lingo基本用法(精华版)20分钟学会

合集下载

LINGO教程(精)

LINGO教程(精)

LINGO中的集集是一群相联系的对象,这些对象也称为集的成员。

一个集可能是一系列产品、卡车或雇员。

每个集成员可能有一个或多个与之有关联的特征,我们把这些特征称为属性。

属性值可以预先给定,也可以是未知的,有待于LINGO求解。

例如,产品集中的每个产品可以有一个价格属性;卡车集中的每辆卡车可以有一个牵引力属性;雇员集中的每位雇员可以有一个薪水属性,也可以有一个生日属性等等。

LINGO有两种类型的集:原始集(primitive set)和派生集(derived set)。

一个原始集是由一些最基本的对象组成的。

一个派生集是用一个或多个其它集来定义的,也就是说,它的成员来自于其它已存在的集。

1 模型的集部分集部分是LINGO模型的一个可选部分。

在LINGO 模型中使用集之前,必须在集部分事先定义。

集部分以关键字“sets:”开始,以“endsets”结束。

一个模型可以没有集部分,或有一个简单的集部分,或有多个集部分。

一个集部分可以放置于模型的任何地方,但是一个集及其属性在模型约束中被引用之前必须定义了它们。

2 定义原始集为了定义一个原始集,必须详细声明:·集的名字·可选,集的成员·可选,集成员的属性定义一个原始集,用下面的语法:setname[/member_list/][:attribute_list];注意:用“[]”表示该部分内容可选。

下同,不再赘述。

Setname是你选择的来标记集的名字,最好具有较强的可读性。

集名字必须严格符合标准命名规则:以拉丁字母或下划线(_)为首字符,其后由拉丁字母(A—Z)、下划线、阿拉伯数字(0,1,…,9)组成的总长度不超过32个字符的字符串,且不区分大小写。

注意:该命名规则同样适用于集成员名和属性名等的命名。

Member_list是集成员列表。

如果集成员放在集定义中,那么对它们可采取显式罗列和隐式罗列两种方式。

如果集成员不放在集定义中,那么可以在随后的数据部分定义它们。

第三章LINGO软件的基本使用方法

第三章LINGO软件的基本使用方法
LINGO 9.0 软件比以前的版本有了很大的改进,功能大大增强,性能更加稳定,解答结果更 加可靠。我们前面说过,从基本功能上看,与 LINDO 相比,LINGO 软件主要具有两大优点:
1、 除具有 LINDO 的全部功能外,还可用于求解非线性规划问题,包括非线性整数规划问题。 2、 LINGO 包含了内置的建模语言,允许以简练、直观的方式描述较大规模的优化问题,模型
Objective Infeasibility
当前解的目标函数值
实数
当前约束不满足的总量(不是 实数(即使该值=0,当前解也可能不可行,因为这
不满足的约束的个数)
个量中没有考虑用上下界命令形式给出的约束)
Iterations
目前为止的迭代次数
非负整数
表 3-2 LINGO 状态窗口中关于扩展的求解器各项的含义
§3.1.2 在 LINGO 中使用 LINDO 模型
在 Windows 操作系统下双击 LINGO 图标或从 Windows 操作系统下选择 LINGO 软件运行,启 动 LINGO 软件,屏幕上首先显示如图 3-3 所示的窗口。
图 3-3 LINGO 初始界面
图 3-3 中最外层的窗口是 LINGO 软件的主窗口(LINGO 软件的用户界面),所有其他窗口都 在这个窗口之内。当前光标所在的窗口上标有“LINGO MODEL – LING01”,这就是模型窗口(Model Window),也就是用于输入 LINGO 优化模型(即 LINGO 程序)的窗口。初步观察可以看到,图 3-3 这个界面与 LINDO 软件的界面非常类似,只是在 LINGO 软件的主窗口中,最下面增加了一个 状态行(仔细观察,可以发现菜单和工具栏也略有区别)。目前,状态行最左边显示的是“Ready”, 表示 “准备就绪”;右下角现实的是当前时间,时间前面是当前光标的位置“Ln 1,Col 1”(即

lingo入门教程(共55张)

lingo入门教程(共55张)

3 3
A2
8 67
A3 4
7
B2
8 9
5 C2 6
T
第18页,共55页。
分析
(fēnxī)
6 A1 5 6
B1 6 C1
S
3 3
A2
8 67
A3 4
7
B2
8 9
5 C2 6
T
假设从S到T的最优行驶路线 P 经过城市C1, 则P中从S到C1的子路也一定 是从S到C1的最优行驶路线; 假设 P 经过城市C2, 则P中从S到C2的子路也一定是从S到C2的最优行驶路线. 因此, 为得到从S到T的最优行驶路线, 只需要先求出从S到Ck(k=1,2)的最 优行驶路线, 就可以方便地得到从S到T的最优行驶路线.
第19页,共55页。
分析
(fēnxī)
6 A1 5 6
B1 6 C1
S
3 3
A2
8 67
A3 4
7
B2
8 9
5 C2 6
T
此例中可把从S到T的行驶过程分成4个阶段,即 S→Ai (i=1,2 或3), Ai → Bj(j=1或2), Bj → Ck(k=1或2), Ck → T. 记d(Y,X)为城 市Y与城市X之间的直接距离(若这两个城市之间没有道路直 接相连,则可以认为直接距离为∞),用L(X)表示城市S到城市
L B2 minL A1 5, L A2 6, L A3 4 7 L A3 4; L C1 minL B1 6, L B2 8 15 L B2 8;
略2去),最小运量136.2275(吨公里)。
1
3
5
0
0
1
2
3
4
5
6

lingo用法

lingo用法

LINGO使用指南LINGO是用来求解线性和非线性优化问题的简易工具。

LINGO内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO高效的求解器可快速求解并分析结果。

§1 LINGO快速入门当你在windows下开始运行LINGO系统时,会得到类似下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。

在主窗口内的标题为LINGO Model –LINGO1的窗口是LINGO的默认模型窗口,建立的模型都都要在该窗口内编码实现。

下面举两个例子。

例1.1 如何在LINGO中求解如下的LP问题:在模型窗口中输入如下代码:min=2*x1+3*x2;x1+x2>=350;x1>=100;2*x1+x2<=600;然后点击工具条上的按钮即可。

例1.2 使用LINGO软件计算6个发点8个收点的最小费用运输问题。

产销单位运价如下表。

销地产地B1 B2 B3 B4 B5 B6 B7 B8 产量A1 6 2 6 7 4 2 5 9 60A2 4 9 5 3 8 5 8 2 55A3 5 2 1 9 7 4 3 3 51A4 7 6 7 3 9 2 7 1 43A5 2 3 9 5 7 2 6 5 41A6 5 5 2 2 8 1 4 3 52销量35 37 22 32 41 32 43 38使用LINGO软件,编制程序如下:model:!6发点8收点运输问题;sets:warehouses/wh1..wh6/: capacity;vendors/v1..v8/: demand;links(warehouses,vendors): cost, volume; endsets!目标函数;min=@sum(links: cost*volume);!需求约束;@for(vendors(J):@sum(warehouses(I): volume(I,J))=demand(J)); !产量约束;@for(warehouses(I):@sum(vendors(J): volume(I,J))<=capacity(I)); !这里是数据;data:capacity=60 55 51 43 41 52;demand=35 37 22 32 41 32 43 38;cost=6 2 6 7 4 2 9 54 95 3 8 5 8 25 2 1 9 7 4 3 37 6 7 3 9 2 7 12 3 9 5 7 2 6 55 5 2 2 8 1 4 3;enddataend然后点击工具条上的按钮即可。

LINGO使用说明(比较简单)

LINGO使用说明(比较简单)

