AC ,==-= ①若C .O 两点关于AB 对称,如图1, ∴AB 是OC 的垂直平分线, 则23OA AC ==; 所以①正确;②如图1,取AB 的中点为E ,连接OE 、CE , ∵°90AOB ACB ,∠=∠= ∴12,2OE CE AB === 当OC 经过点E 时,OC 最大, 则C .O 两点距离的最大值为4; 所以②正确;③如图2,当°30ABO ∠=时, °90OBC AOB ACB ∠=∠=∠=,∴四边形AOBC 是矩形, ∴AB 与OC 互相平分,但AB 与OC 的夹角为°°60120、,不垂直, 所以③不正确;④如图3,斜边AB的中点D运动路径是:以O为圆心,以2为半径的圆周的1 , 4则:90π2π, 180⨯=所以④正确;综上所述,本题正确的有:①②④;故选D.点睛:属于三角形的综合体,考查了直角三角形的性质,直角三角形斜边上中线的性质,轴对称的性质,弧长公式等,熟练掌握直角三角形斜边的中线等于斜边的一半是解题的关键.2、B【解题分析】根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值.【题目详解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=12∠ACB,∠ACF=12∠ACD,即∠ECF=12(∠ACB+∠ACD)=90°,∴△EFC为直角三角形,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE2+CF2=EF2=1.故选:B.【题目点拨】本题考查角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线),直角三角形的判定(有一个角为90°的三角形是直角三角形)以及勾股定理的运用,解题的关键是首先证明出△ECF为直角三角形.3、D【解题分析】观察表格的数据可以得到击中靶心的频率,然后用频率估计概率即可求解.【题目详解】依题意得击中靶心频率为0.90,估计这名射手射击一次,击中靶心的概率约为0.90.故选:D.【题目点拨】此题主要考查了利用频率估计概率,首先通过实验得到事件的频率,然后用频率估计概率即可解决问题.4、D【解题分析】试题分析:根据等腰三角形的判定分类别分别找寻,分AB可能为底,可能是腰进行分析.解:使△ABC是等腰三角形,当AB当底时,则作AB的垂直平分线,交PQ,MN的有两点,即有两个三角形.当让AB当腰时,则以点A为圆心,AB为半径画圆交PQ,MN有三点,所以有三个.当以点B为圆心,AB为半径画圆,交PQ,MN有三点,所以有三个.所以共8个.故选D.点评:本题考查了等腰三角形的判定;解题的关键是要分情况而定,所以学生一定要思维严密,不可遗漏.5、B【解题分析】多边形的外角和是310°,则内角和是2×310=720°.设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程,从而求出边数n的值.【题目详解】设这个多边形是n边形,根据题意得:(n﹣2)×180°=2×310°解得:n=1.故选B.【题目点拨】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.6、A【解题分析】根据垂径定理、频率估计概率、圆的内接多边形、外切多边形的性质与正多边形的定义、概率的意义逐一判断可得.【题目详解】①平分弦(不是直径)的直径垂直于弦,故此结论错误;②在n次随机实验中,事件A出现m次,则事件A发生的频率mn,试验次数足够大时可近似地看做事件A的概率,故此结论错误;③各角相等的圆外切多边形是正多边形,此结论正确;④各角相等的圆内接多边形不一定是正多边形,如圆内接矩形,各角相等,但不是正多边形,故此结论错误;⑤若一个事件可能发生的结果共有n种,再每种结果发生的可能性相同是,每一种结果发生的可能性是1n.故此结论错误;故选:A.【题目点拨】本题主要考查命题的真假,解题的关键是掌握垂径定理、频率估计概率、圆的内接多边形、外切多边形的性质与正多边形的定义、概率的意义.7、B【解题分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n个数到底是哪个数后再计算.【题目详解】第一排1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,由此可知:(1,5)表示第1排从左向右第5个数是6,(13,1)表示第13排从左向右第1个数,可以看出奇数排最中间的一个数都是1,第13排是奇数排,最中间的也就是这排的第7个数是1,那么第1个就是6,则(1,5)与(13,1)表示的两数之积是1.故选B.8、B【解题分析】分析:由于比赛取前18名参加决赛,共有35名选手参加,根据中位数的意义分析即可.详解:35个不同的成绩按从小到大排序后,中位数及中位数之后的共有18个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选B.点睛:本题考查了统计量的选择,以及中位数意义,解题的关键是正确的求出这组数据的中位数9、A【解题分析】分析:根据B点的变化,确定平移的规律,将△ABC向右移5个单位、上移1个单位,然后确定A、C平移后的坐标即可.详解:由点B(﹣4,1)的对应点B1的坐标是(1,2)知,需将△ABC向右移5个单位、上移1个单位,则点A(﹣1,3)的对应点A1的坐标为(4,4)、点C(﹣2,1)的对应点C1的坐标为(3,2),故选A.点睛:此题主要考查了平面直角坐标系中的平移,关键是根据已知点的平移变化总结出平移的规律.10、C【解题分析】试题分析:=,∴点M(m,﹣m2﹣1),∴点M′(﹣m,m2+1),∴m2+2m2﹣1=m2+1.解得m=±2.∵m>0,∴m=2,∴M(2,﹣8).故选C.考点:二次函数的性质.二、填空题(本大题共6个小题,每小题3分,共18分)11、1 8首先由图可得此转盘被平分成了24等份,其中惊蛰、春分、清明区域有3份,然后利用概率公式求解即可求得答案.【题目详解】∵如图,此转盘被平分成了24等份,其中惊蛰、春分、清明有3份,∴指针落在惊蛰、春分、清明的概率是:31 248.故答案为1 8【题目点拨】此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.12、1【解题分析】设这个正多边的外角为x°,则内角为5x°,根据内角和外角互补可得x+5x=180,解可得x的值,再利用外角和360°÷外角度数可得边数.【题目详解】设这个正多边的外角为x°,由题意得:x+5x=180,解得:x=30,360°÷30°=1.故答案为:1.【题目点拨】此题主要考查了多边形的内角和外角,关键是计算出外角的度数,进而得到边数.13、【解题分析】试题分析:若一元二次方程有两个不相等的实数根,则根的判别式△=b2﹣4ac>0,建立关于m的不等式,解不等式即可求出m的取值范围.∵关于x的方程x2﹣6x+m=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣6)2﹣4m=36﹣4m>0,解得:m<1.考点:根的判别式.14、2.【解题分析】设第n层有a n个三角形(n为正整数),根据前几层三角形个数的变化,即可得出变化规律“a n=2n﹣2”,再代入n=2029即可求出结论.设第n层有a n个三角形(n为正整数),∵a2=2,a2=2+2=3,a3=2×2+2=5,a4=2×3+2=7,…,∴a n=2(n﹣2)+2=2n﹣2.∴当n=2029时,a2029=2×2029﹣2=2.故答案为2.【题目点拨】本题考查了规律型:图形的变化类,根据图形中三角形个数的变化找出变化规律“a n=2n﹣2”是解题的关键.15、1【解题分析】根据弧长公式l=,可得r=,再将数据代入计算即可.【题目详解】解:∵l=,∴r===1.故答案为:1.【题目点拨】考查了弧长的计算,解答本题的关键是掌握弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为r).16、1【解题分析】先由根与系数的关系求出m•n及m+n的值,再把11m n+化为m+nmn的形式代入进行计算即可.【题目详解】∵m、n是一元二次方程x2+1x﹣1=0的两实数根,∴m+n=﹣1,m•n=﹣1,∴11m n+=m+nmn=-4-1=1.故答案为1.【题目点拨】本题考查的是根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=﹣ba,x1•x2=ca.三、解答题(共8题,共72分)17、(1)见解析;(2)90°;(3)解题思路见解析.【解题分析】(1)将线段AD 绕点A 逆时针方向旋转90°,得到线段AE ,连结EC .(2)先判定△ABD ≌△ACE ,即可得到B ACE ∠=∠,再根据45B ACB ACE ∠=∠=∠=︒,即可得出90ECD ACB ACE ∠=∠+∠=︒;(3)连接DE ,由于△ADE 为等腰直角三角形,所以可求2DE =;由60ADF ∠=︒,7.5CAE ∠=︒ ,可求EDC ∠的度数和CDF ∠的度数,从而可知DF 的长;过点A 作AH DF ⊥于点H ,在Rt △ADH 中,由60ADF ∠=︒,AD=1可求AH 、DH 的长;由DF 、DH 的长可求HF 的长;在Rt △AHF 中,由AH 和HF ,利用勾股定理可求AF 的长.【题目详解】 解:()1如图,()2线段AD 绕点A 逆时针方向旋转90,得到线段AE .DAE 90∠∴=,AD AE =,DAC CAE 90∠∠∴+=.BAC 90∠=,BAD DAC 90∠∠∴+=.BAD CAE ∠∠∴=,在ABD 和ACE 中AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,ABD ∴≌()ACE SAS .B ACE ∠∠∴=,ABC 中,A 90∠=,AB AC =,B ACB ACE 45∠∠∠∴===.ECD ACB ACE 90∠∠∠∴=+=;()3Ⅰ.连接DE ,由于ADE 为等腰直角三角形,所以可求DE 2=;Ⅱ.由ADF 60∠=,CAE 7.5∠=,可求EDC ∠的度数和CDF ∠的度数,从而可知DF 的长;Ⅲ.过点A 作AH DF ⊥于点H ,在Rt ADH 中,由ADF 60∠=,AD 1=可求AH 、DH 的长;Ⅳ.由DF 、DH 的长可求HF 的长;Ⅴ.在Rt AHF 中,由AH 和HF ,利用勾股定理可求AF 的长.故答案为(1)见解析;(2)90°;(3)解题思路见解析.【题目点拨】本题主要考查旋转的性质,等腰直角三角形的性质的运用,解题的关键是要注意对应点与旋转中心所连线段的夹角等于旋转角.18、(1)见解析;(2)6或【解题分析】试题分析:(1)根据平行线的性质和中点的性质证明三角形全等,然后根据对角线互相平分的四边形是平行四边形完成证明;(2)由等腰三角形的性质,分三种情况:①BD=BC,②BD=CD,③BC=CD,分别求四边形的面积.试题解析:(1)证明:∵∠A=∠ABC=90°∴AF ∥BC∴∠CBE=∠DFE,∠BCE=∠FDE∵E 是边CD 的中点∴CE=DE∴△BCE ≌△FDE (AAS )∴BE=EF∴四边形BDFC 是平行四边形(2)若△BCD 是等腰三角形①若BD=DC在Rt △ABD 中,AB=∴四边形BDFC 的面积为S=×3=6; ②若BD=DC过D 作BC 的垂线,则垂足为BC 得中点,不可能;③若BC=DC过D 作DG ⊥BC,垂足为G在Rt △CDG 中,DG=∴四边形BDFC 的面积为S=. 考点:三角形全等,平行四边形的判定,勾股定理,四边形的面积19、证明见解析.【解题分析】过点B 作BF ⊥CE 于F ,根据同角的余角相等求出∠BCF=∠D ,再利用“角角边”证明△BCF 和△CDE 全等,根据全等三角形对应边相等可得BF=CE ,再证明四边形AEFB 是矩形,根据矩形的对边相等可得AE=BF ,从而得证.【题目详解】证明:如图,过点B 作BF ⊥CE 于F ,∵CE ⊥AD ,∴∠D +∠DCE =90°,∵∠BCD =90°,∴∠BCF +∠DCE =90°∴∠BCF =∠D ,在△BCF 和△CDE 中,90BCF D CED BFC BC CD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△BCF ≌△CDE (AAS ),∴BF =CE ,又∵∠A =90°,CE ⊥AD ,BF ⊥CE ,∴四边形AEFB 是矩形,∴AE =BF ,∴AE =CE .20、 (1)1;(2)-1.【解题分析】(1)分别计算负指数幂、绝对值、零指数幂、特殊角的三角函数值、立方根;(2)先把括号内通分相减,再计算分式的除法,除以一个分式,等于乘它的分子、分母交换位置.【题目详解】(1)原式1﹣2×2+1﹣﹣1﹣2=1. (2)原式=[31x +﹣(1)(1)1x x x +-+]•21(2)x x ++ =(2)(2)1x x x -+-+•21(2)x x ++ =22x x -+,当﹣2时,原式【题目点拨】 本题考查负指数幂、绝对值、零指数幂、特殊角的三角函数值、立方根以及分式的化简求值,解题关键是熟练掌握以上性质和分式的混合运算.21、(1)4a =,=2k ;(2)① 3,② 3 4.5m <≤.【解题分析】(1)将1)(,Aa 代入4=y x可求出a ,将A 点坐标代入y kx k =+可求出k ; (2)①根据题意画出函数图像,可直接写出区域W 内的整点个数;②求出直线l 的表达式为24y x =-,根据图像可得到两种极限情况,求出对应的m 的取值范围即可.【题目详解】 解:(1)将1)(,Aa 代入4=y x得a=4 将14)(,A代入=4+k k ,得=2k (2)①区域W 内的整点个数是3②∵直线l 是过点(2,0)D 且平行于直线22y x =+∴直线l 的表达式为24y x =-当24=5-x 时,即=4.5x 线段PM 上有整点∴3 4.5m <≤【题目点拨】本题考查了待定系数法求函数解析式以及函数图像的交点问题,正确理解整点的定义并画出函数图像,运用数形结合的思想是解题关键.22、(1)见解析;(2)5【解题分析】(1)根据相似三角形的判定,易证△ABF ∽△BEC ,从而可以证明∠BAF=∠CBE 成立;(2)根据锐角三角函数和三角形的相似可以求得AF 的长【题目详解】(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AD=BC ,∴∠D+∠C=180°,∠ABF=∠BEC ,∵∠AFB+∠AFE=180°,∠AFE=∠D ,∴∠C=∠AFB ,∴△ABF ∽△BEC ,∴∠BAF=∠CBE ;(2)∵AE ⊥DC ,AD=5,AB=8,sin ∠D=45, ∴AE=4,DE=3∴EC=5∵AE ⊥DC ,AB ∥DC ,∴∠AED=∠BAE=90°,在Rt △ABE 中,根据勾股定理得:=∵BC=AD=5,由(1)得:△ABF ∽△BEC ,∴ AF BC =AB AE =BF EC即5AF 5BF解得:【题目点拨】本题考查相似三角形的判定与性质、平行四边形的性质、解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答23、 (1)450、63; ⑵36°,图见解析; (3)2460 人.【解题分析】(1)根据“骑电动车”上下的人数除以所占的百分比,即可得到调查学生数;用调查学生数乘以选择B 类的人数所占的百分比,即可求出选择B 类的人数.(2)求出E 类的百分比,乘以360即可求出E 类对应的扇形圆心角α的度数;由总学生数求出选择公共交通的人数,补全统计图即可;(3)由总人数乘以“绿色出行”的百分比,即可得到结果.【题目详解】(1) 参与本次问卷调查的学生共有:16236%450÷=(人);选择B 类的人数有:4500.1463.⨯=故答案为450、63;(2) E 类所占的百分比为:136%14%20%16%4%10%.-----=E 类对应的扇形圆心角α的度数为:36010%36.⨯=选择C 类的人数为:45020%90⨯=(人).补全条形统计图为:(3) 估计该校每天“绿色出行”的学生人数为3000×(1-14%-4%)=2460 人.【题目点拨】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24、(1)证明见解析;(2)3【解题分析】(1)由BD是△ABC的角平分线,DE∥AB,可证得△BDE是等腰三角形,且BE=DE;又由BE=AF,可得DE=AF,即可证得四边形ADEF是平行四边形;(2)过点E作EH⊥BD于点H,由∠ABC=60°,BD是∠ABC的平分线,可求得BH的长,从而求得BE、DE的长,即可求得答案.【题目详解】(1)证明:∵BD是△ABC的角平分线,∴∠ABD=∠DBE,∵DE∥AB,∴∠ABD=∠BDE,∴∠DBE=∠BDE,∴BE=DE;∵BE=AF,∴AF=DE;∴四边形ADEF是平行四边形;(2)解:过点E作EH⊥BD于点H.∵∠ABC=60°,BD是∠ABC的平分线,∴∠ABD=∠EBD=30°,∴DH=12BD=12×6=3,∵BE=DE,∴BH=DH=3,∴BE==23,∴DE=BE=23.【题目点拨】此题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及三角函数等知识.注意掌握辅助线的作法.。

2022年中考数学全真模拟预测适应性押题卷 (附答案)

2022年中考数学全真模拟预测适应性押题卷 (附答案)

