初三数学相似三角形知识点归纳

合集下载

初三数学相似知识点

初三数学相似知识点

初三数学相似知识点
1. 相似三角形:相似三角形是指具有相同形状但大小不同的三角形。

相似三角形的对
应边长成比例,对应角度相等。

2. 相似比例:相似三角形的边长比值称为相似比例。

如果两个三角形的对应边长分别
为a:b:c和ka:kb:kc,那么它们的相似比例为a:b:c。

3. 相似三角形定理:包括AAA相似定理、AA相似定理和对应角边比相等定理。

其中,AAA相似定理指出如果两个三角形的对应角度相等,那么它们相似;AA相似定理指出如果两个三角形的两个对应角度相等,那么它们相似;对应角边比相等定理指出如果
两个三角形的两个对应角度相等,并且对应边长之比相等,那么它们相似。

4. 相似三角形的性质:相似三角形的相似比例等于对应边长之比;相似三角形的相似
比例等于对应角度的正弦值、余弦值或正切值;相似三角形的高线、中线等与对应边
长成等比例;相似三角形的面积与边长平方成比例。

5. 相似三角形的应用:相似三角形的定理在解决实际问题中有很多应用,如利用相似
三角形进行测量、解决影子问题、求解高度、求解距离等。

6. 图形的相似:除了三角形,其他图形(如矩形、圆、椭圆等)也有相似的概念和相
似关系,可以利用相似关系解决相关问题。

这些内容是初三数学中关于相似的主要知识点,希望对你有帮助!如有其他问题,请
随时提问。

北师大版初三上数学相似三角形(一)

北师大版初三上数学相似三角形(一)

相似三角形【知识要点】1.对应角相等,对应边成比例的三角形叫做相似三角形。

2.相似三角形的判定:①如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

②如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。

③如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。

3.相似三角形具有下述性质:①相似三角形对应角相等、对应边成比例;②相似三角形对应高、对应中线的比和对应角平分线的比都等于相似比;③相似三角形周长的比等于相似比;④相似三角形面积的比等于相似比的平方。

4.熟悉如图中形如“A”型,“X”型,“子母型”等相似三角形。

【典型例题】例1.在梯形ABCD中,AD∥BC,对角线AC,BD相交于O,BM∥CD交CA的延长线于M,求证:OC2 =OA·OMBGD例2 . 如图,三个正方形组成一个矩形,AB=AG=GH=HD=a ,求证:∠AFB+∠ACB=45°。

例3 . 已知CD 是直角三角形ABC 斜边AB 上的高,E 是CD 的中点,AE 的延长线交BC 于F ,AB FG ⊥,垂足是G ,求证:FB FC FG ∙=2ABCDE G H例4.如图,已知△ABC 中,点D 、E 、F 分别是AB 、AC 、BC 上的点,DE ∥BC ,EF ∥AB 。

(1)求证:△ADE ∽△EFC 。

(2)如果△ADE 和△EFC 的面积分别是20和45,求四边形BFED 的面积。

例5. 如图所示,△ABC 中AB=AC ,D 为CB 的延长线上一点,E 为BC 延长线上一点,满足AB 2=DB ·CE 。

(1)求证:△ADB ∽△EAC ; (2)若∠BAC=40°,求∠EAD 的大小例6.已知:如图,在△ABC 中,AD ⊥BC 于D ,DE ⊥AB 于E ,DF ⊥AC 于F求证:△AEF ∽△ACBADBCE例7.如图,已知梯形ABCD 中,AD ∥BC ,EF 过梯形对角线的交点O ,且EF ∥AD .(1)求证:OE=OF ; (2)求证:EFBC AD 211=+。

初三数学相似三角形知识点总结

初三数学相似三角形知识点总结

实用工具:常用数学公式 公式分类 公式表达式
乘法与因式分解 a2-b2=(a+b)(a-b)
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b(a2+ab+b2) 三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b|
|a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a| 一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a 根与系数的关系 X1+X2=-b/a X1*X2=c/a 注�韦达定理判别式
与非零向量
a�
平行�那么存在唯一的实数
� m, 使 b

ma�
3.单位向量 我们把长度为 1 的向量叫做单位向量。设 e� 为单位向量�则 e� � 1 。对于任意非零向量
a� �与它同方向的单位向量记作 a�0 ,则
a� �
�� � a a0,a0

1 a�
a�
4.线性运算
向量加法、减法、实数与向量相乘以及它们的混合运算叫做向量的线性运算。如 3a � 2b � a � 2b 、 3(a � 5b) 等�都是向量的线性运算。
ctgA+ctgBsin(A+B)/sinAsinB
-ctgA+ctgBsin(A+B)/sinAsinB
某些数列前 n 项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 2+4+6+8+10+12+14+…+(2n)=n(n+1) 13+23+33+43+53+63+…n3=n2(n+1)2/4 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

数学初三必考知识点归纳

数学初三必考知识点归纳

数学初三必考知识点归纳这里按照五个大类把初三的全部知识点都整理一遍,一共二十八个知识点,如下所示:一、相似三角形(7个考点)考点1:相似三角形的概念、相似比的意义、画图形的放大和缩小考核要求:(1)理解相似形的概念;(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。

考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算.注意:被判定平行的一边不可以作为条件中的对应线段成比例使用。

考点3:相似三角形的概念考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。

考点4:相似三角形的判定和性质及其应用考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。

考点5:三角形的重心考核要求:知道重心的定义并初步应用。

考点6:向量的有关概念考点7:向量的加法、减法、实数与向量相乘、向量的线性运算考核要求:掌握实数与向量相乘、向量的线性运算二、锐角三角比(2个考点)考点8:锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值。

考点9:解直角三角形及其应用考核要求:(1)理解解直角三角形的意义;(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形。

三、二次函数(4个考点)考点10:函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数考核要求:(1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;(2)知道常值函数;(3)知道函数的表示方法,知道符号的意义。

考点11:用待定系数法求二次函数的解析式考核要求:(1)掌握求函数解析式的方法;(2)在求函数解析式中熟练运用待定系数法。

注意求函数解析式的步骤:一设、二代、三列、四还原。

初三数学 相似三角形

初三数学 相似三角形

初三数学 相似三角形知识点知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数). 知识点2 比例线段的相关概念(1)如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nm b a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。

(2)在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:adc b =.②()a ca b c d b d==在比例式::中,a 、d 叫比例外项,b 、c 叫比例内项, a 、c 叫比例前项,b 、d 叫比例后项,d 叫第四比例项,如果b=c ,即 a b b d =::那么b 叫做a 、d 的比例中项, 此时有2b ad =。

(3)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB .即512AC BC AB AC -== 简记为:512-长短==全长注:黄金三角形:顶角是360的等腰三角形。

黄金矩形:宽与长的比等于黄金数的矩形 知识点3 比例的性质(注意性质立的条件:分母不能为0)(1) 基本性质:①bc ad d c b a =⇔=::;②2::a b b c b a c =⇔=⋅.注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除 了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=.(2) 更比性质(交换比例的内项或外项):()()()a bc d a c d cb d b a d bc a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 (3)反比性质(把比的前项、后项交换): a c b db d a c=⇔=.(4)合、分比性质:a c abc db d b d±±=⇔=.注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=d c d c b a b a ccd a a b d c b a 等等.(5)等比性质:如果)0(≠+⋯⋯+++=⋯⋯===n f d b n m f e d c b a ,那么ban f d b m e c a =+⋯⋯++++⋯⋯+++. 注:①此性质的证明运用了“设k 法”(即引入新的参数k )这样可以减少未知数的个数,这种方法是有关比例计算变形中一种常用方法.②应用等比性质时,要考虑到分母是否为零.③可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.如:b af d b e c a f e d c b a f e d c b a =+-+-⇒=--=⇒==32323322;其中032≠+-f d b . 知识点4 比例线段的有关定理1.三角形中平行线分线段成比例定理:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.由DE ∥BC 可得:AC AEAB AD EA EC AD BD EC AE DB AD ===或或注:①重要结论:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边......与原三角形三边......对应成比例.②三角形中平行线分线段成比例定理的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.③平行线的应用:在证明有关比例线段时,辅助线往往做平行线,但应遵循的原则是不要破坏条件中的两条线段的比及所求的两条线段的比.2.平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例. 已知AD ∥BE ∥CF,可得AB DE AB DE BC EF BC EF AB BC BC EF AC DF AB DE AC DF DE EF=====或或或或等.注:平行线分线段成比例定理的推论:平行线等分线段定理:两条直线被三条平行线所截,如果在其中一条上截得的线段相等,那么在另一条上截得的线段也相等。