Lingo介绍Lingo是美国LINDO系统公司(Lindo Symtem Inc)开发的求解数学规划系列软件中的一个(其他软件为LINGDO,GINO,What’s Best 等),它的主要功能是求解大型线性、非线性和整数规划问题,目前的版本是lingo11.0。

lingo分为Demo、solve suite、hyper、industrial、extended等六类不同版本,只有Demo版本是免费的,其他版本需要向LINDO系统公司(在中国的代理商)购买,Lingo的不同版本对模型的变量总数、非线性变量个数、整型变量个数和约束条件的数量做出不同的限制(其中extended版本无限制)。

Lingo的主要功能特色为:(1)既能求解线性规划,也有较强的求解非线性规划的能力;(2)输入模型简练直观;(3)运行速度快、计算能力强;(4)内置建模语言,提供几十种内部函数,从而能以较少语句,较直观的方式描述较大规模的优化模型;(5)将集合的概念引入编程语言,很容易将实际问题转换为Lingo 语言;(6)能方便地与excel、数据库等其他软件交换数据。

学校图书馆40本《lingo和excel在数学建模中的应用》,袁新生、邵大宏、郁时炼主编,科学出版社Lingo 程序设计简要说明在数学建模中会遇到如规划类的题型,在这种模型中总存在着一个目标,并希望这个目标的取值尽可能的大或小,同时与这个目标有关的一系列变量之间存在一些约束。

在构造出目标函数和约束条件的表达式后,我们需要对求出这个最值和各变量的取值。

一般我们用LINGO 来对模型进行求解,本文将通过举一个简单的例子,围绕这个例子逐步学习LINGO 的使用。

LINGO 只是一个求解工具,我们主要的任务还是模型的建立!当你在windows 下开始运行LINGO 系统时,会得到类似下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。

Lingo的基本使用方法

Lingo的基本使用方法

2021/10/10
5
1. LINGO入门
内容提要
2.在LINGO中使用集合
3. 运算符和函数
4. LINGO的主要菜单命令
5. LINGO命令窗口
6.习题
2021/10/10
6
1. LINGO入门
1. LINGO入门 2.在LINGO中使用集合 3. 运算符和函数 4. LINGO的主要菜单命令 5. LINGO命令窗口 6.习题
2021/10/10
18
一个简单的LINGO程序
LINGO的基本用法的几点注意事项
LINGO中不区分大小写字母;变量和行名可以超过8个字符,但 不能超过32个字符,且必须以字母开头。 用LINGO解优化模型时已假定所有变量非负(除非用限定变量取 值范围的函数@free或@sub或@slb另行说明)。 变量可以放在约束条件的右端(同时数字也可放在约束条件的左 端)。但为了提高LINGO求解时的效率,应尽可能采用线性表达 式定义目标和约束(如果可能的话)。 语句是组成LINGO模型的基本单位,每个语句都以分号结尾,编 写程序时应注意模型的可读性。例如:一行只写一个语句,按照 语句之间的嵌套关系对语句安排适当的缩进,增强层次感。 以感叹号开始的是说明语句(说明语句也需要以分号结束)。
2021/10/10
2
优化模型和算法的重要意义
最优化: 在一定条件下,寻求使目标最大(小)的决策
最优化是工程技术、经济管理、科学研究、社会生活中 经常遇到的问题, 如:
结构设计 资源分配
生产计划
运输方案
解决优化问题的手段
经验积累,主观判断
作试验,比优劣
2021/10/建10 立数学模型,求解最优策略

Lingo的基本用法

Lingo的基本用法

LINGO的基本用法一.集合的基本用法集合(set)及其属性(attribute)的概念基本集合与派生集合集合名[/元素列表/][:属性列表];集合名(父集合列表)[/元素列表/][:属性列表];稠密集合与稀疏集合元素过滤法基本集合的隐式列举法:数字型 1..n字符数字型Car101..Car208日期型MON..FRI月份型OCT..JAN年月型OCT2007..JAN2008二.模型结构(1)集合段从“sets:”到“endsets”(2)数据输入段从“data:”到“enddata”属性=常数列表(3)目标和约束段MIN=表达式(4)计算段从“calc:”到“endcalc”,对原始数据的计算处理(5)初始段从“init:”到“endinit”,定义迭代初值用属性=常数列表(6)注释从感叹号到分号三.函数基本数学函数@ABS(X) @COS(X) @EXP(X) @FLOOR(X)@LGM(X) @LOG(X) @MOD(X,Y) @POW(X,Y)@SIGN(X) @SIN(X) @SMAX(list) @SMIN(list)@SQR(X) @SQRT(X) @TAN(X)其中@LGM(X) =ln(X-1)!集合循环函数@FOR @MIX @MIN @PROD@SUM用法:集合函数名(集合名(集合索引列表)|条件:表达式组)集合操作函数@IN @IN(集合名,集合元素名,…集合元素名)@INDEX @INDEX(集合名,集合元素名)@WRAP @WRAP(i,N),循环计数@SIZE @SIZE(集合名)变量定界函数@BND(L,X,U) @BIN(X) @FREE(X) @GIN(X) 分别对变量取值限制:上下界,0-1值,取消非负限制,整数概率分布函数@PNS(X) 标准正态分布@PSL(X) 正态线性损失@PBN(P,N,X) 二项分布@PHG 超几何分布@PTD(N,X) t分布@PFD(N,D,X) F分布@PPS(A,X) 泊松分布@PPL(A,X) 泊松线性损失@PCX(N,X) X平方分布@RAND(seed) 随机数服务系统函数@PEL(A,X) @PFS(A,X,C) @PEB(A,X)文件输入输出函数@FILE(fn) @TEXT(…fn‟) @OLE结果报告函数@ITERS() 返回迭代次数@NEWLINE(n) 输出n个新行@STRLEN(string) 返回字符串的长度@NAME(reference) 返回变量名或行名@WRITE 用于数据段,输出变量,字符串或换行@WRITEFOR 是@WRITE在循环情况下的推广@FORMAT 以格式描述符方式输出数值@DUAL(varname) 返回解答中变量的判别数或结束行的影子价格@STATUS() 返回求解后的最后状态其他函数@IF @IF(条件,true结果,false结果)@WARN @WARN(‘text’,条件)@USER @USER(用户编写的函数dll或obj文件)四.文件传输通过文本文件传输数据@FILE和@TEXT通过Excel文件传输数据@OLE例题! 背包问题 Knapsack Problem! max z=sum(i=1~n)ci xi! st. sum ai xi <=b, xi=0/1;model:title背包问题;sets:wp/w1..w8/:a,c,x;endsetsdata:a=1 3 4 3 3 1 5 10; c=2 9 3 8 10 6 4 10; enddatamax=@sum(wp:c*x);@for(wp:@bin(x));@sum(wp:a*x)<=15;end!装箱问题!=======;model:title装箱问题;sets:wp/w1..w30/:w; xz/v1..v30/:y; links(wp,xz):x; endsetsdata:w=0.51,0.51,0.51,0.51,0.51,0.51,0.27,0.27,0.27,0.27,0.27,0.27,0.26,0.26,0.26,0.26,0.26,0.26,0.23,0.23,0.23,0.23,0.23,0.23,0.23,0.23,0.23,0.23,0.23,0.23;enddatamin=@sum(xz(i):y(i));C=1;@for(links:@bin(x));@for(xz:@bin(y));@for(wp(i):@sum(xz(j):x(i,j))=1);@for(xz(j):@sum(wp(i):w(i)*x(i,j))<=C*y(j)); end@for(o(j):cun(2,j)= cun(1,j)+x(2,j)-he(2,j) ;z2= @sum(o(j): cun(2,j));@for(o(j):cun(3,j)= cun(2,j)+x(3,j)-he(3,j) ;z3= @sum(o(j): cun(3,j));@for(o(j):cun(4,j)= cun(3,j)+x(4,j)-he(4,j) ;z4= @sum(o(j): cun(4,j));@for(o(j):cun(5,j)= cun(4,j)+x(5,j)-he(5,j) ;z5= @sum(o(j): cun(5,j));@for(o(j):cun(6,j)= cun(5,j)+x(6,j)-he(6,j) ;z6= @sum(o(j): cun(6,j));食品加工一项食品加工业,对几种粗油精炼,然后加以混合成为成品食用油。