一、选择题:(本大题共6题,每题4分,满分24分)1.的相反数是()A.B.﹣C.D.﹣2.下列方程中,有实数解的是()A.x2﹣x+1=0 B.=1﹣xC.=0 D.=13.化简(x﹣1﹣1)﹣1的结果是()A.B.C.x﹣1 D.1﹣x4.如果点A(2,m)在抛物线y=x2上,将抛物线向右平移3个单位后,点A同时平移到点A′,那么A′坐标为()A.(2,1)B.(2,7)C.(5,4)D.(﹣1,4)5.在Rt△ABC中,∠C=90°,CD是高,如果AD=m,∠A=α,那么BC 的长为()A.m•tanα•cosαB.m•cotα•cosαC.D.6.如图,在△ABC与△ADE中,∠BAC=∠D,要使△ABC与△ADE相似,还需满足下列条件中的()A.=B.=C.=D.=二、填空题:(本大题共12题,每题4分,满分48分)7.化简:(﹣2a2)3=.8.函数的定义域是.9.方程=x﹣1的根为.10.如果函数y=(m﹣3)x+1﹣m的图象经过第二、三、四象限,那么常数m的取值范围为.11.二次函数y=x2﹣6x+1的图象的顶点坐标是.12.如果抛物线y=ax2﹣2ax+5与y轴交于点A,那么点A关于此抛物线对称轴的对称点坐标是.13.如图,已知D、E分别是△ABC的边AB和AC上的点,DE∥BC,BE 与CD相交于点F,如果AE=1,CE=2,那么EF:BF等于.14.在Rt△ABC中,∠C=90°,点G是重心,如果sinA=,BC=2,那么GC的长等于.15.已知在梯形ABCD中,AD∥BC,BC=2AD,设=,=,那么=.(用向量,的式子表示)16.在△ABC中,点D、E分别在边AB、AC上,∠AED=∠B,AB=6,BC=5,AC=4,如果四边形DBCE的周长为10,那么AD的长等于.17.如图,在▱ABCD中,AE⊥BC,垂足为E,如果AB=5,BC=8,sinB=,那么tan∠CDE=.18.将▱ABCD(如图)绕点A旋转后,点D落在边AB上的点D′,点C 落到C′,且点C′、B、C在一直线上.如果AB=13,AD=3,那么∠A 的余弦值为.三、解答题:(本大题7题,满分78分)19.化简:÷,并求当x=时的值.20.用配方法解方程:2x2﹣3x﹣3=0.21.如图,直线y=x与反比例函数的图象交于点A(3,a),第一象限内的点B在这个反比例函数图象上,OB与x轴正半轴的夹角为α,且tanα=.(1)求点B的坐标;(2)求△OAB的面积.22.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是26.6°,向前走30米到达B点,测得杆顶端点P和杆底端点Q的仰角分别是45°和33.7°,求该电线杆PQ的高度(结果精确到1米)(备用数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50,cot26.6°=2.00;sin33.7°=0.55,cos33.7°=0.83,tan33.7°=0.67,cot33.7°=1.50)23.已知:如图,在△ABC中,点D、E分别在边BC、AB上,BD=AD=AC,AD与CE相交于点F,AE2=EF•EC.(1)求证:∠ADC=∠DCE+∠EAF;(2)求证:AF•AD=AB•EF.24.如图,直线y=x+1与x轴、y轴分别相交于点A、B,二次函数的图象与y轴相交于点C,与直线y=x+1相交于点A、D,CD∥x轴,∠CDA=∠OCA.(1)求点C的坐标;(2)求这个二次函数的解析式.25.已知:在梯形ABCD中,AD∥BC,AC=BC=10,cos∠ACB=,点E 在对角线AC上,且CE=AD,BE的延长线与射线AD、射线CD分别相交于点F、G,设AD=x,△AEF的面积为y.(1)求证:∠DCA=∠EBC;(2)如图,当点G在线段CD上时,求y关于x的函数解析式,并写出它的定义域;(3)如果△DFG是直角三角形,求△AEF的面积.参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.的相反数是()A.B.﹣C.D.﹣【考点】实数的性质.【专题】计算题.【分析】符号不同的两个数互为相反数,因此的相反数为﹣,分母有理化得﹣.【解答】解:根据相反数定义得:的相反数为:﹣,分子分母同乘得:﹣.故选:D.【点评】题目考查了相反数和最简二次根式的定义,学生在进行相反数转换后,不要忘记对二次根式进行化简.胡文2.下列方程中,有实数解的是()A.x2﹣x+1=0 B.=1﹣xC.=0 D.=1【考点】根的判别式;无理方程;分式方程的解.【分析】A、根据△的值判断即可,B、根据二次根式的意义判断即可;C、根据分式方程的解的定义判断即可;D、根据分式方程的解的定义判断即可.【解答】解:A、∵△=1﹣4=﹣3<0,∴原方程无实数根,B、当1﹣x<0,即x>1时,原方程无实数根,C、当x2﹣x=0,即x=1,或x=0时,原方程无实数根,D、∵=1,∴x=﹣1.故选D.【点评】本题考查了一元二次方程的根得判别式,无理方程的解,分式方程的解,正确的解方程是解题的关键.3.化简(x﹣1﹣1)﹣1的结果是()A.B.C.x﹣1 D.1﹣x【考点】负整数指数幂.【分析】根据a﹣p=(a≠0,p为正整数)先计算x﹣1,再计算括号里面的减法,然后再次计算()﹣1即可.【解答】解:原式=(﹣1)﹣1=()﹣1=.故选:A.【点评】此题主要考查了负整数指数幂,关键是掌握负整数指数为正整数指数的倒数.4.如果点A(2,m)在抛物线y=x2上,将抛物线向右平移3个单位后,点A同时平移到点A′,那么A′坐标为()A.(2,1)B.(2,7)C.(5,4)D.(﹣1,4)【考点】二次函数图象与几何变换.【专题】几何变换.【分析】先把A(2,m)代入y=x2得m=4,于是得到A点坐标为(2,4),由于抛物线向右平移3个单位,则抛物线上所有点都右平移3个单位,然后根据点平移的规律可确定点A′坐标.【解答】解:把A(2,m)代入y=x2得m=4,则A点坐标为(2,4),把点A(2,4)向右平移3个单位后所得对应点A′的坐标为(5,4).故选C.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.5.在Rt△ABC中,∠C=90°,CD是高,如果AD=m,∠A=α,那么BC 的长为()A.m•tanα•cosαB.m•cotα•cosαC.D.【考点】解直角三角形.【专题】探究型.【分析】根据在Rt△ABC中,∠C=90°,CD是高,如果AD=m,∠A=α,可以用含m和α的三角函数值表示出CD,通过角相等,它们的三角函数值也相等,可以解答本题.【解答】解:∵在Rt△ABC中,∠C=90°,CD是高,如果AD=m,∠A=α,∴tanα=,∴CD=m•tanα,∵∠ACB=∠A+∠B=90°,∠BDC=∠B+∠BCD=90°,∠A=α,∴∠BCD=α,∴cos∠BCD=,即cos,CD=.故选C.【点评】本题考查解直角三角函数,解题的关键是明确各个三角函数值的意义,利用转化的思想找到所求问题需要的条件.6.如图,在△ABC与△ADE中,∠BAC=∠D,要使△ABC与△ADE相似,还需满足下列条件中的()A.=B.=C.=D.=【考点】相似三角形的判定.【专题】证明题.【分析】本题中已知∠BAC=∠D,则对应的夹边比值相等即可使△ABC与△ADE相似,结合各选项即可得问题答案.【解答】解:∵∠BAC=∠D,,∴△ABC∽△ADE.故选C.【点评】此题考查了相似三角形的判定:①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似,熟记各种判定相似三角形的方法是解题关键.二、填空题:(本大题共12题,每题4分,满分48分)7.化简:(﹣2a2)3= ﹣8a6.【考点】幂的乘方与积的乘方.【分析】根据积得乘方与幂的乘方的运算法则计算即可.【解答】解:(﹣2a2)3=(﹣2)3•(a2)3=﹣8a6.故答案为:﹣8a6.【点评】本题主要考查的是积得乘方与幂的乘方的运算,掌握积得乘方与幂的乘方的运算法则是解题的关键.8.函数的定义域是x≠﹣2 .【考点】函数自变量的取值范围;分式有意义的条件.【专题】计算题.【分析】分式有意义,分母不能为0,故分母x+2≠0,解得x的范围.【解答】解:根据题意得:x+2≠0解得x≠﹣2.故答案为x≠﹣2.【点评】本题考查了函数自变量取值范围的求法.分式有意义,分母不能为0.9.方程=x﹣1的根为 4 .【考点】无理方程.【专题】计算题.【分析】首先根据二次根式的基本性质得出x的取值范围,将无理方程两边平方取消二次根号,整理得一元二次方程,解一元二次方程,将解代回x 的取值范围验算即可得出答案.【解答】解:由二次根式性质得:x+5≥0,∴x≥5.将=x﹣1两边平方得:x+5=x2﹣2x+1,整理得:x2﹣3x﹣4=0,分解因式:(x﹣4)(x+1)=0,得:x1=4,x2=﹣1,∵x≥5,∴x=4.故答案为:4.【点评】题目考查了无理方程的求解和二次根式的性质,求解无理方程常用的方法是平方法,不过求出的解一定要带回无理方程进行验算,看是否符合二次根式的性质.10.如果函数y=(m﹣3)x+1﹣m的图象经过第二、三、四象限,那么常数m的取值范围为1<m<3 .【考点】一次函数图象与系数的关系.【分析】根据一次函数的性质列出关于m的不等式组,求出m的取值范围即可.【解答】解:∵函数y=(m﹣3)x+1﹣m的图象经过第二、三、四象限,∴,解得1<m<3.故答案为:1<m<3.【点评】本题考查的是一次函数的图象上与系数的关系,熟知一次函数y=kx+b(k≠0)中,当k<0,b<0时,函数图象经过第二、三、四象限是解答此题的关键.11.二次函数y=x2﹣6x+1的图象的顶点坐标是(3,﹣8).【考点】二次函数的性质.【分析】利用配方法将一般式转化为顶点式,即可得出顶点坐标.【解答】解:∵y=x2﹣6x+1=(x﹣3)2﹣8,∴抛物线顶点坐标为(3,﹣8).故答案为:(3,﹣8).【点评】本题考查了二次函数的性质,掌握抛物线的顶点式y=a(x﹣h)2+k,顶点坐标为(h,k)是解决问题的关键.12.如果抛物线y=ax2﹣2ax+5与y轴交于点A,那么点A关于此抛物线对称轴的对称点坐标是(2,5).【考点】二次函数图象上点的坐标特征.【分析】首先求得点A的坐标为(0,5),抛物线y=ax2﹣2ax+5对称轴为x=﹣=1,进一步利用二次函数的对称性求得点A关于此抛物线对称轴的对称点坐标是即可.【解答】解:∵抛物线y=ax2﹣2ax+5与y轴交于点A坐标为(0,5),对称轴为x=﹣=1,∴点A(0,5)关于此抛物线对称轴的对称点坐标是(2,5).故答案为:(2,5).【点评】本题考查了二次函数图象上点的坐标特征,二次函数的对称性,求得对称轴,掌握二次函数的对称性是解决问题的关键.13.如图,已知D、E分别是△ABC的边AB和AC上的点,DE∥BC,BE 与CD相交于点F,如果AE=1,CE=2,那么EF:BF等于.【考点】相似三角形的判定与性质.【分析】由DE∥BC,证得△ADE∽△ABC,根据相似三角形的性质得到=,由于△DEF∽△BCF,根据相似三角形的性质即可得到结论.【解答】解:∵AE=1,CE=2,∴AC=3,∵DE∥BC,∴△ADE∽△ABC,∴=,∵DE∥BC,∴△DEF∽△BCF,∴=,故答案为:1:3.【点评】本题考查了相似三角形的判定和性质,熟练正确相似三角形的判定和性质是解题的关键.14.在Rt△ABC中,∠C=90°,点G是重心,如果sinA=,BC=2,那么GC的长等于 2 .【考点】三角形的重心.【分析】根据题意画出图形,根据sinA=,BC=2可得出AB=3BC=6,利用直角三角形的性质求出CE的长,根据三角形重心的性质即可得出结论.【解答】解:如图所示,∵在Rt△ABC中,∠C=90°,sinA=,BC=2,∴AB=3BC=6.∵点G是重心,∴CD为△ABC的中线,∴CD=AB=3,∴CG=CD=×3=2.故答案为:2.【点评】本题考查的是三角形的重心,根据题意画出图形,由锐角三角函数的定义求出AB的长是解答此题的关键.15.已知在梯形ABCD中,AD∥BC,BC=2AD,设=,=,那么= ﹣﹣.(用向量,的式子表示)【考点】*平面向量.【分析】首先根据题意画出图形,然后过点D作DE∥AB,交BC于点E,易得四边形ABCD是平行四边形,则可求得与,再利用三角形法则求解即可求得答案.【解答】解:如图,过点D作DE∥AB,交BC于点E,∵AD∥BC,∴四边形ABCD是平行四边形,∴BE=AD,DE=AB,∵BC=2AD,=,=,∴==,==,∴=﹣=﹣(+)=﹣(+)=﹣﹣.故答案为:﹣﹣.【点评】此题考查了平面向量的知识以及平行四边形的判定与性质.注意结合题意画出图形,利用图形求解是关键.16.在△ABC中,点D、E分别在边AB、AC上,∠AED=∠B,AB=6,BC=5,AC=4,如果四边形DBCE的周长为10,那么AD的长等于 4 .【考点】相似三角形的判定与性质.【专题】计算题;图形的相似.【分析】由两对角相等的三角形相似,得到三角形AED与三角形ABC相似,由相似得比例,表示出AD,AE,DE,根据四边形DBCE周长求出AD 的长即可.【解答】解:∵∠A=∠A,∠AED=∠B,∴△AED∽△ABC,∴==,∵AB=6,BC=5,AC=4,∴==,设AD=4k,AE=6k,DE=5k,∵四边形DBCE周长DB+DE+EC+BC=10,∴6﹣4k+5k+4﹣6k+5=10,解得:k=1,则AD=4.故答案为:4.【点评】此题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解本题的关键.17.如图,在▱ABCD中,AE⊥BC,垂足为E,如果AB=5,BC=8,sinB=,那么tan∠CDE=.【考点】平行四边形的性质;解直角三角形.【分析】首先由已知条件和勾股定理计算CE=5,所以CD=AB,进而得到∠CDE=∠CED=∠ADE,所以tan∠CDE=tan∠ADE,于是得到结论.【解答】解:在△ABE中,AE⊥BC,AB=5,sinB=,∴BE=3,AE=4.∴EC=BC﹣BE=8﹣3=5.∵平行四边形ABCD,∴CD=AB=5.∴△CED为等腰三角形.∴∠CDE=∠CED.∵AD∥BC,∴∠ADE=∠CED.∴∠CDE=∠ADE.在Rt△ADE中,AE=4,AD=BC=8,∴tan∠CDE==,故答案为:.【点评】本题考查了解直角三角形的运用、勾股定理的运用、平行四边形的性质和等腰三角形的判定和性质,解题的关键是找到图形中相等的角.18.将▱ABCD(如图)绕点A旋转后,点D落在边AB上的点D′,点C 落到C′,且点C′、B、C在一直线上.如果AB=13,AD=3,那么∠A的余弦值为.【考点】旋转的性质;平行四边形的性质.【专题】计算题.【分析】根据平行四边形的性质得∠DAB=∠D′AB′,AB=AB′=C′D′=13,再由AB′∥C′D′得∠D′AB′=∠BD′C′,加上∠C=∠DAB,则∠C=∠BD′C′,接着由点C′、B、C在一直线上,AB∥CD得到∠C=∠C′BD′,所以∠C′BD′=∠BD′C′,可判断△C′BD′为等腰三角形,作C′H⊥D′B,根据等腰三角形的性质得BH=D′H,由于BD′=10得到D′H=5,然后根据余弦的定义得到cos ∠HD′C′=,由此得到∠A的余弦值.【解答】解:∵▱ABCD绕点A旋转后得到▱AB′C′D′,∴∠DAB=∠D′AB′,AB=AB′=C′D′=13,∵AB′∥C′D′,∴∠D′AB′=∠BD′C′,∵四边形ABCD为平行四边形,∴∠C=∠DAB,∴∠C=∠BD′C′,∵点C′、B、C在一直线上,而AB∥CD,∴∠C=∠C′BD′,∴∠C′BD′=∠BD′C′,∴△C′BD′为等腰三角形,作C′H⊥D′B,则BH=D′H,∵AB=13,AD=3,∴BD′=10,∴D′H=5,∴cos∠HD′C′==,即∠A的余弦值为.故答案为.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了平行四边形的性质.解决本题的关键是证明△C′BD′为等腰三角形.三、解答题:(本大题7题,满分78分)19.化简:÷,并求当x=时的值.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=•=,当x=时,原式==﹣.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.用配方法解方程:2x2﹣3x﹣3=0.【考点】解一元二次方程-配方法.【分析】首先把方程的二次项系数化为1,移项,然后在方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解.【解答】解:2x2﹣3x﹣3=0,x2﹣x﹣=0,x2﹣x+=+,(x﹣)2=,x﹣=±,解得:x1=,x2=.【点评】此题考查利用配方法解一元二次方程,用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.21.如图,直线y=x与反比例函数的图象交于点A(3,a),第一象限内的点B在这个反比例函数图象上,OB与x轴正半轴的夹角为α,且tanα=.(1)求点B的坐标;(2)求△OAB的面积.【考点】反比例函数与一次函数的交点问题.【专题】计算题.【分析】(1)用直线求出点A坐标为(3,4),反比例函数解析式y=,设点B坐标为(x,),tanα=,得出=,x=6,得出B点坐标(6,2);(2)过A点做AC⊥x轴,交OB于点C,将三角形OAB分为两个三角形,分别求解即可.【解答】解:(1)∵直线y=x与反比例函数的图象交于点A(3,a),∴A(3,4),反比例函数解析式y=,∵点B在这个反比例函数图象上,设B(x,),∵tanα=,∴=,解得:x=±6,∵点B在第一象限,∴x=6,∴B(6,2).答:点B坐标为(6,2).(2)设直线OB为y=kx,(k≠0),将点B(6,2)代入得:k=,∴OB直线解析式为:y=x,过A点做AC⊥x轴,交OB于点C,如下图:则点C坐标为:(3,1),∴AC=3S△OAB的面积=S△OAC的面积+S△ACB的面积,=×|AC|×6=9.△OAB的面积为9.【点评】题目考查了一次函数与反比例函数的基本性质.求函数解析式及函数交点是函数常见问题.题目整体较为简单,学生在解决(2)中的面积问题可以利用多种方法求解.22.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是26.6°,向前走30米到达B点,测得杆顶端点P和杆底端点Q的仰角分别是45°和33.7°,求该电线杆PQ的高度(结果精确到1米)(备用数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50,cot26.6°=2.00;sin33.7°=0.55,cos33.7°=0.83,tan33.7°=0.67,cot33.7°=1.50)【考点】解直角三角形的应用-仰角俯角问题.【分析】延长PQ交直线AB于点E,设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE﹣BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ 的长度即可求解.【解答】解:延长PQ交直线AB于点E,设PE=x米.在直角△ABE中,∠PBE=45°,则BE=PE=x米;∵∠PAE=26.6°在直角△APE中,AE=PE•cot∠PAE≈2x,∵AB=AE﹣BE=30米,则2x﹣x=30,解得:x=30.则BE=PE=30米.在直角△BEQ中,QE=BE•tan∠QBE=30×tan33.7°=30×0.67≈20.1米.∴PQ=PE﹣QE=30﹣20=10(米).答:电线杆PQ的高度是10米.【点评】本题考查解直角三角形的应用,注意掌握当两个直角三角形有公共边时,先求出这条公共边的长是解答此类题的一般思路.23.已知:如图,在△ABC中,点D、E分别在边BC、AB上,BD=AD=AC,AD与CE相交于点F,AE2=EF•EC.(1)求证:∠ADC=∠DCE+∠EAF;(2)求证:AF•AD=AB•EF.【考点】相似三角形的判定与性质.【专题】证明题.【分析】(1)根据等腰三角形的性质得到∠B=∠BAD,∠ADC=∠ACD,推出△EAF∽△ECA,根据相似三角形的性质得到∠EAF=∠ECA,于是得到∠ADC=∠ACD=∠ACE+∠ECB=∠DCE+∠EAF;(2)根据相似三角形的性质得到,即,推出△FAE∽△ABC,根据相似三角形的性质得到,于是得到FA•AC=EF•AB,等量代换即可得到结论.【解答】证明:(1)∵BD=AD=AC,∴∠B=∠BAD,∠ADC=∠ACD,∵AE2=EF•EC,∴,∵∠E=∠E,∴△EAF∽△ECA,∴∠EAF=∠ECA,∴∠ADC=∠ACD=∠ACE+∠ECB=∠DCE+∠EAF;(2)∵△EAF∽△ECA,∴,即,∵∠EFA=∠BAC,∠EAF=∠B,∴△FAE∽△ABC,∴,∴FA•AC=EF•AB,∵AC=AD,∴AF•AD=AB•EF.【点评】本题考查了相似三角形的判定和性质,等腰三角形的性质,三角形的外角的性质,证得△EAF∽△ECA是解题的关键.24.如图,直线y=x+1与x轴、y轴分别相交于点A、B,二次函数的图象与y轴相交于点C,与直线y=x+1相交于点A、D,CD∥x轴,∠CDA=∠OCA.(1)求点C的坐标;(2)求这个二次函数的解析式.【考点】二次函数综合题.【分析】(1)首先利用一次函数解析式计算出A、B两点坐标,然后再根据平行线的性质可得∠ACO=∠BAO,再利用三角函数可得CO长,进而可得C点坐标;(2)首先证明△CBD∽△OBA,根据相似三角形的性质可得=,然后可得D点坐标,再设出二次函数解析式,利用待定系数法求出解析式即可.【解答】解:(1)∵函数y=x+1中,当y=0时,x=﹣2,∴A(﹣2,0),∵函数y=x+1中,当x=0时,y=1,∴B(0,1),∵CD∥x轴,∴∠BAO=∠ADC,∵∠CDA=∠OCA,∴∠ACO=∠BAO,∴tan∠ACO=tan∠BAO=,∴CO=4,∴C(0,4);(2)∵∠AOB=∠OCD=90°,∠BAO=∠BDC=90°,∴△CBD∽△OBA,∴=,∴=,∴CD=6,∴D(6,4),设二次函数的解析式为y=ax2+bx+c,∵图象经过A(﹣2,0),D(6,4),C(0,4),∴,解得:.∴二次函数的解析式为y=﹣x2+x+4.【点评】此题主要考查了一次函数、二次函数以及相似三角形和三角函数的综合应用,关键是掌握一次函数与坐标轴交点的求法,以及待定系数法求二次函数解析式的方法.25.已知:在梯形ABCD中,AD∥BC,AC=BC=10,cos∠ACB=,点E 在对角线AC上,且CE=AD,BE的延长线与射线AD、射线CD分别相交于点F、G,设AD=x,△AEF的面积为y.(1)求证:∠DCA=∠EBC;(2)如图,当点G在线段CD上时,求y关于x的函数解析式,并写出它的定义域;(3)如果△DFG是直角三角形,求△AEF的面积.【考点】相似形综合题.【专题】压轴题;数形结合.【分析】(1)由AD与BC平行,得到一对内错角相等,再由AD=CE,AC=BC,利用SAS可得△DCA≌△ECB,由全等三角形的性质可得结论;(2)由AD与BC平行,得到三角形AEF与三角形CEB相似,由相似得比例表示出AF,过E作EH垂直于AF,根据锐角三角函数定义表示出EH,进而表示出y与x的函数解析式,并求出x的范围即可;(3)分两种情况考虑:①当∠FDG=90°时,如图2所示,在直角三角形ACD中,利用锐角三角函数定义求出AD的长,即为x的值,代入求出y 的值,即为三角形AEF面积;②当∠DGF=90°时,过E作EM⊥BC于点M,如图3所示,由相似列出关于x的方程,求出方程的解得到x的值,进而求出y的值,即为三角形AEF面积.【解答】(1)证明:∵AD∥BC,∴∠DAC=∠ECB,在△DCA和△ECB中,,∴△DCA≌△ECB(SAS),∴∠DCA=∠EBC;(2)∵AD∥BC,∴△AEF∽△CEB,∴,即,解得:AF=,作EH⊥AF于H,如图1所示,∵cos∠ACB=,∴EH=AE=(10﹣x),∴y=S△AEF=×(10﹣x)×=,∴y=,∵点G在线段CD上,∴AF≥AD,即≥x,∴x≤5﹣5,∴0<x≤5﹣5,∴y关于x的函数解析式为:y=,(0<x≤5﹣5);(3)分两种情况考虑:①当∠FDG=90°时,如图2所示:在Rt△ADC中,AD=AC×=8,即x=8,∴S△AEF=y==;②当∠DGF=90°时,过E作EM⊥BC于点M,如图3所示,由(1)得:CE=AF=x,在Rt△EMC中,EM=x,MC=x,∴BM=BC﹣MC=10﹣x,∵∠GCE=∠GBC,∠EGC=∠CGB,∴△CGE∽△BGC,∴=,即=,∵∠EBM=∠CBG,∠BME=∠BGC=90°,∴△BME∽△BGC,∴==,∴=,即x=5,此时y==15,综上,此时△AEF的面积为或15.【点评】此题属于相似型综合题,涉及的知识有:平行线的判定,全等三角形的判定与性质,相似三角形的判定与性质,锐角三角函数定义,利用了分类讨论的思想,熟练掌握相似三角形的判定与性质是解本题的关键.。

