相似三角形知识点

合集下载

相似三角形知识点

相似三角形知识点

相似三角形知识点相似三角形是指具有相同或相似的形状,但大小不同的三角形。

在相似三角形中,对应边的比例是相等的,而对应角度的度数也相等。

相似三角形是几何学中的重要概念,有着广泛的应用。

相似三角形的性质和应用在几何学中是非常重要的。

在这篇文章中,我们将讨论相似三角形的定义、判定方法、性质以及一些相关的应用。

相似三角形的定义:相似三角形是指具有相同形状但大小不同的三角形。

换句话说,如果两个三角形的角度相等,那么它们就是相似的。

相似三角形可以通过两个条件来判定:1. 两个三角形的对应角度相等;2. 两个三角形的对应边的比例相等。

相似三角形的判定方法:在判定两个三角形是否相似时,可以使用以下方法:1. AAA相似判定法:如果两个三角形的对应角度相等,那么它们是相似的。

这是最常用的相似三角形判定方法之一。

2. AA相似判定法:如果两个三角形的一个角相等,并且两个角的夹角也相等,那么它们是相似的。

3. SSS相似判定法:如果两个三角形的对应边的比例相等,那么它们是相似的。

相似三角形的性质:相似三角形满足以下几个性质:1. 相似三角形的对应角度相等;2. 相似三角形的对应边的比例相等;3. 相似三角形的相似比例相等;4. 相似三角形的顶角相等;5. 相似三角形的边长比例等于相似比例。

相似三角形的应用:相似三角形在几何学中有着广泛的应用,以下是一些常见的应用:1. 测量距离:根据相似三角形的性质,我们可以利用已知长度和测得的角度来计算未知长度。

2. 制图和建模:在地图制图和建筑设计中,相似三角形可以用来估算和绘制未知物体的尺寸。

3. 光学:在光学中,相似三角形被用来计算物体的大小和位置,以及光的传播方向。

4. 天文学:相似三角形被用来计算天体间的距离和尺寸,例如地球和月亮的大小和距离。

5. 电子设备设计:在电子设备的设计中,相似三角形用来计算电路中的元件大小和位置。

总结:相似三角形是指具有相同形状但大小不同的三角形。

相似三角形的知识点总结

相似三角形的知识点总结

相似三角形的知识点总结相似三角形是几何学中的重要概念,它在实际生活中有着广泛的应用。

相似三角形是指具有相同形状但大小不同的两个三角形。

在相似三角形中,对应角度相等,对应边的比例相等。

相似三角形的知识点包括相似比例、相似条件、相似性质以及相似定理等。

下面将逐一介绍这些知识点。

1. 相似比例:相似三角形的对应边的比例相等。

即若两个三角形ABC和DEF相似,则有AB/DE = AC/DF = BC/EF。

2. 相似条件:两个三角形相似的条件有三种情况:a) 两个三角形的对应角度相等;b) 两个三角形的两个对应角度相等,且两个对应边的比例相等;c) 两个三角形的一个对应角度相等,且两个对应边的比例相等。

3. 相似性质:相似三角形具有以下性质:a) 相似三角形的对应角度相等;b) 相似三角形的对应边的比例相等;c) 相似三角形的对应角的平分线相交于一点;d) 相似三角形的内角平分线相交于一点。

4. 相似定理:相似三角形的定理有多个,其中一些重要的定理包括:a) AA相似定理:若两个三角形的两个对应角度相等,则两个三角形相似;b) SSS相似定理:若两个三角形的对应边的比例相等,则两个三角形相似;c) SAS相似定理:若两个三角形的一个对应角度相等,且两个对应边的比例相等,则两个三角形相似;d) 勾股定理的相似定理:若两个直角三角形的两条直角边分别成比例,则两个三角形相似。

相似三角形的知识点对于解决实际问题非常重要。

例如,在测量高楼的高度时,我们可以利用相似三角形的性质,通过测量阴影的长度和角度,计算出高楼的高度。

又如,在地图上测量两地的距离时,我们可以利用相似三角形的性质,通过测量地图上两地的距离和角度,计算出实际距离。

相似三角形是几何学中的重要概念,它在解决实际问题中有着广泛的应用。

通过掌握相似三角形的知识点,我们可以更好地理解几何学中的相似性质,从而应用于实际生活中的测量和计算中。

相似三角形必考知识点

相似三角形必考知识点

相似三角形必考知识点一.比例线段1、比例线段的相关概念比例线段:如果选用同一长度单位量得两条线段a,b的长度分别为m,n,那么就说这两条线段的比是a:b=m:n.在两条线段的比a:b中,a叫做比的前项,b叫做比的后项。

在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段.若四条a,b,c,d满足a/b=c/d或a:b=c:d,那么a,b,c,d叫做组成比例的项,线段a,d叫做比例外项,线段b,c叫做比例内项,线段的d叫做a,b,c的第四比例项。