相似三角形模块知识点及题型整理

相似三角形模块知识点及题型整理

特殊三角形和相似一、章节目录二、地位和作用构成三角形的是边和角, 全等三角形涉及的是等边等角的三角形, 相似三角形涉及的则是等角的三角形. 全等是相似的特殊情况, 相似是对全等关系条件放宽, 按照相似关系将三角形进行分类,同一类三角形只有大小不一样,但保留了边与边之间的比值关系(形状). 因此本模块内容主要是两部分, 一是相似的基本概念,性质与判定; 二是特殊三角形(每一类特殊三角形都是相似关系)和三角函数(在相似的关系下一个角的三角函数是不变量) 考点上,相似三角形和全等在分布和难度上都类似, 选择题和填空题主要考察基本概念,判定以及性质; 大题综合考察, 也会与函数结合, 需要总结方法和思路; 特殊三角形单独考察一般是小题, 更多的是结合在其他证明题中作为条件出现, 需要对特殊三角形的性质烂熟于心; 解直角三角形会有一道大题, 主要是勾股定理应用, 方程法等等.三、知识点总结(一)特殊三角形1、等腰三角形(1)概念:有两条边相等的三角形叫做等腰三角形.(2)性质:等腰三角形的两个底角相等.(等边对等角)等腰三角形的顶角平分线、底边上的中线、底边上的高重合(“三线合一”)等腰三角形关于顶角中线对称.(3)如果一个三角形有两个角相等,那么这个三角形是等腰三角形,其中,两个等角所对的边相等.2、等边三角形(1)概念:三边都相等的三角形叫做等边三角形.等边三角形是特殊的等腰三角形. (2)性质:等边三角形具有等腰三角形的一切性质等边三角形的三个角都相等,并且每一个角都等于60°.(3)等边三角形的判定定理三个角都相等的三角形是等边三角形.有一个角等于60°的等腰三角形是等边三角形.3、直角三角形(1)性质:直角三角形的两个锐角互余.(2)判定:有两个角互余的三角形是直角三角形.(3)三角形斜边的中线性质:三角形斜边上的中线是斜边的一半.证明:倍长中线构造全等.(4)两个特殊直角三角形:30°,60°,90°:30°所对直角边是斜边的一半.45°,45°,90°:等腰直角三角形,顶角中线把三角形又分为两个等腰直角三角形4、勾股定理(1)定理内容:在直角三角形中,两个直角边的平方和等于斜边的平方. (a2+b2=c2).(2)勾股定理的逆定理:如果三角形中有两个边的平方和等于第三边的平方,那这个三角形是直角三角形.5、直角三角形全等判定:斜边和一条直角边对应相等的两个直角三角形全等.6、反证法证明一个命题是真命题:①假设命题的结论不成立;②从这个假设和其他已知条件出发,经过推理论证,得出与学过的概念、基本事实,已证明的定理、性质或题设条件相矛盾的结果.③由矛盾的结果,知假设不能成立,从而说明命题的结论是正确的.讲反证法这类逻辑上的内容,可以多结合生活中的例子,从现实中体会其核心思想.(二)图形的相似1、比例线段(1)四条线段之间的关系:在四条线段a,b,c,d 中, 如果线段a 与b 的比等于线段c 与d 的比, 即a b=c d, 就称这四条线段为成比例线段, 简称比例线段, 我们也称这四条线段成比例.(2)比例线段的基本性质①如果ab=c d, 那么ad =bc .②如果ad=bc , 那么ab=cd(b,d =≠0)(3)黄金分割C 是线段AB 上的一个点,如果有ACAB =BCAC ,那么称点C 为线段AB 的黄金分割点,ACAB称为黄金分割比.黄金分割比即:全线段:较长边=较长边:较短边. 黄金分割比为常数√5−12, 约为0.618.2、平行线分线段成比例(1)基本事实:两条直线被一组平行线所截,截得的线段成比例. 如图所示l1//l2//l3, 则AB:BC=DE:EF.将这个事实应用于三角形后:(2)推论:平行于三角形的一边截其他两边(或两边延长线),所得的对应线段成比例.(ADAB =AEEC)平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形与原三角形对应边成比例.(ADAB =AEAC=DEBC,第三边证明方法是过D作AC平行线.)3、相似三角形(1)概念:对应角相等,对应边成比例的两个三角形叫做相似三角形. 相似三角形对应边的比叫做相似比. 若△ABC与△DEF相似,记作△ABC∼△DEF, A和D,B和E,C和F是对应点.(2)相似三角形的判定定理①平行于三角形一边的直线与另外两边构成的三角形与原三角形相似.思路指导:遇平行找相似.②三条边分别成比例③两边成比例且夹角相等的两个三角形相似.④两组角对应相等的两三角形相似.注意课本中后四个判定的证明方法,判定①是最简单、基本的那个,后三个相似判定都是通过转化为①的情况加以证明的,由平行构造出的相似三角形也是最简单的相似模型.(“A”字形和“8”字形)(3)相似三角形的性质①对应角相等,对应边成比例.②对应的中线、高线、角平分线之比为相似比,周长之比也为相似比.③面积比为相似比的平方.(4)相似模型:①“A”字形相似和“8”字形相似.(一组等角和两条邻边判定.)A字形相似是由直线截得的相似,在已知一个三角形的情况下,用一条直线截这个三角形,使得直线与三角形边的夹角等于已知三角形的一个角,进而通过两个角对应相等判定截得的三角形与原三角形相似.8字形也是由直线截得的,与A字形不同的是,在这里直线截的是△ABC的两条边所在的直线,最终截得的图如下:②射影定理(三个直角三角形三组相似)如图所示△ABC是直角三角形,CD⊥AB, 则三个直角三角形两两相似,根据相似关系可得:AC2=AD⋅ABCB2=BD⋅BACD2=AD⋅DB③共线三等角(两组角对应相等)共线三等角是如图给出的相似,由∠ACB+∠DCE=180○−α=∠ACB+∠A,得∠A=∠DCE, 从而△ABC∼△CED.④旋转相似如上图,△AED,△ACB是任意三角形,ED//CB,将△AED经过旋转至图2后,形成的△ACE∼△ABD.旋转相似是前面全等三角形手拉手模型的推广,可以看到,当AC=AB时,相似比为1,也就是两个三角形全等.4、相似三角形的应用:间接测量(测旗杆)利用△ABO∼△CBD,测量BD,BO得相似比,通过CD求得OA.(测河宽)由C作AB平行线构造相似.(三)解直角三角形1、锐角三角函数锐角三角函数:在相似的意义下,三角形自身边的比值是一个不变量,因此定义一个研究这类比值的量,就是三角函数.(1)概念在直角三角形中,A是其中一个锐角:)①正弦函数sin ∠A:∠A的对边与斜边的比.(sin∠A=ac②余弦函数cos ∠A:∠A的邻边与斜边的比.(cos∠A=b)c)③正切函数tan∠A: ∠A的对边与邻边的比.(tan∠A=ab注意:2sin∠A2=sin(∠A2),sin2∠A=(sin∠A)(2)锐角三角函数的值当锐角A确定,所有以A为一个锐角的直角三角形都是相似的关系,因此他们三边之间的比值都是相等的, 因此A的角度唯一决定了三角函数的值. 即sin∠A,cos∠A,tan∠A都是A的函数.(3)锐角三角函数的性质设∠A与∠B互余,放在同一个直角三角形内,由它们各自三角函数的定义可得:①sin∠A=cos∠B②tan∠A ⋅tan∠B=1同角的三角函数有两个常用性质:①tan∠A=sin∠Acos∠A②sin2∠A+cos2∠A=1(4)几个特殊角度的三角函数值.2、锐角三角函数的计算这里涉及到计算的考点主要是上面特殊角的三角函数值,与正常的实数计算没有区别,把其中的三角函数换成对应的值就是一个普通的计算题了.3、解三角形直角三角形中,三条边和两个锐角共五个元素,知道其中两个(至少一个是边,一边一角或两边就可以确定这个直角三角形)就可以求出另外三个元素. 求解的过程就叫做解三角形.(1)斜三角形内作高构造直角三角形向外高构造直角三角形(2)俯仰角、方位角、坡度仰角:进行测量时,向上看时视线与水平线夹角α.俯角:向下看时视线与水平线夹角β.方位角:指的是南或北方向线与目标方向线所成的锐角.名称如图所示.坡度(坡比):坡面的垂直高度(h)和水平宽度(l)的比叫坡度,以i表示.坡角:坡面与水平面的夹角(α)i=tanα四、常考题型(一)特殊三角形1、等腰三角形和等边三角形出题方向:填空题或者选择题,一般为图形计算,等腰作为条件出现,需要利用等腰所具有的性质进行计算. 或者在证明题中作为条件, 利用等腰三角形的性质构造辅助线.A若等腰三角形的周长为10cm, 其中一边长为2cm,则该等腰三角形的底边长为:_____ 考点:等腰三角形;分类讨论;三边关系.如图,在ΔABC中,AB=AC,∠A=36○, BD平分∠ABC交AC于点D.求证:AD=BC考点: 等腰三角形的性质,以及判定. 顶角为36°的等腰三角形也是常考的一个图形.AB的长为半径画圆,两弧如图,已知AB=AC,AB=5,BC=3, 以A,B两点为圆心, 大于12相交于M,N,连接MN与AC相交于点D,则ΔBDC的周长为:_____.考点:等腰三角形的性质; 尺规作图. 在计算ΔBDC周长时,需要通过分析转化为求AC与BC的和, 这也是在三角形计算中经常会考到的一个思想.如图,已知AD⊥BC于点D, AE⊥CE于E, ∠ACE =∠B, AD=AE,求证: D是BC的中点.考点: 结合全等等腰三角形判定; 三线合一性质如图,点D、E在Δ ABC的BC边上, AB=AC,AD=AE,求证BD=CE.考点:三线合一,利用中线性质作辅助线进行证明. 不需要证明全等.在等腰三角形中三线合一,因此顶角中线(高线/角平分线)是一条重要的辅助线.