山东省青岛市2024届中考数学模拟预测题含解析

山东省青岛市2024届中考数学模拟预测题含解析

山东省青岛市2024届中考数学模拟预测题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,点P 是菱形ABCD 边上的一动点,它从点A 出发沿在A→B→C→D 路径匀速运动到点D ,设△PAD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为( )A .B .C .D .2.已知x=2﹣,则代数式(7+4)x 2+(2+)x+ 的值是( ) A .0 B . C .2+D .2﹣ 3.下列所述图形中,是轴对称图形但不是中心对称图形的是( )A .线段B .等边三角形C .正方形D .平行四边形4.下列运算结果是无理数的是( )A .32×2B .32⨯C .722÷D .22135-5.在平面直角坐标系中,将点P (4,﹣3)绕原点旋转90°得到P 1,则P 1的坐标为( )A .(﹣3,﹣4)或(3,4)B .(﹣4,﹣3)C .(﹣4,﹣3)或(4,3)D .(﹣3,﹣4)6.下列图形中,是轴对称图形但不是中心对称图形的是( )A .B .C .D .7.如图所示的几何体的主视图正确的是( )A.B.C.D.8.将直线y=﹣x+a的图象向右平移2个单位后经过点A(3,3),则a的值为()A.4 B.﹣4 C.2 D.﹣29.不等式组1351xx-<⎧⎨-≤⎩的解集是()A.x>﹣1 B.x≤2C.﹣1<x<2 D.﹣1<x≤210.左下图是一些完全相同的小正方体搭成的几何体的三视图.这个几何体只能是()A.B.C.D.二、填空题(共7小题,每小题3分,满分21分)11.点G是三角形ABC的重心,AB a=,AC b=,那么BG=_____.12.如图1,在平面直角坐标系中,将▱ABCD放置在第一象限,且AB∥x轴,直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2,那么ABCD 面积为_____.13.两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于______ 度.14.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…、6点的标记,掷一次骰子,向上的一面出现的点数是素数的概率是_____.15.如图,等边△ABC 的边长为6,∠ABC ,∠ACB 的角平分线交于点D ,过点D 作EF ∥BC ,交AB 、CD 于点E 、F ,则EF 的长度为_____.16.如图,已知点A(4,0),O 为坐标原点,P 是线段OA 上任意一点(不含端点O 、A),过P 、O 两点的二次函数y 1和过P 、A 两点的二次函数y 2的图象开口均向下,它们的顶点分别为B 、C ,射线OB 与AC 相交于点D .当OD =AD =3时,这两个二次函数的最大值之和等于______.17.如图,若双曲线k y x=(0k >)与边长为3的等边△AOB (O 为坐标原点)的边OA 、AB 分别交于C 、D 两点,且OC =2BD ,则k 的值为_____.三、解答题(共7小题,满分69分)18.(10分)如图,直线:3l y x =-+与x 轴交于点M ,与y 轴交于点A ,且与双曲线k y x=的一个交点为(1,)B m -,将直线l 在x 轴下方的部分沿x 轴翻折,得到一个“V ”形折线AMN 的新函数.若点P 是线段BM 上一动点(不包括端点),过点P作x轴的平行线,与新函数交于另一点C,与双曲线交于点D.(1)若点P的横坐标为a,求MPD的面积;(用含a的式子表示)(2)探索:在点P的运动过程中,四边形BDMC能否为平行四边形?若能,求出此时点P的坐标;若不能,请说明理由.19.(5分)如图,将连续的奇数1,3,5,7…按如图中的方式排成一个数,用一个十字框框住5个数,这样框出的任意5个数中,四个分支上的数分别用a,b,c,d表示,如图所示.(1)计算:若十字框的中间数为17,则a+b+c+d=______.(2)发现:移动十字框,比较a+b+c+d与中间的数.猜想:十字框中a、b、c、d的和是中间的数的______;(3)验证:设中间的数为x,写出a、b、c、d的和,验证猜想的正确性;(4)应用:设M=a+b+c+d+x,判断M的值能否等于2020,请说明理由.20.(8分)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接DB.(1)求此抛物线的解析式及顶点D的坐标;(2)点M是抛物线上的动点,设点M的横坐标为m.①当∠MBA=∠BDE时,求点M的坐标;②过点M作MN∥x轴,与抛物线交于点N,P为x轴上一点,连接PM,PN,将△PMN沿着MN翻折,得△QMN,若四边形MPNQ恰好为正方形,直接写出m的值.21.(10分)问题探究(1)如图①,点E 、F 分别在正方形ABCD 的边BC 、CD 上,∠EAF=45°,则线段BE 、EF 、FD 之间的数量关系为 ; (2)如图②,在△ADC 中,AD=2,CD=4,∠ADC 是一个不固定的角,以AC 为边向△ADC 的另一侧作等边△ABC ,连接BD ,则BD 的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由;问题解决(3)如图③,在四边形ABCD 中,AB=AD ,∠BAD=60°,BC=42,若BD ⊥CD ,垂足为点D ,则对角线AC 的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由.22.(10分)列方程解应用题:某景区一景点要限期完成,甲工程队单独做可提前一天完成,乙工程队独做要误期6天,现由两工程队合做4天后,余下的由乙工程队独做,正好如期完成,则工程期限为多少天?23.(12分)化简:()()2a b a 2b a -+-.24.(14分)某市对城区部分路段的人行道地砖、绿化带、排水管等公用设施进行全面更新改造,根据市政建设的需要,需在35天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作,只需10天完成.甲、乙两个工程队单独完成此项工程各需多少天?若甲工程队每天的工程费用是4万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解题分析】【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【题目详解】分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=AP•h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C不正确;②当P在边BC上时,如图2,y=AD•h,AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=PD•h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项D不正确,故选B.【题目点拨】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,运用分类讨论思想,分三段求出△PAD的面积的表达式是解题的关键.2、C【解题分析】把x的值代入代数式,运用完全平方公式和平方差公式计算即可【题目详解】解:当x=2﹣时,(7+4)x2+(2+)x+=(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7-4)+1+=49-48+1+=2+故选:C.【题目点拨】此题考查二次根式的化简求值,关键是代入后利用完全平方公式和平方差公式进行计算.3、B【解题分析】根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【题目详解】解:A、线段,是轴对称图形,也是中心对称图形,故本选项不符合题意;B、等边三角形,是轴对称图形但不是中心对称图形,故本选项符合题意;C、正方形,是轴对称图形,也是中心对称图形,故本选项不符合题意;D、平行四边形,不是轴对称图形,是中心对称图形,故本选项不符合题意.故选:B.【题目点拨】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4、B【解题分析】根据二次根式的运算法则即可求出答案.【题目详解】A选项:原式=3×2=6,故A不是无理数;B6,故B是无理数;C选项:原式=36=6,故C不是无理数;-+=⨯=12,故D不是无理数D选项:原式=(135)(135)818故选B.【题目点拨】考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.5、A【解题分析】分顺时针旋转,逆时针旋转两种情形求解即可.【题目详解】解:如图,分两种情形旋转可得P′(3,4),P″(−3,−4),故选A.【题目点拨】本题考查坐标与图形变换——旋转,解题的关键是利用空间想象能力.6、A【解题分析】A.是轴对称图形不是中心对称图形,正确;B.是轴对称图形也是中心对称图形,错误;C.是中心对称图形不是轴对称图形,错误;D. 是轴对称图形也是中心对称图形,错误,故选A.【题目点拨】本题考查轴对称图形与中心对称图形,正确地识别是解题的关键.7、D【解题分析】主视图是从前向后看,即可得图像.【题目详解】主视图是一个矩形和一个三角形构成.故选D.8、A【解题分析】直接根据“左加右减”的原则求出平移后的解析式,然后把A(3,3)代入即可求出a的值.【题目详解】由“右加左减”的原则可知,将直线y=-x+b向右平移2个单位所得直线的解析式为:y=-x+b+2,把A(3,3)代入,得3=-3+b+2,解得b=4.故选A.【题目点拨】本题考查了一次函数图象的平移,一次函数图象的平移规律是:①y=kx+b向左平移m个单位,是y=k(x+m)+b, 向右平移m个单位是y=k(x-m)+b,即左右平移时,自变量x左加右减;②y=kx+b向上平移n个单位,是y=kx+b+n, 向下平移n 个单位是y=kx+b-n,即上下平移时,b的值上加下减.9、D【解题分析】由﹣x<1得,∴x>﹣1,由3x﹣5≤1得,3x≤6,∴x≤2,∴不等式组的解集为﹣1<x≤2,故选D10、A【解题分析】试题分析:根据几何体的主视图可判断C不合题意;根据左视图可得B、D不合题意,因此选项A正确,故选A.考点:几何体的三视图二、填空题(共7小题,每小题3分,满分21分)11、1233b a-.【解题分析】根据题意画出图形,由AB a=,AC b=,根据三角形法则,即可求得BD的长,又由点G是△ABC的重心,根据重心的性质,即可求得.【题目详解】如图:BD是△ABC的中线,∵AC b=,∴AD=12 b,∵AB a=,∴BD=12b﹣a,∵点G是△ABC的重心,∴BG=23BD=13b﹣23a,故答案为:13b﹣23a.【题目点拨】本题考查了三角形的重心的性质:三角形的重心到三角形顶点的距离是它到对边中点的距离的2倍,本题也考查了向量的加法及其几何意义,是基础题目.12、1【解题分析】根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是1时经过B,则AB=1-4=4,当直线经过D点,设其交AB与E,则DE=22,作DF⊥AB于点F.利用三角函数即可求得DF即平行四边形的高,然后利用平行四边形的面积公式即可求解【题目详解】解:由图象可知,当移动距离为4时,直线经过点A,当移动距离为7时,直线经过点D,移动距离为1时,直线经过点B,则AB=1﹣4=4,当直线经过点D,设其交AB于点E,则DE=22,作DF⊥AB于点F,∵y=﹣x于x轴负方向成45°角,且AB∥x轴,∴∠DEF=45°,∴DF=EF,∴在直角三角形DFE中,DF2+EF2=DE2,∴2DF2=1∴DF=2,那么ABCD面积为:AB•DF=4×2=1,故答案为1.【题目点拨】此题主要考查平行四边形的性质和一次函数图象与几何变换,解题关键在于利用好辅助线13、108°【解题分析】如图,易得△OCD为等腰三角形,根据正五边形内角度数可求出∠OCD,然后求出顶角∠COD,再用360°减去∠AOC、∠BOD、∠COD即可【题目详解】∵五边形是正五边形,∴每一个内角都是108°,∴∠OCD=∠ODC=180°-108°=72°,∴∠COD=36°,∴∠AOB=360°-108°-108°-36°=108°.故答案为108°【题目点拨】本题考查正多边形的内角计算,分析出△OCD是等腰三角形,然后求出顶角是关键.14、1 2【解题分析】先判断掷一次骰子,向上的一面的点数为素数的情况,再利用概率公式求解即可.【题目详解】解:∵掷一次这枚骰子,向上的一面的点数为素数的有2,3,5共3种情况,∴掷一次这枚骰子,向上的一面的点数为素数的概率是:31 62 .故答案为:12.【题目点拨】本题考查了求简单事件的概率,根据题意判断出素数的个数是解题的关键.15、4【解题分析】试题分析:根据BD和CD分别平分∠ABC和∠ACB,和EF∥BC,利用两直线平行,内错角相等和等量代换,求证出BE=DE,DF=FC.然后即可得出答案.解:∵在△ABC中,BD和CD分别平分∠ABC和∠ACB,∴∠EBD=∠DBC,∠FCD=∠DCB,∵EF∥BC,∴∠EBD=∠DBC=∠EDB,∠FCD=∠DCB=∠FDC,∴BE=DE,DF=EC,∵EF=DE+DF,∴EF=EB+CF=2BE,∵等边△ABC的边长为6,∵EF∥BC,∴△ADE是等边三角形,∴EF=AE=2BE,∴EF==,故答案为4考点:等边三角形的判定与性质;平行线的性质.165【解题分析】此题考查了二次函数的最值,勾股定理,等腰三角形的性质和判定的应用,题目比较好,但是有一定的难度,属于综合性试题.【题目详解】过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,则BF+CM是这两个二次函数的最大值之和,BF∥DE∥CM,求出AE=OE=2,DE= 5设P(2x,0),根据二次函数的对称性得出OF=PF=x,推出△OBF∽△ODE,△ACM ∽△ADE ,得出BF DE = ,OF CM AM OE DE AE =,代入求出BF 和CM ,相加即可求出答案. 过B 作BF ⊥OA 于F ,过D 作DE ⊥OA 于E ,过C 作CM ⊥OA 于M ,∵BF ⊥OA ,DE ⊥OA ,CM ⊥OA ,∴BF ∥DE ∥CM .∵OD=AD=3,DE ⊥OA ,∴OE=EA= 12OA=2, 由勾股定理得:DE=22OD OE -=5,设P (2x ,0),根据二次函数的对称性得出OF=PF=x , ∵BF ∥DE ∥CM ,∴△OBF ∽△ODE ,△ACM ∽△ADE ,∴,BF OF CM AM DE OE DE AE==, ∵AM=PM= 12(OA-OP )= 12(4-2x )=2-x , 即2,2255BF x CM x -==, 解得:55BF x,CM 5x 22==- ∴BF+CM= 5.5【题目点拨】考核知识点:二次函数综合题.熟记性质,数形结合是关键.17363. 【解题分析】过点C 作CE ⊥x 轴于点E ,过点D 作DF ⊥x 轴于点F ,设OC=2x ,则BD=x ,在Rt △OCE 中,∠COE=60°,则OE=x ,3x ,则点C 坐标为(x 3x ),在Rt △BDF 中,BD=x ,∠DBF=60°,则BF=12x ,DF=32x , 则点D 的坐标为(132x -3x ), 将点C 的坐标代入反比例函数解析式可得:23k x =,将点D 的坐标代入反比例函数解析式可得:2333k x x =, 223333x x =, 解得:165x =,20x =(舍去), 故23k x =363363. 考点:1.反比例函数图象上点的坐标特征;2.等边三角形的性质.三、解答题(共7小题,满分69分)18、(1)213222=-++S a a ;(2)不能成为平行四边形,理由见解析 【解题分析】(1)将点B 坐标代入一次函数3y x =-+上可得出点B 的坐标,由点B 的坐标,利用待定系数法可求出反比例函数解析式,根据M 点的坐标为(3,0),可以判断出13a -<<,再由点P 的横坐标可得出点P 的坐标是(,3)P a a -+,结合PD ∥x 轴可得出点D 的坐标,再利用三角形的面积公式即可用含a 的式子表示出△MPD 的面积;(2)当P 为BM 的中点时,利用中点坐标公式可得出点P 的坐标,结合PD ∥x 轴可得出点D 的坐标,由折叠的性质可得出直线MN 的解析式,利用一次函数图象上点的坐标特征可得出点C 的坐标,由点P ,C ,D 的坐标可得出PD≠PC ,由此即可得出四边形BDMC 不能成为平行四边形.【题目详解】解:(1)∵点(1,)B m -在直线3y x =-+上,∴4m =.∵点(1,4)B -在k y x =的图像上, ∴4k =-,∴4y x =-. 设(,3)P a a -+,则4,33D a a -⎛⎫-+ ⎪-+⎝⎭. ∵(3,0)M ∴13a -<<.记MPD 的面积为S ,∴14(3)23S a a a -⎛⎫=--+ ⎪-+⎝⎭213222a a =-++.(2)当点P 为BM 中点时,其坐标为(1,2)P ,∴(2,2)D -.∵直线l 在x 轴下方的部分沿x 轴翻折得MN 表示的函数表达式是:3(3)y x x =-,∴(5,2)C ,∴3PD =,4PC =∴PC 与PD 不能互相平分,∴四边形不能成为平行四边形.【题目点拨】本题考查了一次函数图象上点的坐标特征、待定系数法求反比例函数解析式、反比例函数图象上点的坐标特征、三角形的面积、折叠的性质以及平行四边形的判定,解题的关键是:(1)利用一次(反比例)函数图象上点的坐标特征,找出点P ,M ,D 的坐标;(2)利用平行四边形的对角线互相平分,找出四边形BDMC 不能成为平行四边形.19、(1)68 ;(2)4倍;(3)4x ,猜想正确,见解析;(4)M 的值不能等于1,见解析.【解题分析】(1)直接相加即得到答案;(2)根据(1)猜想a+b+c+d=4x ;(3)用x 表示a 、b 、c 、d ,相加后即等于4x ;(4)得到方程5x=1,求出的x 不符合数表里数的特征,故不能等于1.【题目详解】(1)5+15+19+29=68,故答案为68;(2)根据(1)猜想a+b+c+d=4x ,答案为:4倍;(3)a=x-12,b=x-2,c=x+2,d=x+12,∴a+b+c+d=x-12+x-2+x+2+x+12=4x ,∴猜想正确;(4)M=a+b+c+d+x=4x+x=5x ,若M=5x=1,解得:x=404,但整个数表所有的数都为奇数,故不成立,∴M 的值不能等于1.【题目点拨】本题考查了一元一次方程的应用.当解得方程的解后,要观察是否满足题目和实际要求再进行取舍.20、(1)(1,4)(2)①点M 坐标(﹣12,74)或(﹣32,﹣94);②m 【解题分析】(1)利用待定系数法即可解决问题;(2)①根据tan ∠MBA=2233m m MG BG m-++=-,tan ∠BDE=BE DE =12,由∠MBA=∠BDE ,构建方程即可解决问题;②因为点M 、N 关于抛物线的对称轴对称,四边形MPNQ 是正方形,推出点P 是抛物线的对称轴与x 轴的交点,即OP=1,易证GM=GP ,即|-m 2+2m+3|=|1-m|,解方程即可解决问题.【题目详解】解:(1)把点B (3,0),C (0,3)代入y=﹣x 2+bx+c ,得到930{3b c c -++==,解得23b c ,∴抛物线的解析式为y=﹣x 2+2x+3,∵y=﹣x 2+2x ﹣1+1+3=﹣(x ﹣1)2+4,∴顶点D 坐标(1,4);(2)①作MG ⊥x 轴于G ,连接BM .则∠MGB=90°,设M (m ,﹣m 2+2m+3),∴MG=|﹣m 2+2m+3|,BG=3﹣m ,∴tan ∠MBA=2233m m MG BG m-++=-,∵DE ⊥x 轴,D (1,4),∴∠DEB=90°,DE=4,OE=1,∵B (3,0),∴BE=2,∴tan ∠BDE=BEDE =12,∵∠MBA=∠BDE ,∴2233m m m -++-=12,当点M 在x 轴上方时,2233m m m -++- =12,解得m=﹣12或3(舍弃),∴M(﹣12,74),当点M在x轴下方时,2233m mm---=12,解得m=﹣32或m=3(舍弃),∴点M(﹣32,﹣94),综上所述,满足条件的点M坐标(﹣12,74)或(﹣32,﹣94);②如图中,∵MN∥x轴,∴点M、N关于抛物线的对称轴对称,∵四边形MPNQ是正方形,∴点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|﹣m2+2m+3|=|1﹣m|,当﹣m2+2m+3=1﹣m时,解得m=3172±,当﹣m2+2m+3=m﹣1时,解得117±,∴满足条件的m 317±117±.【题目点拨】本题考查二次函数综合题、锐角三角函数、正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.21、(1)BE+DF=EF;(2)存在,BD的最大值为6;(3)存在,AC的最大值为26.【解题分析】(1)作辅助线,首先证明△ABE≌△ADG,再证明△AEF≌△AEG,进而得到EF=FG问题即可解决;(2)将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE,由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,可得DE=BD,根据DE<DC+CE,则当D、C、E三点共线时,DE存在最大值,问题即可解决;(3)以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,由旋转的性质得△DBE是等边三角形,则DE=AC,根据在等边三角形BCE中,EF⊥BC,可求出BF,EF,以BC为直径作⊙F,则点D在⊙F上,连接DF,可求出DF,则AC=DE≤DF+EF,代入数值即可解决问题.【题目详解】(1)如图①,延长CD至G,使得DG=BE,∵正方形ABCD中,AB=AD,∠B=∠AFG=90°,∴△ABE≌△ADG,∴AE=AG,∠BAE=∠DAG,∵∠EAF=45°,∠BAD=90°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠GAF=∠EAF,又∵AF=AF,∴△AEF≌△AEG,∴EF=GF=DG+DF=BE+DF,故答案为:BE+DF=EF;(2)存在.在等边三角形ABC中,AB=BC,∠ABC=60°,如图②,将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE.由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,∴△DBE是等边三角形,∴DE=BD,∴在△DCE中,DE<DC+CE=4+2=6,∴当D、C、E三点共线时,DE存在最大值,且最大值为6,∴BD的最大值为6;(3)存在.如图③,以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,∵AB=BD,∠ABC=∠DBE,BC=BE,∴△ABC≌△DBE,∴DE=AC,∵在等边三角形BCE中,EF⊥BC,∴BF=BC=2,∴EF=BF=×2=2,以BC为直径作⊙F,则点D在⊙F上,连接DF,∴DF=BC=×4=2,∴AC=DE≤DF+EF=2+2,即AC的最大值为2+2.【题目点拨】本题考查了全等三角形的判定与性质以及旋转的性质,解题的关键是熟练的掌握全等三角形的判定与性质以及旋转的性质.22、15天【解题分析】试题分析:首先设规定的工期是x天,则甲工程队单独做需(x-1)天,乙工程队单独做需(x+6)天,根据题意可得等量关系:乙工程队干x天的工作量+甲工程队干4天的工作量=1,根据等量关系列出方程,解方程即可.试题解析:设工程期限为x天.根据题意得,x41 x6x-1+= +解得:x=15.经检验x=15是原分式方程的解.答:工程期限为15天.23、2b【解题分析】原式第一项利用完全平方公式化简,第二项利用单项式乘多项式法则计算,去括号合并即可得到结果.【题目详解】解:原式2222a 2ab b 2ab a b =-++-=.24、(1)甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天;(2)应该选择甲工程队承包该项工程.【解题分析】(1)设甲工程队单独完成该工程需x 天,则乙工程队单独完成该工程需2x 天.再根据“甲、乙两队合作完成工程需要10天”,列出方程解决问题;(2)首先根据(1)中的结果,从而可知符合要求的施工方案有三种:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:由甲乙两队合作完成.针对每一种情况,分别计算出所需的工程费用.【题目详解】(1)设甲工程队单独完成该工程需x 天,则乙工程队单独完成该工程需2x 天. 根据题意得:101012x x+= 方程两边同乘以2x ,得230x =解得:15x =经检验,15x =是原方程的解.∴当15x =时,230x =.答:甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天.(2)因为甲乙两工程队均能在规定的35天内单独完成,所以有如下三种方案:方案一:由甲工程队单独完成.所需费用为:41560⨯=(万元);方案二:由乙工程队单独完成.所需费用为:2.53075⨯=(万元);方案三:由甲乙两队合作完成.所需费用为:(4 2.5)1065+⨯=(万元).∵756560>>∴应该选择甲工程队承包该项工程.【题目点拨】本题考查分式方程在工程问题中的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.。

陕西省西安市西安铁一中学2024届中考押题数学预测卷含解析

陕西省西安市西安铁一中学2024届中考押题数学预测卷含解析

陕西省西安市西安铁一中学2024届中考押题数学预测卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若CD=2,AB=8,则△ABD的面积是()A.6 B.8 C.10 D.122.据相关报道,开展精准扶贫工作五年以来,我国约有55000000人摆脱贫困,将55000000用科学记数法表示是()A.55×106B.0.55×108C.5.5×106D.5.5×1073.一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体4.将不等式组2(23)3532x xx x-≤-⎧⎨+⎩>的解集在数轴上表示,下列表示中正确的是( )A.B.C.D.5.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为1 2C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次6.(2016四川省甘孜州)如图,在5×5的正方形网格中,每个小正方形的边长都为1,若将△AOB绕点O顺时针旋转90°得到△A′OB′,则A点运动的路径'AA的长为()A.πB.2πC.4πD.8π7.化简16的结果是()A.±4 B.4 C.2 D.±28.比较4,17,363的大小,正确的是()A.4<17<363B.4<363<17C.363<4<17D.17<363<49.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()A.613B.513C.413D.31310.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC、∠BCD,则∠P的度数是( )A.60°B.65°C.55°D.50°二、填空题(共7小题,每小题3分,满分21分)11.二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(12,﹣2);⑤当x<12时,y随x的增大而减小;⑥a+b+c>0中,正确的有______.(只填序号)12.分解因式:2x3﹣4x2+2x=_____.13.一个布袋中装有1个蓝色球和2个红色球,这些球除颜色外其余都相同,随机摸出一个球后放回摇匀,再随机摸出一个球,则两次摸出的球都是红球的概率是_____.14.下面是“作已知圆的内接正方形”的尺规作图过程.已知:⊙O.求作:⊙O的内接正方形.作法:如图,(1)作⊙O的直径AB;(2)分别以点A,点B为圆心,大于AB的长为半径作弧,两弧分别相交于M、N两点;(3)作直线MN与⊙O交于C、D两点,顺次连接A、C、B、D.即四边形ACBD为所求作的圆内接正方形.请回答:该尺规作图的依据是_____.15.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B,C都不重合),现将△PCD沿直线PD折叠,使点C落到点F处;过点P作∠BPF的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()16.圆锥的底面半径是4cm,母线长是5cm,则圆锥的侧面积等于_____cm1.17.因式分解:a2﹣a=_____.三、解答题(共7小题,满分69分)18.(10分)如图,一盏路灯沿灯罩边缘射出的光线与地面BC交于点B、C,测得∠ABC=45°,∠ACB=30°,且BC =20米.(1)请用圆规和直尺画出路灯A到地面BC的距离AD;(不要求写出画法,但要保留作图痕迹)(2)求出路灯A离地面的高度AD.(精确到0.1米)(参考数据:2≈1.414,3≈1.732).19.(5分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+1.设这种产品每天的销售利润为w元.求w与x之间的函数关系式.该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?20.(8分)某市飞翔航模小队,计划购进一批无人机.已知3台A型无人机和4台B型无人机共需6400元,4台A 型无人机和3台B型无人机共需6200元.(1)求一台A型无人机和一台B型无人机的售价各是多少元?(2)该航模小队一次购进两种型号的无人机共50台,并且B型无人机的数量不少于A型无人机的数量的2倍.设购进A型无人机x台,总费用为y元.①求y与x的关系式;②购进A型、B型无人机各多少台,才能使总费用最少?21.(10分)在汕头市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,电子白板的价格是电脑的3倍,购买5台电脑和10台电子白板需要17.5万元,求每台电脑、每台电子白板各多少万元?22.(10分)某中学为开拓学生视野,开展“课外读书周”活动,活动后期随机调查了九年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,请你根据统计图的信息回答下列问题:(1)本次调查的学生总数为_____人,被调查学生的课外阅读时间的中位数是_____小时,众数是_____小时;并补全条形统计图;(2)在扇形统计图中,课外阅读时间为5小时的扇形的圆心角度数是_____;(3)若全校九年级共有学生800人,估计九年级一周课外阅读时间为6小时的学生有多少人?23.(12分)在锐角△ABC 中,边BC 长为18,高AD 长为12如图,矩形EFCH 的边GH 在BC 边上,其余两个顶点E 、F 分别在AB 、AC 边上,EF 交AD 于点K ,求EF AK的值;设EH =x ,矩形EFGH 的面积为S ,求S 与x 的函数关系式,并求S 的最大值.24.(14分)解方程(1)2430x x --=;(2)()22(1)210x x ---=参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解题分析】分析:过点D 作DE ⊥AB 于E ,先求出CD 的长,再根据角平分线上的点到角的两边的距离相等可得DE =CD =2,然后根据三角形的面积公式列式计算即可得解.详解:如图,过点D 作DE ⊥AB 于E ,∵AB =8,CD =2,∵AD 是∠BAC 的角平分线,90C ,∠=︒∴DE =CD =2,∴△ABD 的面积11828.22AB DE =⋅=⨯⨯= 故选B.点睛:考查角平分线的性质,角平分线上的点到角两边的距离相等.2、D【解题分析】试题解析:55000000=5.5×107, 故选D .考点:科学记数法—表示较大的数3、A【解题分析】根据三视图的形状可判断几何体的形状.【题目详解】观察三视图可知,该几何体是直三棱柱.故选A .本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.4、B【解题分析】先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可. 解:不等式可化为:11x x ≤⎧⎨>-⎩,即11x -<≤. ∴在数轴上可表示为.故选B .“点睛”不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5、A【解题分析】试题分析:不可能事件发生的概率为0,故A正确;随机事件发生的概率为在0到1之间,故B错误;概率很小的事件也可能发生,故C错误;投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件,D错误;故选A.考点:随机事件.6、B【解题分析】试题分析:∵每个小正方形的边长都为1,∴OA=4,∵将△AOB绕点O顺时针旋转90°得到△A′OB′,∴∠AOA′=90°,∴A点运动的路径'AA的长为:904180π⨯=2π.故选B.考点:弧长的计算;旋转的性质.7、B【解题分析】根据算术平方根的意义求解即可.【题目详解】=4,故选:B.【题目点拨】本题考查了算术平方根的意义,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,正数a有一个正的算术平方根,0的算术平方根是0,负数没有算术平方根.8、C【解题分析】根据【题目详解】解:易得:且所以363<4<17,故选C.【题目点拨】本题主要考查开平方开立方运算。

