一元一次方程行程问题(相遇追及顺风逆风火车过隧道 环形跑道)资料

合集下载

一元一次方程应用题(很系统,附答案)

一元一次方程应用题(很系统,附答案)

一元一次方程应用题一、行程问题行程问题的基本关系:路程=速度×时间,1. 相遇问题:速度和×相遇时间=路程和甲、乙二人分别从A 、B 两地相向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知A 、B 两地相距1000米,问甲、乙二人经过多长时间能相遇?200x+300x=1000 x=22. 追赶问题:速度差×追赶时间=追赶距离1. 甲、乙二人分别从A 、B 两地同向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知A 、B 两地相距1000米,问几分钟后乙能追上甲?直线追击 200x+1000=300x x=102. .甲乙两站相距300km ,一列慢车从甲站开往乙站,每小时行40km ,一列快车从乙站开往甲站,每小时行80km ,已知慢车先行1.5h ,快车再开出,问快车开出多少小时后与慢车相遇? 40*1.5+40x+80x=3003. 汽车上坡时每小时走28千米,下坡时每小时走35千米,去时,下坡比上坡路的2倍还少14千米,原路返回比去时多用12分钟,求去时上、下坡路程各多少千米?去 :上坡路程x 下坡路程y352860123528x y y x +=++ 回 :上坡路程y 上坡路程x3. 环行问题:环行问题的基本关系:同时同地同向而行,第一次相遇:快者路程-慢者路程=环行周长.同时同地背向而行,第一次相遇:甲路程+乙路程=环形周长.1 王丛和张兰绕环行跑道行走,跑道长400米,王丛的速度是200米/分钟,张兰的速度是300米/分钟,二人如从同地同时同向而行,经过几分钟二人相遇?跑慢的路程+一圈=跑快的 200X+400=300X X=42 甲乙两个人在400米的环形跑道上同时同点出发,甲的速度是6米/秒,乙的速度4米/秒,乙跑几分钟后,甲可超过乙一圈?乙跑几圈后,甲可超过乙一圈?4X+400=6X X=2004X+400=6X X=200 200*4=800 800/400=2圈3 有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.解:设第一铁桥的长为x 米,那么第二铁桥的长为(2x-50)米,•过完 第一铁桥所需的时间为600x 分 过完第二铁桥所需的时间为250600x -分. 依题意,可列出方程600x +560=250600x - 解方程得x=100∴2x-50=2×100-50=1504.·顺(逆)风(水)行驶问题顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度一架飞机在两城之间飞行,顺风需要4小时,逆风需要4.5小时;测得风速为45千米/时,求两城之间的距离。

一元一次方程应用题归类汇集(含答案)

一元一次方程应用题归类汇集(含答案)

一元一次方程应用题归类聚集〔含答案〕一、一般行程问题〔相遇与追击问题〕1.行程问题中的三个根本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题根本类型〔1〕相遇问题:快行距+慢行距=原距〔2〕追及问题:快行距-慢行距=原距二、环行跑道与时钟问题:三、行船与飞机飞行问题:航行问题:顺水〔风〕速度=静水〔风〕速度+水流〔风〕速度逆水〔风〕速度=静水〔风〕速度-水流〔风〕速度水流速度=〔顺水速度-逆水速度〕÷2四、工程问题1.工程问题中的三个量及其关系为:工作总量=工作效率×工作时间2.经常在题目中未给出工作总量时,设工作总量为单位1。

即完成某项任务的各工作量的和=总工作量=1.一元一次方程应用题型1.两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后,快车以每小时75km的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇?设慢车开出a小时后与快车相遇50a+75〔a-1〕=27550a+75a-75=275125a=350a=2.8小时2.一辆汽车以每小时40km的速度由甲地开往乙地,车行3h后,因遇雨,平均速度被迫每小时减少10km,结果到乙地比预计的时间晚了45min,求甲乙两地间隔。

设原定时间为a小时45分钟=3/4小时根据题意40a=40×3+〔40-10〕×〔a-3+3/4〕40a=120+30a-67.510a=52.5a=5.25=5又1/4小时=21/4小时所以甲乙间隔40×21/4=210千米3、某车间的钳工班,分两队参见植树劳动,甲队人数是乙队人数的 2倍,从甲队调16人到乙队,那么甲队剩下的人数比乙队的人数的一半少3人,求甲乙两队原来的人数?解:设乙队原来有a人,甲队有2a人那么根据题意2a-16=1/2×〔a+16〕-34a-32=a+16-63a=42a=14那么乙队原来有14人,甲队原来有14×2=28人如今乙队有14+16=30人,甲队有28-16=12人4、某商店3月份的利润为10万元,5月份的利润为13.2万元,5月份月增长率比4月份增加了10个百分点.求3月份的月增长率。

一元一次方程(追击问题)知识讲解

一元一次方程(追击问题)知识讲解

一元一次方程——行程问题(追及问题)【基本关系式】(1)行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间(2)基本类型①相遇问题:快行距+慢行距=原距②追及问题:快行距-慢行距=原距速度差:快车比慢车单位时间内多行的路程。

即快车每小时比慢车多行的或每分钟多行的路程。

追及时间:快车追上慢车所用的时间。

路程差:快车开始和慢车相差的路程。

熟悉追及问题的三个基本公式:路程差=速度差×追及时间;速度差=路程差÷追及时间;追及时间=路程差÷速度差追及问题(同向而行),这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系。

①同时不同地:甲的时间=乙的时间甲走的路程-乙走的路程=原来甲、乙相距的路程②同地不同时:甲的时间=乙的时间-时间差甲的路程=乙的路程③环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程。