注意:线段的单位要统一.比例中项:如果作为比例内项的是两条相同的线段,即a/b=c/d或a:b=b:c,那么线段b 叫做线段a,c的比例中项。

例1.下列四条线段中,能成比例线段的是()A.a=1,b=1,c=2,d=3B.a=1,b=2,c=3,d=4C.a=2,b=2,c=3,d=3D.a=2,b=3,c=4,d=5例2.若a∶b=3∶4,且a+b=14,则2a-b的值是()A.4B.2C.20D.14例3.如图,矩形纸片ABCD中,AB>AD,E,F分别是AB,DC的中点,将矩形ABCD沿EF所在直线对折,若得到的两个小矩形都和矩形ABCD相似,则AB与AD的数量关系为.2、黄金分割:把线段AB分成两条线段AC,BC(AC>BC),并且使AC是AB和BC的比例中项,即AC/BC=AB/AC或AC=AB×BC,叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点,其中AC=(√5-1)/2AB≈0.618AB注意:(1)线段的黄金分割点有两个;(2)黄金分割的几何作图.3、比例的性质二.平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例。

由l3∥l4∥l5,得.推论:(1)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。

逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。

相似三角形知识点大总结

相似三角形知识点大总结

相似三角形知识点大总结知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数). (3)a b b d =::那么b 叫做a 、d 的比例中项, 此时有2b ad = 知识点2 比例的性质(注意性质立的条件:分母不能为0)(1) 基本性质:①bc ad d c b a =⇔=::;②2::a b b c b a c =⇔=⋅.注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式。

(2) 更比性质(交换比例的内项或外项):()()()a bc d a c d cb d b a d bc a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 (3)反比性质(把比的前项、后项交换): a c b d b d a c=⇔=.(4)合、分比性质:a c abc db d b d±±=⇔=.(注意:合分比性质和等分比性质不同)注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=dc d c b a b a ccd a a b d c b a 等等.(5)等比性质:如果)0(≠++++====n f d b nmf e d c b a ,那么b a n f d b m ec a =++++++++ . 注:①此性质的证明运用了“设k 法”(即引入新的参数k )这样可以减少未知数的个数,这种方法是有关比例计算变形中一种常用方法.②应用等比性质时,要考虑到分母是否为零.1.平行线分线段成比例定理:三条平行线截两条直线,已知AD ∥BE ∥CF,可得AB DE AB DE BC EF BC EF AB BC BC EF AC DF AB DE AC DF DE EF=====或或或或等.注:平行线分线段成比例定理的推论:平行线等分线段定理:两条直线被三条平行线所截,如果在其中一条上截得的线段相等,那么在另一条上截得的线段也相等。

相似三角形知识点整理精选全文完整版

相似三角形知识点整理精选全文完整版

可编辑修改精选全文完整版相似三角形知识点整理重点、难点分析:1、相似三角形的判定性质是本节的重点也是难点.2、利用相似三角形性质判定解决实际应用的问题是难点。

☆内容提要☆ 一、本章的两套定理第一套(比例的有关性质):涉及概念:①第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。

第二套:二、有关知识点: 1.相似三角形定义:对应角相等,对应边成比例的三角形,叫做相似三角形。

2.相似三角形的表示方法:用符号“∽”表示,读作“相似于”。

3.相似三角形的相似比:相似三角形的对应边的比叫做相似比。

4.相似三角形的预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三反比性质:cda b = 更比性质:dbc a a c bd ==或 合比性质:ddc b b a ±=± ⇒=⇔=bc ad d c b a (比例基本定理) ban d b m c a n d b n m d c b a =++++++⇒≠+++=== :)0(等比性质 相似基本定理 推论(骨干定理)平行线分线段成比例定理(基本定理)应用于△中 相似三角形定理1定理2 定理3 Rt △ 推论推论的逆定理推论角形相似。

5.相似三角形的判定定理:(1)三角形相似的判定方法与全等的判定方法的联系列表如下:类型斜三角形直角三角形全等三角形的判定SAS SSS AAS(ASA)HL相似三角形的判定两边对应成比例夹角相等三边对应成比例两角对应相等一条直角边与斜边对应成比例从表中可以看出只要将全等三角形判定定理中的“对应边相等”的条件改为“对应边成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法。