浙江省宁波市海曙区重点中学2021-2022学年中考押题数学预测卷含解析

浙江省宁波市海曙区重点中学2021-2022学年中考押题数学预测卷含解析

2021-2022中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.2(2)-的相反数是( ) A .2B .﹣2C .4D .﹣22.如图是测量一物体体积的过程:步骤一:将180 mL 的水装进一个容量为300 mL 的杯子中; 步骤二:将三个相同的玻璃球放入水中,结果水没有满; 步骤三:再将一个同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测一个玻璃球的体积在下列哪一范围内?(1 mL=1 cm 3)( ). A .10 cm 3以上,20 cm 3以下 B .20 cm 3以上,30 cm 3以下 C .30 cm 3以上,40 cm 3以下 D .40 cm 3以上,50 cm 3以下3.下列说法错误的是( ) A .2-的相反数是2 B .3的倒数是13C .()()352---=D .11-,0,4这三个数中最小的数是04.如图,如果从半径为9cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成 一个圆锥(接缝处不重叠),那么这个圆锥的高为A .6cmB .35cmC .8cmD .535.﹣2018的绝对值是()A.±2018 B.﹣2018 C.﹣12018D.20186.点A(-1,),B(-2,)在反比例函数的图象上,则,的大小关系是()A.>B.=C.<D.不能确定7.12的倒数是()A.﹣12B.2 C.﹣2 D.128.如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④9.如果一组数据6,7,x,9,5的平均数是2x,那么这组数据的中位数为()A.5 B.6 C.7 D.910.某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:下列说法正确的是()A.这10名同学体育成绩的中位数为38分B.这10名同学体育成绩的平均数为38分C.这10名同学体育成绩的众数为39分D.这10名同学体育成绩的方差为211.一元二次方程x2﹣8x﹣2=0,配方的结果是()A.(x+4)2=18 B.(x+4)2=14 C.(x﹣4)2=18 D.(x﹣4)2=1412.下列各式:①a0=1 ②a2·a3=a5 ③ 2–2= –14④–(3-5)+(–2)4÷8×(–1)=0⑤x2+x2=2x2,其中正确的是( )A.①②③B.①③⑤C.②③④D.②④⑤二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D为AB的中点,将△ACD绕着点C逆时针旋转,使点A落在CB的延长线A′处,点D落在点D′处,则D′B长为_____.14.一个布袋中装有1个蓝色球和2个红色球,这些球除颜色外其余都相同,随机摸出一个球后放回摇匀,再随机摸出一个球,则两次摸出的球都是红球的概率是_____.15.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是_____.16.如图,在平面直角坐标系xOy中,A(-2,0),B(0,2),⊙O的半径为1,点C为⊙O上一动点,过点B作BP⊥直线AC,垂足为点P,则P点纵坐标的最大值为cm.17.因式分解:x2﹣4= .1811_____1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知,关于x的方程x2﹣mx+14m2﹣1=0,(1)不解方程,判断此方程根的情况;(2)若x=2是该方程的一个根,求m的值.20.(6分)如图,AB为⊙O的直径,点E在⊙O上,C为BE的中点,过点C作直线CD⊥AE于D,连接AC、BC.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若AD=2,AC=6,求AB的长.21.(6分)如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度(竖直高度与水平宽度的比)i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器高度忽略不计,结果保留根号形式)22.(8分)学校决定从甲、乙两名同学中选拔一人参加“诵读经典”大赛,在相同的测试条件下,甲、乙两人5次测试成绩(单位:分)如下:甲:79,86,82,85,83.乙:88,81,85,81,80.请回答下列问题:甲成绩的中位数是______,乙成绩的众数是______;经计算知83x=乙,2465s=乙.请你求出甲的方差,并从平均数和方差的角度推荐参加比赛的合适人选.23.(8分)某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.求y与x的函数关系式并直接写出自变量x的取值范围.每件玩具的售价定为多少元时,月销售利润恰为2520元?每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?24.(10分)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.求证:△ABC≌△AED;当∠B=140°时,求∠BAE的度数.25.(10分)如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD、BD、CD.(1)求证:AD=CD;(2)若AB=10,OE=3,求tan∠DBC的值.26.(12分)如图,△ABC和△ADE分别是以BC,DE为底边且顶角相等的等腰三角形,点D在线段BC上,AF平分DE交BC于点F,连接BE,EF.CD与BE相等?若相等,请证明;若不相等,请说明理由;若∠BAC=90°,求证:BF1+CD1=FD1.27.(12分)某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为A、B、C、D、E、F)六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图.请根据以上信息,完成下列问题:该班共有学生人;请将条形统计图补充完整;该班某同学物理成绩特别优异,已经从选修学科中选定物理,还需从余下选修学科中任意选择两门,请用列表或画树状图的方法,求出该同学恰好选中化学、历史两科的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解析】分析:根据只有符号不同的两个数是互为相反数解答即可.详解:22-的相反数是22,即2.故选A.点睛:本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.2、C【解析】分析:本题可设玻璃球的体积为x,再根据题意列出不等式组求得解集得出答案即可.详解:设玻璃球的体积为x,则有3300180 4300180 xx-⎧⎨-⎩<>解得30<x<1.故一颗玻璃球的体积在30cm3以上,1cm3以下.故选C.点睛:此题考查一元一次不等式组的运用,解此类题目常常要根据题意列出不等式组,再化简计算得出x的取值范围.3、D【解析】试题分析:﹣2的相反数是2,A正确;3的倒数是13,B正确;(﹣3)﹣(﹣5)=﹣3+5=2,C正确;﹣11,0,4这三个数中最小的数是﹣11,D错误,故选D.考点:1.相反数;2.倒数;3.有理数大小比较;4.有理数的减法.4、B【解析】试题分析:∵从半径为9cm的圆形纸片上剪去13圆周的一个扇形,∴留下的扇形的弧长=()2293π⨯=12π,根据底面圆的周长等于扇形弧长,∴圆锥的底面半径r=122ππ=6cm,故选B.考点: 圆锥的计算.5、D【解析】分析:根据绝对值的定义解答即可,数轴上,表示一个数a的点到原点的距离叫做这个数的绝对值.详解:﹣2018的绝对值是2018,即20182018-=.故选D.点睛:本题考查了绝对值的定义,熟练掌握绝对值的定义是解答本题的关键,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.6、C【解析】试题分析:对于反比例函数y=,当k>0时,在每一个象限内,y随x的增大而减小,根据题意可得:-1>-2,则.考点:反比例函数的性质.7、B【解析】根据乘积是1的两个数叫做互为倒数解答.【详解】解:∵12×1=1∴12的倒数是1.故选B.【点睛】本题考查了倒数的定义,是基础题,熟记概念是解题的关键.8、D【解析】根据E点有4中情况,分四种情况讨论分别画出图形,根据平行线的性质与三角形外角定理求解. 【详解】E点有4中情况,分四种情况讨论如下:由AB∥CD,可得∠AOC=∠DCE1=β∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β-α过点E2作AB的平行线,由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β∴∠AE2C=α+β由AB∥CD,可得∠BOE3=∠DCE3=β∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α-β由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE 4C=360°-α-β∴∠AEC 的度数可能是①α+β,②α﹣β,③β-α,④360°﹣α﹣β,故选D.【点睛】此题主要考查平行线的性质与外角定理,解题的关键是根据题意分情况讨论. 9、B 【解析】直接利用平均数的求法进而得出x 的值,再利用中位数的定义求出答案. 【详解】∵一组数据1,7,x ,9,5的平均数是2x , ∴679525x x ++++=⨯, 解得:3x =,则从大到小排列为:3,5,1,7,9, 故这组数据的中位数为:1. 故选B . 【点睛】此题主要考查了中位数以及平均数,正确得出x 的值是解题关键. 10、C 【解析】试题分析:10名学生的体育成绩中39分出现的次数最多,众数为39; 第5和第6名同学的成绩的平均值为中位数,中位数为:=39;平均数==38.4方差=[(36﹣38.4)2+2×(37﹣38.4)2+(38﹣38.4)2+4×(39﹣38.4)2+2×(40﹣38.4)2]=1.64;∴选项A ,B 、D 错误;故选C.考点:方差;加权平均数;中位数;众数.11、C【解析】x2-8x=2,x2-8x+16=1,(x-4)2=1.故选C.【点睛】本题考查了解一元二次方程-配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.12、D【解析】根据实数的运算法则即可一一判断求解.【详解】①有理数的0次幂,当a=0时,a0=0;②为同底数幂相乘,底数不变,指数相加,正确;③中2–2= 14,原式错误;④为有理数的混合运算,正确;⑤为合并同类项,正确.故选D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、132.【解析】试题分析:解:∵在Rt△ABC中,∠ACB=90°,AC=4,BC=3,∴AB=5,∵点D为AB的中点,∴CD=AD=BD=AB=2.5,过D′作D′E⊥BC,∵将△ACD绕着点C逆时针旋转,使点A落在CB的延长线A′处,点D落在点D′处,∴CD′=AD=A′D′,∴D′E==1.5,∵A′E=CE=2,BC=3,∴BE=1,∴BD′=,故答案为.考点:旋转的性质.14、4 9【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球都是红球的情况,再利用概率公式即可求出答案.【详解】画树状图得:∵共有9种等可能的结果,两次摸出的球都是红球的由4种情况,∴两次摸出的球都是红球的概率是49,故答案为4 9 .【点睛】本题主要考查了求随机事件概率的方法,解本题的要点在于根据题意画出树状图,从而求出答案.15、8﹣π【解析】分析:如下图,过点D作DH⊥AE于点H,由此可得∠DHE=∠AOB=90°,由旋转的性质易得DE=EF=AB,OE=BO=2,OF=AO=3,∠DEF=∠FEO+∠DEH=90°,∠ABO=∠FEO,结合∠ABO+∠BAO=90°可得∠BAO=∠DEH,从而可证得△DEH≌△BAO,即可得到DH=BO=2,再由勾股定理求得AB的长,即可由S阴影=S扇形AOF+S△OEF+S△ADE-S扇形DEF 即可求得阴影部分的面积.详解:如下图,过点D作DH⊥AE于点H,∴∠DHE=∠AOB=90°,∵OA=3,OB=2,∴AB=223213+=,由旋转的性质结合已知条件易得:DE=EF=AB=13,OE=BO=2,OF=AO=3,∠DEF=∠FEO+∠DEH=90°,∠ABO=∠FEO,又∵∠ABO+∠BAO=90°,∴∠BAO=∠DEH,∴△DEH≌△BAO,∴DH=BO=2,∴S阴影=S扇形AOF+S△OEF+S△ADE-S扇形DEF=22 9031190(13)325236022360ππ⨯⨯+⨯⨯+⨯⨯-=8π-.故答案为:8π-.点睛:作出如图所示的辅助线,利用旋转的性质证得△DEH≌△BAO,由此得到DH=BO=2,从而将阴影部分的面积转化为:S阴影=S扇形AOF+S△OEF+S△ADE-S扇形DEF来计算是解答本题的关键.16、13 2 +【解析】当AC与⊙O相切于点C时,P点纵坐标的最大值,如图,直线AC交y轴于点D,连结OC,作CH⊥x轴于H,PM⊥x 轴于M,DN⊥PM于N,∵AC为切线,∴OC⊥AC,在△AOC中,∵OA=2,OC=1,∴∠OAC=30°,∠AOC=60°,在Rt△AOD中,∵∠DAO=30°,∴OD=33OA=233,在Rt△BDP中,∵∠BDP=∠ADO=60°,∴DP=12BD=12(23)3在Rt△DPN中,∵∠PDN=30°,∴PN=12DP=123而23,∴333=132+,13【点睛】本题是圆的综合题,先求出OD的长度,最后根据两点之间线段最短求出PN+MN的值.17、(x+2)(x-2).【解析】试题分析:直接利用平方差公式分解因式得出x2﹣4=(x+2)(x﹣2).考点:因式分解-运用公式法18、>【解析】先将1化为根号的形式,根据被开方数越大值越大即可求解.【详解】解:93=,,故答案为>.【点睛】本题考查实数大小的比较,比较大小时,常用的方法有:①作差法,②作商法,③如果有一个是二次根式,要把另一个也化为二次根式的形式,根据被开方数的大小进行比较.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)证明见解析;(2)m=2或m=1.【解析】(1)由△=(-m)2-4×1×(14m2-1)=4>0即可得;(2)将x=2代入方程得到关于m的方程,解之可得.【详解】(1)∵△=(﹣m)2﹣4×1×(14m2﹣1)=m2﹣m2+4=4>0,∴方程有两个不相等的实数根;(2)将x=2代入方程,得:4﹣2m+14m2﹣1=0,整理,得:m2﹣8m+12=0,解得:m=2或m=1.本题考查了根的判别式以及解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)将x=2代入原方程求出m 值.20、(1)证明见解析(2)3【解析】(1)连接OC ,由C 为BE ∧的中点,得到12∠=∠,等量代换得到2ACO ∠=∠,根据平行线的性质得到OC CD ⊥,即可得到结论;(2)连接CE ,由勾股定理得到222CD AC AD =-=,根据切割线定理得到2CD AD DE =⋅,根据勾股定理得到223CE CD DE =+=,由圆周角定理得到90ACB ∠=︒,即可得到结论.【详解】()1相切,连接OC ,∵C 为BE 的中点,∴12∠=∠,∵OA OC =,∴1ACO ∠=∠,∴2ACO ∠=∠,∴//AD OC ,∵CD AD ⊥,∴OC CD ⊥,∴直线CD 与O 相切;()2方法1:连接CE ,∵2AD =,6AC =, ∵90ADC ∠=,∴222CD AC AD =-= ∵CD 是O 的切线,∴2CD AD DE=⋅,∴1DE=,∴CE==∵C为BE的中点,∴BC CE==∵AB为O的直径,∴90ACB∠=,∴3 AB==.方法2:∵DCA B∠=∠,易得ADC ACB∽,∴AD AC AC AB=,∴3AB=.【点睛】本题考查了直线与圆的位置关系,切线的判定和性质,圆周角定理,勾股定理,平行线的性质,切割线定理,熟练掌握各定理是解题的关键.21、电视塔OC高为米,点P的铅直高度为)10013-(米).【解析】过点P作PF⊥OC,垂足为F,在Rt△OAC中利用三角函数求出根据山坡坡度=1:2表示出PB=x,AB=2x, 在Rt△PCF中利用三角函数即可求解. 【详解】过点P作PF⊥OC,垂足为F.在Rt△OAC中,由∠OAC=60°,OA=100,得OC=OA•tan∠OAC=,过点P作PB⊥OA,垂足为B.由i=1:2,设PB=x,则AB=2x.∴PF=OB=100+2x,CF=x.在Rt△PCF中,由∠CPF=45°,∴PF =CF ,即100+2x =1003﹣x ,∴x =10031003- ,即PB =10031003-米.【点睛】本题考查了特殊的直角三角形,三角函数的实际应用,中等难度,作出辅助线构造直角三角形并熟练应用三角函数是解题关键.22、(1)83,81;(2)26=甲s ,推荐甲去参加比赛.【解析】(1)根据中位数和众数分别求解可得;(2)先计算出甲的平均数和方差,再根据方差的意义判别即可得.【详解】(1)甲成绩的中位数是83分,乙成绩的众数是81分,故答案为:83分、81分;(2)()17982838586835=⨯++++=甲x , ∴()()22222214312065⎡⎤=⨯-++-++=⎣⎦甲s . ∵x x =甲乙,22s s <甲乙,∴推荐甲去参加比赛.【点睛】此题主要考查了方差、平均数、众数、中位数等统计量,其中方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.23、(1)y =﹣10x 2+130x+2300,0<x≤10且x 为正整数;(2)每件玩具的售价定为32元时,月销售利润恰为2520元;(3)每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.【解析】月销售量即可求出函数关系式.(2)把y=2520时代入y=-10x2+130x+2300中,求出x的值即可.(3)把y=-10x2+130x+2300化成顶点式,求得当x=6.5时,y有最大值,再根据0<x≤10且x为正整数,分别计算出当x=6和x=7时y的值即可.【详解】(1)根据题意得:y=(30+x﹣20)(230﹣10x)=﹣10x2+130x+2300,自变量x的取值范围是:0<x≤10且x为正整数;(2)当y=2520时,得﹣10x2+130x+2300=2520,解得x1=2,x2=11(不合题意,舍去)当x=2时,30+x=32(元)答:每件玩具的售价定为32元时,月销售利润恰为2520元.(3)根据题意得:y=﹣10x2+130x+2300=﹣10(x﹣6.5)2+2722.5,∵a=﹣10<0,∴当x=6.5时,y有最大值为2722.5,∵0<x≤10且x为正整数,∴当x=6时,30+x=36,y=2720(元),当x=7时,30+x=37,y=2720(元),答:每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.【点睛】本题主要考查了二次函数的实际应用,解题的关键是分析题意,找到关键描述语,求出函数的解析式,用到的知识点是二次函数的性质和解一元二次方程.24、(1)详见解析;(2)80°.【分析】(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.【解析】(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.证明:(1)∵AC=AD ,∴∠ACD=∠ADC ,又∵∠BCD=∠EDC=90°,∴∠ACB=∠ADE ,在△ABC 和△AED 中,BC ED ACB ADE AC AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△AED (SAS );解:(2)当∠B=140°时,∠E=140°,又∵∠BCD=∠EDC=90°,∴五边形ABCDE 中,∠BAE=540°﹣140°×2﹣90°×2=80°.【点睛】考点:全等三角形的判定与性质.25、(1)见解析;(2)tan ∠DBC =12. 【解析】(1)先利用圆周角定理得到∠ACB =90°,再利用平行线的性质得∠AEO =90°,则根据垂径定理得到AD DC =,从而有AD =CD ;(2)先在Rt △OAE 中利用勾股定理计算出AE ,则根据正切的定义得到tan ∠DAE 的值,然后根据圆周角定理得到∠DAC =∠DBC ,从而可确定tan ∠DBC 的值.【详解】(1)证明:∵AB 为直径,∴∠ACB =90°,∵OD ∥BC ,∴∠AEO =∠ACB =90°,∴OE ⊥AC ,∴AD DC =,∴AD =CD ;(2)解:∵AB =10,∴OA =OD =5,∴DE=OD﹣OE=5﹣3=2,在Rt△OAE中,AE4,∴tan∠DAE=2142 DEAE==,∵∠DAC=∠DBC,∴tan∠DBC=12.【点睛】垂径定理及圆周角定理是本题的考点,熟练掌握垂径定理及圆周角定理是解题的关键.26、(1)CD=BE,理由见解析;(1)证明见解析.【解析】(1)由两个三角形为等腰三角形可得AB=AC,AE=AD,由∠BAC=∠EAD可得∠EAB=∠CAD,根据“SAS”可证得△EAB≌△CAD,即可得出结论;(1)根据(1)中结论和等腰直角三角形的性质得出∠EBF=90°,在Rt△EBF中由勾股定理得出BF1+BE1=EF1,然后证得EF=FD,BE=CD,等量代换即可得出结论.【详解】解:(1)CD=BE,理由如下:∵△ABC和△ADE为等腰三角形,∴AB=AC,AD=AE,∵∠EAD=∠BAC,∴∠EAD﹣∠BAD=∠BAC﹣∠BAD,即∠EAB=∠CAD,在△EAB与△CAD中AE ADEAB CAD AB AC=⎧⎪∠=∠⎨⎪=⎩,∴△EAB≌△CAD,∴BE=CD;(1)∵∠BAC=90°,∴△ABC和△ADE都是等腰直角三角形,∴∠ABF=∠C=45°,∵△EAB≌△CAD,∴∠EBA=∠C,∴∠EBA=45°,∴∠EBF=90°,在Rt△BFE中,BF1+BE1=EF1,∵AF平分DE,AE=AD,∴AF垂直平分DE,∴EF=FD,由(1)可知,BE=CD,∴BF1+CD1=FD1.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理等知识,结合题意寻找出三角形全等的条件是解决此题的关键.27、(1)50人;(2)补图见解析;(3)1 10.【解析】分析:(1)根据化学学科人数及其所占百分比可得总人数;(2)根据各学科人数之和等于总人数求得历史的人数即可;(3)列表得出所有等可能结果,从中找到恰好选中化学、历史两科的结果数,再利用概率公式计算可得.详解:(1)该班学生总数为10÷20%=50人;(2)历史学科的人数为50﹣(5+10+15+6+6)=8人,补全图形如下:(3)列表如下:化学生物政治历史地理化学生物、化学政治、化学历史、化学地理、化学由表可知,共有20种等可能结果,其中该同学恰好选中化学、历史两科的有2种结果,所以该同学恰好选中化学、历史两科的概率为21= 2010.点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B 的结果数目m,然后利用概率公式求事件A或B的概率.。

2024年中考押题预测卷(广东卷)数学试题及答案

2024年中考押题预测卷(广东卷)数学试题及答案

绝★启2024年中考押题预测卷数学(考试时间:120分钟试卷满分:120分)注意事项1.答卷前2.回答第Ⅰ卷时2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动干净后3.回答第Ⅱ卷时4.考试结束后一10小题3分30分的.1.下列实数中()A.πB.3C.-3D.02.中国信息通信研究院测算2020-2025年5G商用带动的信息消费规模将超过8万亿元经济总产出达10.6万亿元.其中数据10.6万亿用科学记数法表示为()A.10.6×104B.1.06×1013C.10.6×1013D.1.06×1083.如图是我国几家银行的标志()A. B.C. D.4.如图c与直线a、b都相交.若a∥b,∠1=35°,∠2=()A.145°B.65°C.55°D.35°5.下列计算正确的是()A.-3ab22=6a2b4 B.-6a3b÷3ab=-2a2bC.a 2 3--a 3 2=0D.(a +1)2=a 2+16.不等式组x -1<0x +3≥2x 的解集是()A.无解B.x <1C.x ≥3D.1<x ≤37.若关于x 的方程kx 2-2x -1=0有两个不相等的实数根,则k 的取值范围是()A.k >-1且k ≠0B.k >-1C.k <-1D.k <1且k ≠08.不透明的袋子中装有红、绿小球各一个,除颜色外两个小球无其他差别,从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么第一次摸到红球、第二次摸到绿球的概率是()A.14B.13C.12D.349.如图,A 、D 是⊙O 上的两点,BC 是直径,若∠D =35°,则∠OCA 的度数是()A.35°B.55°C.65°D.70°10.如图,在平面直角坐标系xOy 中,菱形ABDC 的边AB 在x 轴上,顶点C 在y 轴上,A -3,0 ,C 0,4 ,抛物线y =ax 2-8ax +c 经过点C ,且顶点M 在直线BC 上,则a 的值为()A.25B.12C.34D.23二、填空题:本大题共6小题,每小题3分,共18分.11.因式分解:x 2-x =.12.已知点A (-2,b )与点B (a ,3)关于原点对称,则a -b =.13.设5-7的整数部分为a ,小数部分为b ,则32a +7b =.14.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两;马三匹、牛五头,共价三十八两.问马、牛各价几何?”根据题意可得每匹马两.15.如图,已知△ABC在边长为1的小正方形的格点上,△ABC的外接圆的一部分和△ABC的边AB、BC组成的两个弓形(阴影部分)的面积和为.16.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G.若BG=42,则△CEF的面积是.三、解答题(一):本大题共4小题,第17、18题各4分,第19、20题各6分,共20分.17.(1)计算:16+|2-2|+3-64-2(1+2)0.(2)已知y与x-1成正比例,当x=-1时,y=4,当x=-8时,求y的函数值.18.如图,A、B两地被建筑物阻隔,为测量A、B两地的距离,连接CA、CB,分别取CA、CB的中点D、E.若DE的长为36m,求A、B两地的距离.19.某社区积极响应正在开展的“创文活动”,安排甲、乙两个工程队对社区进行绿化改造.已知甲工程队每天能完成的绿化改造面积是乙工程队每天能完成的绿化改造面积的2倍,且甲工程队完成400m2的绿化改造比乙工程队完成400m2的绿化改造少用4天.分别求甲、乙两工程队每天能完成绿化改造的面积.20.已知:如图在△ABC中,AD是边BC上的高,E为边AC的中点,BC=14,AD=12,sin B=45.求:(1)线段DC的长;(2)tan∠EDC的值.四、解答题(二):本大题共3小题,第21题8分,第22、23题各10分,共28分.21.如图,在矩形ABCD中,对角线BD=8.(1)实践与操作:作对角线BD的垂直平分线EF,与AB、CD分别交于点E、F(用尺规作图法,保留作图痕迹,不要求写作法)(2)应用与计算:在(1)的条件下,连结BF,若∠BDC=30°,求△BFC的周长.22.为了使二十大精神深入人心,某地区举行了学习宣传贯彻党的二十大精神答题竞赛,试卷题目共10题,每题10分.现分别从三个小区中各随机取10名群众的成绩(单位:分),收集数据如下:锦绣城:90,70,80,70,80,80,80,90,80,100;万和城:70,70,80,80,60,90,90,90,100,90;龙泽湾:90,60,70,80,70,80,80,90,100,100.整理数据:分数人数小区60708090100锦绣城02a21万和城122141龙泽湾12322分析数据:平均数中位数众数锦绣城828080万和城82b90龙泽湾8280c根据以上信息回答下列问题:(1)请直接写出表格中a,b,c的值;(2)比较这三组样本数据的平均数,中位数和众数,你认为哪个小区的成绩比较好?请说明理由;(3)为了更好地学习宣传贯彻党的二十大精神,该地区将给竞赛成绩满分的群众颁发奖品,统计该地区参赛的选手数为3000人,试估计需要准备多少份奖品?23.如图,一次函数y=kx+2k≠0的图象与反比例函数y=mx(m≠0,x>0)的图象交于点A2,n,与y轴交于点B,与x轴交于点C-4,0.(1)求k与m的值;(2)P a,0为x轴上的一动点,当△APB的面积为72时,求a的值.(3)请直接写出不等式kx+2>mx的解集.五、解答题(三):本大题共2小题,每小题12分,共24分.24.如图,ABCD是正方形,BC是⊙O的直径,点E是⊙O上的一动点(点E不与点B,C重合),连接DE,BE,CE.(1)若∠EBC=60°,求∠ECB的度数;(2)若DE为⊙O的切线,连接DO,DO交CE于点F,求证:DF=CE;(3)若AB=2,过点A作DE的垂线交射线CE于点M,求AM的最小值.25.综合运用:在平面直角坐标系中,点C的坐标为5,0,以OC长构建菱形OABC,cos∠BOC=45,点D是射线OB上的动点,连接AD,CD.(1)如图1,当CD⊥OC时,求线段BD的长度;(2)如图2,将点A绕着点D顺时针旋转90°,得到对应点A ,连接DA ,并延长DA 交BC边于点E,若点E 恰好为BC的中点,求BD的长度;(3)将点A绕着点D逆时针旋转一个固定角α,∠α=∠OCB,点A落在点A 处,射线DA 交x轴正半轴于点F,若△ODF是等腰三角形,请直接写出点F的横坐标.绝★启2024年中考押题预测卷数学(考试时间:120分钟试卷满分:120分)注意事项1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2024年山东省中考数学模拟押题预测卷及答案