解题技巧:在理解行驶时间、地点、方向等关系的基础上画出线段图,分析题意思,寻找路程差及另外两个量之间的关系,最终找到解答方法。

【经典例题】例题1.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

(1)慢车先开出1小时,快车再开。

两车相向而行。

问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。

行程(追击)问题例1.甲、乙两人相距150米,甲在前,乙在后,甲每分钟走60米,乙每分钟走75米,两人同时向南出发,几分钟后乙追上甲?例2.骑车人与行人同一条街同方向前进,行人在骑自行车人前面450米处,行人每分钟步行60米,两人同时出发,3分钟后骑自行车的人追上行人,骑自行车的人每分钟行多少米?例3.两辆汽车从A地到B地,第一辆汽车每小时行54千米,第二辆汽车每小时行63千米,第一辆汽车先行一会后,第二辆汽车才出发,12小时后追上第一辆车,问第二辆汽车出发时相距第一辆汽车多少千米?例4.甲、乙两架飞机同时从一个机场起飞,向同一方向飞行,乙起飞时甲已飞出300千米,甲机每小时行300千米,乙2小时后追上甲飞机,乙飞机每小时飞行多少千米?练习1.姐姐步行速度是75米/分,妹妹步行速度是45米/分。

一元一次方程应用题专题行程问题

一元一次方程应用题专题行程问题

第二讲一元一次方程应用题行程类专题讲解【基本关系式】(1)行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间(2)基本类型①相遇问题:快行距+慢行距=原距②追及问题:快行距-慢行距=原距③航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度顺速–逆速 = 2水速;顺速 + 逆速 = 2船速顺水的路程 = 逆水的路程注意:抓住两码头间距离不变,水流速和船速(静水速)不变的特点考虑相等关系。

常见的还有:相背而行;环形跑道问题。

一、行程(相遇)问题A.基础训练1.小李和小刚家距离900米,两人同时从家出发相向行,小李每分走60米,小刚每分走90米,几分钟后两人相遇?2.小明和小刚家距离900米,两人同时从家出发相向行,5分钟后两人相遇,小刚每分走80米,小明每分走多少米?3.王强和赵文从相距2280米的两地出发相向而行,王强每分行60米,赵文每分行80米,王强出发3分钟后赵文出发,几分钟后两人相遇?4.两辆车从相距360千米的两地出发相向而行,甲车先出发,每小时行60千米,1小时后乙车出发,每小时行40千米,乙车出发几小时两车相遇?5.两村相距35千米,甲乙二人从两村出发,相向而行,甲每小时行5千米,乙每小时行4千米,甲先出发1小时后,乙才出发,当他们相距9千米时,乙行了多长时间?6.甲乙二人从相距45千米的两地同时出发相向而行,甲比乙每小时多行1千米,5小时后二人相遇,求两人的速度。

7.甲乙二人从相距100千米的两地出发相向而行,甲先出发1小时,他们在乙出发4小时后相遇,已知甲比乙每小时多行2千米,求两人的速度。

8.AB两地相距900米。

甲乙二人同时从A点出发,同向而行,甲每分行70米,乙每分行50米,甲到达A点后马上返回与乙在途中相遇,两人从出发到相遇一共用了多少时间?9.甲乙两地相距640千米。

一元一次方程之行程问题,方法归纳与题型总结,学霸不可错过!

一元一次方程之行程问题,方法归纳与题型总结,学霸不可错过!
4.乙到达终点后 乙4小时到达终点,
t=4
此时甲离终点还有4km
16


4
终点
4
距离1km需要走3km,t 3 4
此时时间为1 4 3 23 4(舍去) 44
S0 V甲-V乙= t
学 例3小明每天要在8:00前赶到学校上学.一天,小明以70米/分的速度 出发去上学,11分钟后,小明的爸爸发现儿子忘了带数学作业,于
霸 是爸爸立即以180米/分的速度去追小明,并且与小明同时到达学 数 校.请问小明家距学校有多远的距离?

S爸
解:设爸爸追及的时间为x, 则有
联络员 10
甲4
乙6
联络员
追及时间t1 解:过程1:设联络员追上甲的时间为t1 , 则有
相遇时间t2
10t1
4t1
4, t1
2 3
此时,乙队的路程为4km,此时联络员与乙队的距离为8 3
km
过程2为相遇过程:相遇时间为 8 (10 6) 1 小时,2个过程总时间2 1 5 ,总路程为5 10 25 km

列火车的长是多少米?

甲 相遇问题
解:36km / h 10m / s,3.6km/ h 1m / s 设火车的速度为xm / s,则有
乙 追及问题
10(x 10) 21(x 1) x 11,故火车的长度为210m
学 3.环形跑道问题

S甲


周长为L
O
S乙
S甲-S乙=L∙n
一般设第n次相遇的时间为t
180x 70x 7011
S小明
x7

t=11分钟
小明
S0
学校 故小明家距学校的距离为180 7 1260m

一元一次方程行程问题课件经典实用

一元一次方程行程问题课件经典实用
50x+30x=240 解得 x=3
答:设B车行了3小时后与A车相遇。
•一元一次方程行程问题(课件)
精讲 例题


例1、 A、B两车分 别停靠在相距240千米
线段图分析:
的甲、乙两地,甲车每 小时行50千米,乙车每 小时行30千米。
A 50x

80千米
30x B

(2)若两车同时相向 而行,请问B车行了多
分析: 小狗走的路程=小狗的速度x小狗走的时间
小狗走的时间=甲乙相遇前走的时间
•一元一次方程行程问题(课件)
问题3: 如果甲、乙、小狗都从同一 点出发,同向而行,速度皆不变, 乙和小狗先出发3小时,甲再出发追 赶乙,当甲追上乙时,小狗跑了多 少米?
分析:
小狗走的路程=小狗的速度x小狗走的时间
小狗走的时间= 3小时+甲追上乙的时间 等量关系
线段图分析:
A 50x
30x B
小时行50千米,乙车每