6.直角三角形相似:(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。

(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

相似三角形知识点归纳

相似三角形知识点归纳

相似三角形知识点归纳1.相似三角形的定义:如果两个三角形的对应角相等,则这两个三角形是相似的。

记作△ABC∽△DEF。

2.相似三角形的判定条件:(1)AA相似判定法:如果两个三角形的两个角相等,则这两个三角形是相似的。

(2)SAS相似判定法:如果两个三角形的对应两边成比例并且夹角相等,则这两个三角形是相似的。

(3)SSS相似判定法:如果两个三角形的对应三条边成比例,则这两个三角形是相似的。

3.相似三角形的性质:(1)对应边成比例:在相似三角形中,对应边的长度之比相等。

即AB/DE=BC/EF=AC/DF。

(2)对应角相等:在相似三角形中,对应角的度数相等。

即∠A=∠D,∠B=∠E,∠C=∠F。

(3) 对应角的正弦值成比例:在相似三角形中,如果一个角和其对边的正弦值成比例,则另一个角和其对边的正弦值也成比例。

即sin∠A/sin∠D = sin∠B/sin∠E = sin∠C/sin∠F。

(4)图形相似:除了三角形外,相似三角形所在的图形也是相似的。

4.角平分线的性质:(1)在相似三角形中,角平分线之间的关系相等。

即角平分线所分的两个角对应的另外两个角也是相等的。

(2)在相似三角形中,角平分线和对应边长成比例。

即角平分线与对应边所分出的线段之比相等。

5.高度的性质:(1)在相似三角形中,高度之间的关系成比例。

即两个相似三角形的高度之比等于对应边长之比。

(2)在相似三角形中,高度与底边成比例。

即两个相似三角形的高度和底边之比等于对应边长之比。

6.面积的性质:(1)在相似三角形中,面积之间的关系成比例。

即两个相似三角形的面积之比等于对应边长之比的平方。

(2)在相似三角形中,面积与任意一边平方成比例。

即两个相似三角形的面积和任意一边的平方之比等于对应边长之比。

7.相似三角形的应用:(1)根据相似三角形的性质,可以通过测量一个三角形和两条边的比例,计算出另一个三角形的边长和面积。

(2)在地图上,可以利用相似三角形的性质,测量无法直接测量的远距离。

相似三角形知识点归纳(全)

相似三角形知识点归纳(全)

《相似三角形》知识点归纳知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数).知识点2 比例线段的相关概念、比例的性质(1)定义: 在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:adc b =. ②()()()a bc d a c d c b d b ad bc a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 核心内容:bc ad = (2)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB .即512AC BC AB AC == 简记为:51-长短==全长 注:①黄金三角形:顶角是360的等腰三角形 ②黄金矩形:宽与长的比等于黄金数的矩形 (3)合、分比性质:a c abcd b d b d±±=⇔=.注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=d c d c b a b a ccd a a b d c b a 等等.(4)等比性质:如果)0(≠++++====n f d b n mf e d c b a , 那么ban f d b m e c a =++++++++ . 知识点3 比例线段的有关定理平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例. 已知AD ∥BE ∥CF,可得AB DE AB DE BC EF BC EF AB BCBC EF AC DF AB DE AC DF DE =====或或或或等. 特别在三角形中:由DE ∥BC 可得:ACAEAB AD EA EC AD BD EC AE DB AD ===或或 知识点4 相似三角形的概念(1)定义:对应角相等,对应边成比例的三角形,叫做相似三角形.相似用符号“∽”表示,读作“相似于” .相似三角形对应边的比叫做相似比(或相似系数).相似三角形对应角相等,对应边成比例.注:①对应性:即把表示对应顶点的字母写在对应位置上 ②顺序性:相似三角形的相似比是有顺序的.③两个三角形形状一样,但大小不一定一样. ④全等三角形是相似比为1的相似三角形.(2)三角形相似的判定方法1、平行法:(图上)平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.2、判定定理1:简述为:两角对应相等,两三角形相似. AA3、判定定理2:简述为:两边对应成比例且夹角相等,两三角形相似.SAS4、判定定理3:简述为:三边对应成比例,两三角形相似.SSS5、判定定理4:直角三角形中,“HL ” 全等与相似的比较:三角形全等三角形相似两角夹一边对应相等(ASA) 两角一对边对应相等(AAS) 两边及夹角对应相等(SAS) 三边对应相等(SSS)、(HL )两角对应相等两边对应成比例,且夹角相等三边对应成比例“HL ”FE D CB A E BD(3)射影定理:如图,Rt △ABC 中,∠BAC=90°,AD 是斜边BC 上的高,则 ∽ ==> AD 2=BD ·DC ,∽ ==> AB 2=BD ·BC ,∽ ==> AC 2=CD ·BC .知识点5 相似三角形的性质(1)相似三角形对应角相等,对应边成比例. (2)相似三角形周长的比等于相似比.(3)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比. (4)相似三角形面积的比等于相似比的平方.知识点6 相似三角形的几种基本图形:(1) 如图:称为“平行线型”的相似三角形(有“A 型”与“X 型”图)(2) 如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜交型”的相似三角形。

相似三角形复习(较全)

相似三角形复习(较全)

相似三角形知识点汇总【知识要点】1. 比例线段的有关概念: 在比例式::中,、叫外项,、叫内项,、叫前项,a b cda b c d a d b c a c ==()b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。

把线段AB 分成两条线段AC 和BC ,使AC 2=AB ²BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。