2024年山东省中考数学模拟押题预测卷及答案

2024年初中学生学业水平考试数学押题预测试卷注意事项:1.本试题分为第1卷和第Ⅱ卷两部分。

第1卷为选择题,30分;第Ⅱ卷为非选择题,90分;共120分。

考试时间为120分钟。

2.答卷前务必将试题密封线内及答题卡上面的项目填涂清楚。

所有答案都必须涂、写在答题卡相应位置,答在本试卷上一律无效。

第Ⅰ卷(选择题 30分)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.计算82024×(−0.125)2023的结果为( )A. −8B. 8C. −2D. −0.1252.剪纸是中国优秀的传统文化.如图剪纸图案中,是中心对称图形的是( )A. B. C. D.3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4600000000人,这个数用科学记数法表示为( )A. 46×108B. 4.6×108C. 4.6×109D. 4.6×10104.如图是一个玻璃烧杯,图2是玻璃烧杯抽象的几何体,以箭头所指的方向为主视图方向,则它的俯视图为( )A. B. C. D.5.下列计算正确的是( )A. aa2+aa4=aa6B. (−aa3)2=aa6C. 2aa+3bb=5aabbD. aa6÷aa3=aa26.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.若∠1=30°,则∠2的度数是( )A. 45°B. 55°C. 65°D. 75°7.乘坐高铁现在是人们非常方便快捷的一种出行方式,甲、乙两城市之间的铁路距离约2800kkkk,乘坐高铁列车比普通快车能提前8ℎ到达,已知高铁列车的平均行驶速度是普通快车的2倍.设普通快车的平均行驶速度为xx kkkk/ℎ,根据题意所列出的方程为( )A. 2800xx=2800×2xx+8B. 2800×2xx=2800xx+8C. 28002xx−2800xx=8D. 2800xx−28002xx=88.如图,点AA,BB分别在反比例函数yy=12xx和yy=kk xx的图象上,分别过AA,BB两点向xx轴,yy轴作垂线,形成的阴影部分的面积为7,则kk的值为( )A. 6B. 7C. 5D. 89.某品牌20寸的行李箱拉杆拉开后放置如图所示,经测量该行李箱从轮子底部到箱子上沿的高度AABB与从轮子底部到拉杆顶部的高度CCCC之比是黄金比.已知CCCC=80cckk,则AABB的长度是( )A. (20√ 5−20)cckkB. (80−40√ 5)cckkC. (40√ 5−40)cckkD. (120−40√ 5)cckk10.如图,在平面直角坐标系xxxxyy中,四边形xxAABBCC的顶点xx在原点上,xxAA边在xx轴的正半轴上,AABB⊥xx轴,AABB=CCBB=2,xxAA=xxCC,∠AAxxCC=60°,将四边形xxAABBCC绕点xx逆时针旋转,每次旋转90°,则第2024次旋转结束时,点CC的坐标为( )A. (√ 3,3)B. (3,−√ 3)C. (−√ 3,1)D. (1,−√ 3)第Ⅱ卷(非选择题 90分)二、填空题:本题共6小题,每小题3分,共18分。

2024年甘肃省兰州市九年级中考数学模拟押题预测试题

2024年甘肃省兰州市九年级中考数学模拟押题预测试题

2024年甘肃省兰州市九年级中考数学模拟押题预测试题一、单选题1.中国古代著作《九章算术》在世界数学史上首次正式引入负数.如果在检测一批足球时,随机抽取了4个足球进行检测,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A.B.C.D.2.图中三棱柱的主视图是()A.B.C.D.3.不等式组215840xx-≤⎧⎨-<⎩的解集在数轴上表示为()A.B.C.D.4.如图,在ABC V 中,AB AD DC ==,62B ∠=︒,则C ∠的度数为( )A .30︒B .32︒C .31︒D .48︒5.化简233y x x ⎛⎫ ⎪⎝⎭的结果是( ) A .6xy B .xy 5 C .25x y D .26x y6.若点()13,A y ,点()22,B y -,点()2,6C 都在一次函数7y kx =+的图象上,则1y 与2y 的大小关系是( ) A .12y y <B .12y y =C .12y y >D .无法确定7.古代数学趣题:老头提篮去赶集,一共花去七十七;满满装了一菜篮,十斤大肉三斤鱼;买好未曾问单价,只因回家心里急;道旁行人告诉他,九斤肉钱五斤鱼.意思是:77元钱共买了10斤肉和3斤鱼,9斤肉的钱等于5斤鱼的钱,问每斤肉和鱼各是多少钱?设每斤肉x 元,每斤鱼y 元,可列方程组为( ) A . 1037795x y x y +=⎧⎨=⎩B . 3107795x y x y +=⎧⎨=⎩C . 1037759x y x y +=⎧⎨=⎩D . 3107759x y x y +=⎧⎨=⎩8.图1是一个由齿轮、轴承、托架等元件构成的手动变速箱托架,其主要作用是动力传输.图2是手动变速箱托架工作时某一时刻的示意图,已知AB CD ∥,CG EF ∥,150BAG ∠=︒,130DEF ∠=︒,则AGC ∠的度数为( )A .60︒B .80︒C .100︒D .110︒9.如图,在矩形ABCD 中,610AB AD ==,,点P ,Q 分别在AB CD ,上,PQ AD ∥,线段EF 在PQ 上,且2EF =,连接AE CF ,,则AE CF +的最小长度为( )A .8B .10C .12D .1610.如图,电路上有三个开关和一个小灯泡,合上任意两个开关,小灯泡发光的概率为( )A .13B .12C .23D .111.关于二次函数2(3)2y x =+-,下列说法错误的是( )A .图象的开口方向向上B .图象的顶点坐标为(3,2)--,函数的最小值为2-C .图象的对称轴为直线3x =-,当3x <-时,y 随x 的增大而减小D .图象可由抛物线2y x =向右平移2个单位长度,再向上平移3个单位长度得到 12.如图,在四边形ACDB 中,AB CD ∥,AC AD =,P 是线段AC 上一点(不与点A C 、重合),60C PDB ∠=∠=︒,连接BP ,交AD 于点Q ,则 DQBP ∶的最小值是( )A .B C D二、填空题13.分解因式:2818a -=.14.图①是一台笔记本电脑实物图,如图②,当笔记本电脑的张角150AOB ∠=︒时,顶部边缘A 处离桌面的高度AC 的长为11cm ,当笔记本电脑的张角108A OB '∠=︒时,顶部边缘A '处离桌面的高度A D '的长约为cm .(A 的对应点是点A OA OA '=',)(参考数据:sin 720.95︒≈,cos720.31︒≈,tan 72 3.08︒≈,结果精确到1cm )15.某种油菜籽在相同条件下发芽试验的结果如下:这种油菜籽发芽的概率的估计值为(精确到0.01).16.如图,ABC V 内接于O e ,AB 为O e 的直径,I 为ABC V 的内心,连接OI AI BI ,,.若1O I B I O I ⊥=,,则AB 的长为.三、解答题17.化简:()()()22226x y x y y x y -+--+-. 18.计算:(2))(215+19.在ABC V 中,35AB AC ==,.(1)直接写出BC 的取值范围是_________; (2)求BC 边上的中线AD 的取值范围.20.如图,在78⨯网格中,每个小正方形边长为1个单位长度,我们把每个小正方形的顶点称为格点;A ,B ,C 均为格点;请按要求仅用一把无刻度的直尺作图.(1)在图1中,作CD AB ∥(D 在BC 下方),且D 为格点;(2)在图2中找一格点E (E 在AB 上方),画出三角形ABE ,使得8ABE S =V . 21.【问题情境】如图,在菱形ABCD 中,对角线AC ,BD 相交于点O .过点A 作AE BD P ,过点D 作DE AC ∥交AE 于点E .【探索求证】(1)求证:四边形AODE 是矩形; 【问题解决】(2)连接OE ,交AD 于点M ,过点D 作DN OE ⊥,垂足为点N ,若6AE =,60ABC ∠=︒,求DN 的长.22.蓬勃发展的快递业,为全国各地的新鲜水果及时走进千家万户提供了极大便利.不同的快递公司在配送、服务、收费和投递范围等方面各具优势.草莓种植户小丽经过初步了解,打算从甲、乙两家快递公司中选择一家合作,为此小丽收集了10家草莓种植户对两家公司的相关评价,并整理、描述、分析,下面给出了部分信息:a.配送速度得分(满分10分):甲:67788889910乙:778889991010b.服务质量得分统计图(满分10分):c.配送速度和服务质量得分统计表:根据以上信息,回答下列问题:(1)求出表中,m n的值;(2)在甲乙两家快递公司中,如果某公司服务质量得分的10个数据的波动越小,则认为种植户对该公司的评价越一致.据此推断:甲、乙两家公司中,种植户对___________的服务质量的评价更一致(填“甲”或“乙”);(3)根据以上数据,小丽应该选择哪一家快递公司?请说明理由.(写出一条理由即可) 23.如图所示是一种户外景观灯,它是由灯杆AB 和灯管支架BC 两部分构成,现测得灯管支架BC 与灯杆AB 的夹角127ABC ∠=︒,同学们想知道灯管支架BC 的长度,借助相关仪器进行测量后结果如下表:求灯管支架BC 的长度.(参考数据:sin370.6︒≈,cos370.8︒≈,tan370.75︒≈,tan6326 2.00'︒≈)24.【发现问题】小明和小强做弹球游戏,如图1,小明向斜坡抛一个乒乓球,乒乓球弹起的运行路线是一条抛物线,乒乓球落地后又弹起,第二次弹起的运行路线和第一次运行路线的抛物线形状相同,小强在地面立一块高度为0.4m 的木板,当乒乓球在第二次下落时能落在木板上,则小强获胜. 【提出问题】小强将木板放在距斜坡底端多远,才能确保获胜? 【分析问题】小强以斜坡底端O 为坐标原点,地面水平线为x 轴,取单位长度为1m ,建立如图2所示的平面直角坐标系,乒乓球的大小忽略不计,经测量发现,抛球点A 的坐标为()1,3.36-,第一次弹起的运行路线最高点坐标为()0.5,3.61-,第二次弹起的最大高度为1.21m ,小强通过这些数据,经过计算,确定了木板立的位置,从而确保自己获胜.【解决问题】(1)求乒乓球第一次弹起运行路线的抛物线的解析式; (2)求乒乓球第一次落地点B 距斜坡低端O 的距离;(3)小强将木板立在距斜坡底端O 多远的范围内,才能确保自己获胜? 25.已知直线y x =与反比例函数4y x=的图象在第一象限交于点M .(1)如图,将直线y x =向上平移b 个单位后与4y x=的图象交于点()1,A m 和点(),1B n -,求A 、B 的坐标和b 的值;(2)在(1)的条件下,设直线AB 与x 轴、y 轴分别交于点C 、D ,求AOB V 的面积. 26.如图,AB 是O e 的直径,点C 在O e 上,BD 平分ABC ∠交O e 于点D , 过点D 作DE BC ⊥于E .(1)求证:DE 是O e 的切线; (2)若10AB =,6AD =,求EC 的长.27.将平面直角坐标系xOy 中的一些点分成两类.每类至少包含两个点.对于同一类中的任意两点M x 1,y 1 ,N x 2,y 2 ,称12x x -与12y y -中的最大值为点M 和点N 的“垂平距离”,记作(),d M N .将各类中任意两点间的最大“垂平距离”记为该类的“星内距离”,两个“星内距离”的最大值定义为这种分类的“星系距离”.如图,()3,0A -,()1,1B -,()0,1C -,()2,2D ,()1,3E -.(1)点A , B ,E ,O 中,与点C 的“垂平距离”为3的点是______;(2)①点P 是平面内的一个动点,若将点B ,D ,P 分在同一类时,该类的“星内距离”是4,则动点P 所构成图形的面积为______;②已知直线y x b =+上恰好存在唯一的一个点Q ,满足将点B ,D ,Q 分在同一类时,该类的“星内距离”是4,求b 的值;(3)已知直线l 平行于2y x =-,与x 轴交于点(),0t ,若l 上的任意一点R 均满足将点A ,B ,C ,D ,E ,R 分为两类时,所能得到的最小的“星系距离”大于4,请直接写出t 的取值范围______. 28.综合与实践 【问题情境】如图1,小华将矩形纸片ABCD 先沿对角线BD 折叠,展开后再折叠,使点B 落在对角线BD 上,点B 的对应点记为B ',折痕与边AD ,BC 分别交于点E ,F . 【活动猜想】(1)如图2,当点B '与点D 重合时,四边形BEDF 是哪种特殊的四边形?并给予证明. 【问题解决】(2)如图1,当4AB =,8AD =,3BF =时,连接B C ',则B C '的长为______. 【深入探究】(3)如图3,请直接写出AB 与BC 满足什么关系时,始终有A B ''与对角线AC 平行?。