Lingo的基本使用方法

Lingo的基本使用方法

建模时需要注意的几个基本问题
1、尽量使用实数优化,减少整数约束和整数变量 2、尽量使用光滑优化,减少非光滑约束的个数
如:尽量少使用绝对值、符号函数、多个变量求最大/最小值 、四舍五入、取整函数等 3、尽量使用线性模型,减少非线性约束和非线性变量的个数 (如x/y <5 改为x<5y)
4、合理设定变量上下界,尽可能给出变量初始值
目标函数是所有费用的和 约束条件主要有两个:
M I{ 4 N R 0(I) 0 P 4O 5(I) 0 P 2I0 N (I)V } I 1 ,2 ,3 ,4
1)能力限制: R(IP )4,I0 1 ,2 ,3 ,4
2)产品数量的平衡方程:
I( N I ) IV ( N I 1 ) R V ( I ) O P ( I ) D P ( I ) I E , 1 , 2 , 3 , 4 M
5、模型中使用的参数数量级要适当 (如小于103)
第四页,共149页。
1. LINGO入门
内容提要
2.在LINGO中使用集合
3. 运算符和函数
4. LINGO的主要菜单命令
5. LINGO命令窗口
6.习题
第五页,共149页。
1. LINGO入门
1. LINGO入门 2.在LINGO中使用集合 3. 运算符和函数 4. LINGO的主要菜单命令 5. LINGO命令窗口
第二十三页,共149页。
集合及其属性
QUARTERS集合的属性
DEM
RP
OP
INV
1
2
3
4
QUARTERS集合
第二十四页,共149页。
集合元素及集合的属性确定的所有变量
集合QUARTERS 1

LINGO简易用法

LINGO简易用法

LINGO 是用来求解线性和非线性运筹学优化问题的简易工具。

LINGO 内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LING 高效的求解器可快速求解并分析结果。

1、LINGO快速入门当你在windows 下开始运行LINGO 系统时,会得到类似下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。

在主窗口内的标题为LINGO Model – LINGO1 的窗口是LINGO 的默认模型窗口,建立的模型都都要在该窗口内编码实现。

下面举两个例子。

例 1.1 如何在LINGO 中求解如下的LP 问题:在模型窗口中输入如下代码:然后点击工具条上的按钮a134 即可。

例 1.2使用LINGO软件计算6个发点8个收点的最小费用运输问题。

产销单位运价如下表。

使用LINGO 软件,编制程序如下:然后点击工具条上的按钮a134 即可。

2、LINGO中的集对实际问题建模的时候,总会遇到一群或多群相联系的对象,比如工厂、消费者群体、交通工具和雇工等等。

LINGO 允许把这些相联系的对象聚合成集(sets)。

一旦把对象聚合成集,就可以利用集来最大限度的发挥LINGO建模语言的优势。

现在我们将深入介绍如何创建集,并用数据初始化集的属性。

学完本节后,你对基于建模技术的集如何引入模型会有一个基本的理解。

2.1 为什么使用集集是LINGO建模语言的基础,是程序设计最强有力的基本构件。

借助于集,能够用一个单一的、长的、简明的复合公式表示一系列相似的约束,从而可以快速方便地表达规模较大的模型。

2.2 什么是集集是一群相联系的对象,这些对象也称为集的成员。

一个集可能是一系列产品、卡车或雇员。

每个集成员可能有一个或多个与之有关联的特征,我们把这些特征称为属性。

属性值可以预先给定,也可以是未知的,有待于LINGO求解。

LINGO 有两种类型的集:原始集(primitive set)和派生集(derived set)。

lingo用法总结(精品文档)

lingo用法总结(精品文档)

ji例程1、model:sets:quarters/1..4/:dem,rp,op,inv;endsetsmin=@sum(quarters:400*rp+450*op+20*inv);@for(quarters(i):rp<=40);@for(quarters(i)|i#gt#1:inv(i)=inv(i-1)+rp(i)+op(i)-dem(i););inv(1)=10+rp(1)+op(1)-dem(1);data:dem=40 60 75 25;enddataend例程2、model:sets:quarters/1..4/:dem,rp,op,inv;endsetsmin=@sum(quarters:400*rp+450*op+20*inv);@for(quarters(i):rp<=40);@for(quarters(i)|i#gt#1:inv(i)=inv(i-1)+rp(i)+op(i)-dem(i););inv(1)=a+rp(1)+op(1)-dem(1);data:dem=40 60 75 25;a=?enddataend•LINGO总是根据“MAX=”或“MIN=”寻找目标函数,而除注释语句和TITLE语句外的其他语句都是约束条件,因此语句的顺序并不重要。

•LINGO中函数一律需要以“@”开头•Lingo中的每个语句都以分号结尾•用LINGO解优化模型时已假定所有变量非负(除非用限定变量取值范围的函数@free或@sub或@slb另行说明)。

•以感叹号开始的是说明语句(说明语句也需要以分号结束))•理解LINGO建模语言最重要的是理解集合(Set)及其属性(Attribute)的概念。

•一般来说,LINGO中建立的优化模型可以由5个部分组成,或称为5“段”(SECTION):(1)集合段(SETS):以“ SETS:” 开始,“ENDSETS”结束,定义必要的集合变量(SET)及其元素(MEMBER,含义类似于数组的下标)和属性(ATTRIBUTE,含义类似于数组)。

lingo入门教程

lingo入门教程

运送量为cij 。
2 6
2
2
MIN f
cij x j ai y j bi
1
j1 i1
2
s.t.
cij di , i 1, 2,L , 6
2
j 1
6
cij ej , j 1, 2
3
i 1
使用现有临时料场时,决策变量只有 c(ij 非负),所以这是LP模型;当为新
建料场选址时决策变量为
c ij

x j , y j,由于目标函数
f对
x ,y
j
j
是非线性的,
所以在新建料场时是NLP模型。先解NLP模型,而把现有临时料场的位置作
为初始解告诉LINGO。
本例中集合的概念
利用集合的概念,可以定义需求点DEMAND和供应点 SUPPLY两个集合,分别有6个和2个元素(下标)。但决 策变量(运送量) cij 与集合DEMAND和集合SUPPLY都 有关系的。该如何定义这样的属性?
输出结果: 运行菜单命令“LINGO|Solve”
最大利润=11077.5
最优整数解 X=(35,65)
一个简单的LINGO程序
LINGO的基本用法的几点注意事项
•LINGO中不区分大小写字母;变量和行名可以超过8个字符,但 不能超过32个字符,且必须以字母开头。 •用LINGO解优化模型时已假定所有变量非负(除非用限定变量取 值范围的函数@free或@sub或@slb另行说明)。 •变量可以放在约束条件的右端(同时数字也可放在约束条件的左 端)。但为了提高LINGO求解时的效率,应尽可能采用线性表达 式定义目标和约束(如果可能的话)。 •语句是组成LINGO模型的基本单位,每个语句都以分号结尾,编 写程序时应注意模型的可读性。例如:一行只写一个语句,按照 语句之间的嵌套关系对语句安排适当的缩进,增强层次感。 •以感叹号开始的是说明语句(说明语句也需要以分号结束))。