2. 比例性质: ①基本性质:a b c dad bc =⇔= ②合比性质:±±a b c d a b b c dd =⇒= ③等比性质:……≠……a b c d m n b d n a c m b d n ab===+++⇒++++++=()03. 平行线分线段成比例定理:①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。

则,,,…AB BC DE EF AB AC DE DF BC AC EFDF=== ②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。

③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。

二、有关知识点:1.相似三角形定义:对应角相等,对应边成比例的三角形,叫做相似三角形。

2.相似三角形的表示方法:用符号“∽”表示,读作“相似于”。

3.相似三角形的相似比:相似三角形的对应边的比叫做相似比。

4.相似三角形的预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。

5.相似三角形的判定定理:(1)三角形相似的判定方法与全等的判定方法的联系列表如下:从表中可以看出只要将全等三角形判定定理中的“对应边相等”的条件改为“对应边成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法。

人教版相似知识点总结

人教版相似知识点总结

人教版相似知识点总结一、相似三角形在平面几何中,相似三角形是指有相同形状但不一定相同大小的三角形。

相似三角形的性质和判定方法是初中数学重要的知识点之一。

1. 相似三角形的性质a. 性质1:对应角相等两个相似三角形的对应角相等,即如果两个三角形ABC和A'B'C'相似,则∠A=∠A',∠B=∠B',∠C=∠C'。

b. 性质2:对应边成比例两个相似三角形的对应边成比例,即如果两个三角形ABC和A'B'C'相似,则AB/A'B'=BC/B'C'=AC/A'C'。

c. 性质3:相似三角形的面积成比例如果两个三角形ABC和A'B'C'相似,则它们的面积之比等于边长之比的平方,即S(ABC)/S(A'B'C')=(AB/A'B')^2=(BC/B'C')^2=(AC/A'C')^2。

2. 相似三角形的判定方法a. 直角三角形的判定方法:两个直角三角形如果有一个角相等,则它们相似;或者两个直角三角形的三条边分别成比例,则它们相似。

b. 三边成比例的判定方法:两个三角形的三条边分别成比例,则它们相似。

c. 边角边(或角边角)的判定方法:两个三角形的两个角分别相等,且夹在两边成比例,则它们相似。

d. 已知相似三角形内部某个角相等的判定方法:如果两个三角形相似且三角形内部有一个角相等,则其他两个角也相等。

相似三角形的性质和判定方法在初中数学中具有重要的理论和实际应用价值,对于几何图形的相似性质和相关计算都有重要的指导作用。

二、比例比例是数学中重要的概念,主要用来描述两个量之间的相对关系。

在人教版初中数学中,比例是一个重要的知识点,包括比例的性质、比例的计算、比例的应用等内容。

1. 比例的性质a. 比例的传递性:如果a:b=c:d,则a/c=b/d;如果a/c=b/d,则a:b=c:d。

相似三角形知识点总结

相似三角形知识点总结

相似三角形知识点总结知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数).知识点2 比例线段的相关概念(1)如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nmb a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。

(2)在四条线段dc b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:a d cb =.②()a ca b c d b d==在比例式::中,a 、d 叫比例外项,b 、c 叫比例内项, a 、c 叫比例前项,b 、d 叫比例后项,d 叫第四比例项,如果b=c ,即 a b b d =::那么b 叫做a 、d 的比例中项, 此时有2b ad =。

(3)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB .即AC BC AB AC == 简记为:12长短==全长 注:黄金三角形:顶角是360的等腰三角形。

黄金矩形:宽与长的比等于黄金数的矩形知识点3 比例的性质(注意性质立的条件:分母不能为0)(1)基本性质:① bc ad d c b a =⇔=::;②2::a b b c b a c =⇔=⋅. (2)反比性质(把比的前项、后项交换): a c b db d a c=⇔=. (3)等比性质:如果)0(≠++++====n f d b nm f e d c b a ,那么b an f d b m e c a =++++++++ .可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.如:ba f db ec a f ed c b a fe d c b a =+-+-⇒=--=⇒==32323322;其中032≠+-f d b . 知识点4 比例线段的有关定理1.三角形中平行线分线段成比例定理:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.由DE ∥BC 可得:ACAEAB AD EA EC AD BD EC AE DB AD ===或或①结论:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边......与原三角...形三边...对应成比例.②三角形中平行线分线段成比例定理的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边. 此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.③平行线的应用:在证明有关比例线段时,辅助线往往做平行线,但应遵循的原则是不要破坏条件中的两条线段的比及所求的两条线段的比.2.平行线分线段成比例定理:三条平行线截两条直线,已知AD ∥BE ∥CF,可得AB DE AB DE BC EF BC EF AB BCBC EF AC DF AB DE AC DF DE EF=====或或或或等. 知识点5 三角形相似的判定方法1、定义法:三个对应角相等,三条对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角 形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两B个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹 角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这 两个三角形相似.简述为:三边对应成比例,两三角形相似.6、判定直角三角形相似的方法:射影定理:在直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。