如图:RtΔABC中, ∠BAC=90○, AB=AC, D是BC的中点,AE=BF.求证:DE=DF.考点:全等三角形证明;其中等腰是条件,需要想到作出高线构造全等.如图:已知ABC是等边三角形,点B、C、D、E在同一条直线上,且CG=CD,DF=DE,则∠E=_____度.考点:等边三角形和等腰三角形的性质;外角性质.B如图, 在ΔABC中,AB=AC, AD,CE是两条中线,P是AD上的一个动点, 则BP+EP的最小值是:_____.考点: 三角形顶角中线的性质(对称性), 与将军饮马模型结合.如图,ΔABC是等边三角形, 延长BC到D, 使CD=AC,连接AD.AB=2,则AD的长为_____.考点:等腰、等边三角形; 特殊三角形已知2是关于x的方程x2−2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A. 10B.14C.10或14D.8或10.考点:等腰三角形和方程结合;分类讨论;三边关系.AC, 则等腰ΔABC底角的度数等腰ΔABC中, BD⊥AC, 垂足为点D, 且BD=12为:_____.考点:等腰三角形;分类讨论;特殊三角形等腰三角形中分类讨论的特点: ①没有图. ②若给出三角形的两个边,则这两个边都可以作为腰, 因此分类讨论; 又同时必须满足三边关系, 得出结果也要进行取舍.如图,已知点O是∠APB内的一点,M、N分别是点O关于P A、PB的对称点,连接MN,与P A,PB分别相交于点E、F,已知MN=6cm.(1)求△OEF的周长;(2)连接PM、PN,若∠APB=α, 求∠MPN(用含α的代数式表示)(3)在(2)的条件下,若α=30°,判定△PMN的形状,并说明理由.考点:几何证明大题,其中涉及了等边三角形的判定. 也是一类动点题的经典考法.如图,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE, AD与CE交于点F.(1)求证AD=CE(2)求∠DFC的度数考点: 正多边形中的“弦图”,利用的是正多边形中心旋转对称性.2、直角三角形A如图所示,一个直角三角形纸片,剪去这个直角后,得到一个四边形,则∠1+∠2=_____.考点:涉及到直角三角形的简单计算题.已知:在△ABC中,AD⊥BC,∠1=∠B, 求证:△ABC是直角三角形.考点:直角三角形判定如图,在△ABC中,∠ACB=90○,∠ABC=60○,BD平分∠ABC,P是BD的中点,若AD=6,则CP的长为_____.考点:直角三角形中线的性质.如图所示,△ABC中,AB=AC,E为AB的中点,BD ⊥ AC,若∠DBC=20○,则∠BED 为______考点:应用直角三角形中线的性质,连接中线后构造出等腰三角形.B如图所示的网格是正方形网格,则∠PAB+∠PBA=_____°(点A,B,P是网格线交点)考点:直角三角形判定;外角性质. 作法是加倍延长AP后连接终点与B,构造出的三角形是等腰直角三角形.如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A’与点A重合,点C’落在边AB上,连接B′C. 若∠ACB=∠AC′B′=90○,AC=BC=3,则B′C的长为_____.考点:主要是勾股定理的应用.如图,在四边形ABCD中,∠ABC=90○,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)若∠BAD=60○,AC平分∠BAD,AC=2,求BN的长.考点:直角三角形中线性质;中位线性质;等腰直角三角形性质.如图,在Rt△ABC中, ∠A=90○,AB=AC,BC=√2+1,点M、N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B, 使点B的对应点B’始终落在边AC上. 若△MB′C为直角三角形,则BM的长为:_____.考点:动点问题,一般有两个特征:一是列代数式,列方程的思想; 二是分类讨论.本题还与折叠问题相结合.看似M、N都是动点,实际上N是随M取定而确定的.3、勾股定理勾股定理在三角形的计算中起着非常重要的作用,前面给出的部分例题也有涉及,勾股定理最常见的是作为一个方法与直角三角形相关的问题紧密结合.在一个直角三角形中,如果其中两条边分别是6和10,那么第三条边的长度是:_____.考点:直角三角形的勾股定理已知a、b、c是△ABC的三边长,且满足关系式√c2−a2−b2+|a−b|=0,则△ABC 的形状为_____.考点:勾股定理的逆定理,判定直角三角形如图,△BCD中,AB=4,AD=3, BC=13, CD=12, 且∠BAD=90○, 求△BCD的面积.考点:勾股定理的逆定理. 首先求出BD,得出△BDC是直角三角形.(二)相似三角形1、几类经典的相似模型(1)A字形相似和8字形相似如图,在△ABC中,AB=9,AC=6,BC=12,点M在边AB上,AM=3,过点M作直线MN与边AC交于点N,使截得的三角形与原三角形ABC相似,则MN的长为:_____.注意是“截得”的三角形,那么对应前面的总结,应当考虑的是截线与边的夹角∠AMN 与∠B 或∠C对应,要分类讨论,两种情况下对应关系不同,就能求出两个结果.如图,已知在△ABC中,AB=20,BC=12,D是AC上一点,过点D作DE//BC交AB于E,作DF//AB交BC于F,设四边形BEDF为菱形.①求菱形的边长②求菱形BEDF面积与△ABC的面积之比.如图1,在平行四边形ABCD中,点E是BC的中点,点F在线段AE上,BF的延长线交射线CD于点G,若AFEF =3,求CDCG的值.①尝试探究:在图1中,过点E作EH//AB交BG于点H,则易求ABEH 的值是:_____,CGEH的值是:_____, CDCG的值是:_____.②类比延伸:如图2,在原题的条件下,若AFEF =m(m>0), 则CDCG的值是:_____(用含m的代数式表示),写出解答过程;③拓展迁移:如图3,在梯形ABCD中,DC//AB,点E是BC延长线上一点,AE和BD相交于点F,若ABCD =a,BCBE=b(a>0,b>0),则AFEF的值是:_____(用含a、b的代数式表示.)写出解答过程构造相似,其思路是结合已知条件(线段的比),使之称为相似三角形中的对应边.(2)射影定理已知CD是△ABC的高,DE⊥CA,DF⊥CB,如图,求证:△CEF∼△CBA.如图,在△ABC中,∠ACB=90○,AD为边BC上的中线,CP⊥AD于点P,求证:AD⋅PB=AB⋅BD.3、共线三等角(1)如图,在边长为9的正三角形ABC中,BD=3,∠ADE=60○,则AE的长为:_____.将条件标上,应该就能找到相似模型了.(2)△ABC中,∠C=90°, AC=3, BC=4,O是AB上的一个点,且AOAB =25,点P是AC上的一个动点,PQ⊥OP交线段BC于点Q(不与B、C重合),已知AP=2,求CQ的长.思路是由O作垂线构造三等角模型.4、旋转相似(1)如图,在平行四边形ABCD中,AC=CD,E、F分别为BC、CD上的点,且∠EAF=∠CAD.证明:①△ACE∼△ADF②EA=EF.(2)1)如图①,正方形AEGH的顶点E、H在正方形ABCD的边上,直接写出HD:GC:EB的结果(不必写计算过程);2)将图①中的正方形AEGH绕点A旋转一定角度,如图②,求HD:GC:EB;3)把图②中的正方形都换成矩形,如图③,且已知DA:AB=HA:AE=m:n,此时HD:GC:EB 的值与2)中结果相比有变化吗?如果有,写出变化后的结果.(三)解三角形1、锐角三角函数(1)如图所示小正方形网格中,点A,B,C都在小正方形的顶点上,则cosA的值为:_____.(2)在△ABC中,∠C=90°,AB=√6,BC=√3,则∠A的度数为:_____.(3)计算题在△ABC中,若,∠A、∠B都是锐角,求∠C的度数.2、解三角形(1)如图,在△ABC中,AB=2,AC=4,∠A=120°,求BC的长.解三角形的一个重要方法是作高线构造直角三角形,然后利用勾股定理..求BC和AC的长.(2)如图,在△ABC中,∠B=45°,AB=2√2,tanC=23(3)为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面水平放置一个平面镜E,使得B,E,D处在同一水平线上,如图所示. 该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED),在F处观测旗杆顶A 的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米?(结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3○≈10.02)(4)如图,一艘船由A港沿北偏东65°方向航行30√2km至B港,然后沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,则A,C两港之间的距离为:_____(5)如图,水坝的横断面是梯形ABCD,背水坡AB的坡角∠BAD=60°,坡长AB=20米,为增强水坝强度,将坡底从A处向后水平延伸到E处,使新的背水坡的坡度为1:2,求AE 的长度.(结果精确到1米,参考数据:√2≈1.414,√3≈1.732).。