小时行30千米。 (1)若两车同时相向 而行,请问B车行了多 长时间后与A车相遇?
A车路程+B车路程=相距路程
若设B车行了x小时后与A车相遇, 显然A车相遇时也行了x小时。则A车
路程为 千50米x;B车路程
为 30千x米。根据相等关系可列出方
(1)反向
叔叔 小王
(1)若两人同时同地反 向出发,多长时间两人 首次相遇?
(2)若两人同时同地同
向出发,多长时间两人 首次相遇?
方程行程问题(课件) 叔叔路程 = 400
变式 练习


3、小王、叔叔在400 米长的环形跑道上练习 跑步,小王每秒跑4米, 叔叔每秒跑7.5米。

一元一次方程行程问题知识点

一元一次方程行程问题知识点

一元一次方程行程问题知识点一、知识概述《一元一次方程行程问题知识点》①基本定义:一元一次方程行程问题呢,简单说就是根据路程、速度、时间这三个家伙之间的关系列出一元一次方程来解决出行方面的数学题。

路程就是走了多远,速度就是走得有多快(像每小时走多少千米这样),时间就是走了多久。

②重要程度:在数学这门学科里,行程问题可重要了。

它是一元一次方程应用里的典型题目,既能考验我们对一元一次方程的掌握,又和生活里的出行特别贴近。

懂了这个,在很多现实场景里就能算出时间、速度或者路程啥的。

③前置知识:要学一元一次方程行程问题,得先把一元一次方程的解法搞得明明白白,像方程的移项、合并同类项这些基本操作得会。

而且对速度、路程、时间的基本概念要清楚,得知道在速度不变的情况下,路程和时间成正比这种关系。

④应用价值:生活里到处都是它的影子啊。

比如说开车出去玩,知道两地的距离和车速,就能算出路上需要多久。

或者跑步锻炼的时候,知道跑的距离和花的时间,就能算出自己跑步的速度。

这对计划出行、安排时间超有用的。

二、知识体系①知识图谱:在一元一次方程这个大板块里,行程问题是应用题的一部分。

它是联系方程理论和实际生活的重要桥梁。

②关联知识:和方程的解法、有理数的运算、数与式等知识点都有联系。

解行程问题的时候,方程相加或者相减,就用到有理数的运算;列出方程里的路程、速度或者时间表达式的时候,会用到数与式相关知识。

③重难点分析:- 掌握难度:说实话有点费脑子。

主要是要根据实际情况准确地把路程、速度、时间用代数式表示出来,这中间变化多。

像相向而行和同向而行的路程算法就不一样。

- 关键点:抓住路程、速度、时间之间的关系。

而且要分清楚是相遇问题、追及问题还是环形跑道之类的特别情况。

④考点分析:- 在考试里很重要。

一般分值占比挺大的。

- 考查方式有直接给条件列方程求解路程或者时间的,还有像给了一点提示后让先确定是相遇还是追及然后再列方程求解的那种弯弯绕绕的题目。

一元一次方程应用题专题--行程问题汇总

一元一次方程应用题专题--行程问题汇总

一元一次方程应用题----行程问题〔相遇、追及、行船、飞行、跑道、坡路、错车、过桥等问题〕一、行程〔相遇〕问题A.根底训练1.小和小刚家距离900米,两人同时从家出发相向行,小每分走60米,小刚每分走90米,几分钟后两人相遇.2.小明和小刚家距离900米,两人同时从家出发相向行,5分钟后两人相遇,小刚每分走80米,小明每分走多少米.3.王强和文从相距2280米的两地出发相向而行,王强每分行60米,文每分行80米,王强出发3分钟后文出发,几分钟后两人相遇.4.两辆车从相距360千米的两地出发相向而行,甲车先出发,每小时行60千米,1小时后乙车出发,每小时行40千米,乙车出发几小时两车相遇.5.两村相距35千米,甲乙二人从两村出发,相向而行,甲每小时行5千米,乙每小时行4千米,甲先出发1小时后,乙才出发,当他们相距9千米时,乙行了多长时间.6.甲乙二人从相距45千米的两地同时出发相向而行,甲比乙每小时多行1千米,5小时后二人相遇,求两人的速度。

7.甲乙二人从相距100千米的两地出发相向而行,甲先出发1小时,他们在乙出发4小时后相遇,甲比乙每小时多行2千米,求两人的速度。

8.AB两地相距900米。

甲乙二人同时从A点出发,同向而行,甲每分行70米,乙每分行50米,甲到达A点后马上返回与乙在途中相遇,两人从出发到相遇一共用了多少时间.9.甲乙两地相距640千米。

一辆客车和一辆货车同时从甲地出发,同向而行,客车每小时行46千米,货车每小时34千米,客车到达乙地后马上返回与货车在途中相遇,问从出发到相遇一共用了多少时间.B.提高训练1.建朋和建博两人骑自行车同时从相距65千米的两地相向而行,经过两小时相遇,建朋比建博每小时多走2.5千米,问建博每小时走多少千米.2.A、B两地相距360千米,甲车从A地出发开往B地,每小时行驶72千米,甲车出发25分钟后,乙车从B地出发开往A地,每时行驶48千米,两车相遇后,各自按原来的速度继续行驶,那么相遇后两车相距120千米时,甲车从出发一共用了多少时间.3.甲、乙两列火车,长为144米和180米,甲车比乙车每秒钟多行4米,两列火车相向而行,从相遇到错开需要9秒钟,问两车的速度各是多少.4.AB两地相距1120千米,甲乙两列火车同时从两地出发,相向而行。