相似三角形知识点总结

相似三角形知识点总结

相似三角形知识点总结基础知识 一:放缩与相似形1.图形的放大或缩小,称为图形的放缩运动。

2.把形状相同的两个图形说成是相似的图形,或者就说是相似性。

注意:⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关。

⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况。

⑶我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的.⑷若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形. 3.相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。

注意:当两个相似的多边形是全等形时,他们的对应边的长度的比值是1. 二:比例线段有关概念及性质 (1)有关概念1、比:选用同一长度单位量得两条线段。

a 、b 的长度分别是m 、n ,那么就说这两条线段的比是a :b =m :n (或n mb a =)2、比的前项,比的后项:两条线段的比a :b 中。

a 叫做比的前项,b 叫做比的后项。

说明:求两条线段的比时,对这两条线段要用同一单位长度。

3、比例:两个比相等的式子叫做比例,如dc b a =4、比例外项:在比例dc b a =(或a :b =c :d )中a 、d 叫做比例外项。

5、比例内项:在比例dc b a =(或a :b =c :d )中b 、c 叫做比例内项。

6、第四比例项:在比例d c b a =(或a :b =c :d )中,d 叫a 、b 、c 的第四比例项。

7、比例中项:如果比例中两个比例内项相等,即比例为a bb a =(或a:b =b:c 时,我们把b叫做a 和d 的比例中项。

8.比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即dcb a =(或a :b=c :d ),那么,这四条线段叫做成比例线段,简称比例线段。

(注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位)(2)比例性质1.基本性质: bc ad d cb a =⇔= (两外项的积等于两内项积)2.反比性质: c d a b dc b a =⇒= (把比的前项、后项交换)3.更比性质(交换比例的内项或外项):()()()a bc d a c d c b d b ad bc a ⎧=⎪⎪⎪=⇒=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项4.合比性质:ddc b b ad c b a ±=±⇒=(分子加(减)分母,分母不变) .注意:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=dc d c b a b a ccd a a b d c b a .5.等比性质:(分子分母分别相加,比值不变.) 如果)0(≠++++====n f d b nmf e d c b a ,那么b a n f d b m ec a =++++++++ . 注意:(1)此性质的证明运用了“设k 法” 这种方法是有关比例计算,变形中一种常用方法.(2)应用等比性质时,要考虑到分母是否为零.(3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立. 三:黄金分割(1)定义:在线段AB 上,点C 把线段AB 分成两条线段AC 和BC (AC >BC ),如果ACBCAB AC =,即AC 2=AB×BC,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB的比叫做黄金比。

初中相似三角形知识点

初中相似三角形知识点

初中相似三角形知识点
1. 相似三角形的定义:在几何中,两个三角形的对应角相等,并且各对应边之比相等,则这两个三角形称为相似三角形。

2. 相似三角形的判定:如果两个三角形的三个角分别相等,则这两个三角形是相似的。

3. 相似三角形的性质:
a. 对应的角相等:相似三角形的对应角相等。

b. 对应边的比例相等:相似三角形的对应边的比例相等。

c. 相似三角形的边长比等于相似三角形对应边的比值。

d. 相似三角形的高度、中线和角平分线也成比例。

e. 相似三角形的面积之比等于边长之比的平方。

4. 相似三角形的判定方法:
a. AA相似定理:如果两个三角形的两个角分别相等,则这两个三角形相似。

b. SSS相似定理:如果两个三角形的对应边的比值相等,则这两个三角形相似。

c. SAS相似定理:如果两个三角形的一个角相等,且两个对应边的比值相等,则这
两个三角形相似。

5. 利用相似三角形进行问题求解:相似三角形可以用于解决问题,如计算未知边长、求解丢失的角度等。

可以利用相似三角形特性和比例关系求解相关问题。

6. 勾股定理与相似三角形:相似三角形与勾股定理有密切关系,可以应用勾股定理证明或计算相似三角形的边长。

这些是初中阶段相似三角形的基本知识点,掌握了这些知识点,可以帮助你理解相似三角形的定义、性质和判定方法,并能够运用相似三角形解决一些相关问题。

相似三角形知识点

相似三角形知识点

相似三角形知识点相似三角形是初中数学中的重要内容,在解决几何问题中有着广泛的应用。

接下来,让我们一起来深入了解相似三角形的相关知识点。

一、相似三角形的定义如果两个三角形的对应角相等,对应边成比例,那么这两个三角形就叫做相似三角形。

例如,三角形 ABC 和三角形 A'B'C',如果角 A 等于角 A',角 B 等于角 B',角 C 等于角 C',并且 AB/A'B' = BC/B'C' = AC/A'C',那么三角形 ABC 相似于三角形 A'B'C',记作三角形 ABC ∽三角形 A'B'C'。