初三数学知识点:相似三角形定理

初三数学知识点:相似三角形定理

初三数学知识点:相似三角形定理聪明出于勤奋,天才在于积累。

我们要振作精神,下苦功学习。

编辑了初三数学知识点:相似三角形定理,以备借鉴。

相似三角形定理:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。

相似三角形判定定理1:两角对应相等,两三角形相似。

直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。

判定定理2:两边对应成比例且夹角相等,两三角形相似。

判定定理3:三边对应成比例,两三角形相似。

相似直角三角形定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

性质定理1:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比。

性质定理2:相似三角形周长的比等于相似比。

性质定理3:相似三角形面积的比等于相似比的平方。

初三数学知识点:相似三角形定理就是为大家整理的,希望对大家数学成绩的提高有所帮助。

同类热门:初三数学重要知识点初三数学知识点总结初三数学上册知识点初三数学知识点小结聪明出于勤奋,天才在于积累。

我们要振作精神,下苦功学习。

编辑了初三数学知识点:相似三角形定理,以备借鉴。

相似三角形定理:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。

相似三角形判定定理1:两角对应相等,两三角形相似。

直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。

判定定理2:两边对应成比例且夹角相等,两三角形相似。

判定定理3:三边对应成比例,两三角形相似。

相似直角三角形定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

性质定理1:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比。

性质定理2:相似三角形周长的比等于相似比。

性质定理3:相似三角形面积的比等于相似比的平方。

初三数学知识点:相似三角形定理就是为大家整理的,希望对大家数学成绩的提高有所帮助。

相似的初三知识点总结归纳

相似的初三知识点总结归纳

相似的初三知识点总结归纳初三学习是中学阶段的重要阶段,也是学生们的过渡期。

这个阶段的学习内容广泛而深入,其中很多知识点之间存在一定的相似性。

下面将对初三学习过程中一些相似的知识点进行总结归纳,旨在帮助同学们更好地理解和掌握这些知识。

一、相似的数学知识点1.1 相似三角形与比例关系相似三角形是初中数学中一个重要的概念,它与比例关系密切相关。

同学们在学习相似三角形时,需要理解相似三角形的定义、性质和判定条件,并能灵活运用比例关系解决相关题目。

1.2 线性方程组与解的判定线性方程组是数学中常见的问题,解线性方程组的方法有很多,其中常用的是消元法和代入法。

同学们需要学会分析问题,选择合适的方法来求解线性方程组,并能判断方程组是否有解、有唯一解还是无穷多解。

二、相似的物理知识点2.1 运动与力学定律初三物理中的运动与力学定律是相似且密切相关的知识点。

在学习运动时,同学们需要理解匀速直线运动、加速直线运动和自由落体运动等基本概念,并掌握牛顿运动定律以及动力学中的力和加速度的关系。

2.2 热学与热力学的基本概念热学与热力学是物理学中的重要分支,它们之间存在着相似性。

同学们需要理解温度、热力学第一定律、热传递等基本概念,并能运用这些知识解决与热学相关的问题。

三、相似的化学知识点3.1 元素周期表与化学反应元素周期表是化学中的基础知识,它与化学反应密切相关。

同学们需要掌握元素周期表的基本组成以及元素的周期性规律,并能运用这些知识预测或解释化学反应中的现象。

3.2 酸碱中和与溶液的性质酸碱中和与溶液的性质是化学中的重要知识点,它们之间存在一定的相似性。

同学们需要理解酸碱中和反应的特点和计算方法,以及溶液的酸碱性质与pH值的关系,并能运用这些知识解决相关问题。

总结:以上仅是初三学习中一部分相似的知识点的总结归纳,这些知识点之间可能存在相似的思维方式、解题方法或者概念框架。

同学们在学习时应该注意将相似的知识点联系起来,进行横向对比和纵向延伸,以帮助更好地理解和掌握这些知识。

初三相似性知识点总结归纳

初三相似性知识点总结归纳

初三相似性知识点总结归纳相似性是数学中一个重要的概念,它在初中数学中有着广泛的应用。

相似性是指形状、大小、比例等方面的相似性质,通过相似性的理论和定理,我们可以解决各种与形状和比例相关的问题。

本文将总结归纳初三阶段学习的相似性知识点,帮助同学们更好地掌握相似性的概念和应用。

1. 相似三角形相似三角形是初三相似性知识的基础,它是指两个三角形的对应角相等,对应边成比例。

相似三角形的性质有以下几点:1.1 角的相等性质相似三角形的对应角相等,即每个角都有与之对应的角相等。

1.2 边的成比例性质相似三角形的对应边成比例,即两个三角形的相似比例为一个固定的常数。

1.3 对应线段成比例在相似三角形中,如果有一条直线平行于两个三角形的边,则这条直线将两个三角形的对应边分成相等的线段。

2. 相似三角形的判定在初三数学中,我们经常需要判断两个三角形是否相似。

常用的判定方法包括以下几种:2.1 AAA判定法如果两个三角形的对应角相等,则它们相似。

2.2 AA~判定法如果两个三角形的一个角相等,并且两个角的对边成比例,则它们相似。

2.3 SS~判定法如果两个三角形的两边分别成比例,并且对应角相等,则它们相似。

3. 相似三角形的比例性质在相似三角形中,存在着多种比例性质,对于解题非常有帮助。

3.1 对应边的比例在相似三角形中,对应边的比例相等。

即如果两个三角形相似,那么它们的对应边之比相等。

3.2 海伦定理海伦定理是指在一个三角形内部,从一顶点引两条边,使得这两条边分别与另外两个顶点连成的线段比等于这两条边本身。

利用海伦定理可以解决一些关于相似三角形的比例问题。

4. 三角形的相似变换通过对三角形的简单变换可以得到相似的三角形。

常见的变换包括平移、旋转和翻转。

4.1 平移平移是指通过将一个图形的每个点沿着同一方向移动相等的距离,得到一个新的图形。

平移不会改变图形的大小和形状,因此平移可以保持相似性。

4.2 旋转旋转是指将一个图形绕着一个固定的中心点旋转一定角度得到一个新的图形。

初三数学知识点归纳总结

初三数学知识点归纳总结

初三数学知识点归纳总结初三数学知识点归纳总结。

一、相似三角形(7个考点)考点1:相似三角形的概念、相似比的意义、画图形的放大和缩小考核要求:(1)理解相似形的概念;(2)掌握相似图形的特点以及相似比的意义,能将图形按照要求放大和缩小.考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算.注意:被断定平行的一边不可以作为条件中的对应线段成比例使用.考点3:相似三角形的概念考核要求:以相似三角形的概念为根底,抓住相似三角形的特征,理解相似三角形的定义.考点4:相似三角形的断定和性质及其应用考核要求:纯熟掌握相似三角形的断定定理(包括预备定理、三个断定定理、直角三角形相似的断定定理)和性质,并能较好地应用.考点5:三角形的重心考核要求:知道重心的定义并初步应用.考点6:向量的有关概念考点7:向量的加法、减法、实数与向量相乘、向量的线性运算考核要求:掌握实数与向量相乘、向量的线性运算二、锐角三角比(2个考点)考点8:锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值.考点9:解直角三角形及其应用考核要求:(1)理解解直角三角形的意义;(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当纯熟运用特殊锐角的三角比的值解直角三角形.三、二次函数(4个考点)考点10:函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数考核要求:(1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;(2)知道常值函数;(3)知道函数的表示方法,知道符号的意义.