中考预测卷《数学试卷》含答案解析

中考预测卷《数学试卷》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本题有10个小题,每小题3分,共30分)1. 4的算术平方根是( )A. -2B. 2C. 2D. 22. 某种微粒子,测得它的质量为0.00006746克,这个质量用科学计数法表示(保留三个有效数字)应为A. 6.75×10-5克B. 6.74×10-5克C. 6.74×10-6克D. 6.75×10-6克3. 如图所示是由相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,那么该几何体的主视图是( )A. B. C. D.4. 下列运算正确的是A. a5+a5=a10B. a3·a3=a9C. (3a3)3=9a9D. a12÷a3=a95. 如图,ABC是等边三角形,被一平行于BC矩形所截(即:FG∥BC),若AB被截成三等分,则图中阴影部分的面积是ABC的面积的()A. 19B.29C.13D.496. 四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为()A. B.C. D. 17. 一组数据2,3,6,8,x 的众数是x ,其中x 是不等式组2-40{-70x x ><的整数解,则这组数据的中位数可能是( )A. 3B. 4C. 6D. 3或68. 如图所示,购买一种苹果,所付款金额y (元)与购买量x (千克)之间的函数图象由线段OA 和射线AB 组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省________元.9. 如图,在平面直角坐标系中,⊙M 与y 轴相切于原点O ,平行于x 轴的直线交⊙M 于P 、Q 两点,点P 在点Q 的右边,若P 点的坐标为(-1,2),则Q 点的坐标是A. (-4,2)B. (-4.5,2)C. (-5,2)D. (-5.5,2 ) 10. 若二次函数y=ax 2+bx+c(a≠0)的图象于x 轴的交点坐标分别为(x 1,0),(x 2,0),且x 1<x 2,图象上有一点M(x 0,y 0)在x 轴下方,对于以下说法:①b 2﹣4ac >0 ②x=x 0是方程ax 2+bx+c=y 0的解; ③x 1<x 0<x 2④a(x 0﹣x 1)(x 0﹣x 2)<0; ⑤x 0<x 1或x 0>x 2, 其中正确的有A. ①②B. ①②④C. ①②⑤D. ①②④⑤二、填空题(共6小题,每题3分,满分18分)11. 分解因式:2(2)(4)4x x x +++-=__________.12. 设x1、x2 是一元二次方程x2+4x -3=0的两个根,2x1(x22+5x2-3)+a =2,则a=" " ▲13. 将一副直角三角板(含45°角的直角三角板ABC 与含30°角的直角三角板DCB )按图示方式叠放,斜边交点为O ,则△AOB 与△COD 的面积之比等于_________.14. 如图,Rt △ABC 中,∠A=90°,∠B=30°,AC=6,以A 为圆心,AC 长为半径画四分之一圆,则图中阴影部分面积为__________.(结果保留π)15. 如图,以扇形OAB 的顶点O 为原点,半径OB 所在的直线为x 轴,建立平面直角坐标系,点B 的坐标为(2,0),若抛物线21y x k 2=+与扇形OAB 的边界总有两个公共点,则实数k 的取值范围是 .16. 在矩形ABCO 中,O 为坐标原点,A 在y 轴上,C 在x 轴上,B 的坐标为(8,6),P 是线段BC 上动点,点D 是直线y=2x ﹣6上第一象限的点,若△APD 是等腰直角三角形,则点D 的坐标为_____________.三、解答题(满分72分)17. 已知:y=2x 2﹣ax ﹣a 2,且当x=1时,y=0,先化简,再求值:(1﹣2-2-4a a )÷22++4+4a a a a 18. 如图,等腰Rt△ABC 中,BA=BC ,∠ABC=90°,点D 在AC 上,将△ABD 绕点B 沿顺时针方向旋转90°后,得到△CBE(1)求∠DCE 的度数;(2)若AB=4,CD=3AD ,求DE 的长.19. 吸烟有害健康,为配合”戒烟”运动,某校组织同学们在社区开展了”你支持哪种戒烟方式”的随机问卷调查,并将调查结果绘制成两幅不完整的统计图:根据统计图解答下列问题:(1)同学们一共调查了多少人?(2)将条形统计图补充完整.(3)若该社区有1万人,请你估计大约有多少人支持”警示戒烟”这种方式?(4)为了让更多的市民增强”戒烟”意识,同学们在社区做了两期”警示戒烟”的宣传.若每期宣传后,市民支持”警示戒烟”的平均增长率为20%,则两期宣传后支持”警示戒烟”的市民约有多少人?20. 如图,建筑物AB后有一座假山,其坡度为i=1:3,山坡上E点处有一凉亭,测得假山坡脚C与建筑物水平距离BC=25米,与凉亭距离CE=20米,某人从建筑物顶端测得E点的俯角为45°,求建筑物AB 的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)21. 如图,直线y=2x+2与y轴交于A点,与反比例函数ky=x(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=2.(1)求k的值;(2)点N(a,1)是反比例函数ky=x(x>0)图象上点,在x轴上是否存在点P,使得PM+PN最小?若存在,求出点P的坐标;若不存在,请说明理由.22. 某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天销售利润最大?最大利润是多少?(3)如果该企业要使每天销售利润不低于4000元,那么销售单价应控制在什么范围内?23. 如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于切点为G,连接AG交CD于K.(1)求证:KE=GE;(2)若KG2=KD•GE,试判断AC与EF的位置关系,并说明理由;(3)在(2)的条件下,若sinE=35,AK=25,求FG的长.24. 如图,在△ABC中,AB=AC=5,BC=6,点D为AB边上的一动点(D不与A、B重合),过D作DE∥BC,交AC于点E.把△ADE沿直线DE折叠,点A落在点A'处.连结BA',设AD=x,△ADE的边DE上的高为y.(1) 求出y与x的函数关系式;(2) 若以点A'、B、D为顶点的三角形与△ABC 相似,求x的值;(3) 当x取何值时,△A' DB是直角三角形.25. 在平面直角坐标系中,抛物线y=ax2﹣5ax+4a与x轴交于A、B(A点在B点左侧)与y轴交于点C.(1)如图1,连接AC、BC,若△ABC的面积为3时,求抛物线的解析式;(2)如图2,点P为第四象限抛物线上一点且在直线BC下方,连接PC,若∠BCP=2∠ABC时,求点P的横坐标;(3)如图3,在(2)的条件下,点F在AP上,过点P作PH⊥x轴于H点,点K在PH的延长线上,AK=KF,∠KAH=∠FKH,PF=﹣42a,连接KB并延长交抛物线于点Q,求PQ的长.答案与解析一、选择题(本题有10个小题,每小题3分,共30分)1. 4的算术平方根是( )A. -2B. 2C. 2±D. 2【答案】B【解析】试题分析:因224=,根据算术平方根的定义即可得4的算术平方根是2.故答案选B.考点:算术平方根定义.2. 某种微粒子,测得它的质量为0.00006746克,这个质量用科学计数法表示(保留三个有效数字)应为A. 6.75×10-5克B. 6.74×10-5克C. 6.74×10-6克D. 6.75×10-6克【答案】A【解析】试题解析:0.00006746克=6.75×10-5克故选A.3. 如图所示是由相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,那么该几何体的主视图是( )A. B. C. D.【答案】C【解析】A、B、D不是该几何体的视图,C是主视图,故选C.【点睛】主视图是由前面看到的图形,俯视图是由上面看到的图形,左视图是由左面看到的图形,能看到的线画实线,看不到的线画虚线.4. 下列运算正确的是A. a5+a5=a10B. a3·a3=a9C. (3a3)3=9a9D. a12÷a3=a9【答案】D【解析】试题解析:A. a5+a5=2a5,故原选项错误;B. a3·a3=a6,故原选项错误;C. (3a3)3=27a9,故原选项错误;D. a12÷a3=a9,正确.故选D.5. 如图,ABC是等边三角形,被一平行于BC的矩形所截(即:FG∥BC),若AB被截成三等分,则图中阴影部分的面积是ABC的面积的()A. 19B.29C.13D.49【答案】C【解析】【分析】AB被截成三等分,可得AB=3AE,AF=2AE,由EH∥FG∥BC,可得△AEH∽△AFG∽△ABC,则S△AEH:S△AFG:S△ABC=AE2:AF2:AB2,S阴影= S△AFG- S△AEH =13S△ABC.【详解】∵AB被截成三等分,∴AB=3AE,AF=2AE,∵EH∥FG∥BC,∴△AEH∽△AFG∽△ABC,∴S△AEH:S△AFG:S△ABC=AE2:AF2:AB2=AE2:(2AE)2:(3AE)2=1:4:9,∴S△AEH=19S△ABC, S△AFG=4 S△AEH,S阴影= S△AFG- S△AEH=3 S△AEH=3×19S△ABC=13S△ABC.故选择:C.【点睛】本题考查阴影部分面积问题,关键是利用相似三角形的面积比等于相似比的平方,找到阴影面积与△AEH的关系,由△AEH与△ABC的关系来转化解决问题.6. 四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为( )A. B.C. D. 1【答案】B【解析】中心对称图形有圆、矩形,所以概率为.7. 一组数据2,3,6,8,x的众数是x,其中x是不等式组2-40{-70xx><的整数解,则这组数据的中位数可能是( )A. 3B. 4C. 6D. 3或6 【答案】D【解析】试题解析:240{70xx-->①<②,解不等式①得x>2,解不等式②得x<7,不等式组240{70xx--><的解为2<x<7,故不等式组240{70xx--><的整数解为3,4,5,6.∵一组数据2、3、6、8、x的众数是x,∴x=3或6.如果x=3,排序后该组数据为2,3,3,6,8,则中位数为3;如果x=6,排序后该组数据为2,3,6,6,8,则中位数为6.故选D.8. 如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省________元.【答案】2【解析】试题分析:根据函数图象可得:前面2千克,每千克10元,超过2千克的每千克8元.则一次购买3千克需要的钱数为:10×2+(3-2)×1=28元,分三次每次购买1千克需要的钱数为:3×1×10=30元,30-28=2(元),即节省2元.考点:一次函数的应用.9. 如图,在平面直角坐标系中,⊙M与y轴相切于原点O,平行于x轴的直线交⊙M于P、Q两点,点P 在点Q的右边,若P点的坐标为(-1,2),则Q点的坐标是A. (-4,2)B. (-4.5,2)C. (-5,2)D. (-5.5,2 )【答案】A【解析】【分析】因为⊙M与y轴相切于原点O,平行于x轴的直线交⊙M于P,Q两点,点P在点Q的右方,若点P的坐标是(﹣1,2),则点Q的坐纵标是2,设PQ=2x,作MA⊥PQ,利用垂径定理可求QA=PA=x,连接MP,则MP=MO=x+1,在Rt△AMP中,利用勾股定理即可求出x的值,从而求出Q的横坐标=﹣(2x+1).【详解】解:∵⊙M与y轴相切于原点O,平行于x轴的直线交⊙M于P,Q两点,点P在点Q的右方,点P的坐标是(﹣1,2)∴点Q的纵坐标是2设PQ=2x,作MA⊥PQ,利用垂径定理可知QA=PA=x,连接MP,则MP=MO=x+1,在Rt△AMP中,MA2+AP2=MP2∴22+x2=(x+1)2∴x=1.5∴PQ=3,Q的横坐标=﹣(1+3)=﹣4∴Q(﹣4,2)故选A.考点:坐标与图形性质;勾股定理;垂径定理.10. 若二次函数y=ax2+bx+c(a≠0)的图象于x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x0,y0)在x轴下方,对于以下说法:①b2﹣4ac>0 ②x=x0是方程ax2+bx+c=y0的解;③x1<x0<x2④a(x0﹣x1)(x0﹣x2)<0; ⑤x0<x1或x0>x2,其中正确的有A. ①②B. ①②④C. ①②⑤D. ①②④⑤【答案】B【解析】试题解析:①∵二次函数y=ax2+bx+c(a≠0)的图象于x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,∴方程ax2+bx+c=0有两个不相等的实数根,∴△=b2-4ac>0,①正确;②∵图象上有一点M(x0,y0),∴a x02+bx0+c=y0,∴x=x0是方程ax2+bx+c=y0的解,②正确;③当a>0时,∵M(x0,y0)在x轴下方,∴x1<x0<x2;当a<0时,∵M(x0,y0)在x轴下方,∴x 0<x 1或x 0>x 2,③错误;④∵二次函数y=ax 2+bx+c(a≠0)的图象于x 轴的交点坐标分别为(x 1,0),(x 2,0),∴y=ax 2+bx+c=a(x-x 1)(x-x 2),∵图象上有一点M(x 0,y 0)在x 轴下方,∴y 0=a(x 0-x 1)(x 0-x 2)<0,④正确;⑤根据③即可得出⑤错误.综上可知正确的结论有①②④.故选B .【点睛】本题考查了抛物线与x 轴的交点、二次函数图象上点的坐标特征以及二次函数图象与系数的关系,根据二次函数的相关知识逐一分析五条结论的正误是解题的关键.二、填空题(共6小题,每题3分,满分18分)11 分解因式:2(2)(4)4x x x +++-=__________.【答案】2(x+2)(x+1)【解析】先把-4化简为(x-2)(x+2),然后提取公因式(x+2),整理得2(x+2)(x+1)12. 设x1、x2 是一元二次方程x2+4x -3=0的两个根,2x1(x22+5x2-3)+a =2,则a=" " ▲【答案】8【解析】试题解析:根据题意可得x 1+x 2═-4,x 1•x 2=-3,又∵2x 1(x 22+5x 2-3)+a=2,∴2x 1x 22+10x 1x 2-6x 1+a=2,-6x 2+10x 1x 2-6x 1+a=2,-6(x 1+x 2)+10x 1x 2+a=2,-6×(-4)+10×(-3)+a=2,∴a=8.13. 将一副直角三角板(含45°角的直角三角板ABC 与含30°角的直角三角板DCB )按图示方式叠放,斜边交点为O ,则△AOB 与△COD 的面积之比等于_________.【答案】1:3【解析】∵直角三角板(含45°角的直角三角板ABC及含30°角的直角三角板DCB)按图示方式叠放∴∠D=30°,∠A=45°,AB∥CD∴∠A=∠OCD,∠D=∠OBA∴△AOB∽△COD设BC=a∴CD=3a∴S△AOB:S△COD=1:314. 如图,Rt△ABC中,∠A=90°,∠B=30°,AC=6,以A为圆心,AC长为半径画四分之一圆,则图中阴影部分面积为__________.(结果保留π)【答案】93﹣3π【解析】试题解析:连结AD.∵直角△ABC中,∠A=90°,∠B=30°,AC=6,∴∠C=60°,3∵AD=AC,∴三角形ACD 是等边三角形,∴∠CAD=60°, ∴∠DAE=30°, ∴图中阴影部分的面积=211306663-633-=93-322360ππ⨯⨯⨯⨯⨯ 15. 如图,以扇形OAB 的顶点O 为原点,半径OB 所在的直线为x 轴,建立平面直角坐标系,点B 的坐标为(2,0),若抛物线21y x k 2=+与扇形OAB 的边界总有两个公共点,则实数k 的取值范围是 .【答案】-2<k <12. 【解析】【分析】 由图可知,∠AOB=45°,∴直线OA 的解析式为y=x ,联立2y x{1y x k 2==+,消掉y 得,2x 2x 2k 0-+=, 由()22412k 0∆=--⨯⨯=解得,12k =. ∴当12k =时,抛物线与OA 有一个交点,此交点的横坐标为1. ∵点B 的坐标为(2,0),∴OA=2,∴点A 的坐标为22,∴交点在线段AO 上.当抛物线经过点B(2,0)时,104k 2=⨯+,解得k=-2. ∴要使抛物线21y x k 2=+与扇形OAB 的边界总有两个公共点,实数k 的取值范围是-2<k <12. 【详解】请在此输入详解!16. 在矩形ABCO 中,O 为坐标原点,A 在y 轴上,C 在x 轴上,B 的坐标为(8,6),P 是线段BC 上动点,点D 是直线y=2x ﹣6上第一象限的点,若△APD 是等腰直角三角形,则点D 的坐标为_____________.【答案】(4,2)或(203,223)或(283,283) 【解析】 试题解析:①如图1中,当∠ADP=90°,D 在AB 下方,设点D 坐标(a ,2a-6),过点D 作EF ∥OC 交OA 于E ,交BC 于F ,则OE=2a-6,AE=AO-OE=12-2a ,在△ADE 和△DPF 中,{AED DFPADE DPF AD DP∠∠∠∠===∴△ADE ≌△DPF ,∴AE=DF=12-2a ,∵EF=OC=8,∴a+12-2a=8,∴a=4.此时点D 坐标(4,2).②如图2中,当∠ADP=90°,D 在AB 上方,设点D坐标(a,2a-6),过点D作EF∥OC交OA于E,交CB的延长线于F,则OE=2a-6,AE=OE-OA=2a-12,由△ADE≌△DPF,得到DF=AE=2a-12,∵EF=8,∴a+2a-12=8,∴a=203,此时点D坐标(203,223).③如图3中,当∠APD=90°时,设点D坐标(a,2a-6),作DE⊥CB的延长线于E.同理可知△ABP≌△EPD,∴AB=EP=8,PB=DE=a-8,∴EB=2a-6-6=8-(a-8),∴a=283,此时点D 坐标(283,283). 当∠DAP=90°时,此时P 在BC 的延长线上, ∴点D 坐标为(4,2)或(203,223)或(283,283). 【点睛】本题主要考查一次函数综合应用,涉及矩形的性质、全等三角形的判定和性质、等腰直角三角形的性质及分类讨论思想等知识点,设D 点的坐标是解题的关键,学会用方程的思想思考问题,考虑问题要全面,属于中考填空题中的压轴题.三、解答题(满分72分)17. 已知:y=2x 2﹣ax ﹣a 2,且当x=1时,y=0,先化简,再求值:(1﹣2-2-4a a )÷22++4+4a a a a 【答案】3.【解析】试题分析:先根据分式混合运算的法则把原式进行化简,再由当x=1时,y=0求出a 的值,选取合适的a 的值代入进行计算即可.试题解析:原式=()()211[1]22a a a a +-÷++ =()()221•21a a a a a ++++ =2a a+, ∵y=2x 2-ax-a 2,且当x=1时,y=0,∴2-a-a 2=0,解得a 1=1,a 2=-2,当a=1时,原式=3;当a=-2时,a+2=0,原式无意义.故原式=3.18. 如图,等腰Rt△ABC 中,BA=BC ,∠ABC=90°,点D 在AC 上,将△ABD 绕点B 沿顺时针方向旋转90°后,得到△CBE(1)求∠DCE 的度数;(2)若AB=4,CD=3AD ,求DE 的长.【答案】解:(1)90°;(2)5【解析】试题分析:(1)首先由等腰直角三角形的性质求得∠BAD、∠BCD的度数,然后由旋转的性质可求得∠BCE 的度数,故此可求得∠DCE的度数;(2)由(1)可知△DCE是直角三角形,先由勾股定理求得AC的长,然后依据比例关系可得到CE和DC的长,最后依据勾股定理求解即可.试题解析:(1)∵△ABCD为等腰直角三角形,∴∠BAD=∠BCD=45°.由旋转的性质可知∠BAD=∠BCE=45°.∴∠DCE=∠BCE+∠BCA=45°+45°=90°.(2)∵BA=BC,∠ABC=90°,∴2242+=AB BC∵CD=3AD,∴2,2由旋转的性质可知:2.∴2225+=CE DC考点:旋转的性质.19. 吸烟有害健康,为配合”戒烟”运动,某校组织同学们在社区开展了”你支持哪种戒烟方式”的随机问卷调查,并将调查结果绘制成两幅不完整的统计图:根据统计图解答下列问题:(1)同学们一共调查了多少人?(2)将条形统计图补充完整.(3)若该社区有1万人,请你估计大约有多少人支持”警示戒烟”这种方式?(4)为了让更多的市民增强”戒烟”意识,同学们在社区做了两期”警示戒烟”的宣传.若每期宣传后,市民支持”警示戒烟”的平均增长率为20%,则两期宣传后支持”警示戒烟”的市民约有多少人?【答案】(1)500人(2)见解析(3)3500人(4)5040人【解析】解:(1)∵50÷10%=500,∴一共调查了500人.(2)由(1)可知,总人数是300人,∴药物戒烟:500×15%=75(人);警示戒烟:500-200-50-75=175(人).补充完整的条形统计图如图所示:(3)∵10000×35%=3500,∴估计大约有3500人支持”警示戒烟”这种方式.(4)∵3500×(1+20%)2=5040(人),∴两期宣传后支持”警示戒烟”市民约有5040人.(1)根据替代品戒烟50人占总体的10%,即可求得总人数.(2)根据求得的总人数,结合扇形统计图可以求得药物戒烟的人数,从而求得警示戒烟的人数,据此补充完整条形统计图.(3)根据图中”强制戒烟”的百分比再进一步根据样本估计总体.(4)第一期宣传后支持”警示戒烟”的市民约有3500×(1+增长率),第二期宣传后支持”警示戒烟”的市民约有3500×(1+增长率)(1+增长率).20. 如图,建筑物AB 后有一座假山,其坡度为i=1:3,山坡上E 点处有一凉亭,测得假山坡脚C 与建筑物水平距离BC=25米,与凉亭距离CE=20米,某人从建筑物顶端测得E 点的俯角为45°,求建筑物AB 的高.(注:坡度i 是指坡面的铅直高度与水平宽度的比)【答案】(35+103)m .【解析】【分析】过点E 作EF ⊥BC 于点F .在Rt △CEF 中,求出CF=3 EF ,过点E 作EH ⊥AB 于点H .在Rt △AHE 中,∠HAE=45°,得到CF 的值,再根据AB=AH+BH ,求出AB 的值.【详解】解:过点E 作EF ⊥BC 的延长线于F ,EH ⊥AB 于点H ,在Rt △CEF 中,∵i=3EF CF =tan ∠ECF , ∴∠ECF=30°, ∴EF=12CE=10米,3米, ∴BH=EF=10米,3米,在Rt △AHE 中,∵∠HAE=45°,∴AH=HE=(25+103)米,∴AB=AH+HB=(35+103)米.答:楼房AB的高为(35+103)米.21. 如图,直线y=2x+2与y轴交于A点,与反比例函数ky=x(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=2.(1)求k的值;(2)点N(a,1)是反比例函数ky=x(x>0)图象上的点,在x轴上是否存在点P,使得PM+PN最小?若存在,求出点P的坐标;若不存在,请说明理由.【答案】(1)4;(2)存在,P点坐标为(175,0)【解析】【分析】(1)根据直线解析式求A点坐标,得OA的长度;根据三角函数定义可求OH的长度,得点M的横坐标;根据点M在直线上可求点M的坐标.从而可求K的值;(2)根据反比例函数解析式可求N点坐标;作点N关于x轴的对称点N1,连接MN1与x轴的交点就是满足条件的P点位置:【详解】解:(1)由y=2x+2可知A(0,2),即OA=2.∵tan∠AHO=2,∴OH=1.∵MH⊥x轴,∴点M的横坐标为1.∵点M在直线y=2x+2上,∴点M的纵坐标为4.即M(1,4).∵点M在ky=x上,∴k=1×4=4.(2)存在.∵点N(a,1)在反比例函数4y=x(x>0)上,∴a=4.即点N的坐标为(4,1).过点N作N关于x轴的对称点N1,连接MN1,交x轴于P(如图所示).此时PM+PN最小.∵N与N1关于x轴的对称,N点坐标为(4,1),∴N1的坐标为(4,﹣1).设直线MN1解析式为y=kx+b.由k+b=4{4k+b=1-解得5k=3{7b=3-.∴直线MN1的解析式为517y=x+33-.令y=0,得x=175.∴P点坐标为(175,0).22. 某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?【答案】(1)y=﹣5x 2+800x ﹣27500(50≤x≤100);(2)当x=80时,y 最大值=4500;(3)70≤x≤90.【解析】【分析】(1) 根据题目已知条件, 可以判定销量与售价之间的关系式为一次函数, 并可以进一步写出二者之间的关系式; 然后根据单位利润等于单位售价减单位成本, 以及销售利润等于单位利润乘销量, 即可求出每天的销售利润与销售单价之间的关系式.(2) 根据开口向下的抛物线在对称轴处取得最大值, 即可计算出每天的销售利 润及相应的销售单价.(3) 根据开口向下的抛物线的图象的性质,满足要求的x 的取值范围应该在﹣5(x ﹣80)2+4500=4000的两根之间,即可确定满足题意的取值范围.【详解】解:(1)y=(x ﹣50)[50+5(100﹣x)]=(x ﹣50)(﹣5x+550)=﹣5x 2+800x ﹣27500,∴y=﹣5x 2+800x ﹣27500(50≤x≤100);(2)y=﹣5x 2+800x ﹣27500=﹣5(x ﹣80)2+4500,∵a=﹣5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,∴当x=80时,y 最大值=4500;(3)当y=4000时,﹣5(x ﹣80)2+4500=4000,解得x 1=70,x 2=90.∴当70≤x≤90时,每天的销售利润不低于4000元.【点睛】本题主要考查二次函数的应用.23. 如图,AB 是⊙O 的直径,弦CD ⊥AB 于H ,过CD 延长线上一点E 作⊙O 的切线交AB 的延长线于切点为G ,连接AG 交CD 于K .(1)求证:KE=GE ;(2)若KG 2=KD•GE ,试判断AC 与EF 的位置关系,并说明理由;(3)在(2)的条件下,若sinE=35,AK=FG 的长.【答案】(1)证明见解析;(2)AC∥EF,证明见解析;(3)FG=2528.【解析】【分析】(1)如图1,连接OG.根据切线性质及CD⊥AB,可以推出∠KGE=∠AKH=∠GKE,根据等角对等边得到KE=GE;(2)AC与EF平行,理由为:如图2所示,连接GD,由∠KGE=∠GKE,及KG2=KD•GE,利用两边对应成比例且夹角相等的两三角形相似可得出△GKD与△EKG相似,又利用同弧所对的圆周角相等得到∠C=∠AGD,可推知∠E=∠C,从而得到AC∥EF;(3)如图3所示,连接OG,OC,先求出KE=GE,再求出圆的半径,根据勾股定理与垂径定理可以求解;然后在Rt△OGF中,解直角三角形即可求得FG的长度.【详解】解:(1)如图1,连接OG.∵EG为切线,∴∠KGE+∠OGA=90°,∵CD⊥AB,∴∠AKH+∠OAG=90°,又∵OA=OG,∴∠OGA=∠OAG,∴∠KGE=∠AKH=∠GKE,∴KE=GE.(2)AC∥EF,理由为连接GD,如图2所示.∵KG 2=KD•GE ,即=KG GE KD KG , ∴=KG KD GE KG, 又∵∠KGE=∠GKE ,∴△GKD ∽△EGK ,∴∠E=∠AGD ,又∵∠C=∠AGD ,∴∠E=∠C ,∴AC ∥EF; (3)连接OG ,OC ,如图3所示,∵EG 为切线,∴∠KGE+∠OGA=90°, ∵CD ⊥AB ,∴∠AKH+∠OAG=90°, 又∵OA=OG ,∴∠OGA=∠OAG ,∴∠KGE=∠AKH=∠GKE ,∴KE=GE .∵sinE=sin ∠ACH=35,设AH=3t ,则AC=5t ,CH=4t ,∵KE=GE,AC∥EF,∴CK=AC=5t,∴HK=CK-CH=t.在Rt△AHK中,根据勾股定理得AH2+HK2=AK2,即(3t)2+t2=(25)2,解得t=2.设⊙O 半径为r,在Rt△OCH中,OC=r,OH=r-3t,CH=4t,由勾股定理得:OH2+CH2=OC2,即(r-3t)2+(4t)2=r2,解得r=256t=2526.∵EF为切线,∴△OGF为直角三角形,在Rt△OGF中,OG=r=2526,tan∠OFG=tan∠CAH=4=3CHAH,∴FG=25225624tan83OGOFG==∠【点睛】此题考查了切线的性质,相似三角形的判定与性质,垂径定理,勾股定理,锐角三角函数定义,圆周角定理,平行线的判定,以及等腰三角形的判定,熟练掌握定理及性质是解本题的关键.24. 如图,在△ABC中,AB=AC=5,BC=6,点D为AB边上的一动点(D不与A、B重合),过D作DE∥BC,交AC于点E.把△ADE沿直线DE折叠,点A落在点A'处.连结BA',设AD=x,△ADE的边DE上的高为y.(1) 求出y与x的函数关系式;(2) 若以点A'、B、D为顶点的三角形与△ABC 相似,求x的值;(3) 当x取何值时,△A' DB是直角三角形.【答案】(1)y= (0<x<5).(2)x=.(3)当x=、x=时,△A'DB是直角三角形.【解析】【分析】(1)先过A 点作AM ⊥BC ,得出BM=12BC=3,再根据DE ∥BC ,得出AN ⊥DE ,即y=AN ,再在Rt △ABM 中,求出AM 的值,再根据DE ∥BC ,求出△ADE ∽△ABC ,即可求出y 与x 的函数关系式;(2)根据△A'DE 由△ADE 折叠得到,得出AD=A'D ,AE=A'E ,再由(1)可得△ADE 是等腰三角形,得出AD=A'D ,AE=A'E ,即可证出四边形ADA'E 是菱形,得出∠BDA'=∠BAC ,再根据∠BAC≠∠ABC ,∠BAC≠∠C ,得出∠BDA'≠∠ABC ,∠BDA'≠∠C ,从而证出△BDA'∽△BAC ,即可求出x 的值;(3)先分三种情况进行讨论;第一种情况当∠BDA′=90°,得出∠BDA'≠90°;第二种情况当∠BA'D=90°,根据∠BAM <90°,∠BA'D <∠BAM ,可得∠BA'D≠90°;第三种情况当∠A'BD=90°,根据∠A'BD=90°,∠AMB=90°,得出△BA'M ∽△ABM ,即可求出BA′的值,再在Rt △D BA'中,根据DB 2+A'B 2=A'D 2,求出x 的值,即可证出△A′DB 是直角三角形;【详解】(1)如图1,过A 点作AM ⊥BC ,垂足为M ,交DE 于N 点,则BM=12BC=3, ∵DE ∥BC ,∴AN ⊥DE ,即y=AN .在Rt △ABM 中,AM=2253-=4,∵DE ∥BC ,∴△ADE ∽△ABC , ∴=AD AN AB AM, ∴54x y =, ∴y=45x (0<x <5).(2)∵△A'DE 由△ADE 折叠得到,∴AD=A'D ,AE=A'E ,∵由(1)可得△ADE是等腰三角形,∴AD=AE,∴A'D=A'E,∴四边形ADA'E是菱形,∴AC∥D A',∴∠BDA'=∠BAC,又∵∠BAC≠∠ABC,∴∠BDA'≠∠ABC,∵∠BAC≠∠C,∴∠BDA'≠∠C,∴有且只有当BD=A'D时,△BDA'∽△BAC,∴当BD=A'D,即5-x=x时,x=52.(3)第一种情况:∠BDA'=90°,∵∠BDA'=∠BAC,而∠BAC≠90°,∴∠BDA'≠90°.第二种情况:∠BA'D=90°,∵在Rt△BA'D中,DB2-A'D2=A'B2,在Rt△BA'M中,A'M2+BM2=A'B2,∴DB2-A'D2=A'M2+BM2,∴(5-x)2-x2=(4-85x)2+(3)2,解得x=3532;第三种情况:∠A'BD=90°,∵∠A'BD=90°,∠AMB=90°,∴△BA'M∽△ABM,即BA BM AB AM'=,∴BA'=154,在Rt△D BA'中,DB2+A'B2=A'D2,(5-x)2+22516=x2,解得:x=125 32.综上可知当x=3532或12532时,△A'DB是直角三角形.【点睛】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.25. 在平面直角坐标系中,抛物线y=ax2﹣5ax+4a与x轴交于A、B(A点在B点的左侧)与y轴交于点C.(1)如图1,连接AC、BC,若△ABC的面积为3时,求抛物线的解析式;(2)如图2,点P为第四象限抛物线上一点且在直线BC下方,连接PC,若∠BCP=2∠ABC时,求点P的横坐标;(3)如图3,在(2)的条件下,点F在AP上,过点P作PH⊥x轴于H点,点K在PH的延长线上,AK=KF,∠KAH=∠FKH,PF=﹣42a,连接KB并延长交抛物线于点Q,求PQ的长.【答案】(1)抛物线的解析式为y=﹣12x2+52x﹣2;(2)点P的横坐标为6;(3)QP=7.【解析】试题分析:(1)通过解方程ax2-5ax+4a=0可得到A(1,0),B(4,0),然后利用三角形面积公式求出OC得到C点坐标,再把C点坐标代入y=ax2-5ax+4a中求出a即可得到抛物线的解析式;(2)过点P作PH⊥x轴于H,作CD⊥PH于点H,如图2,设P(x,ax2-5ax+4a),则PD=-ax2+5ax,通过证明Rt△PCD∽Rt△CBO,利用相似比可得到(-ax2+5ax):(-4a)=x:4,然后解方程求出x即可得到点P的横坐标;(3)过点F作FG⊥PK于点G,如图3,先证明∠HAP=∠KPA得到HA=HP,由于P(6,10a),则可得到-10a=6-1,解得a=-12,再判断Rt△PFG单位等腰直角三角形得到2PF=2,接着证明△AKH≌△KFG,得到KH=FG=2,则K(6,2),然后利用待定系数法求出直线KB的解析式为y=x-4,再通过解方程组2=-4{15=-+-222y x y x x 得到Q(-1,-5),利用P 、Q 点的坐标可判断PQ ∥x 轴,于是可得到QP=7. 试题解析:(1)当y=0时,ax 2-5ax+4a=0,解得x 1=1,x 2=4,则A(1,0),B(4,0),∴AB=3,∵△ABC 的面积为3,∴12•4•OC=3,解得OC=2,则C(0,-2), 把C(0,-2)代入y=ax 2-5ax+4a 得4a=-2,解得a=-12, ∴抛物线的解析式为y=-12x 2+52x-2; (2)过点P 作PH ⊥x 轴于H ,作CD ⊥PH 于点H ,如图2,设P(x ,ax 2-5ax+4a ),则PD=4a-(ax 2-5ax+4a)=-ax 2+5ax ,∵AB ∥CD ,∴∠ABC=∠BCD ,∵∠BCP=2∠ABC ,∴∠PCD=∠ABC ,∴Rt △PCD ∽Rt △CBO ,∴PD :OC=CD :OB ,即(-ax 2+5ax):(-4a)=x :4,解得x 1=0,x 2=6,∴点P 的横坐标为6;(3)过点F 作FG ⊥PK 于点G ,如图3,∵AK=FK ,∴∠KAF=∠KFA ,而∠KAF=∠KAH+∠PAH ,∠KFA=∠PKF+∠KPF ,∵∠KAH=∠FKP ,∴∠HAP=∠KPA ,∴HA=HP ,∴△AHP 为等腰直角三角形,∵P(6,10a),∴-10a=6-1,解得a=-12, 在Rt △PFG 中,∵22∠FPG=45°, ∴FG=PG=22PF=2, 在△AKH 和△KFG 中={==AHK KGFKAH GKF KA FK∠∠∠∴△AKH ≌△KFG ,∴KH=FG=2,∴K(6,2),设直线KB 解析式为y=mx+n ,把K(6,2),B(4,0)代入得62{40k b k b ++== , 解得1{4k b -== ,∴直线KB 的解析式为y=x-4,当a=-12时,抛物线的解析式为y=-12x 2+52x-2, 解方程组2=-4{15=-+-222y x y x x , 解得1{5x y --== 或4{0x y == , ∴Q(-1,-5),而P(6,-5),∴PQ ∥x 轴,∴QP=7.【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会利用全等三角形的知识证明线段相等和相似比计算线段的长.。