LINGO的使用方法说明大全

LINGO的使用方法说明大全

LINGO的使用简介LINGO软件是美国的LINGO系统公司开发的一套专门用于求解最优化问题的软件包.LINGO除了能够用于求解线性规划和二次规划外,还可以用于非线性规划求解、以及一些线性和非线性方程(组)的求解等.LINGO软件的最大特色在于它允许优化模型中的决策变量为整数,即可以求解整数规划,而且执行速度快.LINGO是用来求解线性和非线性优化问题的简易工具.LINGO内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO高效的求解器可快速求解并分析结果.在这里仅简单介绍LINGO的使用方法.LINGO(Linear INteractive and General Optimizer )的基本含义是交互式的线性和通过优化求解器.它是美国芝加哥大学的 Linus Schrage 教授于1980年开发了一套用于求解最优化问题的工具包,后来经过完善成何扩充,并成立了LINDO系统公司.这套软件主要产品有:LINDO,LINGO,LINDO API和What’sBest.它们在求解最优化问题上,与同类软件相比有着绝对的优势.软件有演示版和正式版.正式版包括:求解包(solver suite)、高级版(super)、超级版(hyper)、工业版(industrial)、扩展版(extended).不同版本的LINGO对求解问题的规模有限制,如附表3-1所示.附表3-1 不同版本LINGO对求解规模的限制版本类型总变量数整数变量数非线性变量数约束数演示版 300 30 30 150求解包 500 50 50 250高级版 2000 200 200 1000超级版 8000 800 800 4000工业版 32000 3200 32000 16000扩展版无限无限无限无限3.1 LINGO程序框架LINGO可以求解线性规划、二次规划、非线性规划、整数规划、图论及网络最优化问题和最大最小求解问题,以及排队论模型中最优化等问题.一个LINGO程序一般会包括以下几个部分:(1) 集合段:集部分是LINGO模型的一个可选部分.在LINGO模型中使用集之前,必须在集部分事先定义.集部分以关键字“sets:”开始,以“endsets”结束.一个模型可以没有集部分,或有一个简单的集部分,或有多个集部分.一个集部分可以放置于模型的任何地方,但是一个集及其属性在模型约束中被引用之前必须先定义.(2) 数据段:在处理模型的数据时,需要为集部分定义的某些元素在LINGO求解模型之前为其指定值.数据部分以关键字“data:”开始,以关键字“enddata”结束.(3) 目标和约束段:这部分用来定义目标函数和约束条件等.该部分没有开始和结束的标记.主要是要用到LINGO的内部函数,尤其是与集合有关的求和与循环函数等.(4)初始段:这个部分要以关键字“INIT:”开始,以关键字“ENDINIT”结束,它的作用是对集合的属性定义一个初值.在一般的迭代算法中,如果可以给一个接近最优解的初始值,会大大减少程序运行的时间.(5) 数据预处理段:这一部分是以关键字“CALC:”开始,以关键字“ENDCALC”结束.它的作用是把原始数据处理成程序模型需要的数据,它的处理是在数据段输入完以后、开始正式求解模型之前进行的,程序语句是按顺序执行的.3.2 LINGO中集合的概念在对实际问题建模的时候,总会遇到一群或多群相联系的对象,比如工厂、消费者群体、交通工具和雇工等等.LINGO允许把这些相联系的对象聚合成集(sets).一旦把对象聚合成集,就可以利用集来最大限度地发挥LINGO建模语言的优势.现在将深入介绍如何创建集,并用数据初始化集的属性.3.2.1集的构成集是LINGO建模语言的基础,是程序设计最强有力的基本构件.借助于集能够用一个单一的、简明的复合公式表示一系列相似的约束,从而可以快速方便地表达规模较大的模型.集是一群相联系的对象,这些对象也称为集的元素.一个集可能是一系列产品、卡车或雇员.每个集的元素可能有一个或多个与之有关联的特征,把这些特征称为属性.属性值可以预先给定,也可以是未知的,有待于LINGO求解的.LINGO有两种类型的集:原始集(primitive set)和派生集(derived set).一个原始集是由一些最基本的对象组成的.一个派生集是用一个或多个其它集来定义的,也就是说,它的元素来自于其它已存在的集.3.2.2模型的集部分集部分在程序中又称为集合段,它是LINGO模型的一个可选部分.在LINGO模型中使用集之前,必须在集部分事先定义.集部分以关键字“sets:”开始,以“endsets”结束.一个模型可以没有集部分,或有一个简单的集部分,或有多个集部分.一个集部分可以放置于模型的任何地方,但是一个集及其属性在模型约束中被引用之前必须先定义.(1)原始集的定义为了定义一个原始集,必须详细说明集的名字,而集的元素和相应的属性是可选的.定义一个原始集,用下面的语法:setname[/member_list/][:attribute_list];注意:用“[]”表示该部分内容是可选的(下同).Setname是用来标记集的名字,最好具有较强的可读性.集名字必须严格符合标准命名规则:以拉丁字母或下划线为首字符,其后由拉丁字母、下划线、阿拉伯数字组成的总长度不超过32个字符的字符串,且不区分大小写.注意:该命名规则同样适用于集元素名和属性名等的命名.Member_list是集元素的列表.如果集元素放在集定义中,那么对它们可采取显式和隐式罗列两种方式.如果集元素不放在集定义中,那么可以在随后的数据部分定义.①当显式罗列元素时,必须为每个元素输入一个不同的名字,中间用空格或逗号隔开,允许混合使用.例3.1 定义一个名为friends的原始集,它具有元素John,Jill,Rose和Mike,其属性有sex和age:sets:friends/John Jill, Rose Mike/: sex, age;endsets②当隐式罗列元素时,不必罗列出每个集元素.可采用如下语法:setname/member1..member N/[: attribute_list];这里的member1是集的第一个元素名,member N是集的最后一个元素名.LINGO将自动产生中间的所有元素名.LINGO也接受一些特定的首元素名和末元素名,用于创建一些特殊的集.③集元素不放在集定义中,而在随后的数据部分来定义.例3.2!集部分;sets:friends:sex,age;endsets!数据部分;data:friends,sex,age=John,1,16 Jill,0,14 Rose,0,17 Mike,1,13;enddata注意:开头用感叹号(!),末尾用分号(;)表示注释,可跨多行.在集部分只定义了一个集friends,并未指定元素.在数据部分罗列了集元素John,Jill,Rose和Mike,并对属性sex和age分别给出了值.集元素无论用何种字符标记,它的索引都是从1开始连续计数.在attribute_ list可以指定一个或多个集元素的属性,属性之间必须用逗号隔开.LINGO内置的建模语言是一种描述性语言,用它可以描述现实世界中的一些问题,然后再借助于LINGO 求解器求解.因此,集属性的值一旦在模型中被确定,就不可能再更改.只有在初始部分中给出的集属性值在以后的求解中可更改.这与前面并不矛盾,初始部分是LINGO求解器的需要,并不是描述问题所必须的.(2) 定义派生集为了定义一个派生集,必须详细说明集的名字和父集的名字,而集元素和属性是可选的.可用下面的语法定义一个派生集:setname(parent_set_list)[/member_list/][:attribute_list];setname是集的名字.parent_set_list是已定义的集的列表,多个时要用逗号隔开.如果没有指定成员列表,那么LINGO会自动创建父集元素的所有组合作为派生集的元素.派生集的父集既可以是原始集,也可以是其它的派生集.例3.3sets:product/A,B/;machine/M,N/;week/1..2/;allowed(product,machine,week):x;endsetsLINGO生成了三个父集的所有组合共八组作为allowed集的元素,列表如下:编号元素1 (A,M,1)2 (A,M,2)3 (A,N,1)4 (A,N,2)5 (B,M,1)6 (B,M,2)7 (B,N,1)8 (B,N,2)元素列表被忽略时,派生集成员由父集成员所有的组合构成,这样的派生集成为稠密集.如果限制派生集的成员,使它成为父集成员所有组合构成的集合的一个子集,这样的派生集成为稀疏集.同原始集一样,派生集元素的说明也可以放在数据部分.一个派生集的元素列表有两种方式生成:①显式罗列;②设置元素选择的过滤器.当采用方式①时,必须显式罗列出所有要包含在派生集中的元素,并且罗列的每个元素要属于稠密集.使用前面的例子,显式罗列派生集的元素,如:allowed(product,machine,week)/A M 1,A N 2,B N 1/;如果需要生成一个大的、稀疏的集,那么显式罗列就十分麻烦.但是许多稀疏集的元素都满足一些条件,可以把这些逻辑条件看作过滤器,在LINGO生成派生集的元素时把使逻辑条件为假的元素从稠密集中过滤掉.