考点11:用待定系数法求二次函数的解析式考核要求:(1)掌握求函数解析式的方法;(2)在求函数解析式中纯熟运用待定系数法.注意求函数解析式的步骤:一设、二代、三列、四复原.考点12:画二次函数的图像考核要求:(1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像;(2)理解二次函数的图像,体会数形结合思想;(3)会画二次函数的大致图像.考点13:二次函数的图像及其根本性质考核要求:(1)借助图像的直观、认识和掌握一次函数的性质,建立一次函数、二元一次方程、直线之间的联络;(2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质.注意:(1)解题时要数形结合;(2)二次函数的平移要化成顶点式.四、圆的相关概念(6个考点)考点14:圆心角、弦、弦心距的概念考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这些概念作出正确的判断.考点15:圆心角、弧、弦、弦心距之间的关系考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的根底上,运用定理进展初步的几何计算和几何证明.考点16:垂径定理及其推论垂径定理及其推论是圆这一板块中最重要的知识点之一.考点17:直线与圆、圆与圆的位置关系及其相应的数量关系直线与圆的位置关系可从与之间的关系和交点的个数这两个侧面来反映.在圆与圆的位置关系中,常需要分类讨论求解.考点18:正多边形的有关概念和根本性质考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能纯熟地运用正多边形的根本性质进展推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题.考点19:画正三、四、六边形.考核要求:能用根本作图工具,正确作出正三、四、六边形.五、数据整理和概率统计(9个考点)考点20:确定事件和随机事件考核要求:(1)理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;(2)能区分简单生活事件中的必然事件、不可能事件、随机事件.考点21:事件发生的可能性大小,事件的概率考核要求:(1)知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;(2)知道概率的含义和表示符号,理解必然事件、不可能事件的概率和随机事件概率的取值范围;(3)理解随机事件发生的频率之间的区别和联络,会根据大数次试验所得频率估计事件的概率.注意:(1)在给可能性的大小排序前可先用“一定发生”、“很有可能发生”、“可能发生”、“不太可能发生”、“一定不会发生”等词语来表述事件发生的可能性的大小;(2)事件的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更准确.考点22:等可能试验中事件的概率问题及概率计算本考点的考核要求是(1)理解等可能试验的概念,会用等可能试验中事件概率计算公式来计算简单事件的概率;(2)会用枚举法或画“树形图”方法求等可能事件的概率,会用区域面积之比解决简单的概率问题;(3)形成对概率的初步认识,理解时机与风险、规那么公平性与决策合理性等简单概率问题.在求解概率问题中要注意:(1)计算前要先确定是否为可能事件;(2)用枚举法或画“树形图”方法求等可能事件的概率过程中要将所有等可能情况考虑完好.考点23:数据整理与统计图表本考点考核要求是:(1)知道数据整理分析^p 的意义,知道普查和抽样调查这两种搜集数据的方法及其区别;(2)结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息.考点24:统计的含义本考点的考核要求是:(1)知道统计的意义和一般研究过程;(2)认识个体、总体和样本的区别,理解样本估计总体的思想方法.考点25:平均数、加权平均数的概念和计算本考点的考核要是:(1)理解平均数、加权平均数的概念;(2)掌握平均数、加权平均数的计算公式.注意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,进步运算准确率.考点26:中位数、众数、方差、标准差的概念和计算考核要求:(1)知道中位数、众数、方差、标准差的概念;(2)会求一组数据的中位数、众数、方差、标准差,并能用于解决简单的统计问题.注意:当一组数据中出现极值时,中位数比平均数更能反映这组数据的平均程度;(2)求中位数之前必须先将数据排序.考点27:频数、频率的意义,画频数分布直方图和频率分布直方图考核要求:(1)理解频数、频率的概念,掌握频数、频率和总量三者之间的关系式;(2)会画频数分布直方图和频率分布直方图,并能用于解决有关的实际问题.解题时要注意:频数、频率能反映每个对象出现的频繁程度,但也存在差异:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是试验的总次数;频率反映的是对象频繁出现的相对数据,所有的频率之和是1.考点28:中位数、众数、方差、标准差、频数、频率的应用本考点的考核要是:(1)理解根本统计量(平均数、众数、中位数、方差、标准差、频数、频率)的意计算及其应用,并掌握其概念和计算方法;(2)正确理解样本数据的特征和数据的代表,能根据计算结果作出判断和预测;(3)能将多个图表结合起来,综合处理图表提供的数据,会利用各种统计量来进展推理和分析^p ,研究解决有关的实际生活中问题,然后作出合理的解决.初中数学知识点之根底知识点总结一、数与代数A、数与式:1、有理数:①整数正整数/0/负整数②分数正分数/负分数数轴:①画一条程度直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

初三数学相似三角形经典题型

初三数学相似三角形经典题型

初三数学相似三角形经典题型相似三角形是初中数学中常见的一个重要概念,也是一种经典的题型。

相似三角形的性质和应用在数学学习和实际问题中都具有很大的意义。

本文将介绍相似三角形的定义、判定方法以及相关的经典题型。

一、相似三角形的定义与判定相似三角形是指具有相同形状但不同大小的三角形。

在数学中,我们可以通过以下两种方法判定两个三角形是否相似。

1. AAA(全等对应角)判定法:如果两个三角形的对应角分别相等,则它们是相似的。

例如,如果三角形ABC和三角形DEF的角A等于角D,角B等于角E,角C等于角F,那么可以得出三角形ABC与三角形DEF是相似的。

2. AA(对应角)判定法:如果两个三角形的两个角分别相等,则它们是相似的。

此时,我们还需要知道两个对应角的两边比例是否相等。

例如,如果角A等于角D,角B等于角E,而且边AB与边DE的比例等于边AC与边DF的比例,那么可以得出三角形ABC与三角形DEF是相似的。

以上两种判定法在实际解题中非常有用,也是帮助我们分析和解决问题的基础。

二、相似三角形的经典题型1. 求相似三角形的边长比例:已知两个相似三角形的某一个边长比例,求另一个边长的比例。

例如,已知相似三角形ABC与三角形DEF的边长比例为AB:DE = 2:3,BC:EF = 5:6,求AC:DF的比例。

解题思路:首先,我们可以假设AC:DF的比例为x:y。

根据相似三角形性质,我们可以列出一个等式:AB:DE = AC:DF2:3 = 5:6根据等式可以得出2y = 3x,5y = 6x。

进一步求解该等式,可以得到x:y的比例为2:5/3。

2. 利用相似三角形求解实际问题:有时候,我们需要利用相似三角形的性质来解决实际问题。

例如,一根高杆和一根矮杆在地面上的距离是30米,两杆的视角是60°和30°。

如果两根杆的高度之差是6米,求高杆的高度。

解题思路:我们可以设高杆的高度为h,矮杆的高度为h-6。

初三数学课堂讲义---相似

初三数学课堂讲义---相似

初三数学课堂讲义---相似学校 姓名Ⅰ.知识归纳1.几个重要概念与性质①平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。