一元一次方程(追击问题)

一元一次方程(追击问题)

一元一次方程——行程问题(追及问题)【基本关系式】(1)行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间(2)基本类型①相遇问题:快行距+慢行距=原距②追及问题:快行距-慢行距=原距速度差:快车比慢车单位时间内多行的路程。

即快车每小时比慢车多行的或每分钟多行的路程。

追及时间:快车追上慢车所用的时间。

路程差:快车开始和慢车相差的路程。

熟悉追及问题的三个基本公式:路程差=速度差×追及时间;速度差=路程差÷追及时间;追及时间=路程差÷速度差追及问题(同向而行),这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系。

①同时不同地:甲的时间=乙的时间甲走的路程-乙走的路程=原来甲、乙相距的路程②同地不同时:甲的时间=乙的时间-时间差甲的路程=乙的路程③环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程。

解题技巧:在理解行驶时间、地点、方向等关系的基础上画出线段图,分析题意思,寻找路程差及另外两个量之间的关系,最终找到解答方法。

【经典例题】例题1.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

(1)慢车先开出1小时,快车再开。

两车相向而行。

问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。

行程(追击)问题例1.甲、乙两人相距150米,甲在前,乙在后,甲每分钟走60米,乙每分钟走75米,两人同时向南出发,几分钟后乙追上甲?例2.骑车人与行人同一条街同方向前进,行人在骑自行车人前面450米处,行人每分钟步行60米,两人同时出发,3分钟后骑自行车的人追上行人,骑自行车的人每分钟行多少米?例3.两辆汽车从A地到B地,第一辆汽车每小时行54千米,第二辆汽车每小时行63千米,第一辆汽车先行一会后,第二辆汽车才出发,12小时后追上第一辆车,问第二辆汽车出发时相距第一辆汽车多少千米?例4.甲、乙两架飞机同时从一个机场起飞,向同一方向飞行,乙起飞时甲已飞出300千米,甲机每小时行300千米,乙2小时后追上甲飞机,乙飞机每小时飞行多少千米?练习1.姐姐步行速度是75米/分,妹妹步行速度是45米/分。

14七年级上册一元一次方程行程问题(可直接用)

14七年级上册一元一次方程行程问题(可直接用)

一元一次方程及应用(2)模块一应用题——行程问题行程问题常见等量关系式:路程=速度×时间时间=路程÷速度速度=路程÷时间1.追击问题常规解题方法:快行距-慢行距=原距解题技巧:解决追击问题的一个最基本的公式:追击时间⨯速度差=追击的路程.与此相关的问题都可以应用这一公式进行解答。

2.相遇问题常规解题方法:快行距+慢行距=原距解题技巧:解决相遇问题的基本公式为:速度和⨯相遇时间=路程.3.航行问题等量关系式:顺水速度/顺风速度:以下简称顺速逆水速度/逆风速度:以下简称逆速静水速度/静风速度:以下简称静速顺速=静速+水速/风速逆速=静速-水速/风速顺速–逆速= 2水速/风速顺速+ 逆速= 2静速顺水的路程= 逆水的路程解题技巧:抓住两码头间距离不变,水流速和船速(静水速)不变的特点考虑相等关系。

例题精讲知识点一相向、相背、同向结合线段图分析例1.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

(1)慢车先开出1小时,快车再开。

两车相向而行。

问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?(1)分析:相遇问题,画图表示为:等量关系是:慢车走的路程+快车走的路程=480公里。

解:答:快车开出小时后两车相遇。

(2)分析:相背而行,画图表示为:等量关系是:两车所走的路程和+480公里=600公里。

解:甲乙600甲乙答:相背而行小时后两车相距600公里。

(3)分析:等量关系为:快车所走路程-慢车所走路程+480公里=600公里。

解:甲乙答:小时后快车与慢车相距600公里。

一元一次方程行程问题(相遇追及顺风逆风火车过隧道 环形跑道)

一元一次方程行程问题(相遇追及顺风逆风火车过隧道 环形跑道)
40 9 小时 13.5分钟<15分钟 40 答:小王能在指定时间内完成任务。 x
从甲地到乙地,水路比公路近40千米, 上午十时,一艘轮船从甲地驶往乙地,下午1 时一辆汽车从甲地驶往乙地,结果同时到达 终点。已知轮船的速度是每小时24千米,汽 车的速度是每小时40千米,求甲、乙两地水 路、公路的长,以及汽车和轮船行驶的时间?
同地不同时出发: 前者走的路程=追者走的路程
间隔 追者走的路程 前者 乙 追者
追上
同时不同地出发:

前者的路程+两地间隔的路程=追者的路程
练习 甲乙两人登一座山,甲每分登高25米, 并且先出发6分。乙每分登高40米,两人同 时登上山顶。乙用多少时间登山?这山有 多高?
解:设乙用
x 分登山,则
16 25 400(米)
学习目标
(1)学会借助线段图分析行程问题中的相等关 系列方程解决实际问题;
(2)掌握列方程解决实际问题的一般步骤.
导入 想一想回答下面的问题: 1、A、B两车分别从相距S千米的甲、乙两地同时出 发,相向而行,两车会相遇吗? A

B

2、如果两车相遇,则相遇时两车所走的路程与A、 B两地的距离有什么关系? 相等关系:A车路程 + B车路程 =相距路程
火车用26秒的时间通过了一个长256米的隧道(即从 车头进入入口到车尾离开出口),这列火车又以16 秒的时间通过了长96米的隧道,求这列火车的长度。
数学在生活、经济、科技中的应用
一架飞机贮油量允许飞机最多在空中飞4.6小时,飞 机在静风中的速度是575km/h,风速是25km/h,这架 飞机最远能飞出多少千米就应返回?