例3.4sets:!学生集:性别属性sex,1表示男性,0表示女性;年龄属性age;students/John,Jill,Rose,Mike/:sex,age;!男学生和女学生的联系集:友好程度属性friend![0,1]之间的数;linkmf(students,students)|sex(&1)#eq#1#and#sex(&2)#eq#0: friend;!男学生和女学生的友好程度大于0.5的集;linkmf2(linkmf) | friend(&1,&2) #ge# 0.5 : x;endsetsdata:sex,age =1 16,0 14,0 17,0 13;friend =0.3,0.5,0.6;enddata用竖线(|)来标记一个元素过滤器的开始.#eq#是逻辑运算符,用来判断是否“相等”. &1可看作派生集的第1个原始父集的索引,它取遍该原始父集的所有元素;&2可看作派生集的第2 个原始父集的索引,它取遍该原始父集的所有元素;&3,&4,…,依此类推.注意如果派生集B的父集是另外的派生集A,那么上面所说的原始父集是集A向前回溯到最终的原始集,其顺序保持不变,并且派生集A的过滤器对派生集B仍然有效.因此,派生集的索引个数是最终原始父集的个数,索引的取值是从原始父集到当前派生集所作限制的总和.3.3 LINGO数据部分和初始部分在处理模型的数据时,需要为集指定一些元素并且在LINGO求解模型之前为集的某些属性指定数值.为此,LINGO为用户提供了两个可选部分:输入集元素数值的数据部分(Data Section)和为决策变量设置初始值的初始部分(Init Section).3.3.1数据部分(1) 数据部分入门数据部分以关键字“data:”开始,“enddata”结束.在这里,可以指定集元素和集的属性.其语法如下:object_list = value_list;对象列(object_list)包含要指定值的属性名、要设置集元素的集名,用逗号或空格隔开.一个对象列中只能有一个集名,而属性名可以有任意多个.如果对象列中有多个属性名,那么它们的类型必须一致.数值列(value_list)包含要分配给对象列中对象的值,用逗号或空格隔开.注意属性值的个数必须等于集元素的个数.例3.5sets:SET0/A,B,C/: X,Y;endsetsdata:X=1,2,3;Y=4,5,6;enddata在集SET0中定义了两个属性X和Y.X的三个值是1,2,3,Y的三个值是4,5,6.也可采用如下例子中的复合数据说明(data statement)实现同样的功能.例3.6sets:SET0/A,B,C/: X,Y;endsetsdata:X,Y=1 4 2,5 3 6;enddata如果对象列中有n个对象,LINGO在为对象指定值时,首先在n个对象的第1个索引处依次分配数值列中的前n个对象,然后在n个对象的第2个索引处依次分配数值列中紧接着的n个对象,…,依此类推.(2) 参数输入在数据部分也可以指定一些标量变量(scalar variables).当一个标量变量在数据部分确定时,称之为参数.例如,假设模型中用利率9%作为一个参数,就可以输入一个利率作为参数.例3.7data:interest_rate = .09;enddata实际中也可以同时指定多个参数.如:data:interest_rate,inflation_rate = .09, .025;enddata(3) 实时数据处理在某些情况下,模型中的某些数据并不是定值.譬如模型中有一个参数在2%至6%范围内,对不同的值求解模型,观察模型的结果对参数依赖的程度,那么把这种情况称为实时数据处理.处理方法是在该语句的数值后面输入一个问号(?).data:interest_rate,inflation_rate = .09 ?;enddata在每一次求解模型时,LINGO都会提示为参数inflation_rate输入一个值.在WINDOWS操作系统下,将会看到一个如下面的对话框:直接输入一个值再点击OK按钮,LINGO就会把输入的值指定赋给inflation_rate,然后继续求解模型.除了参数之外,也可以实时输入集的属性值,但不允许实时输入集元素名.(4) 指定属性为一个值可以在数据定义的右边输入一个值来把所有的元素的该属性指定为一个值.如下面的例子.例3.9sets:days /MO,TU,WE,TH,FR,SA,SU/:needs;endsetsdata:needs = 40;enddataLINGO将用40指定days集的所有元素的needs属性.对于多个属性的情形如下:sets:days /MO,TU,WE,TH,FR,SA,SU/:needs,cost;endsetsdata:needs cost = 40 90;enddata(5) 数据部分的未知数值表示法有时候只需为一个集的部分元素的某个属性指定数值,而让其余元素的该属性是未知的,以便让LINGO 去求出它们的最优值.在数据定义中输入两个相连的逗号表示该位置对应元素的属性值未知,两个逗号间可以有空格.例3.10sets:years/1..6/: capacity;endsetsdata:capacity = ,24,40,,,;属性capacity的第2个和第3个值分别为24和40,其余的未知.3.3.2初始部分初始部分是LINGO提供的另一个可选内容.在初始部分中,与数据部分中的数据定义相同,可以输入初始定义(initialization statement).在对实际问题的建模时,初始部分并不起到描述模型的作用,初始部分输入的值仅被LINGO求解器当作初始值来使用,并且仅仅对非线性模型有用.这与数据部分指定变量的值不同,LINGO求解器可以自由改变初始部分初始化变量的数值.一个初始部分以关键字“init:”开始,以关键字“endinit”结束.初始部分的初始定义规则和数据部分的数据定义规则相同.也就是说,可以在定义的左边同时初始化多个集属性,即可以把集属性初始化为一个数值,也可以用问号定义为实时数据,还可以用逗号指定为未知数值.例3.11init:X,Y = 1,0;endinitY=@log(X);X^2+Y^2<=1;3.4 LINGO函数3.4.1运算符及其优先级LINGO 中的运算符可以分为三类:算数运算符、逻辑运算符和关系运算符.(1) 算数运算符算数运算符分为5种: (加法), (减法), (乘法), (除法), (求幂).(2) 逻辑运算符逻辑运算符分为两类:#AND#(与),#OR#(或),#NOT#(非):这3个运算符是参与逻辑值之间的运算,其结果还是逻辑值.运算符#EQ#(等于),#NE#(不等于),#GT#(大于),#GE#(大于等于),#LT#(小于),#LE#(小于等于)是用于“数与数之间”的比较,其结果是实逻辑值.(3) 关系运算符LINGO中有3种关系运算符:<(小于等于),>(大于等于),=(等于).注意LINGO中优化模型的约束一般没有严格大于、严格小于,要和逻辑运算符区分开.运算符的优先等级如附表3-2所示.附表3-2 运算符的优先级3.4.2 LINGO数学函数(1) 基本数学函数LINGO中有相当丰富的数学函数,这些函数的用法简单.下面列表对各个函数的用法做简单的介绍,具体情况如附表3-3所示.(2) 集合循环函数集合循环是指对集合上的元素(下标)进行循环操作的函数,它的一般用法如下:@function(setname[(set_index_list)[|condition]]:expression_list);其中function是集合函数名,是FOR,MAX,MIN,PROD,SUM五种之一.setname是集合名;set_index_list 是集合索引列表(可以省略);condition是实用逻辑表达式描述的过滤条件(通常含有索引,可以省略);expression_list是一个表达式(对@FOR可以是一组表达式).下面对具体的集合函数作如下解释:@FOR(集合元素的循环函数):对集合setname的每个元素独立生成表达式,表达式由expression_list 描述.@MAX(集合属性的最大值):返回集合setname上的表达式的最大值.@MIN(集合属性的最小值) :返回集合setname上的表达式的最小值.@PROD(集合元素的乘积函数):返回集合setname上的表达式的积.@SUM(集合元素的求和函数) :返回集合setname上的表达式的和.(3) 集合操作函数集合操作函数是对集合进行操作的函数,主要有4种,下面分别介绍它们的一般用法.1)@INDEX([set_name,]primitive_set_element)这个函数给出元素primitive_set_element在集合set_name中的索引值(即按定义集合时元素出现顺序的位置编号).如果省略编号set_name,LINGO按模型中定义的集合顺序找到第一个含有元素primitive_set_element的集合,并返回索引值.通过下面例子解释函数的使用方法.例如,假设定义一个女孩的姓名集合和一个男孩的姓名集合:SETS:GIRLS/DEBBLE,SUE,ALICE/;BOYS/BOB,JOE,SUE,FRED/;ENDSETS注意到女孩集和男孩集中都有一个为SUE的元素,如果要调用此函数@INDEX(SUE),则得到返回索引值是2.