②比例线段:四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即ba =dc ,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段。

2.比例的有关性质①比例的基本性质:如果d c b a =,那么ad=bc 。

如果ad=bc (a ,b ,c ,d 都不等于0),那么d c b a =。

②合比性质:如果d c b a =,那么d dc b b a ±=±。

③等比性质:如果d c b a ==∙∙∙=n m (b+d+∙∙∙+n ≠0),那么ban d b m c a =+∙∙∙+++∙∙∙++ ④b 是线段a 、d 的比例中项,则b 2=ad.补充:射影定理射影定理 直角三角形斜边上的高是它分斜边所得两条线段的比例中项;且每条直角边都是它在斜边上的射影和斜边的比例中项。

如图(1):Rt △ABC中,若CD为高,则有CD 2=BD•AD 、BC2=BD•AB或AC2=AD•AB。

(尽管义务教材中没有列入,但在几何证明及计算中应用很广泛,若能很好地掌握并灵活地运用它,常可取到事半功倍的效果。

)图1ABDEAD 图3E BCF GⅡ.典例剖析例1① 在比例尺是1:38000的南京交通游览图上,玄武湖隧道长约7cm ,则它的实际长度约为______Km 。

② 若b a =32 则b ba +=__________. ③ 若b a b a -+22=59 则a :b=__________.④ 已知: 2a =3b =5c且3a+2b-c=14 ,则 a+b+c 的值为_____.⑤ 某同学想利用影子的长度测量操场上旗杆的高度,在某一时刻他测得自己影子长为0.8m ,立即去测量旗杆的影子长为5m ,已知他的身高为1.6m ,则旗杆的高度为___m.例2.如图1,D 、E 分别是△ABC 的边AB 、AC 上的点,请你添加一个条件,使△ABC 与△AED 相似.(20XX 年浙江省金华市中考试题)例3、如图18-6,在□ABCD 中,E 是AB 延长线上一点,连结DE ,交AC 于点G ,交BC 于点F ,那么图中相似的三角形(不含全等三角形)共有( )A. 6对B. 5对C. 4对D. 3对例4.将两块完全相同的等腰直角三角板摆成如图3的样子,假设图形中的所有点、线都在同一平面内,那么图形中有相似(不包括全等)三角形吗?如果有,把他们一一写出来.(20XX 年吉林省中考试题)例5、如图18-4,∆ABC 中,E 为中线AD 上一点,且AE=1/3AD.BE 的延长线交AC 于点F ,则AF:FC=___ .A F EB DC 图18-4ADGCBEF 图18-6N M Q P E D B A 例6、 如图1,AD 是△ABC 的高,AE 是△ABC 的外接圆直径,求证:AB ·AC=AE ·AD.图1例7、在△ABC 中,AD 是高,矩形PQMN 的顶点P 、N 分别在AB 、AC 上,QM 在边BC 上.若BC=8cm ,AD=6cm ,且PN=2PQ ,求矩形PQMN 的周长.Ⅲ.同步测试 一、选择题1.已知5y -4x =0,那么(x +y )︰(x -y )的值等于………………………………( )(A )91 (B )-9 (C )9 (D )-91 2.在比例尺为1∶20的图纸上画出的某个零件的长是32mm ,这个零件的实际长是( ) (A)64m (B)64dm (C)64cm (D)64mm3.已知C 是线段AB 的黄金分割点(AC >BC ), 则AC ∶BC = ( )(A)(5-1)∶2 (B)(5 +1)∶2 (C)(3-5)∶2 (D)(3+5)∶24 如图18-25,在□ABCD 中,G 是BC 延长线上的一点,AG 与BD 交于点E ,与DC 交与点F ,则图中相似三角形共有( )A. 3对B. 4对C. 5对D. 6对(第4题图) (第5题图) (第6题图)5、小明在打网球时,为使球恰好能过网(网高为0.8m ),且落在对方区域离网5m 的位置上,已知他击球的高度是2.4m ,则她应站在离网的( )ABCDNDABEFGA.15m 处B.10m 处C.8m 处D.7.5m 处6、如图,在□ABCD 中,如果M 为CD 中点,AM 与BD 相交于点 N ,那么S △DMN ∶S □ABCD 为 ( ) A 、1∶12 B 、1∶9 C 、1∶8D 、1∶67、如图是一束平行的阳光从感教室窗户射入的平面示意图,光线与地面所成角AMC=30°,在教室地面的影长MN=23米。

初三数学相似三角形解题技巧

初三数学相似三角形解题技巧

初三数学相似三角形解题技巧摘要:1.相似三角形的判定方法2.相似三角形的性质应用3.解题步骤与实例分析正文:相似三角形在初中数学中占有重要地位,掌握相似三角形的判定方法和性质对解决各类题目有很大帮助。

本文将为大家介绍相似三角形的解题技巧,帮助大家更好地运用这一知识点。

一、相似三角形的判定方法1.两角法:如果两个三角形有两个对应角相等,则这两个三角形相似。

2.边比例法:如果两个三角形的对应边成比例,则这两个三角形相似。

3.面积比例法:如果两个三角形的面积成比例,则这两个三角形相似。

4.角-边-角法:如果两个三角形的一组对应角相等,且夹在这两个角之间的那组对应边成比例,则这两个三角形相似。

二、相似三角形的性质应用1.相似三角形的对应边成比例。

2.相似三角形的对应角相等。

3.相似三角形的面积比等于相似比的平方。

4.相似三角形的高成比例。

5.相似三角形的周长比等于相似比。

三、解题步骤与实例分析1.观察题目,找出已知条件和所求问题。

2.判断三角形是否相似,若相似,利用相似三角形的性质解题。

3.根据题目条件,运用相似三角形的判定方法,确定相似三角形的存在。

4.利用相似三角形的性质,将问题转化为简单的计算或几何问题。

5.进行计算或几何分析,得出最终答案。

实例:已知三角形ABC与三角形DEF相似,AB/DE = 2,BC/EF = 3,求AC/DF。

解:由相似三角形的性质可知,三角形ABC与三角形DEF的对应边成比例。

因此,AC/DF = AB/DE × BC/EF = 2 × 3 = 6。

总之,掌握相似三角形的判定方法和性质,并能灵活运用这些知识解决实际问题,是提高初三数学解题能力的关键。

初三相似三角形知识点以及经典例题

初三相似三角形知识点以及经典例题

初三相似三角形知识点以及经典例题相似三角形是指形状相同但大小不同的三角形。

它是相似多边形中最简单的一种。

如果两个三角形的对应角相等,对应边成比例,那么这两个三角形就是相似三角形。

相似三角形对应边长度的比叫做相似比或相似系数。

比例线段是指四条线段a、b、c、d中,如果a与b的比等于c与d的比,那么这四条线段就是成比例线段,简称比例线段。

需要注意的是,比例线段是有顺序的,而且有比例式的定义。

在比例式中,a、d叫比例外项,b、c叫比例内项,a、c叫比例前项,b、d叫比例后项。

如果b=c,即a:b=c:d,那么b叫做a、d的比例中项,此时有b=ad。

比例有一些基本性质和定理。

比如,a:b=c:d等价于ad=bc;a:b=b:c等价于b=ac/b;同时,比例的分母不能为0.还有更比性质、反比性质、合、分比性质等。

需要注意的是,由一个比例式只能化成一个等积式,而一个等积式共可化成八个比例式,如ad=bc,除了可化为a:b=c:d等。

比例线段也有一些相关定理,如三角形中平行线分线段成比例定理和平行线分线段成比例定理。

其中,三角形中平行线分线段成比例定理指的是平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例;而平行线分线段成比例定理指的是三条平行线截两条直线,所截得的对应线段成比例。