学 校
400米
80x米 追 及 地

一元一次方程应用题分类题集(最全面)

一元一次方程应用题分类题集(最全面)

一元一次方程应用题归类题集(一)行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.相遇问题:同时出发开始计时,到相遇时两者所花时间是相等[相向而行] 同时出发开始计时,到相遇时两者所走的路程之和等于全程1、甲、乙两人相距285米,相向而行,甲从A地每秒走8米,乙从B地每秒走6米,如果甲先走12米,那么甲出发几秒与乙相遇?2、甲、乙两人骑自行车同时从相距65千米的两地相向而行,2小时候相遇。

已知甲骑车每小时比乙每小时多走2千米,若设乙的速度为x千米/小时。

则可列方程:3.小明家与小红家相距6000米,小明要尽快把一件重要的东西交给小红,小明先骑自行车从家里出发,小明骑了1500米后小红骑摩托车也从家出发.小明每分钟骑500米,小红每分钟骑1000米.小明出发几分钟后他们在路上相遇?4.在800米跑道上有两人练中长跑,甲每分钟跑320米,乙每分钟跑280米,•两人同时同地同向起跑,多少分钟后第一次相遇?5、甲乙两人在400米的环形跑道上跑步,从同一起点同时出发,甲的速度是5米/秒,乙的速度是3米/秒。

(1)如果背向而行,两人多久第一次相遇?(2)如果同向而行,两人多久第一次相遇?6. 甲,乙两地相距168千米,一列慢车从甲地出发,每小时行驶36千米,一列快车从乙地出发,每小时行驶48千米。

如果慢车先开一小时,快车才出发,问快车出发几小时后两车相遇?7.一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过16秒,已知客车与货车的速度之比是3∶2问两车每秒各行驶多少米?追及问题:同时出发开始计时,追到时两者所用时间相等1、甲、乙两人练习赛跑,甲每秒跑7米,乙每秒跑6.5米,甲让乙先跑5米然后奋力去追,设x秒钟后,甲便追上了乙?2、甲乙两人从A、B同时出发,甲骑自行车,乙骑摩托车,沿同一条路线同时相向而行,出发后3小时相遇,已知相遇时乙比甲多走90千米,相遇后经过1小时乙到达A地,问甲乙的速度分别是多少?3、甲、乙两人分别从相距140千米的A,B两地同时出发,甲的速度:40千米/小时,乙的速度:20千米/小时(1)若相向而行,经过多少小时两人相距20千米?(2)如果同向而行,经过多少小时两人相距20千米?4.从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,问甲乙两地相距多少千米?5. 某人从家里骑自行车到学校。

精品 2014年一元一次方程应用题 行程问题 同步讲义+同步练习

精品 2014年一元一次方程应用题 行程问题 同步讲义+同步练习

第 7 页 共 8 页
七年级数学同步讲义
(3) 3( x 2) 1 4 x (2 x 1)
(4)
x4 x 2 (x 5) 5 2
13.甲、乙两站相距 245km,一列慢车由甲站开出,速度为 50km/h;同时,一列快车由乙站开出,速度 为 70km/h,两车同向而行,快车在慢车的后面,经过几小时快车可以追上慢车?
第 6 页 共 8 页
七年级数学同步讲义
一元一次方程应用题测试题 满分:100 分 时间:20 分钟 姓名: B.由 3x-2 =2x + 1 得 x= 3 D.由-2x= 3 得 x= - 得分: 1.下列变形错误的是( ) A.由 x + 7= 5 得 x+7-7 = 5-7 ; C.由 4-3x = 4x-3 得 4+3 = 4x+3x 2.下列解方程去分母正确的是( A.由 )
第 8 页 共 8 页
(2)当 x=-3 时,代数式 (2 m) x 2m 3 的值是-7,当 x 为何值时,这个代数式的值是 1?
5.如果方程
1 x4 x2 的解与方程 4 x (3a 1) 6 x 2a 1 的解相同,求式子 a 的值 . 8 a 3 2
第 3 页 共 8 页
例 5.一只轮船,在甲、乙两地之间航行,顺水用 8 小时,逆水比顺水多 30 分钟,一直轮船在静水中速 度为每小时 26km,求水流的速度?
例 6.已知有 A、B、C 三个码头,BC 相距 24km,某船从 B 顺水而下到达 A 后,立即逆水而上到达 C.共用 8 小时,已知水流速度 5km/h,船在静水中的速度为 20km/h,求 A、B 之间的距离。

1 6

3.2.3 用一元一次方程解行程问题

3.2.3  用一元一次方程解行程问题
(2)环形运动问题中的等量关系(同时同地出发):① 同向相遇:第一次相遇时快者的路程-第一次相 遇时慢者的路程=跑道一圈的长度;②反向相遇: 第一次相遇时快者的路程+第一次相遇时慢者的 路程=跑道一圈的长度.
(来自《点拨》)
知1-练
1 甲、乙两地相距180 km,一人骑自行车从甲地出 发每时行15 km;另一人骑摩托车从乙 地同时出 发,两人相向而行,已知摩托车车速是自行车车 速的3倍,问多少时间后两 人相遇?
知3-讲
解:设上山的速度为v千米/小时,下山的速度为(v+1)千米/小时, 则2v+1=v+1+2, 解得v=2. 即上山速度是2千米/小时. 则下山的速度是3千米/小时,上山的路程为5千米. 则计划上山的时间为:5÷2=2.5(小时), 计划下山的时间为:1小时, 则共用时间为:2.5+1+1=4.5(小时), 所以出发时间为12:00-4小时30分钟=7:30. 答:孔明同学应该在7:30分从家出发.
知1-讲
导引:(1)列表:
路程/km
速度/(km/h) 时间/h
慢车
60
x
1 2
60
1 x +2
快车
90x
90
x
等量关系:慢车行驶的路程+快车行驶的路程
=1 500 km.
(2)列表:
慢车 快车
路程/km 60y 90y
速度/(km/h) 60 90
时间/h y y
等量关系:两车行驶的路程和+1 500 km=1 800 km.
圈用的时间相等,两人同时同地同向出发,经过
2 min 40 s他们第一次相遇,若他们两人同时同地
反向出发,则经过几秒他们第一次相遇?
导引:列表:

(完整版)一元一次方程应用行程问题

(完整版)一元一次方程应用行程问题

:一元一次方程应用之--------------行程问题专题一、【根本概念】行程类应用题根本关系:路程=速度×时间速度=路程÷时间时间=路程÷速度相遇问题:甲、乙相向而行,那么:甲走地路程+乙走地路程=总路程.追及问题:①甲、乙同向不同地,那么:追者走地路程=前者走地路程+两地间地距离.②甲、乙同向同地不同时,那么:追者走地路程=前者走地路程环形跑道问题:①甲、乙两人在环形跑道上同时同地同向出发:快地必须多跑一圈才能追上慢地.②甲、乙两人在环形跑道上同时同地反向出发:两人相遇时地总路程为环形跑道一圈地长度.飞行〔航行〕问题、根本等量关系:①顺风〔顺水〕速度=无风〔静水〕速度+风速〔水速〕②逆风〔逆水〕速度=无风〔静水〕速度-风速〔水速〕顺风〔水〕速度-逆风〔水〕速度=2×风〔水〕速车辆〔车身长度不可忽略〕过桥问题:车辆通过桥梁〔或隧道等〕,那么:车辆行驶地路程=桥梁〔隧道〕长度+车身长度超车〔会车〕问题:超车过程中,车辆行驶路程等于车身长度和,相对速度为两车速度差.会车过程中,车辆行驶路程等于车身长度和,相对速度为两车速度和.在行程问题中,按照题意画出行程图,可以使问题地分析过程更直观,更容易理解.特别是问题中运动状态复杂,涉及地量较多地时候,画行程图就成了理解题意地关键.所以画行程图是我们必须学会地一种分析手段.另外,由于行程问题中地根本量只有“路程〞、“速度〞和“时间〞三项,所以,列表分析也是解决行程问题地一种重要方法.二、【典型例题】〔一〕相遇问题相遇问题:甲、乙相向而行,那么:甲走地路程+乙走地路程=总路程.例1、甲、乙两站相距 600km,慢车每小时行40km,快车每小时行60km.⑴经过xh后,慢车行了km,快车行了 km,两车共行了km;⑵慢车从甲站开出,快车从乙站开出,相向而行,两车相遇共行了km, 如果两车同时开出,xh相遇,那么可得方程:;⑶如果两车相向而行,快车先行50km,在慢车开出yh后两车相遇,那么可得方程:;⑷如果两车相向而行,慢车先开50min,在快车开出th后两车相遇,那么可得方程:.例2、甲、乙两站地路程为450千米,一列慢车从甲站开出,每小时行驶65千米,一列快车从乙站开出,每小时行驶85千米.两车同时开出,相向而行,多少小时相遇?分析:1/3慢车的路程快车的路程甲站乙站两站相距450km例3、甲、乙两地相距376km,A车从甲地开往乙地,半小时后B车从乙地开往甲地,A车开出5h后与B车相遇,又知B车地时速是A车时速地倍,求B车地时速?例4、甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都匀速前进.两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米.求A、B两地间地路程.课堂练习1:电气机车和磁悬浮列车从相距298千米地两地同时出发相对而行,磁悬浮列车地速度比电气机车速度地5倍还快20千米/时,半小时后两车相遇.两车地速度各是多少?2、甲、乙两人从相距35km地两地同时出发,相向而行,甲步行每小时走4km,乙骑车小时后相遇,求乙地速度.3、甲步行,乙骑自行车,同时从相距 27km地两地相向而行,2h 相遇,乙比甲每小时多走5.5km,求甲、乙两人地速度.4、A、B两地相距153km,汽车从A地开往B地,时速为38km;摩托车从B地开往A地,时速为24km.摩托车开出小时后,汽车再出发.问汽车开出几小时后遇到摩托车?5、甲骑自行车从A地出发,以12km/h地速度驶向B地,同时,乙也骑自行车从B地出发,以14km/h 地速度驶向A地.两人相遇时,乙已超过A、B两地中点1.5km,求A、B两地地距离.〔二〕追及问题例1、甲、乙两地相距10km,A、B两人分别从甲、乙两地同时、同向出发,A在前,B在后,A地速度是每小时4km,B地速度是每小时5km,xh后A走了km,B走了km.如果这时刚好B追上A,那么可列方程:.例2、甲、乙两人都从A地出发到B地,甲先走5km后乙再出发,甲速度是4km/h,乙速度是5km/h.如果A、B两地相距xkm,那么甲先走地时间是h,乙走地时间是h, 假设两人同时到达B地,那么可列方程:.例3、甲、乙两人同时以4km/h地速度从A地前往B地,走了后,甲要回去取一份文件.他以6km/h 地速度往回走,在办公室耽误了15min后,仍以6km/h地速度追赶乙,结果两人同时到达B地.