二、相似三角形的判定1、两角分别相等的两个三角形相似。

如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

2、两边成比例且夹角相等的两个三角形相似。

如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。

3、三边成比例的两个三角形相似。

如果两个三角形的三组对应边的比相等,那么这两个三角形相似。

三、相似三角形的性质1、相似三角形的对应角相等,对应边成比例。

这是相似三角形的基本性质,也是判定相似三角形的依据之一。

2、相似三角形的对应高的比,对应中线的比与对应角平分线的比都等于相似比。

相似比是指两个相似三角形对应边的比值。

3、相似三角形的周长比等于相似比。

假设三角形 ABC 与三角形 A'B'C'相似,相似比为 k,那么三角形ABC 的周长与三角形 A'B'C'的周长之比也为 k。

4、相似三角形的面积比等于相似比的平方。

比如,相似比为 2 的两个相似三角形,它们的面积比就是 4。

四、相似三角形的应用1、测量高度在实际生活中,我们经常会遇到需要测量物体高度的情况,比如测量大树的高度、建筑物的高度等。

相似三角形知识点归纳

相似三角形知识点归纳

相似三角形知识点归纳下面是关于相似三角形的一些重要知识点的归纳:1.相似三角形的定义:当两个三角形的对应角度相等时,它们称为相似三角形。

记作△ABC∽△DEF。

2.相似三角形的性质:相似三角形具有以下重要性质:-对应角度相等:如果△ABC∽△DEF,则∠A=∠D,∠B=∠E,∠C=∠F。

-对应边长度比相等:如果△ABC∽△DEF,则AB/DE=BC/EF=AC/DF。

-对应高度比相等:如果△ABC∽△DEF,则h₁/h₂=AB/DE=BC/EF=AC/DF,其中h₁和h₂分别为两个三角形的高度。

3.相似三角形的证明方法:-AA相似定理:如果两个三角形的两个角度分别相等,则它们相似。

根据该定理,只需证明两个对应角度相等即可证明两个三角形相似。

-SAS相似定理:如果两个三角形中的一对对应边的比相等,且对应角度相等,则这两个三角形相似。

-SSS相似定理:如果两个三角形的三对对应边比分别相等,则这两个三角形相似。

4.相似三角形的应用:-计算长度比例:根据相似三角形的性质,可以通过已知长度比例的一组相似三角形,来计算其他边的长度比例。

-求解角度:通过已知相似三角形的对应角度相等,可以求解未知的角度。

-计算面积比例:相似三角形的面积比等于边长比的平方。

所以,通过已知相似三角形的边长比,可以计算出面积比。

5.重要的相似三角形定理:-长边分割定理:如果一条直线平行于一个边,且与另外两条边相交,这条直线将三角形分割成两个相似的三角形。

-三角形的垂直角定理:在一个直角三角形中,斜边与任意一个锐角的两个垂直角相等。

总结起来,相似三角形是几何学中一个重要的概念。

通过理解相似三角形的定义、性质、证明方法以及应用,我们可以去解决各种几何问题。

相似三角形的知识点需要掌握好,也是我们在解决几何问题过程中的重要工具。

九年级相似三角形知识点总结

九年级相似三角形知识点总结

九年级相似三角形知识点总结
相似三角形是指具有完全相同形状但大小不同的三角形。

其主要知识点总结如下:
1. 相似三角形的定义:若两个三角形的对应角相等,则它们是相似的。

2. 相似三角形的判定:若两个三角形的对应边成比例,则它们是相似的。

3. 相似三角形的性质:
- 对应角相等:对应的角度是相等的。

- 对应边成比例:对应边的长度之比是相等的。

- 对应的高线成比例:对应的高线的长度之比是相等的。

- 对应的面积成比例:对应的面积的大小之比是相等的。

4. 相似三角形的性质推理:
- 两个三角形中,如果两边成比例,则其对应的夹角也相等。

- 两个三角形中,如果两角相等,则其对应的边成比例。

- 如果两个三角形中,对应的角度和边成比例,则这两个三
角形是相似的。

5. 相似三角形的应用:
- 利用相似三角形的性质可以求解两个图形的边或角度之比。

- 利用相似三角形的性质可以求解两个图形的面积之比。

- 利用相似三角形的性质可以进行图形的放大或缩小。

这些是九年级相似三角形的主要知识点总结,掌握了这些知识,可以更好地理解和应用相似三角形的相关概念和性质。

相似三角形-知识点总结

相似三角形-知识点总结

相似三角形-知识点总结第一节相似形与相似三角形基本概念:1.相似形:对应角相等,对应边成比例的两个多边形,我们称它们互为相似形。

2.相似三角形:对应角相等,对应边成比例的两个三角形,叫做相似三角形。

1.几个重要概念与性质(平行线分线段成比例定理)(1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.已知a∥b∥c,ADaBEbCFc可得等.(2)推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.ADEBC由DE∥BC可得:.此推论较原定理应用更加广泛,条件是平行.(3)推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.(4)定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例.(5)①平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。