因为集合GIRLS在集合BOYS之前,则索引函数只对集合GIRLS检索.如果想查找男孩集中的SUE,则应该使用@INDEX(BOYS,SUE),则此时得到的索引值是3.2)@IN(set_name,primitive_index_1[,primitive_index_2 …])这个函数用于判断一个集合中是否含有某个索引值.它的返回值是1(逻辑值“真”),或是0(逻辑值“假”).例3.12全集为I,B是I的一个子集,C是B的补集.sets:I/x1..x4/;B(I)/x2/;C(I)|#not#@in(B,&1):;endsets3)@wrap(index,limit)该函数返回j=index-k*limit,其中k是一个整数,取适当值保证j落在区间[1,limit]内.该函数相当于index模limit再加1.该函数在循环、多阶段计划编制中特别有用.4)@size(set_name)该函数返回集set_name的元素个数.在LINGO模型中,如果没有明确给出集的大小,则使用该函数能够使模型中的数据变化和集的大小改变更加方便.(4) 变量定界函数变量界定函数能够实现对变量取值范围的附加限制,共4种:1)@bin(x)表示限制就是x为0或1;2)@bnd(L,x,U)表示限制变量x满足;3)@free(x)表示取消对变量x的默认下界为0的限制,即x可以取任意实数;4)@gin(x)表示限制变量x为整数.在默认情况下,LINGO规定变量是非负的,即下界值为0,上界为+∞.@free取消了默认的下界为0的限制,使变量也可以取负值.@bnd用于设定一个变量的上下界,它也可以取消默认下界为0的约束.(5) 概率论中相关函数1)@pbn(p,n,x)二项分布的分布函数,当n和(或)x不是整数时,用线性插值法进行计算.2)@pcx(n,x)自由度为n的χ2分布的分布函数在x点的取值.3)@peb(load,x)当到达负荷(平均服务强度)为load,服务系统有x个服务台,且系统容量无限时的Erlang繁忙概率,多用于解决排队问题.4)@pel(load,x)当到达负荷(平均服务强度)为load,服务系统有x个服务台,系统容量为有限时的Erlang繁忙概率,多用于解决排队问题.5)@pfd(n,d,x)自由度为n和d的F分布的分布函数在x点的取值.6)@pfs(load,x,c)当负荷上限为load,顾客数为c,平行服务台数量为x时,顾客源有限的Poisson服务系统的等待或有返回顾客数的期望值.load是顾客数乘以平均服务时间,再除以平均返回时间.当c和(或)x不是整数时,采用线性插值进行计算.7)@phg(pop,g,n,x)超几何(Hypergeometric)分布的分布函数.pop表示产品总数,g是正品数.从所有产品中任意取出n(n≤pop)件.pop,g,n和x都可以是非整数,这时采用线性插值进行计算.8)@ppl(a,x)Poisson分布的线性损失函数,即返回max(0,z-x)的期望值,其中随机变量z服从均值为a的Poisson 分布.9)@pps(a,x)均值为a的Poisson分布的分布函数在x点的取值.当x不是整数时,采用线性插值进行计算.10)@psl(x)单位正态线性损失函数,即返回max(0,z-x)的期望值,其中随机变量z服从标准正态分布.11)@psn(x)标准正态分布的分布函数在x点的取值.12)@ptd(n,x)自由度为n的t分布的分布函数在x点的取值.13)@qrand(seed)产生(0,1)区间的拟随机数.@qrand只允许在模型的数据部分使用,它将用拟随机数填满集属性.通常定义一个m×n的二维表,m表示运行实验的次数,n表示每次实验所需的随机数的个数.在行内,随机数是独立分布的;在行间,随机数是非均匀的.这些随机数是用“分层取样”的方法产生的.(6) 金融函数目前LINGO提供了两个金融函数.1)@fpa(I,n)返回如下情形的净现值:单位时段利率为I,连续n个时段支付,每个时段支付单位费用.若每个时段支付x单位的费用,则净现值可用x乘以@fpa(I,n)得到.@fpa的计算公式为.净现值就是在一定时期内为了获得一定收益,在该时期初所支付的实际费用.2)@fpl(I,n)返回如下情形的净现值:单位时段利率为I,第n个时段支付单位费用.@fpl(I,n)的计算公式为.这两个函数间的关系:.(7)输入和输出函数输入和输出函数可以把模型与外部数据(如文本文件、数据库和电子表格等)连接起来.1)@file函数该函数用于从外部数据文件中输入数据,它可以放在模型中任何地方.该函数的语法格式为@file(’’).这里是文件名,可以采用相对路径和绝对路径两种表示方式.记录结束标记(~)之间的数据文件部分称为记录.如果数据文件中没有记录结束标记,那么整个文件被看作单个记录.除了记录结束标记外,从模型外部调用的文本和数据同在模型里是一样的.下面介绍一下在数据文件中的记录结束标记连同模型中@file函数调用是如何工作的.当在模型中第一次调用@file函数时,LINGO打开数据文件,然后读取第一个记录;第二次调用@file 函数时,LINGO读取第二个记录等等.文件的最后一条记录可以没有记录结束标记,当遇到文件结束标记时,LINGO会读取最后一条记录,然后关闭文件.如果最后一条记录也有记录结束标记,那么直到LINGO 求解完成模型后关闭该文件.注意,如果有多个文件同时保持打开状态,可能就会导致一些问题,LINGO允许同时打开文件的上限数是16.在LINGO中不允许嵌套调用@file函数.2)@text函数该函数被用在数据部分,用来把求解结果输出至文本文件中.它可以输出集元素和集属性值.其语法为@text([’’])这里是文件名,可以采用相对路径和绝对路径两种表示方式.如果忽略,那么数据就被输出到标准输出设备(大多数情形都是屏幕).@text函数仅能出现在模型数据部分的一条语句的左边,右边是集名(用来输出该集的所有元素名)或集属性名(用来输出该集属性的值).用接口函数产生输出的数据定义称为输出操作.输出操作仅当求解器求解完模型后才执行,执行次序取决于其在模型中出现的先后.3)@ole函数@OLE是从EXCEL中引入或输出数据的接口函数,它是基于传输的OLE技术.OLE传输直接在内存中传输数据,并不借助于中间文件.当使用@OLE时,LINGO先装载EXCEL,再通知EXCEL装载指定的电子数据表,最后从电子数据表中获得Ranges.为了使用@OLE函数,必须有EXCEL5及其以上版本.@OLE函数可在数据部分和初始部分引入数据.@OLE可以同时读集元素和集属性,集元素最好使用文本格式,集属性最好使用数值格式.原始集每个集元素需要一个单元(cell),而对于n元的派生集每个集元素需要n个单元,这里第一行的n个单元对应派生集的第一个集元素,第二行的n个单元对应派生集的第二个集元素,依此类推.4)@ranged(variable_or_row_name)为了保持最优基不变,变量的费用系数或约束行的右端项允许减少的量.5)@rangeu(variable_or_row_name)为了保持最优基不变,变量的费用系数或约束行的右端项允许增加的量.6)@status()返回LINGO求解模型后的结束状态:0 --- Global Optimum(全局最优);1 --- Infeasible(不可行);2 --- Unbounded(无界);3 --- Undetermined(不确定);4 --- Feasible(可行);5 --- Infeasible or Unbounded(通常需要关闭“预处理”选项后重新求解模型,以确定模型究竟是不可行还是无界)6 --- Local Optimum(局部最优);7 --- Locally Infeasible(局部不可行,尽管可行解可能存在,但是LINGO并没有找到一个);8 --- Cutoff(目标函数的截断值被达到);9 --- Numeric Error(求解器因在某约束中遇到无定义的算术运算而停止).通常,如果返回值不是0,4或6时,那么解将不可信,几乎不能用.该函数仅被用在模型的数据部分来输出数据.7)@dual(variable_or_row_name)返回变量的判别数(检验数)或约束行的对偶(影子)价格(dual prices).(8) 辅助函数1)@if(logical_condition,true_result,false_result)@if函数将评价一个逻辑表达式logical_condition是否为真,如果为真,返回true_ result,否则返回false_result.2)@warn(’text’,logical_condition)如果逻辑条件logical_condition为真,则产生一个内容为’text’的信息框.3)@user(user_determined_arguments)该函数允许用户自己编写函数,可以用c语言等编写,返回值为用户函数计算的结果.3.5 LINGO程序出错信息在LINGO模型求解时,系统会对程序进行编译、求解或是执行于程序相关的命令,这都有可能出现一些语法或运行的错误.当出现时,系统会弹出一个出错报告框,显示错误代码,并且大致指出错误的所在位置.这些错误信息报告对于用户发现及改正程序中的错误有很大帮助.如附表3-4就出错提示信息,进行说明(没有说明的错误编号目前还没有使用).。