求A、B两地间地距离.分析:你能求出第二段甲乙所用时间为h吗?假设设A、B两地间地距离为xkm,可以用表示第四段甲乙所用时间.课堂练习1:跑得快地马每天走240里,跑得慢地马每天走150里.慢马先走12天,快马几天可以追上慢马?课堂练习2:一辆每小时行30km地卡车由甲地驶往乙地,1h后,一辆每小时行40km地摩托车也由甲地驶往乙地,问卡车开出几h后摩托车可追上卡车?家庭练习:1、甲、乙两人相距18km,乙出发后甲再出发,甲在后,乙在前同向而行,甲骑车每小时行8km,乙步行每小时行5km,问甲出发几h后追上乙?2、甲每小时走5km,出发2h后乙骑车追甲.⑴如乙地速度为每小时20km,问乙多少分钟追上甲?⑵如果要求乙出发14km时追上甲,问乙地速度是多少?3、从甲地到乙地走水路比走公路近20km,上午10时,一条轮船甲地从驶往乙地,下午1时一2/3辆汽车也从甲地驶向乙地,结果汽车与轮船同时到达乙地.轮船时速20km,汽车时速60km,求甲地到乙地地水路和公路地长.4、同村地甲、乙两人都去县城,甲比乙早走1h,却迟到半小时,甲每小时走4km,乙每小时走5km.问村庄到县城地距离是多少?〔三〕环形跑道问题例1、某城举行环城自行车赛,骑得最快地人在出发后 35min就遇到骑得最慢地人,骑得最慢地人地车速是骑得最快地人地车速地5,环城一周是6km,求骑得最快地人地车速.7例2、一环形公路周长是24千米,甲乙两人从公路上地同一地点同一时间出发,背向而行,3小时后他们相遇.甲每小时比乙慢千米,求甲、乙两人速度各是多少?家庭练习:1、甲、乙两人在400m环形跑道上练竞走,乙每分钟走80m,甲地速度是乙地速度地11倍,现4甲在乙前面100m,问多少分钟后两人可首次相遇?2、运动场地跑道一圈长 400m.甲练习骑自行车,平均每分骑350m;乙练习跑步,平均每分钟跑250m.两人从同一处同时反向出发 ,经过多少时间首次相遇?又经过多少时间再次相遇?〔四〕航行〔飞行〕问题例1、一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了小时.水流速度是3千米/时,求船在静水中地平均速度.例2、一架飞机在两城之间飞行,风速为24千米/时.顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机地航速和两城之间地航程.课堂练习1:一艘船从A港到B港顺流行驶,用了5小时;从B港返回A港逆流而行,用了小时,水流速度是3千米/小时,求船在静水中地速度.课堂练习2:有A、B、C三个码头,BC相距24km,某船从B顺水而下到达A后,立即逆水而上到达C.共用8h,水流速度为5km/h,船在静水中地速度为20km/h,求A、B之间地距离.1、客机和战斗机从相距600km地两个机场起飞,30min相遇,客机顺风飞行,战斗机逆风飞行,如果在静风中战斗机地速度是客机地3倍,风速是每小时24km,问两机地速度各是多少?2、船在静水中地速度是14km/h,水流速度是2km/h,船先顺流由一码头开出,再逆流返回,假设要船在3h30min内返回,那么船最远能开出多远?3、甲船从A地顺流下行,乙船同时从B地逆水上行,12h后相遇,此时甲船已走了全程地一半多9km,甲船在静水中地速度是每小时4km,乙船在静水地速度是每小时5km,求水流地速度.〔五〕错车问题例1.甲乙两人辞别后,沿着铁轨反向而行.此时,一列火车匀速地向甲迎面驶来,列车从甲身旁开过,用了15s;然后从乙身旁开过用了17s.两人地速度都是3.6km/h,这列火车有多长?随堂练习:1.某部队执行任务,以6km/h地速度前进,通信员在队尾接到命令后把命令传给了排头,然后立即返回队尾,通讯员来回地速度是10km/h,共用7.5min,求队伍地长度.2.在高速公路上,一辆长4米,速度为110千米/时地轿车准备超越一辆长12米,速度为100千米/时地卡车,那么轿车从开始超越到超越卡车需要花费地时间约是多少?3.某隧道长500m,现有一列火车从隧道内通过,测得火车通过隧道〔即从车头进入入口到车尾地离开出口〕共用30s,而整列火车完全在隧道内地时间为10s,求火车地速度和火车地长.4.一列火车用26s地时间通过一个长256m地隧道〔即从车头进入隧道到车尾离开隧道〕,这列火车又以同样地速度用16s地时间通过了另一个长96m地隧道,求这列火车地长度3/3。