②比例线段:四条线段a,b,c,d中,如果a与b的比等于c与d的比,即=,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段。

2.比例的有关性质①比例的基本性质:如果,那么ad=bc。

如果ad=bc(a,b,c,d都不等于0),那么。

②合比性质:如果,那么。

③等比性质:如果==(b+d++n≠0),那么④b是线段a、d的比例中项,则b2=ad.典例剖析例1:①在比例尺是1:38000的南京交通游览图上,玄武湖隧道长约7cm,则它的实际长度约为______Km.②若=则=__________.③若=则a:b=__________.3.相似三角形的判定(1)如果两个三角形的两角分别于另一个三角形的两角对应相等,那么这两个三角形相似。

(2)两边对应成比例并且它们的夹角也相等的两个三角形相似。

(3)三边对应成比例的两个三角形相似。

补充:相似三角形的识别方法(1)定义法:三角对应相等,三边对应成比例的两个三角形相似。

数学九年级相似三角形知识点

数学九年级相似三角形知识点

数学九年级相似三角形知识点
在九年级数学中,相似三角形是一个重要的知识点。

下面是与相似三角形相关的主要知识点:
1. 相似三角形的定义:两个三角形的对应角相等,并且对应边成比例,则这两个三角形相似。

2. 相似三角形的性质:相似三角形的对应边比例相等,即如果ABC和A'B'C'是相似三角形,那么AB/A'B' = AC/A'C' = BC/B'C'。

3. 相似三角形的判定方法:
- AAA判定法:如果两个三角形的对应角分别相等,则这两个三角形相似。

- SSS判定法:如果两个三角形的对应边成比例,则这两个三角形相似。

- SAS判定法:如果两个三角形的一个对应角相等,且对应边成比例,则这两个三角形相似。

4. 相似三角形的应用:
- 求比例:已知两个相似三角形的一个边和它的对应边比例,可以求出其他对应边的比例。

- 求长度和面积:已知一个三角形及其相似三角形的一些边的长度,可以通过比例关系求出其他边的长度和面积。

- 证明定理:可通过相似三角形的性质证明一些重要的几何定理,如角平分线定理、四边形内角和定理等。

以上介绍了一些九年级数学中关于相似三角形的知识点,希望对您有帮助!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形基本知识知识点一:放缩与相似形1.图形的放大或缩小,称为图形的放缩运动。

2.把形状相同的两个图形说成是相似的图形,或者就说是相似性。

注意:⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关。

⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况。

⑶我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的. ⑷若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形.3.相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。

注意:当两个相似的多边形是全等形时,他们的对应边的长度的比值是1.知识点二:比例线段有关概念及性质 (1)有关概念1、比:选用同一长度单位量得两条线段。

a 、b 的长度分别是m 、n ,那么就说这两条线段的比是a :b =m :n (或n m b a =)2、比的前项,比的后项:两条线段的比a :b 中。

a 叫做比的前项,b 叫做比的后项。

说明:求两条线段的比时,对这两条线段要用同一单位长度。

3、比例:两个比相等的式子叫做比例,如dcb a =4、比例外项:在比例d cb a =(或a :b =c :d )中a 、d 叫做比例外项。

5、比例内项:在比例d c b a =(或a :b =c :d )中b 、c 叫做比例内项。

6、第四比例项:在比例d cb a =(或a :b =c :d )中,d 叫a 、b 、c 的第四比例项。

7、比例中项:如果比例中两个比例内项相等,即比例为a bb a =(或a:b =b:c 时,我们把b 叫做a 和d 的比例中项。

8.比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即dcb a =(或a :b=c :d ),那么,这四条线段叫做成比例线段,简称比例线段。

(注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位)(2)比例性质1.基本性质: bc ad d cb a =⇔= (两外项的积等于两内项积)2.反比性质: c d a b dc b a =⇒= (把比的前项、后项交换)3.更比性质(交换比例的内项或外项):()()()a bc d a c d c b d b a d bc a ⎧=⎪⎪⎪=⇒=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项4.合比性质:ddc b b ad c b a ±=±⇒=(分子加(减)分母,分母不变).注意:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=dc dc b a b a ccd a a b d c b a .5.等比性质:(分子分母分别相加,比值不变.) 如果)0(≠++++====n f d b nmf e d c b a ,那么b a n f d b m ec a =++++++++ . 注意:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法.(2)应用等比性质时,要考虑到分母是否为零.(3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.知识点三:黄金分割1)定义:在线段AB 上,点C 把线段AB 分成两条线段AC 和BC (AC >BC ),如果ACBCAB AC =,即AC 2=AB×BC ,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比。

其中AB AC 215-=≈0.618AB 。

2)黄金分割的几何作图:已知:线段AB.求作:点C 使C 是线段AB 的黄金分割点..ABDE AB DEBC EF AC DF ==或等作法:①过点B 作BD ⊥AB ,使;②连结AD ,在DA 上截取DE=DB ;③在AB 上截取AC=AE ,则点C 就是所求作的线段AB 的黄金分割点.黄金分割的比值为:.(只要求记住)3)矩形中,如果宽与长的比是黄金比,这个矩形叫做黄金矩形。