例题1:已知线段a=6 cm,b=2 cm,则a、b、a+b的第四比例项是18 cm,a+b与a-b的比例中项是3 cm。

例题2:若(a+b)/(b+c)=(a-c)/(c-a),则m=1.相似三角形是指对应角相等,对应边成比例的三角形。

用符号“∽”表示,读作“相似于”。

对应角和对应边可以通过对应顶点的字母来表示,这样更容易找到相似三角形的对应角和对应边。

相似三角形的对应边的比叫做相似比(或相似系数)。

相似三角形对应角相等,对应边成比例。

相似三角形有三个等价关系:反身性、对称性和传递性。

反身性是指任何三角形都与自己相似。

九年级数学相似三角形的判定及基本模型

九年级数学相似三角形的判定及基本模型

微专题 相似三角形的判定及基本模型 A X AX K ⎧⎧⎪⎨⎩⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩相似三角形的相关概念相似三角形的判定相似三角形基本模型(字型)相似三角形基本模型(字型)相似三角形基本模型(型)相似三角形基本模型(母子型)相似三角形基本模型(旋转型)相似三角形基本模型(字型(一线三等角))相似三角形常用辅助线基础知识点相似三角形的判定重难点题型(作平行线) 重难点题型题型1 相似三角形的判定【方法点拨】相似三角形的判定方法汇总:1、定义法:三个对应角相等,三条对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似。

1.(2020·陕西西安·高新一中初三一模)如图,点E 是平行四边形ABCD 中BC 的延长线上的一点,连接AE 交CD 于F ,交BD 于M ,则图中共有相似三角形(不含全等的三角形)( )对.A .4B .5C .6D .7【解析】∵四边形ABCD 是平行四边形,∴AD//BC ,AB//CD ,∴△ADM ∽△EBM ,△ADF ∽△ECF ,△DFM ∽△BAM ,△EFC ∽△EAB ,∵∠AFD=∠BAE ,∠DAE=∠E ,∴△ADF ∽△EBA ,∴图中共有相似三角形5对,故选:B .2.(2020·湖南茶陵·初三期末)如图,在大小为44⨯的正方形网格中,是相似三角形的是( )A .甲和乙B .乙和丙C .甲和丙D .乙和丁,23;丙中的三角形的三边分别是:2,3只有甲与丙中的三角形的三边成比例:2==C . 3.(2020·河南罗山·初三期末)如图,在矩形ABCD 中,E 在AD 上,EF BE ⊥,交CD 于F ,连结BF ,则图中与ABE △一定相似的三角形是A .EFB △ B .DEFC .CFBD .EFB △和DEF【解析】根据矩形的性质可得∠A=∠D=90°,再由EF BE ⊥根据同角的余角相等可得∠AEB=∠DFE ,即可得到结果.∵矩形ABCD ∴∠A=∠D=90°∴∠DEF+∠DFE=90°∵EF BE ⊥∴∠AEB+∠DEF=90°∴∠AEB=∠DFE∵∠A=∠D=90°,∠AEB=∠DFE ∴ABE ∽DEF 故选B.4.(2020·四川省射洪县射洪中学外国语实验学校初三期中) 如图,D 、E 分别在△ABC 的边AB 、AC 上,要使△AED △与ABC 相似,不能添加的条件是( )A .DE ∥BCB .AD•AC=AB•AEC .AD :AC=AE :AB D .AD :AB=DE :BC【解析】A 、当DE ∥BC ,则△AED ∽ACB ,所以A 选项错误;B 、当AD•AC=AB•AE ,即AD :AB=AE :AC ,而∠A 公共,则△AED ∽ACB ,所以B 选项错误; C 、当AD :AC=AE :AB ,而∠A 公共,则△AED ∽△ABC ,所以C 选项D 、AD :AB=DE :BC ,而它们的夹角∠ADE 和∠ABC 不确定相等,则不能判断△AED 与△ABC 相似,所以D 选项正确.故选D .5.(2020·广西蒙山县二中初三月考)能判定ABC 与A B C '''相似的条件是( )A .AB AC A B A C ='''' B .AB A B AC A C''='',且A C '∠=∠ C .AB BC A B A C =''''且B A '∠=∠ D .AB AC A B A C ='''',且B B '∠=∠ 【解析】解:A.AB AC A B A C ='''',B.AB A B AC A C ''='',且A C '∠=∠, D.AB AC A B A C ='''',且B B '∠=∠,均不能判断ABC 与A B C '''相似,故错误; C.AB BC A B A C =''''且B A '∠=∠,能判定ABC 与A B C '''相似,本选项正确故选:C . 6.(2020·合肥市第四十六中学月考)如图,点D 、E 分别在ABC ∆的AB 、AC 边上,增加下列哪些条件:①AED B ∠=∠;②AE DE AB BC=;③AD AE AC AB =,使ADE ∆与ACB ∆一定相似( )A .①③B .②③C .①②D .①②③【解析】①∵A A ∠=∠ ,AED B ∠=∠ADE ACB ∴,故正确;②虽然有对应边成比例,但是夹角并不一定相等,所以ADE ∆与ACB ∆不一定相似,故错误; ③∵A A ∠=∠,AD AE AC AB =ADE ACB ∴,故正确;所以正确的是:①③故选:A .7.(2020·上海市静安区实验中学初三课时练习)下列各组图形中,不一定相似的是( )A .各有一个角是100°的两个等腰三角形B .各有一个角是90°的两个等腰三角形C .各有一个角是60°的两个等腰三角形D .各有一个角是50°的两个等腰三角形【解析】A 、各有一个角是100°的两个等腰三角形,100°的角只能是顶角,夹顶角的两边成比例,所以一定相似;B 、两个等腰直角三角形,对应边的比相等,锐角都是45°,相等,所以一定相似;C 、各有一个角是60°的两个等腰三角形,是等边三角形,有两对对应角相等,所以一定相似;D 、各有一个角是50°的两个等腰三角形,可能是顶角为50°,也可能底角为50°,所以对应角不一定相等,所以不一定不相似;故选:D .8.(2020·安徽初三月考)如图,在ABC 中,D 、E 分别是边AC 、AB 上的点,则下列命题中,属于假命题的是( )A .若ADE ABC =∠∠,则ADE ABC △△∽B .若AD AB AE AC=,则ADE ABC △△∽ C .若AD AE CD BE =,则ADE ACB ∽ D .若AD AB DE BC =,则ADE ABC △△∽ 【解析】解:A 、若ADE ABC =∠∠,∠A 为公共角,则ADE ABC △△∽,是真命题;B 、若AD AB AE AC=,∠A 为公共角,则ADE ABC △△∽,是真命题; C 、若AD AE CD BE =,则AD AE AC AB=,∠A 为公共角,则ADE ABC △△∽,是真命题; D 、若AD AB DE BC =,由于条件不够,不能证明ADE ABC △△∽,故D 是假命题;故选:D. 9.(2020·上海市静安区实验中学初三课时练习)点D 在ABC 的边AB 上,且2AC AD AB =⋅,则ABC ACD ,理由是_______.【解析】依题意,画图如下:2AC AD AB =⋅,即AB AC AC AD=, 又A A ∠=∠,ABC ACD ~∴(有两边对应成比例且夹角相等的两个三角形相似),故答案为:有两边对应成比例且夹角相等的两个三角形相似.【点睛】本题考查了相似三角形的判定,熟练掌握判定方法是解题关键.。