LINGO使用教程

LINGO使用教程

LINGO 使用教程LINGO 是用来求解线性和非线性优化问题的简易工具。

LINGO 内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO 高效的求解器可快速求解并分析结果。

§1 LINGO 快速入门当你在windows 下开始运行LINGO 系统时,会得到类似下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。

在主窗口内的标题为LINGO Model – LINGO1的窗口是LINGO 的默认模型窗口,建立的模型都都要在该窗口内编码实现。

下面举两个例子。

例1.1 如何在LINGO 中求解如下的LP 问题:,6002100350..32min 212112121≥≤+≥≥++x x x x x x x t s x x在模型窗口中输入如下代码: min =2*x1+3*x2; x1+x2>=350; x1>=100;2*x1+x2<=600;然后点击工具条上的按钮 即可。

例1.2 使用LINGO 软件计算6个发点8个收点的最小费用运输问题。

产销单位运价如model:!6发点8收点运输问题;sets:warehouses/wh1..wh6/: capacity;vendors/v1..v8/: demand;links(warehouses,vendors): cost, volume;endsets!目标函数;min=@sum(links: cost*volume);!需求约束;@for(vendors(J):@sum(warehouses(I): volume(I,J))=demand(J));!产量约束;@for(warehouses(I):@sum(vendors(J): volume(I,J))<=capacity(I));!这里是数据;data:capacity=60 55 51 43 41 52;demand=35 37 22 32 41 32 43 38;cost=6 2 6 7 4 2 9 54 95 3 8 5 8 25 2 1 9 7 4 3 37 6 7 3 9 2 7 12 3 9 5 7 2 6 55 5 2 2 8 1 4 3;enddataend然后点击工具条上的按钮即可。

(完整word版)lingo基本用法(精华版)20分钟学会

(完整word版)lingo基本用法(精华版)20分钟学会

Lingo基本用法总结(除集函数部分)LINGO是用来求解线性和非线性优化问题的简易工具。

Lingo免费版可以支持30个未知数,lingo破解版可以支持几万个未知数、几万个约束条件.当你在windows下开始运行LINGO系统时,会得到类似下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。

在主窗口内的标题为LINGO Model – LINGO1的窗口是LINGO的默认模型窗口,建立的模型都都要在该窗口内编码实现。

下面举两个例子。

例1.1 如何在LINGO中求解如下的LP问题:在模型窗口中输入如下代码:min=2*x1+3*x2;x1+x2〉=350;x1>=100;2*x1+x2<=600;然后点击工具条上的按钮即可。

得到如下结果:所以当x1为250,x2为100时目标函数得到最大值.算术运算符Lingo中变量不区分大小写,以字母开头不超过32个字符算术运算符是针对数值进行操作的.LINGO提供了5种二元运算符:^乘方﹡乘/除﹢加﹣减LINGO唯一的一元算术运算符是取反函数“﹣"。

这些运算符的优先级由高到底为:高﹣(取反)^﹡/低﹢﹣运算符的运算次序为从左到右按优先级高低来执行.运算的次序可以用圆括号“()”来改变。

例:在x1+x2〉=350,x1>=100,2*x1+x2<=600的条件下求2*x1+3*x2的最小值在代码窗口中编写min=2*x1+3*x2;x1+x2〉=350;x1>=100;2*x1+x2<=600;然后单击上面菜单lingo菜单下solve键即可.●数学函数标准数学函数:@abs(x)返回x的绝对值@sin(x) 返回x的正弦值,x采用弧度制@cos(x) 返回x的余弦值@tan(x)返回x的正切值@exp(x)返回常数e的x次方@log(x) 返回x的自然对数@lgm(x) 返回x的gamma函数的自然对数@sign(x)如果x<0返回-1;否则,返回1@floor(x)返回x的整数部分。

LINGO的基本用法

LINGO的基本用法

cij xij ;
i1 j 1
用LINGO语句表示为:
MIN = @SUM(LINKS(I, J): C(I, J)*X(I, J));
注: ① @SUM是LINGO提供的内部函数,其作用是对某个
集合的所有成员,求指定表达式的和.

@SUM有两个参数:集合名称和表达式

师 范
② 如果表达式中参与运算的属性属于同一个集合,则
与 统
◆模型统计资料
计 学
◆查看(以为本方式显示模型内容)



◆命令行窗口


主要是为用户交互地测试命令脚本

而设计.(通常不用)
◆状态窗口
[求解器状态]
[变量]


师 范
[扩展求解器状态]









[约束] [非零系数]
[内存使用量] [已运行时间]
运 筹
§1.3 用LINGO编程语言建立模型
W1
6
2
6
7
4
2
5
9
安 阳
W2
4
9
5
3
8
5
8
2

W3
5
2
1
9
7
4
3
3
范 学
W4
7
6
7
3
9
2
7
1
院 数
W5
2
3
9
5
7
2
6
5

W6
5
5
2
2
8

1.LINGO软件的基本使用方法

1.LINGO软件的基本使用方法

• 运行状态窗口
当前模型的类型 :LP,QP,ILP,IQP,PILP, , , , , , PIQP,NLP,INLP,PINLP (以I开头表示 , , , 开头表示 IP,以PI开头表示 开头表示PIP) , 开头表示 当前解的状态 : "Global Optimum", "Local Optimum", "Feasible", "Infeasible“(不可行 不可行), 不可行 "Unbounded“(无界 无界), 无界 "Interrupted“(中断 中断), 中断 "Undetermined“(未确定 未确定) 未确定 当前约束不满足的总量(不是不 当前约束不满足的总量 不是不 满足的约束的个数):实数 实数( 满足的约束的个数 实数(即使 该值=0,当前解也可能不可行, 该值 ,当前解也可能不可行, 因为这个量中没有考虑用上下界 命令形式给出的约束) 命令形式给出的约束)
第一次运行时提示输入授权密码,如图: 第一次运行时提示输入授权密码,如图:
LINGO软件的主要特色 软件的主要特色
两种命令模式 Windows模式: 通过下拉式菜单命令驱动 模式: 通过下拉式菜单命令驱动LINGO运 模式 运 多数菜单命令有快捷键, 行(多数菜单命令有快捷键,常用的菜单命令有快捷 按钮),图形界面,使用方便; 按钮),图形界面,使用方便; ),图形界面
(这里主要介绍这种模式 这里主要介绍这种模式) 这里主要介绍这种模式
命令行 模式:仅在命令窗口(Command Window)下操 模式:仅在命令窗口 下操 通过输入行命令驱动LINGO运行 。 作,通过输入行命令驱动 运行
LINGO界面简介 界面简介