知识点四:平行线分线段成比例定理(一)平行线分线段成比例定理1.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比.例. 已知l 1∥l 2∥l 3,A D l 1B E l 2C F l 3可得2.推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.由DE ∥BC 可得:ACAE AB AD EA EC AD BD EC AE DB AD ===或或.此推论较原定理应用更加广泛,条件是平行. 3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边. (即利用比例式证平行线)4.定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边......与原三角形三边......对应成比例.5.平行线等分线段定理:三条平行线截两条直线,如果在一条直线上截得的线段相等,难么在另一条直线上截得的线段也相等。

★★★三角形一边的平行线性质定理定理:平行于三角形一边的直线截其他两边所得的线段对应成比例。

几何语言 ∵ △ABE 中BD ∥CE∴DE ADBC AB =简记:下上下上= 归纳:AE AD AC AB = 和AE DE AC BC =推广:类似地还可以得到全上全上=和全下全下=E★★★三角形一边的平行线性质定理推论平行于三角形一边的直线截其他两边所在的直线,截得的三角形的三边与原三角形的三边对应成比例.★★★三角形一边的平行线的判定定理三角形一边平行线判定定理 如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边.三角形一边的平行线判定定理推论 如果一条直线截三角形两边的延长线(这两边的延长线在第三边的同侧)所得的对应线段成比例,那么这条直线平行于三角形的第三边.ED CB A★★★平行线分线段成比例定理1.平行线分线段成比例定理:两条直线被三条平行的直线所截,截得的对应线段成比例.用符号语言表示:AD ∥BE ∥CF,,,AB DE BC EF AB DEBC EF AC DF AC DF∴===. 2.平行线等分线段定理:两条直线被三条平行的直线所截,如果在一直线上所截得的线段相等,那么在另一直线上所截得的线段也相等. 用符号语言表示:AD BE CF AB BC DE DF ⎫⇒=⎬=⎭.重心定义:三角形三条中线相交于一点,这个交点叫做三角形的重心.重心的性质:三角形的重心到一个顶点的距离,等于它到对边中点的距离的两倍.知识点三:相似三角形1、 相似三角形1)定义:如果两个三角形中,三角对应相等,三边对应成比例,那么这两个三角形叫做相似三角形。

几种特殊三角形的相似关系:两个全等三角形一定相似。

两个等腰直角三角形一定相似。

两个等边三角形一定相似。

两个直角三角形和两个等腰三角形不一定相似。

补充:对于多边形而言,所有圆相似;所有正多边形相似(如正四边形、正五边形等等); 2)性质:两个相似三角形中,对应角相等、对应边成比例。

3)相似比:两个相似三角形的对应边的比,叫做这两个三角形的相似比。

如△ABC 与△DEF 相似,记作△ABC ∽△DEF 。

相似比为k 。

4)判定:①定义法:对应角相等,对应边成比例的两个三角形相似。

②三角形相似的预备定理:平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似。

三角形相似的判定定理:判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两 个三角形相似.简述为:两角对应相等,两三角形相似.(此定理用的最多) 判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹 角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似. 判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这 两个三角形相似.简述为:三边对应成比例,两三角形相似.直角三角形相似判定定理:○1.斜边与一条直角边对应成比例的两直角三角形相似。

○2.直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。

补充一:直角三角形中的相似问题:斜边的高分直角三角形所成的两个直角三角形与原直角三角形相似.射影定理:CD²=AD·BD,AC²=AD·AB,BC²=BD·BA(在直角三角形的计算和证明中有广泛的应用).补充二:三角形相似的判定定理推论推论一:顶角或底角相等的两个等腰三角形相似。

推论二:腰和底对应成比例的两个等腰三角形相似。

推论三:有一个锐角相等的两个直角三角形相似。

推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。

推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。

相似三角形的性质①相似三角形对应角相等、对应边成比例.②相似三角形对应高、对应角平分线、对应中线、周长的比都等于相似比(对应边的比).③相似三角形对应面积的比等于相似比的平方.2、相似的应用:位似1)定义:如果两个多边形不仅相似,而且对应顶点的连线相交于一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。

需注意:①位似是一种具有位置关系的相似,所以两个图形是位似图形,必定是相似图形,而相似图形不一定是位似图形。

②两个位似图形的位似中心只有一个。

③两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧。

④位似比就是相似比。

2)性质:①位似图形首先是相似图形,所以它具有相似图形的一切性质。

②位似图形是一种特殊的相似图形,它又具有特殊的性质,位似图形上任意一对对应点到位似中心的距离等于位似比(相似比)。

③每对位似对应点与位似中心共线,不经过位似中心的对应线段平行。

相关文档
最新文档