初三期中考试数学知识点整理

初三期中考试数学知识点整理

初三期中考试数学知识点整理一相似三角形的判定定理:1平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似;2如果一个三角形的两侧与另一个三角形的两侧成比例,且夹角相等,则两个三角形相似简叙为:两边对应成比例且夹角相等,两个三角形相似.;3如果一个三角形的三条边与另一个三角形的三条边成比例,则两个三角形是相似的简叙为:三边对应成比例,两个三角形相似.;4如果两个三角形的两个角相等或三个角相等,则两个三角形相似简叙为两角对应相等,两个三角形相似..直角三角形相似性判定定理:1直角三角形被斜边上的高分成两个直角三角形和原三角形相似;2如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.2.属性定理编辑1相似三角形的对应角相等;2.相似三角形的相应边成比例;3相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比;4.相似三角形的周长比等于相似比;5相似三角形的面积比等于相似比的平方.3.判断方法编辑预备定理平行于三角形一侧的线与另两侧的线相交,且相交三角形与原始三角形相似。

这是判断相似三角形的定理,也是证明下列判断方法的基础。

这个引理的证明方法需要证明平行线与线段成正比定义两个三角形具有相等的对应角和成比例的对应边,称为相似三角形。

判定定理有六个常用的判断定理:判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

简叙为:两角对应相等,两个三角形相似。

aa判定定理2:如果两个三角形的两组对应边成比例且相应的夹角相等,则两个三角形相似。

简要描述为:两边成比例对应,夹角相等,两个三角形相似。

sas判定定理3:如果两个三角形的三组对应边成比例,那么这两个三角形相似。

简叙为:三边对应成比例,两个三角形相似。

sss判定定理4:如果两个三角形的三条边平行,那么这两个三角形是相似的。

简单的描述是:三条边平行,两个三角形相似。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学相似三角形知
识点归纳
Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998
初三数学《相似三角形》知识提纲
(何老师归纳)
一:比例的性质及平行线分线段成比例定理
(一)相关概念:1.两条线段的比:两条线段的比就是两条线段长度的比
在同一长度单位下两条线段a ,b 的长度分别为m ,n ,那么就说这两条线段
的比是,或写成a :b=m :n ; 其中 a 叫做比的前项,b 叫做比的后项
2:比例尺= 图上距离/实际距离
3:成比例线段:在四条线段a ,b ,c ,d 中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段,记作:c
d
a b =(或a :b=c :d ) ① 线段a ,d 叫做比例外项,线段b ,c 叫做比例内项, ② 线段a 叫首项,d 叫a ,b ,c 的第四比例项。

③ 比例中项:若
c a b c a b c
b
b a ,,2是则即⋅==的比例中项. (二)比例式的性质
1.比例的基本性质:bc ad d
c
b a =⇔= 2. 合比:若
,则或a b c d a b b c d d a b a c d c =±=±±=±
3.
等比:若
……(若……)a b c d e f m
n k b d f n =====++++≠0
4、黄金分割:
把线段AB 分成两条线段AC ,BC (AC>BC ),并且使AC 是AB 和BC 的
比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AC=
2
1
5-≈, (三)平行线分线段成比例定理
1.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.
如图:当AD∥BE∥CF 时,都可得到
=
.
=

= ,
n
m b a =
语言描述如下:
=

= ,
=
.
(4)上述结论也适合下列情况的图形:
图(2) 图(3) 图(4) 图(5) 2.推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.
A 型 X 型
由DE ∥BC 可得:
AC
AE
AB AD EA EC AD BD EC AE DB AD =
==或或. 3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边. 如上图:若
=
.
=

=
,则AD ∥BE ∥CF
此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.
4.定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边
......
与原三角形三边......
对应成比例.
二:相似三角形: (一):定义:
1:对应角相等,对应边成比例的三角形,叫做相似三角形。

用符号“∽”表示, 2:相似比:相似三角形的对应边的比叫做相似比。

(二):.相似三角形的判定定理:
1:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。

用数学语言表述如下:
∵DE∥BC,∴△ADE∽△ABC
三角形相似的判定方法与全等的判定方法的联系列表如下:
类型斜三角形直角三角形
全等三角形的判
定SAS SSS
AAS
(ASA)
HL
相似三角形的判定两边对应
成比例且
夹角相等
三边对应
成比例
两角对应
相等
一条直角边
与斜边对应
成比例
2:两角对应相等的两个三角形相似(此定理用的最多);
用数学语言表述如下:
∵∠A=∠D,∠B=∠E∴△ABD∽△DEF
3:两边对应成比例且夹角相等的两个三角形相似;
用数学语言表述如下:
∵AB
DE

AC
DF
∴△ABD∽△DEF
4:三边对应成比例的两个三角形相似;
用数学语言表述如下:
∵AB
DE

AC
DF

BC
EF
∴△ABD∽△DEF
5:直角边和斜边对应成比例的两个直角三角形相似.
用数学语言表述如下:
∵∠C=∠F =90°AB
DE

AC
DF
∴△ABD∽△DEF
6:直角三角形斜边的高分直角三角形所成的两个直角三角形与原直角三角形相似
(即:射影定理).
2、相似三角形的基本图形
Ⅰ.平行线型:即A 型和X 型。

Ⅰ.相交线型
下图1:若△ABC ∽△DCB, 则2AB =(此类型比例式最常用) (三):相似三角形的性质 1: 相似三角形的对应角相等,对应边成比例
2: 相似三角形对应高的比、对应中线的比与对应角平分线的比都等于相似比 3:
相似三角形周长的比等于相似比 4: 相似三角形面积的比等于相似比的平方。

5、相似多边形
(1)如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形。

相似多边形对应边的比叫做相似比(或相似系数) (2)相似多边形的性质
①相似多边形的对应角相等,对应边成比例
②相似多边形周长的比、对应对角线的比都等于相似比
③相似多边形中的对应三角形相似,相似比等于相似多边形的相似比 ④相似多边形面积的比等于相似比的平方 四、位似图形
1:定义1:如果两个图形不仅是相似图形,而且每组对应点所在直线都经过同
一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,此时的相似比叫做位似比。

定义2:由一个图形得到它的位似图形的变换叫做位似变换。

利用位似变换
可以把一个图形放大或缩小
2:性质:每一组对应点和位似中心在同一直线上,到位似中心的距离之比都等于位似比。

初三数学《解直角三角形》知识提纲
(何老师归纳)
一:锐角三角函数的概念
1:在△ABC 中,∠C=90°锐角A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数
2:锐角三角函数的取值范围:0≤sin α≤1,0≤cos α≤1,tan α≥0,cot α≥0. 二:锐角三角函数之间的关系 1:平方关系1cos sin 22=+A A
C E
D B A
C
A D B.
C B
2:倒数关系 tanA •cotA=1 3:商关系: tanA=
A A
cos sin cotA=A
A sin cos 4:互余关系 sinA=cos(90°—A) =cos
B , cosA=sin(90°—A) =sinB
tanA=cot(90°—A) =cotB , cotA=tan(90°—A) =tanB
三:特殊角的三角函数值
三角函数 0° 30°
45°
60°
90° sinα 0 1 cos α 1
0 tan α 0 1 不存在 cot α
不存在
1
说明:锐角三角函数的增减性,当角度在0°~90°之间变化时. (1)正弦值正切值,随着角度的增大(或减小)而增大(或减小) (2)余弦值余切值,随着角度的增大(或减小)而减小(或增大) 四:解直角三角形的概念:在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。

实际问题三概念: (1)俯、仰角. (2)方位角、象限角. (3)坡角、坡度.
五:补充有关公式
(1)1sin 2S ab C ∆=
=1sin 2bc A =1
sin 2
ac B (2)Rt △面积公式:11
22
S ab ch ==
(3)结论:直角三角形斜边上的高ab
h c
=
(4)测底部不可到达物体的高度.常见解答方程式:如右图,
α h
l
i i=h/l=tg α
B
x
∵在Rt△ABP中,BP=xcotα,在Rt△AQB中,BQ=xcotβ,且BQ—BP=a,∴ xcotβ-xcotα=a.
六:解直角三角形的知识的应用,可以解决:
(1)测量物体高度.(2)有关航行问题.
(3)计算坝体或边路的坡度等问题。

相关文档
最新文档