LINGO教程(基本语法)精品PPT课件

LINGO教程(基本语法)精品PPT课件

扩展 的求 解器 (求解 程序) 状态 框
15
目前为止找到的可行 解的最佳目标函数值
有效步数
目标函数值的界
特殊求解程序当前运行步数: 分枝数(对B-and-B程序); 子问题数(对Global程序); 初始点数(对Multistart程序)
• 运行状态窗口
LINGO 教 程
注:凡是可以从一个约束直接解出变量取值时,这个 变量就不认为是决策变量而是固定变量,不列入统计 中;只含有固定变量的约束也不列入约束统计中。
7
LINGO 教 程
在LINGO中使用LINDO模型
LINGO的界面
• LINGO软件的主窗口(用 户界面),所有其他窗口 都在这个窗口之内。
• 状态行(最左边显
示“Ready”,表
8
示 “准备就绪”)
• 当前光标 的位置
• 模型窗口(Model Window),用于输入 LINGO优化模型(即 LINGO程序)。
27
集合及其属性
• QUARTERS集合的属性
LINGO 教 程
LINGO软件的基本使用方法
1
内容提要
1. LINGO入门 2.在LINGO中使用集合 3. 运算符和函数 4. LINGO的主要菜单命令 5. LINGO命令窗口
2
LINGO 教 程
LINGO 教 程
1. LINGO入门 2.在LINGO中使用集合 3. 运算符和函数 1. LINGO入门 4. LINGO的主要菜单命令 5. LINGO命令窗口
16
LINGO早期版本对LINDO的兼容问题
LINGO 教 程
在LINGO 9.0以前的版本中不能直接用命令打开LINDO模型,但 由FILE | IMPORT LINDO FILE (F12)命令可以直接把LINDO的模 型文件转化成LINGO模型。运行后屏幕上会显示一个标准的“打 开文件”的对话框,打开EXAM0201.LTX,在LINGO主窗口中 又打开了命令窗口(Command Window)显示原始文件,名为 “exam0201”的模型窗口显示的是等价的LINGO模型。当前光 标位于命令窗口。

LINGO的基本用法

LINGO的基本用法

LINKS (WH, VD) :C, X;
注: 如果集合的元素省略不写, 则默认衍生集合的元素取它所 对应初始集合的所有可能组合.
18
2. 数据初始化.
LINGO 教 程
如何给例2中的集合AI, DJ, C, X赋值?
DATA: AI = 60, 55, 51, 43, 41, 52; DJ = 35, 37, 22, 32, 41, 32, 43, 38; C = 6, 2, 6, 7, 4, 2, 5, 9 4, 9, 5, 3, 8, 5, 8, 2
22 逻辑运算符优先级别:#NOT#最高, #AND#和#OR#最低
例. 计算 2 #GT# 3 #AND# 4 #GT# 2
LINGO 教 程
结果为 0(FALSE)
3. 关系运算符.
关系运算符通常用在条件表达式中,用来指定约束条件表 达式左边与右边必须满足的关系. 有以下三种:
= <= >=
注:①LINGO没有单独的“<”和“>”关系,如果出现了单 个
j 1
6
xij d j , j 1, 2, ,8;
i 1
xij 0,,i 1, 2, , 6, j 1, 2, ,8;
16
1. 集合定义部分
LINGO 教 程
集合是一组相关对象构成的组合
集合分为初始(基本\原始)集合和衍生(派生)集合
集合在使用之前需要预先给出定义, 初始集合的定义三要素: 集合的名称, 集合的元素, 集合的属性(可视为与该集合有关 的变量或常量).
②“如<”果和需“要>”严,格L小IN(GO大认)为于是关省系略,了如“A=严”格. 小于B,可
以表示成:A B

LINGO的基本用法

LINGO的基本用法

LINGO的不同版本对模型的变量和约束条 件的数量作出不同的限制,如下表所示:
版 本 Demo
Solve Suite
变量总数 非线性变量 整数变量 约束条件数量
300 500 2000
30 50 200
30 50 200
150 250 1000
Super
Hyper Industrial
8000 32000
该报告说明 , 2步找到全局最优解 ,目标函数值为 29000,变量值分别为X1=100,X2=30,“Row”指的是 输入模型中的行号,“Slack or Surplus”的意思为 松弛或剩余,“Dual Price”的意思是影子价格,如报 告中Row 2的剩余为0,意思是说第二行的约束条件, 即第一条生产线最大生产能力没有剩余,影子价格为50, 含义是:如果该生产线最大生产能力增加1,能使目标函 数值,即利润增加50,由29000增加到29050.报告中 Row 4的剩余为0,意思是说第四行的约束条件,即劳 动日资源已经全部用完,影子价格为150,含义是:如果 增加1个劳动日资源,能使目标函数值,即利润增加150, 达到29150元. 以上结果可以保存到文件中(扩展名为.lgr),也可以 通过打印机打印出来.
例3 基金的优化使用 (参见2001年竞赛C题)
(1) 问题的提出 假设某校基金会得到了一笔 数额为M万元的基金,打算将其存入银行,校基金 会计划在n年内每年用部分本息奖励优秀师生,要 求每年的奖金额相同,且在n年末仍保留原基金数 额.银行存款税后年利率见下表: 存期 1年 2年 3年 5年
税后利率(%)
1.09715968
5年 1.144
收益比ai 1.018
(3) 建立模型 把总基金M分成5+1份,分别用x1,„,x5,x6 表示, 其中x1,„,x5 分别表示计划用于第i年发放奖金的 一部分初始基金(单位:万元),x6表示用来使5年 末本息合计等于原基金总数的那部分初始基 金.用S表示每年用于奖励优秀师生的奖金额,用 ai表示第i年的最优收益比. 目标函数为 max S 约束条件有3个:①各年度的奖金数额相等;② 初始基金总数为M;③n年末保留原基金总额M.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
TJK41
Ell-t l A*:l
□ d电0年与対sa1%=rvt
所以当x1为250,x2为100时目标函数得到最大值。
算术运算符
Lingo中变量不区分大小写,以字母开头不超过32个字符
算术运算符是针对数值进行操作的。LINGO提供了5种二元运算符:
LINGO隹一的一元算术运算符是取反函数“-
这些运算符的优先级由高到底为:
例 如何在LING屏求解如下的LP问题:
ill iii2xt+3x2
SJ.
x1+jc2> 350
曲>100
2xj + x2< 600
,兀乍工0
在模型窗口中输入如下代码:
mi n=2*x1+3*x2;
x1+x2>=350;
x1>=100;
2*x1+x2<=600;
然后点击工具条上的按钮Q即可
得到如下结果:
然后单击上面菜单lingo菜单下solve键即可
数学函数
标准数学函数:
@abs(x)
返回x的绝对值
@si n(x)
返回x的正弦值,x采用弧度制
@cos(x)
返回x的余弦值
@ta n(x)
返回x的正切值
@exp(x)
返回常数e的x次方
@log(x)
返回x的自然对数
@lgm(x)
返回x的gamma®数的自然对数
边界限定函数:
Lin go
LINGO是用来求解线性和非线性优化问题的简易工具。Lingo免费 版可以支持30个未知数,lingo破解版可以支持几万个未知数、几 万个约束条件。
当你在windows下开始运行LINGO系统时,会得到类似下面的一
个窗口:
外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口 将被包含在主窗口之下。在主窗口内的标题为LINGOModel-LINGO1的窗口是LINGO勺默认模型窗口,建立的模型都都要在该窗口内编码 实现。下面举两个例子。
@sig )
返回x的整数部分。当x>=0时,返回不超 过x的最大整数;当x<0时,返回不低于x的最大整数。
最大最小函数:
@smax(x1,x2,…,xn)返回x1,x2,…,xn中的最大值
@smin(x1,x2,…,xn)返回x1,x2,…,xn中的最小值
高-(取反)

*/
低+-
运算符的运算次序为从左到右按优先级高低来执行。 序可以用圆括号“ ( ) ”来改变。
例:在x1+x2>=350,x1>=100,2*x1+x2<=600的条件下求 的最小值
在代码窗口中编写
min=2*x1+3*x2;
x1+x2>=350;
x1>=100;
2*x1+x2<=600;
相关文档
最新文档