中考预测卷《数学试题》含答案解析

中考预测卷《数学试题》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题,满分30分,每小题3分)1. 若实数a、b互为相反数,则下列等式中成立的是()A. a﹣b=0B. a+b=0C. ab=1D. ab=﹣12.”厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是2 10000000人一年的口粮.将210000000用科学记数法表示为【】A. 2.1×109B. 0.21×109C. 2.1×108D. 21×1073. 如图是按1:10的比例画出的一个几何体的三视图,则该几何体的侧面积是( )A. 200cm2B. 600cm2C. 100πcm2D. 200πcm24. 在下列的计算中,正确的是( )A. m3+m2=m5B. m5÷m2=m3C. (2m)3=6m3D. (m+1)2=m2+15. 2是同类二次根式的是( )A. 18B. 12C. 23D.326. 《九章算术》是我国古代数学的经典著作,书中有一个问题:”今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得( )A.11910813x yy x x y=⎧⎨+-+=⎩()()B.108 91311y x x y x y+=+⎧⎨+=⎩C.91181013x yx y y x ()()=⎧⎨+-+=⎩D.91110813 x yy x x y=⎧⎨+-+=⎩()()7. 若关于x的不等式组324x ax a<+⎧⎨>-⎩无解,则a的取值范围是( )A. a≤﹣3B. a<﹣3C. a>3D. a≥38. (2018商丘模拟)如图,将一副三角板叠放在一起,使直角的顶点重合于点,//AB OC,DC与OB交于点,则DEO∠的度数为().A. 85︒B. 70︒C. 75︒D. 60︒9. 如图,以矩形ABOD的两边OD、OB为坐标轴建立直角坐标系,若E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交OD于F点.若OF=1,FD=2,则G点的坐标为( )A. (35,265) B. (35,65)C. (25,65) D. (25,365)10. 如图,在△ABC中,∠ABC=60°,∠C=45°,点D,E分别为边AB,AC上的点,且DE∥BC,BD=DE=2.动点P从点B出发,以每秒1个单位长度的速度沿B→D→E→C匀速运动,运动到点C时停止.过点P作PQ⊥BC 于点Q,设△BPQ的面积为S,点P的运动时间为t,则S关于t的函数图象大致为( )A. B. C D.二.填空题(共5小题,满分15分,每小题3分)11. 计算:255÷= _____;532--= _____;20152014(32)(32)+⨯- =_____.12. 将抛物线y =﹣5x 2先向左平移5个单位.再向下平移3个单位,可以得到新的抛物线是:_____ 13. 甲、乙、丙三名学生各自随机选择到A 、B 两个书店购书,则甲、乙、丙三名学生到同一个书店购书的概率为_____.14. 如图,在ABCD 中,以点为圆心,AB 的长为半径的圆恰好与CD 相切于点,交AD 于点,延长BA 与A 相交于点.若EF 的长为2π,则图中阴影部分的面积为________.15. 如图,正方形ABCD 的边长为12,点E 在边AB 上,BE=8,过点E 作EF ∥BC ,分别交BD 、CD 于G 、F 两点.若点P 、Q 分别为DG 、CE 的中点,则PQ 的长为_____.三.解答题(共8小题,满分75分)16. 先化简,再求值:(x+y)(x ﹣y)+y(x+2y)﹣(x ﹣y)2,其中3y=2317. 数学课上学习了圆周角的概念和性质:”顶点在圆上,两边与圆相交”,”同弧所对的圆周角相等”,小明在课后继续对圆外角和圆内角进行了探究.下面是他的探究过程,请补充完整:定义概念:顶点在圆外,两边与圆相交的角叫做圆外角,顶点在圆内,两边与圆相交的角叫做圆内角.如图1,∠M为AB所对的一个圆外角.(1)请在图2中画出AB所对的一个圆内角;提出猜想:(2)通过多次画图、测量,获得了两个猜想:一条弧所对的圆外角这条弧所对的圆周角;一条弧所对的圆内角这条弧所对的圆周角;(填”大于”、”等于”或”小于”)推理证明:(3)利用图1或图2,在以上两个猜想中任选一个进行证明;问题解决:经过证明后,上述两个猜想都是正确的,继续探究发现,还可以解决下面的问题.(4)如图3,F,H是∠CDE边DC上两点,在边DE上找一点P使得∠FPH最大.请简述如何确定点P的位置.(写出思路即可,不要求写出作法和画图)18. 如图所示,半圆O的直径AB=4,CD=BD,DE⊥AB于E,DF⊥AC于F,连接CD,DB,OD.(1)求证:△CDF≌△BDE;(2)当AD=时,四边形AODC是菱形;(3)当AD=时,四边形AEDF正方形.19. 如图是小强洗漱时侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm.洗漱时下半身与地面成80°角(即∠FGK=80°),身体前倾成125°角(即∠EFG=125°),脚与洗漱台的距离GC=15cm(点D、C、G、K在同一直线上).(1)求此时小强头部E点与地面DK的距离;(2)小强希望他的头部E点恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少(结果精确到0.1cm,参考数据:cos80°≈0.17,sin80°≈0.98,2≈1.41)20. 如图,反比例函数y=kx(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.21. 某物流公司承接A、B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司月运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?22. 问题:(1)如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为;探索:(2)如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:(3)如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.23. 如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.答案与解析一.选择题(共10小题,满分30分,每小题3分)1. 若实数a 、b 互为相反数,则下列等式中成立的是( )A. a ﹣b =0B. a +b =0C. ab =1D. ab =﹣1【答案】B【解析】∵a b 、互为相反数,∴0a b +=.故选B.2.”厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为【 】A. 2.1×109B. 0.21×109C. 2.1×108D. 21×107 【答案】C【解析】【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.在确定n 的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0).【详解】210000000一共9位,从而210000000=2.1×108.故选C. 3. 如图是按1:10的比例画出的一个几何体的三视图,则该几何体的侧面积是( )A. 200 cm 2B. 600 cm 2C. 100πcm 2D. 200πcm 2【答案】D【解析】 试题解析:由三视图可知,该几何体为圆柱,由俯视图可得底面周长为10π cm ,由主视图可得圆柱的高为20 cm ,所以圆柱的侧面积为1020200ππ⨯= 2cm .所以本题应选D.点睛:圆柱体的侧面积=底面周长×高.4. 在下列的计算中,正确的是( )A. m3+m2=m5B. m5÷m2=m3C. (2m)3=6m3D. (m+1)2=m2+1【答案】B【解析】分析】各项计算得到结果,即可作出判断.【详解】A、原式不能合并,不符合题意;B、原式=m3,符合题意;C、原式=8m3,不符合题意;D、原式=m2+2m+1,不符合题意,故选B.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.5. 是同类二次根式的是( )D.2【答案】A【解析】【分析】根据二次根式的性质把各个二次根式化简,根据同类二次根式的概念判断即可.【详解】解:A. ;B. 不是同类二次根式;C. 不是同类二次根式;D. ;故选A.【点睛】本题考查的是同类二次根式的概念,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.6. 《九章算术》是我国古代数学的经典著作,书中有一个问题:”今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得( )A.11910813x yy x x y=⎧⎨+-+=⎩()()B.108 91311y x x y x y+=+⎧⎨+=⎩C.91181013x yx y y x ()()=⎧⎨+-+=⎩D.91110813 x yy x x y=⎧⎨+-+=⎩()()【答案】D【解析】【分析】根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.【详解】设每枚黄金重x两,每枚白银重y两,由题意得:91110813x yy x x y=⎧⎨+-+=⎩()(),故选D.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中等量关系.7. 若关于x的不等式组324x ax a<+⎧⎨>-⎩无解,则a的取值范围是( )A. a≤﹣3B. a<﹣3C. a>3D. a≥3【答案】A【解析】【分析】利用不等式组取解集的方法,根据不等式组无解求出a的取值范围即可.【详解】∵不等式组324x ax a<+⎧⎨>-⎩无解,∴a﹣4≥3a+2,解得:a≤﹣3,故选A .【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法”同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.8. (2018商丘模拟)如图,将一副三角板叠放在一起,使直角的顶点重合于点,//AB OC ,DC 与OB 交于点,则DEO ∠的度数为( ).A. 85︒B. 70︒C. 75︒D. 60︒ 【答案】C【解析】【详解】∵AB OC ,30B ∠=︒,∴30BOC ∠=︒,∴453075DEO C BOC ∠=∠+∠=︒+︒=︒.9. 如图,以矩形ABOD 的两边OD 、OB 为坐标轴建立直角坐标系,若E 是AD 的中点,将△ABE 沿BE 折叠后得到△GBE ,延长BG 交OD 于F 点.若OF =1,FD =2,则G 点的坐标为( )A (3526) B. (3546) C. (25,65) D. (25,365) 【答案】B【解析】【分析】连结EF ,作GH ⊥x 轴于H ,根据矩形的性质得AB =OD =OF +FD =3,再根据折叠的性质得BA =BG =3,EA =EG ,∠BGE=∠A=90°,而AE=DE,则GE=DE,于是可根据”HL”证明Rt△DEF≌Rt△GEF,得到FD=FG=2,则BF=BG+GF=5.在Rt△OBF中,利用勾股定理计算出OB,然后根据△FGH∽△FBO,利用相似比计算出GH和FH,根据OH=OF﹣HF,即可得到G点的坐标.【详解】连结EF,作GH⊥x轴于H,如图,∵四边形ABOD为矩形,∴AB=OD=OF+FD=1+2=3.∵△ABE沿BE折叠后得到△GBE,∴BA=BG=3,EA=EG,∠BGE=∠A=90°.∵点E为AD的中点,∴AE=DE,∴GE=DE.在Rt△DEF和Rt△GEF中,∵ED EG EF EF=⎧⎨=⎩,∴Rt△DEF≌Rt△GEF(HL),∴FD=FG=2,∴BF=BG+GF=3+2=5.在Rt△OBF中,OF=1,BF=5,∴OB=∵GH∥OB,∴△FGH∽△FBO,∴GH FH FG OB OF FB==,215FH==,∴GH=FH25 =,∴OH=OF﹣HF=123 55 -=,∴G点坐标为(35).故选B.【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了坐标与图形的性质和相似三角形的判定与性质.10. 如图,在△ABC中,∠ABC=60°,∠C=45°,点D,E分别为边AB,AC上的点,且DE∥BC,BD=DE=2.动点P从点B出发,以每秒1个单位长度的速度沿B→D→E→C匀速运动,运动到点C时停止.过点P作PQ⊥BC 于点Q,设△BPQ的面积为S,点P的运动时间为t,则S关于t的函数图象大致为( )A. B.C. D.【答案】D【解析】【分析】根据题意易知,分①当点P在BD上,Q在BC上时(即0≤t≤2),②当P在DE上,Q在BC上时(即2<t≤4),③P在EC上时,由∠C=45°易求得EC236(即4<t6)三种情况求出函数解析式,根据相应函数的性质即可求出答案.【详解】∵PQ⊥BQ,∴在P、Q运动过程中△BPQ始终是直角三角形.∴S△BPQ=12 PQ•BQ,①当点P在BD上,Q在BC上时(即0≤t≤2),BP =t ,BQ =PB •cos60°=12t ,PQ =BP •sin60°=2t ,S △BPQ =12PQ •BQ =12•12t •2t =8t 2, 此时S △BPQ 的图象是关于t (0≤t ≤2)的二次函数.∵0,∴抛物线开口向上; ②当P 在DE 上,Q 在BC 上时(即2<t ≤4),PQ =BD BQ =BD •cos60°+(t –2)=t –1,S △BPQ =12PQ •BQ =12(t –1)=2t –2, 此时S △BPQ 的图象是关于t (2<t ≤4)的一次函数.∵0,∴S △BPQ 随t 的增大而增大,直线由左向右依次上升.③P 在EC 上时,由∠C =45°易求得EC (即4<t ),PQ =2t (4<t ),BQ =32t -,S △BPQ =12PQ •BQ =12×(2t )×(32t -),其二次项系数是12×⎛ ⎝⎭14<0, ∴图象应为开口向下的抛物线.故选D .【点睛】本道题考查了动点问题的函数图像,用到的知识点有三角形的面积公式,锐角三角函数的知识,一次函数的图像与性质及二次函数的图像与性质.熟练掌握锐角三角函数的知识及二次函数的图像与性质是解答本题的关键,此题充分体现了数形结合及分类讨论的数学思想.二.填空题(共5小题,满分15分,每小题3分)11. = _____;= _____;201520142)2)⨯ =_____.【答案】 (1).(2). 2 (3). +2.【解析】【分析】原式利用二次根式除法法则计算即可得到结果;原式利用五次方根定义计算即可得到结果;原式变形后,逆用积的乘方运算法则计算即可得到结果.原式=2;原式=+2)[2)]2014.2【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.12. 将抛物线y =﹣5x 2先向左平移5个单位.再向下平移3个单位,可以得到新的抛物线是:_____【答案】25(5)3y x =-+-【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】∵抛物线y=-5x 2先向左平移5个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-5,-3),∴所得到的新的抛物线的解析式为y=-5(x+5)2-3,故答案为y=-5(x+5)2-3.【点睛】本题考查了二次函数图象与几何变换,平移的规律:左加右减,上加下减,利用顶点的变化求解更简便.13. 甲、乙、丙三名学生各自随机选择到A 、B 两个书店购书,则甲、乙、丙三名学生到同一个书店购书的概率为_____. 【答案】14【解析】【分析】根据题意画出树状图即可解题.【详解】解:根据题意画出树状图,如下图,其中一种有8中可能, 甲、乙、丙三名学生到同一个书店购书的可能一共有2种, ∴甲、乙、丙三名学生到同一个书店购书的概率为14. 【点睛】本题考查了用树状图的方法求概率问题,属于简单题,会画树状图是解题关键.14. 如图,在ABCD 中,以点为圆心,AB 的长为半径的圆恰好与CD 相切于点,交AD 于点,延长BA 与A 相交于点.若EF 的长为2π,则图中阴影部分的面积为________.【答案】22π-【解析】【分析】 连接AC ,首先利用切线的性质和平行四边形的性质得出45FAE ∠=︒,然后根据弧长公式求出半径r ,最后利用三角形面积减去扇形的面积即可求出阴影部分的面积.【详解】连接AC ,∵CD 与圆相切,∴AC CD ⊥90ACD ∴∠=︒ .∵四边形ABCD 是平行四边形,//,//AD BC AB CD ∴ ,90BAC ACD ∴∠=∠=︒ .又AB AC =,45B ∴∠=︒,45FAE B ∴∠=∠=︒ . 2EF π=, 451802r ππ∴=, 解得2r ,∴阴影部分的面积为2145222223602ππ⨯⨯⨯-=-, 故答案为:22π-.【点睛】本题主要考查阴影部分的面积,掌握切线的性质,平行四边形的性质,扇形的弧长和面积公式是解题的关键.15. 如图,正方形ABCD 的边长为12,点E 在边AB 上,BE=8,过点E 作EF ∥BC ,分别交BD 、CD 于G 、F 两点.若点P 、Q 分别为DG 、CE 的中点,则PQ 的长为_____.【答案】13【解析】【分析】根据题意作出合适的辅助线,利用三角形中位线定理、三角形的相似可以求得PH 和QH 的长,然后根据勾股定理即可求得PQ 的长.【详解】作QM ⊥EF 于点M ,作PN ⊥EF 于点N ,作QH ⊥PN 交PN 的延长线于点H ,如图所示, ∵正方形ABCD 的边长为12,BE=8,EF ∥BC ,点P 、Q 分别为DG 、CE 的中点,∴DF=4,CF=8,EF=12,∴MQ=4,PN=2,MF=6,∵QM ⊥EF ,PN ⊥EF ,BE=8,DF=4,∴△EGB ∽△FGD , ∴EG BE FG DF =, 即1284FG FG -=, 解得,FG=4,∴FN=2,∴MN=6﹣2=4,∴QH=4, ∵PH=PN+QM ,∴PH=6,∴PQ=22PH QH +=213,故答案为213.【点睛】本题考查了三角形中位线定理、正方形的性质、勾股定理、相似三角形的判定与性质,正确添加辅助线、结合图形熟练应用相关性质和定理进行解题是关键.三.解答题(共8小题,满分75分)16. 先化简,再求值:(x+y)(x ﹣y)+y(x+2y)﹣(x ﹣y)2,其中3y=23【答案】3xy,3【解析】【分析】根据平方差公式、单项式乘多项式和完全平方公式进行展开,然后进行合并化简,最后再将x 、y 的值代入化简后的式子即可解答本题.【详解】(x+y )(x ﹣y )+y (x+2y )﹣(x ﹣y )2=x 2﹣y 2+xy+2y 2﹣x 2+2xy ﹣y 2=3xy ,当3y=23原式=3×(2+3)×(2﹣3)=3.【点睛】本题考查了整式的混合运算-化简求值,熟练掌握整式的混合运算顺序以及乘法公式是解答本题的关键.17. 数学课上学习了圆周角的概念和性质:”顶点在圆上,两边与圆相交”,”同弧所对的圆周角相等”,小明在课后继续对圆外角和圆内角进行了探究.下面是他的探究过程,请补充完整:定义概念:顶点在圆外,两边与圆相交的角叫做圆外角,顶点在圆内,两边与圆相交的角叫做圆内角.如图1,∠M为AB所对的一个圆外角.(1)请在图2中画出AB所对的一个圆内角;提出猜想:(2)通过多次画图、测量,获得了两个猜想:一条弧所对的圆外角这条弧所对的圆周角;一条弧所对的圆内角这条弧所对的圆周角;(填”大于”、”等于”或”小于”)推理证明:(3)利用图1或图2,在以上两个猜想中任选一个进行证明;问题解决:经过证明后,上述两个猜想都是正确的,继续探究发现,还可以解决下面的问题.(4)如图3,F,H是∠CDE的边DC上两点,在边DE上找一点P使得∠FPH最大.请简述如何确定点P的位置.(写出思路即可,不要求写出作法和画图)【答案】(1)见解析(2)小于;大于(3)见解析(4)见解析【解析】【分析】(1)在⊙O内任取一点M,连接AM,BM;(2)观察图形,可知:一条弧所对的圆外角小于这条弧所对的圆周角;一条弧所对的圆内角大于这条弧所对的圆周角,此问得解;(3)(i)BM与⊙O相交于点C,连接AC,利用三角形外角的性质可得出∠ACB=∠M+∠MAC,进而可证出∠ACB>∠M;(ii)延长BM交⊙O于点C,连接AC,利用三角形外角的性质可得出∠AMB=∠ACB+∠CAM,进而可证出∠AMB>∠ACB;(4)由(2)的结论,可知:当过点F,H的圆与DE相切时,切点即为所求的点P.【详解】(1)如图2所示.(2)观察图形,可知:一条弧所对的圆外角小于这条弧所对的圆周角;一条弧所对的圆内角大于这条弧所对的圆周角.故答案为小于;大于.(3)证明:(i)如图1,BM与⊙O相交于点C,连接AC.∵∠ACB=∠M+∠MAC,∴∠ACB>∠M;(ii)如图4,延长BM交⊙O于点C,连接AC.∵∠AMB=∠ACB+∠CAM,∴∠AMB>∠ACB.(4)如图3,当过点F,H的圆与DE相切时,切点即为所求的点P.【点睛】本题考查圆的综合应用以及三角形外角的性质,解题的关键是:(1)依照题意画出图形;(2)观察图形,找出结论;(3)利用三角形外角的性质证出:一条弧所对的圆外角小于这条弧所对的圆周角;一条弧所对的圆内角大于这条弧所对的圆周角;(4)利用(2)的结论找出点P的位置.18. 如图所示,半圆O的直径AB=4,CD=BD,DE⊥AB于E,DF⊥AC于F,连接CD,DB,OD.(1)求证:△CDF≌△BDE;(2)当AD=时,四边形AODC是菱形;(3)当AD=时,四边形AEDF是正方形.【答案】(1)证明见解析;(2)33)2.【解析】【分析】(1)根据角平分线的性质,可得DF与DE的关系,根据圆周角定理,可得DC与DB的关系,再根据HL,即可证明;(2)根据菱形的性质,可得OD与CD,OD与BD的关系,根据等边三角形的性质,可得∠DBA 的度数,根据三角函数值,即可求解;(3)根据圆周角定理,可得OD⊥AB,根据勾股定理,即可求出AD的长.详解】(1)证明:∵CD BD=,∴CD=BD,∠FAD=∠BAD.∵DF⊥AC,DE⊥AB,∴DF=DE,∠BED=∠CFD=90°.在Rt△CFD和Rt△BED中,BD CD DE DF=⎧⎨=⎩∴△CDF≌△BDE(HL).(2)四边形AODC是菱形时,OD=CD=BD=OB,∴∠DBA=60°,∴AD=AB·sin∠DBA=4sin60°=23.(3)当OD⊥AB,即OD与OE重合时,四边形AEDF是正方形,由勾股定理得AD=22=22.OA OD【点睛】此题主要考查圆内的综合问题,解题的关键是熟知圆周角定理、全等三角形三角形的判定、菱形的性质、正方形的性质与判定.19. 如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm.洗漱时下半身与地面成80°角(即∠FGK=80°),身体前倾成125°角(即∠EFG=125°),脚与洗漱台的距离GC=15cm(点D、C、G、K在同一直线上).(1)求此时小强头部E点与地面DK的距离;(2)小强希望他的头部E点恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少(结果精确到0.1cm,参考数据:cos80°≈0.17,sin80°≈0.982≈1.41)?【答案】(1) 小强头部E点与地面DK相距约为144.5cm.(2) 他应向前10.5cm.【解析】【分析】(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.求出MF、FN的值即可解决问题;(2)求出OH 、PH 的值即可判断;【详解】解:(1) 过点作FN DK ⊥于点,过点作EM FN ⊥于点M .∵80FGK ∠=︒∴100sin8098FN =︒≈∵166,100EF FG FG +==∴66EF =又∵125EFG ∠=︒∴1801251045EFM ∠=︒-︒-︒=︒∴664546.53FM cos =︒=≈∴144.5MN FN FM =+≈∴他头部点与地面DK 相距约144. 5cm.(2)过点作EP AB ⊥于点,延长OB 交MN 于点.∵48AB =,点为AB 的中点∴24AO BO ==∵66sin 4546.53EM =︒≈即46.53PH EM =≈又100cos8017,15GN CG =︒≈=∴24151756OH =++=5646.539.479.5OP OH PH =-=-=≈∴他应向前9. 5cm.【点睛】本题考查直角三角形的应用,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.20. 如图,反比例函数y=k x(x >0)的图象过格点(网格线的交点)P . (1)求反比例函数的解析式;(2)在图中用直尺和2B 铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O ,点P;②矩形的面积等于k 的值.【答案】(1)4yx;(2)作图见解析.【解析】分析:(1)将P点坐标代入y=kx,利用待定系数法即可求出反比例函数的解析式;(2)根据矩形满足的两个条件画出符合要求的两个矩形即可.详解:(1)∵反比例函数y=kx(x>0)的图象过格点P(2,2),∴k=2×2=4,∴反比例函数的解析式为y=4x;(2)如图所示:矩形OAPB、矩形OCDP即为所求作的图形.点睛:本题考查了作图-应用与设计作图,反比例函数图象上点的坐标特征,待定系数法求反比例函数解析式,矩形的判定与性质,正确求出反比例函数的解析式是解题的关键.21. 某物流公司承接A、B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司月运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?【答案】(1)A为100吨,B为150吨(2)19800元【解析】【分析】(1)根据题意设未知数,然后根据所需要的运费和的等量关系列方程组,解二元一次方程组可得解;(2)设A 种货物为a 吨,则B 种货物为(330-a )吨,根据6月的运费单价可列式求出运费的式子(是一个一次函数),然后根据A 货物的数量不大于B 货物的2倍,可列不等式求出a 的范围,最后根据一次函数的增减性判断求出结果.【详解】(1)解:设A 种货物运输了吨,,B 种货物运输了吨,依题意得:50309500{704013000x y x y +=+= 解之得:100150x y =⎧⎨=⎩ (2)设A 种货物为吨,则B 种货物为330a -()吨,设获得的利润为W 元 依题意得:(330)2a a ≤-⨯①7040(330=)3013200W a a a =+-+②由①得220a ≤由②可知W 随着的增大而增大故W 取最大值时=220,即W=19800元22. 问题:(1)如图①,在Rt △ABC 中,AB =AC ,D 为BC 边上一点(不与点B ,C 重合),将线段AD 绕点A 逆时针旋转90°得到AE ,连接EC ,则线段BC ,DC ,EC 之间满足的等量关系式为 ;探索:(2)如图②,在Rt △ABC 与Rt △ADE 中,AB =AC ,AD =AE ,将△ADE 绕点A 旋转,使点D 落在BC 边上,试探索线段AD ,BD ,CD 之间满足的等量关系,并证明你的结论;应用:(3)如图③,在四边形ABCD 中,∠ABC =∠ACB =∠ADC =45°.若BD =9,CD =3,求AD 的长.【答案】(1)BC =DC +EC ;(2)BD 2+CD 2=2AD 2;(3)AD =6.【解析】【分析】(1)易证△BAD ≌△CAE ,即可得到BC =DC +EC(2)连接CE,易证△BAD≌△CAE,再得到ED =2AD,然后在Rt△ECD中利用勾股定理即可求得其关系;(3)将线段AD绕点A顺时针旋转90°得到AE,连接CE,BE,先证△ABE≌△ACD,再利用在Rt△BED 中,由勾股定理,得DE2=BD2-BE2,故2AD2=BD2-CD2,再解出AD的长即可.【详解】解:(1)BC=DC+EC.∵∠BAC=∠DAE=90°,∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE.在△BAD和△CAE中,AB ACBAD CAE AD AE=⎧⎪∠=∠⎨⎪=⎩∴△BAD≌△CAE(SAS),∴BD=CE,∴BC=BD+CD=EC+CD.(2)BD2+CD2=2AD2.证明如下:连接CE,如解图1所示.∵∠BAC=∠BAD+∠DAC=90°,AB=AC,∴∠ABC=∠ACB=45°.∵∠DAE=∠CAE+∠DAC=90°,∴∠BAD=∠CAE.在△BAD和△CAE中,AB ACBAD CAE AD AE=⎧⎪∠=∠⎨⎪=⎩∴△BAD≌△CAE(SAS),∴BD=CE,∠ACE=∠ABC=45°,∴∠BCE=∠ACB+∠ACE=90°.∵∠EAD=90°,AE=AD,∴ED=2AD.在Rt△ECD中,由勾股定理,得ED2=CE2+CD2,∴BD2+CD2=2AD2.(3)将线段AD绕点A顺时针旋转90°得到AE,连接CE,BE,如解图2所示,则AE=AD,∠EAD=90°,∴△EAD是等腰直角三角形,∴DE=2AD,∠AED=45°.∵∠ABC=∠ACB=ADC=45°,∴∠BAC=90°,AB=AC.同(2)的方法,可证得△ABE≌△ACD,∴BE=CD,∠AEB=∠ADC=45°,∴∠BEC=∠AEB+∠AED=90°.在Rt△BED中,由勾股定理,得DE2=BD2-BE2,∴2AD2=BD2-CD2.∵BD=9,CD=3,∴2AD2=92-32=72,∴AD=6(负值已舍去).【点睛】此题主要考查全等三角形的性质及判定,解题的关键是熟知等腰三角形的性质及勾股定理的应用.23. 如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.【答案】(1)y=﹣x2+2x+3;(2)①S四边形ACFD= 4;②Q点坐标为(1,4)或(352,5+5)或3+555-.【解析】【分析】此题涉及的知识点是抛物线的综合应用,难度较大,需要有很好的逻辑思维,解题时先根据已知点的坐标列方程求出函数解析式,然后再根据解析式和已知条件求出四边形的面积和点的坐标.【详解】(1)由题意可得309330a ba b-+=⎧⎨++=⎩,解得12ab=-⎧⎨=⎩,∴抛物线解析式为y=﹣x2+2x+3;(2)①∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴F(1,4),∵C(0,3),D(2,3),∴CD=2,且CD∥x轴,∵A(﹣1,0),∴S四边形ACFD =S△ACD+S△FCD=12×2×3+12×2×(4﹣3)=4;②∵点P在线段AB上,∴∠DAQ不可能为直角,∴当△AQD为直角三角形时,有∠ADQ=90°或∠AQD=90°,i.当∠ADQ=90°时,则DQ⊥AD,∵A(﹣1,0),D(2,3),∴直线AD解析式为y=x+1,∴可设直线DQ解析式为y=﹣x+b′,把D(2,3)代入可求得b′=5,∴直线DQ解析式为y=﹣x+5,联立直线DQ 和抛物线解析式可得2523y x y x x =-+⎧⎨=-++⎩,解得14x y =⎧⎨=⎩或23x y =⎧⎨=⎩, ∴Q(1,4);ii .当∠AQD=90°时,设Q(t ,﹣t 2+2t+3),设直线AQ 的解析式为y=k 1x+b 1,把A 、Q 坐标代入可得11211023k b tk b t t -+=⎧⎨+=-++⎩,解得k 1=﹣(t ﹣3), 设直线DQ 解析式为y=k 2x+b 2,同理可求得k 2=﹣t ,∵AQ ⊥DQ ,∴k 1k 2=﹣1,即t(t ﹣3)=﹣1,解得当t=32-时,﹣t 2+2t+3=52, 当t 2∴Q 点坐标为或综上可知Q 点坐标为(1,4)或或. 【点睛】此题重点考察学生对于抛物线的综合应用能力,熟练抛物线的图像和性质,四边形面积的计算方法,点坐标的求解方式是解答本题的关键.。

广西壮族自治区玉林市陆川县2024届中考数学模拟预测题含解析

广西壮族自治区玉林市陆川县2024届中考数学模拟预测题含解析

广西壮族自治区玉林市陆川县2024年中考数学模拟预测题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.某车间20名工人日加工零件数如表所示: 日加工零件数45 6 7 8人数 2 6 5 4 3 这些工人日加工零件数的众数、中位数、平均数分别是( )A .5、6、5B .5、5、6C .6、5、6D .5、6、62.如图,已知在Rt △ABC 中,∠ABC=90°,点D 是BC 边的中点,分别以B 、C 为圆心,大于线段BC 长度一半的长为半径圆弧,两弧在直线BC 上方的交点为P ,直线PD 交AC 于点E ,连接BE ,则下列结论:①ED ⊥BC ;②∠A=∠EBA ;③EB 平分∠AED ;④ED=12AB 中,一定正确的是( )A .①②③B .①②④C .①③④D .②③④3.如图所示,有一条线段是ABC ∆(AB AC >)的中线,该线段是( ).A .线段GHB .线段ADC .线段AED .线段AF4.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b+1),则a 与b 的数量关系为A .a=bB .2a+b=﹣1C .2a ﹣b=1D .2a+b=15.如图,正方形ABCD 内接于圆O ,AB =4,则图中阴影部分的面积是( )A .416π-B .816π-C .1632π-D .3216π-6.在平面直角坐标系中,正方形A 1B 1C 1D 1、D 1 E 1E 2B 2、A 2B 2 C 2D 2、D 2E 3E4B 3…按如图所示的方式放置,其中点B 1在y 轴上,点C 1、E 1、E 2、C 2、E 3、E 4、C 3…在x 轴上,已知正方形A 1B 1C 1D 1的边长为l ,∠B 1C 1O=60°,B 1C 1∥B 2C 2∥B 3C 3…,则正方形A 2017B 2017C 2017D 2017的边长是( )A .()2016B .()2017C .()2016D .()20177.正方形ABCD 在直角坐标系中的位置如图所示,将正方形ABCD 绕点A 按顺时针方向旋转180°后,C 点的坐标是( )A .(2,0)B .(3,0)C .(2,-1)D .(2,1)8.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n 、m 的大矩形,则图中阴影部分的周长是( )A.6(m﹣n)B.3(m+n)C.4n D.4m9.二次函数y=x2+bx–1的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2–2x–1–t=0(t为实数)在–1<x<4的范围内有实数解,则t的取值范围是A.t≥–2 B.–2≤t<7C.–2≤t<2 D.2<t<710.下列图形中,是中心对称但不是轴对称图形的为()A.B.C.D.二、填空题(共7小题,每小题3分,满分21分)11.如图,每个小正方形边长为1,则△ABC边AC上的高BD的长为_____.12.四张背面完全相同的卡片上分别写有0、·3、9、2、227四个实数,如果将卡片字面朝下随意放在桌子上,任意取一张,那么抽到有理数的概率为___________.13.在实数范围内分解因式:x2y﹣2y=_____.14.甲、乙两个搬运工搬运某种货物.已知乙比甲每小时多搬运600kg,甲搬运5000kg所用的时间与乙搬运8000kg所用的时间相等.设甲每小时搬运xkg 货物,则可列方程为_____.15.因式分解:x 3﹣4x=_____.16.如图,在矩形ABCD 中,AB=2,AD=6,E .F 分别是线段AD ,BC 上的点,连接EF ,使四边形ABFE 为正方形,若点G 是AD 上的动点,连接FG ,将矩形沿FG 折叠使得点C 落在正方形ABFE 的对角线所在的直线上,对应点为P ,则线段AP 的长为______.17.如图,在△ABC 中,BC=8,高AD=6,矩形EFGH 的一边EF 在边BC 上,其余两个顶点G 、H 分别在边AC 、AB 上,则矩形EFGH 的面积最大值为_____.三、解答题(共7小题,满分69分)18.(10分)如图,在△ABC 中,∠ACB=90°,O 是边AC 上一点,以O 为圆心,以OA 为半径的圆分别交AB 、AC 于点E 、D ,在BC 的延长线上取点F ,使得BF=EF .(1)判断直线EF 与⊙O 的位置关系,并说明理由;(2)若∠A=30°,求证:DG=12DA ; (3)若∠A=30°,且图中阴影部分的面积等于2233,求⊙O 的半径的长.19.(5分)先化简,再求值:2311221x x x x x x -⎛⎫-÷- ⎪+++⎝⎭,其中x 满足210x x --=. 20.(8分)如图,在平面直角坐标系中,抛物线2(0)y ax bx c a =++≠的图象经过(1,0)M 和(3,0)N 两点,且与y 轴交于(0,3)D ,直线l 是抛物线的对称轴,过点(1,0)A -的直线AB 与直线相交于点B ,且点B 在第一象限.(1)求该抛物线的解析式;(2)若直线AB 和直线l 、x 轴围成的三角形面积为6,求此直线的解析式;(3)点P 在抛物线的对称轴上,P 与直线AB 和x 轴都相切,求点P 的坐标.21.(10分)如图,在ABCD 中,6090B ︒<∠<︒,且2AB =,4BC =,F 为AD 的中点,CE AB ⊥于点E ,连结EF ,CF .(1)求证:3EFD AEF ∠=∠;(2)当BE 为何值时,22CE CF -的值最大?并求此时sin B 的值.22.(10分)如图,菱形ABCD 中,已知∠BAD=120°,∠EGF=60°, ∠EGF 的顶点G 在菱形对角线AC 上运动,角的两边分别交边BC 、CD 于E 、F .(1)如图甲,当顶点G 运动到与点A 重合时,求证:EC+CF=BC ;(2)知识探究:①如图乙,当顶点G 运动到AC 的中点时,请直接写出线段EC 、CF 与BC 的数量关系(不需要写出证明过程);②如图丙,在顶点G 运动的过程中,若AC t GC=,探究线段EC 、CF 与BC 的数量关系; (3)问题解决:如图丙,已知菱形的边长为8,BG=7,CF=65,当t >2时,求EC 的长度.23.(12分)为奖励优秀学生,某校准备购买一批文具袋和圆规作为奖品,已知购买1个文具袋和2个圆规需21元,购买2个文具袋和3个圆规需39元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学预测试题题号一二三四五合计1-56-1011-1516-1920-22得分说明:1.全卷共8页,考试用时100分钟,满分为120分.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答卷上填写自己的试室号、座位号准考证号、姓名、写在试卷密封线内,不得在试卷上作任何标记.3.答题可用黑色或蓝色字迹的钢笔、签字笔按各题要求答在试卷上,不能用铅笔、圆珠笔和红笔.1.下列运算中,正确的是()A.x3·x3=x6B.3x2+2x3=5x5C.(x2)3=x5D.(x+y2)2=x2+y42.我国是世界上13个贫水国之一,人均水资源占有量只有2 520立方米,用科学记数法表示2 520立方米是______立方米.()A.0.5×104B.2.52×10-3C.2.52×103D.2.52×1023.在相同时刻的物高与影长成比例.小明的身高为1.5米,在地面上的影长为2米,同时一古塔在地面上的影长为40米,则古塔高为()A.60米B.40米C.30米D.25米4.在下面图形中,每个大正方形网格都是由边长为1的小正方形组成,则图中阴影部分面积最大的是()5.甲、乙、丙、丁四名运动员参加4×100米接力赛,甲必须为第一接力棒或第四接力棒的运动员,那么这四名运动员在比赛过程中的接棒顺序有()A.3种B.4种C.6种D.12种6.函数2yx=+中,自变量x的取值范围是___________________;得分评卷人二、填空题(本大题共5小题,每小题4分,共20分,请把下列各题的正确答案填写在横线上)得分评卷人一、选择题(本大题共5小题,每小题3分,共15分,每小题给出的4个选项中只有一个是正确的,请将所选选项的字母写在题目后面的括号内)7.如图,E 、F 是平行四边形ABCD 对角线BD 上的两点,请你添加一个适当的条件:______ ________,使四边形AECF 是平行四边形.第7题 第9题8.小华的妈妈为爸爸买了一件衣服和一条裤子,共用306元.其中衣服按标价打七折,裤子 按标价打八折,衣服的标价为300元,则裤子的标价为________元.9.如图,AB 是半圆的直径,O 是圆心,C 是半圆上一点,E 是弧AC 的中点,OE 交弦AC 于D .若AC =8cm ,DE =2cm ,则OD 的长为________________.10.已知BD 、CE 是△ABC 的高,直线BD 、CE 相交所成的角中有一个角为50°,则∠BAC 等于________________度.11.画图:作出线段AB 的中点O . (要求:用尺规作图,保留作图 痕迹,写出作法,不用证明).12.先化简:2221()111x x x x -÷-+-,然后在11x -≤≤中选一个整数x 求原式的值13.如图,A 、B 、C 为平行四边形的三个顶点,且A 、B 、C 三个顶点的标分别为(3,3)、 (6,4)、(4,6)(1)请直接写出这个平行四边形的第四个顶点坐标; (2)求此平行四边形的面积.得 分 评卷人三、解答题(本大题共5小题,每小题6分,共30分,)1.2.DCBA EF G14.如图,ABCD 是正方形,点G 是BC 上的任意一点,DE AG ⊥于E ,//BF DE ,交AG 于F .求证:AF BF EF =+.15.已知关于x 的一元二次方程x 2+(4m +1)x +2m -1=O .(1)求证:不论m 为任何实数,方程总有两个不相等的实数根; (2)若方程两根为x 1、x 2,且满足121112x x +=-,求m 的值.16.某校在一次考试中,甲乙两班学生的数学成绩统计如下: 分数 50 60 70 80 90 100 人数甲 1 6 12 11 15 5 乙351531311请根据表格提供的信息回答下列问题:(1)甲班众数为______分,乙班众数为______分,从众数看成绩较好的是______班. (2)甲班的中位数是_______分,乙班的中位数是______分. (3)若成绩在85分以上为优秀,则成绩较好的是______班.得 分 评卷人四、解答题(本大题共4小题,每小题7分,共28分,)3.4.5.6.7.8.9.17.随着海峡两岸交流日益增强,通过“零关税”进入我市的一种台湾水果,其进货成本是每吨0.5万元,这种水果市场上的销售量y (吨)是每吨的销售价x (万元)的一次函数,且0.6x =时, 2.4y =;1x =时,2y =.(1)求出销售量y (吨)与每吨的销售价x (万元)之间的函数关系式;(2)若销售利润为w (万元),请写出w 与x 之间的函数关系式,并求出销售价为每吨2万元时的销售利润。

18.如图,E 是正方形ABCD 的对角线BD 上一点,EF ⊥BC ,EG ⊥CD ,垂足分别是F ,G .求证:AE =FG .19.如图,⊙O 是Rt △ABC 的外接圆,90ABC ∠=︒,点P 是圆外一点,P A 切⊙O 于点A ,且P A =PB .(1)求证:PB 是⊙O 的切线;(2)已知3PA =1BC =,求⊙O 的半径.20.某房地产开发公司计划建A 、B 两种户型的住房共80套,该公司所筹资金不少于2090万 元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:A B 成本(万元/套) 25 28 售价(万元/套)3034(1)该公司对这两种户型住房有哪几种建房方案? (2)该公司如何建房获得利润最大?(3)根据市场调查,每套B 型住房的售价不会改变,每套A 型住房的售价将会提高a 万元(a >0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大? 注:利润=售价-成本21.已知抛物线22(1)2y x k x k =-+-++与x 轴交于A 、B 两点,且点A 在x 轴的负半轴上,点B 在x 轴的正半轴上. (1)求实数k 的取值范围;(2)设OA 、OB 的长分别为a 、b ,且a ∶b =1∶5,求抛物线的解析式;(3)在(2)的条件下,以AB 为直径的⊙D 与y 轴的正半轴交于P 点,过P 点作⊙D 的切线交x 轴于E 点,求点E 的坐标。

得 分评卷人五、解答题(本大题共3小题,每小题9分,共27分,)图1 图232题图NMPFEDCBANM PF E DCB A22.已知四边形ABCD 中,P 是对角线BD 上的一点,过P 作MN ∥AD ,EF ∥CD ,分别交AB 、CD 、AD 、BC 于点M 、N 、E 、F ,设a =PM ·PE ,b =PN ·PF ,解答下列问题: (1)当四边形ABCD 是矩形时,见图1,请判断a 与b 的大小关系,并说明理由; (2)当四边形ABCD 是平行四边形,且∠A 为锐角时,见图2,(1)中的结论是否成立?并说明理由; (3)在(2)的条件下,设BP k PD=,是否存在这样的实数k ,使得4=9PEAM ABD S S ∆平行四边形?若存在,请求出满足条件的所有k 的值;若不存在,请说明理由.参考答案一.选择题题号 1 2 3 4 5 答案ACCDD二.填空题 6.2y >-7.BE =DF 等(只要符合条件即可) 8.1209.310.50︒或130︒三.解答题11.略12.原式=2x 2+2当x =0时,原式=213.(1)(1,5).(5,1).(7,7) (2)8 14.易证△AED ≌△BF A所以BF =AE ,所以AF =BF +EF15.解:(1)证明:△=(4m +1)2-4(2m -1)=16m 2+8m +1-8m +4=16m 2+5>O∴不论m 为任何实数,方程总有两个不相等的实数根(2)∵ xl +x 2=-(4m +1),xl ·x 2=2m -l ∴1x1+1x2=x1+x2x1x2=-(4m+1)2m -1=-12 解得m =-1216.解:(1)90、70、甲 (2)80、80 (3)乙. 17.(1)设y kx b =+,∵已知0.6x =时, 2.4y =;1x =时,2y =∴0.6 2.42k b k b +=⎧⎨+=⎩ ∴13k b =-⎧⎨=⎩∴函数关系式为3y x =-+(2)∵由已知()()5.15.35.0335.02-+-=⨯+--+-=⨯-⋅=x x x x x y x y w 当2x =时,5.15.125.322=-⨯+-=w故此时的销售利润是1.5万元18.连结EC .∵EF ⊥BC ,EG ⊥CD ,∴四边形EFCG 为矩形.∴FG =CE .又BD 为正方形ABCD 的对角线,∴∠ABE =∠CBE .分又BE =BE ,AB =CB ,∴△ABE ≌△CBE . ∴AE =EC . ∴AE =FG .19.(1)证明:连接OB .∵OA =OB ,∴∠OAB =∠OBA .∵P A =PB ,∴∠P AB =∠PBA .∴∠OAB +∠P AB =∠OBA +∠PBA ,即∠P AO =∠PBO 又∵P A 是⊙O 的切线,∴∠P AO =90°,∴∠PBO =90°,∴OB ⊥PB . 又∵OB 是⊙O 半径,∴PB 是⊙O 的切线. 说明:还可连接OB .OP ,利用△OAP ≌△OBP 来证明OB ⊥PB .(2)解:连接OP ,交AB 于点D .∵P A =PB ,∴点P 在线段AB 的垂直平分线上.∵OA =OB ,∴点O 在线段AB 的垂直平分线上.∴OP 垂直平分线段AB .∴∠P AO =∠PDA =90°.又∵∠APO =∠DP A ,∴△APO ∽△DP A .∴,∴AP 2 = PO ·DP .又∵OD =0.5,∴PO (PO –OD )=AP 2. 解得 PO =2在Rt △APO 中,,即⊙O 的半径为1.APPO DP PA=1OA ==20.解:(1)设A 种户型的住房建x 套,则B 种户型的住房建(80-x )套.由题意知2090≤25x +28(80-x )≤2096 48≤x ≤50 ∵ x 取非负整数, ∴ x 为48,49,50. ∴ 有三种建房方案:A 型48套,B 型32套;A 型49套,B 型31套;A 型50套,B 型30套(2)设该公司建房获得利润W (万元).由题意知W =5x +6(80-x )=480-x ∴ 当x =48时,W 最大=432(万元)即A 型住房48套,B 型住房32套获得利润最大(3)由题意知W =(5+a )x +6(80-x )=480+(a -1)x∴ 当O <a <l 时, x =48,W 最大, 即A 型住房建48套,B 型住房建32套 当a =l 时,a -1=O ,三种建房方案获得利润相等当a >1时,x =50,W 最大,即A 型住房建50套,B 型住房建30套21.(1)设点A (1x ,0),B (2x ,0)且满足1x <0<2x 由题意可知()0211<+-=⋅k x x ,即2->k(2)∵a ∶b =1∶5,设a OA =,即a x =-1,则a OB 5=,即a x 52=,0>a∴⎩⎨⎧-=⋅-=⋅=+-=+221215545a a a x x a a a x x ,即()()⎩⎨⎧-=+-=-252412a k ak∴12+=a k,即03252=--a a ,解得11=a ,532-=a (舍去)∴3=k ∴抛物线的解析式为542++-=x x y (3)由(2)可知,当0542=++-x x 时,可得11-=x ,52=x即A (-1,0),B (5,0) ∴AB =6,则点D 的坐标为(2,0) 当PE 是⊙D 的切线时,PE ⊥PD由Rt △DPO ∽Rt △DEP 可得DE OD PD ⋅=2即DE ⨯=232∴29=DE ,故点E 的坐标为(29-,0)22.解:(1)∵ABCD 是矩形,MN ∥AD ,EF ∥CD∴四边形PEAM .PNCF 也均为矩形 ∴a =PM ·PE =PEAMS 矩形,b =PN ·PF =PNCFS 矩形又∵BD 是对角线∴△PMB ≌△BFP ,△PDE ≌△DPN ,△DBA ≌△DBCH NMPFE DCBA ∵PDEPMB BDA PEAM S S S S ∆∆∆--=矩形,DPNBFP DBC PNCF S S S S ∆∆∆--=矩形∴PEAMS 矩形=PNCFS 矩形,∴b a =(2)成立,理由如下:∵ABCD 是平行四边形,MN ∥AD ,EF ∥CD∴四边形PEAM .PNCF 也均为平行四边形 仿(1)可证PNCFPEAM S S 平行四边形平行四边形=(3)由(2)可知AAM AE S PEAM sin ⋅=平行四边形, AAB AD S ABCD sin ⋅=平行四边形∴ABCDPEAM ABDPEAMABDPEAMS S S S S S 平行四边形平行四边形平行四边形平行四边形222==∆∆AB AMAD AE A AB AD A AM AE ⋅⋅=⋅⋅=2sin sin 2 又∵k PD BP =,即1+=k k BD BP ,11+=k BD PD 而1+==k k BD BP AD AE ,11+==k BD PD AB AM ∴941112=+⨯+⨯k k k 即02522=+-k k ∴21=k ,212=k 故存在实数2=k 或21,使得94=∆ABD PEAM S S 平行四边形。

相关文档
最新文档