一元一次方程解应用题:行程问题专题

一元一次方程解应用题:行程问题专题

一元一次方程解应用题:行程问题专题一元一次方程行程问题常见问题类型:追击问题、相遇问题、圆环跑道、时钟问题、风速问题、流水问题、折返问题、变速问题、上坡下坡、数轴动点问题、其他问题(1)、追击问题:Eg1:乙两列复兴号动车组相向而行,甲列车每小时行350千米,车身长180米;乙列车每小时行320千米,车身长220米,两车从车头相遇到车尾分离需多少时间?Eg2:某中学学生步行去某地参加社会公益活动,每小时5千米. 出发20分钟后,队长派一名通信员以10千米/时原路的速度返回学校取重要信件,然后以12千米/时的速度追赶队伍,问通信讯员拿到信件后用多少时间可以追上学生队伍?(2)、相遇问题:Eg1:甲骑自行车从A地到B地,乙骑自行车从B地到A地,甲骑车的速度是乙骑车的2倍,已知二人在上午8时同时出发,到上午10时二人相距36千米,到中午12时二人又相距36千米,求A、B两地间的距离。

Eg2:甲、乙两人,分别同时从A、B两地相向而行,甲骑自行车每小时行15千米,乙步行每小时行5千米,两人相遇后乙又行了6小时到达A地,求两地之间的路程是多少千米?Eg3:甲、乙两列火车长分别为166m和180m,甲车比乙车每秒钟多行4m,两列车相向行驶,从相遇到全部错开(从两车头相遇到两车尾离开)需10秒,(1)问两车速度各是多少?(2)若同向而行,甲车的车头从乙车的车尾追及到甲车全部超出乙车,需多少秒?Eg4:小芳骑自行车以16千米/时的速度去上学,15分钟后,小芳的姐姐看到小芳忘了带英语书,于是她就骑摩托车以56千米/时的速度沿同一条路去给小芳送英语书,已知小芳家与学校相距6千米,请问,小芳的姐姐能否在小芳到校前追上小芳?如能,此时她们离学校还有多远?如不能,小芳到校多长时间后,她姐姐才到校?Eg5:甲乙两人从相距1000米的两地同时相对而行,甲每分钟行60米,乙每分钟行40米.几分钟后,甲乙二人相遇?如果甲带了一只狗和甲同时出发,狗以每分钟150米的速度向乙跑去,遇到乙后立刻回头向甲跑去。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相等关系:A车路程 + B车路程 =相距路程
例1
相遇问题
西安站和武汉站相距1500km,一列慢车从西安开出,速度 为65km/h,一列快车从武汉开出,速度为85km/h,两车同 时相向而行,几小时相遇?
西安(慢车) 慢车路程
快车路程
(快车)武汉
慢车路程+快车路程=总路程
相遇问题
延伸拓展
西安站和武汉站相距1500km,一列慢车从西安开出,速度为 68km/h,一列快车从武汉开出,速度为85km/h,若两车相 向而行,慢车先开30分钟,快车行使几小时后两车相遇?
A
B


相等关系:A车路程+A车同走的路程 + B车同走的路程=相距路程
归纳相遇问题(相向而行)的等量关系:
甲走的路程+乙走的路程 =甲乙两出发地的路程
练习 甲、乙两辆汽车同时从相距200千 米的两地相向而行,两小时后相遇, 如果甲车的速度是乙车的1.5倍,求乙 车的速度。
等量关系:甲车走的路程+乙车走的路程=总路程
5米
棕色马路程= 黄色马路程+相隔距离
归纳追及问题的等量关系:
前者先走 前者后走
追上
同地不同时出发:
追者走的路程
前者走的路程=追者走的路程
间隔
前者
追上
同时不同地出发:甲
乙 追者
前者的路程+两地间隔的路程=追者的路程
练习 甲乙两人登一座山,甲每分登高25米,
并且先出发6分。乙每分登高40米,两人同 时登上山顶。乙用多少时间登山?这山有
30x B

(2)若两车同时相向 而行,请问B车行了多 长时间后两车相距80千 米?
第一种情况: A车路程+B车路程+相距80千米= 相距路程
相等关系:总量=各分量之和
精讲 例题


例1、 A、B两车分 别停靠在相距240千米 的甲、乙两地,甲车每 小时行50千米,乙车每 小时行30千米。 (2)若两车同时相向 而行,请问B车行了多 长时间后两车相距80千 米?
解:设乙车的速度是 x千米/小时,则甲
车的速度是 1.5x千米/小时,根据题意得:
2 x 2 1 .5 x 200
练甲习 甲、乙两站相距510千米,一列慢车 从甲站开往乙站,速度为每小时45千米, 慢车行驶两小时后,另有一列快车从乙站 开往甲站,速度为每小时60千米,求快车 开出后几小时与慢车相遇?
相等关系: 小王路程 + 叔叔路程 = 400
变式 练习


3、小王、叔叔在400 米长的环形跑道上练习 跑步,小王每秒跑4米, 叔叔每秒跑7.5米。
(1)若两人同时同地反 向出发,多长时间两人 首次相遇?
(2)若两人同时同地同 向出发,多长时间两人 首次相遇?
(2)同向
叔叔 小王
相等关系: 小王路程 + 400 = 叔叔路程
西安(慢车) 慢车先行路程
慢车后行路程
(快车)武汉 快车路程
(慢车先行路程+慢车后行路程)+快车路程=总路程




A、B两车分别停靠在 相距240千米的甲、乙 两地,甲车每小时行50 千米,乙车每小时行30 千米。 (1)若两车同时相向 而行,请问B车行了多 长时间后与A车相遇?
A车路程+B车路程=相距路 程
填一填:
1、甲的速度是每小时行4千米,则x小时行( 4x)千米.
2、乙3小时走了x千米,则他的速度( x )千米/时. 3
3、甲每小时行4千米,乙每小时行5千米,则甲20分钟
可行( 4 )千米,甲、乙1小时共行( 3
9
)千米,
y小时共行( 9y )千米.
速度、路程、时间之间的关系? 路程= 速度×时间 速度= 路程÷时间 时间= 路程÷速度
学习目标
(1)学会借助线段图分析行程问题中的相等关 系列方程解决实际问题; (2)掌握列方程解决实际问题的一般步骤.
导入
想一想回答下面的问题:
1、A、B两车分别从相距S千米的甲、乙两地同时出 发,相向而行,两车会相遇吗?
A
B


2、如果两车相遇,则相遇时两车所走的路程与A、B 两地的距离有什么关系?
小明的爸爸发现他忘了
带语文书,于是,爸爸
立即以180米/分的速
度去追小明,并且在途
中追上他。
(1)爸爸追上小明用
了多少时间?
(离学2)校追相还上有等小多关明远系时?,:距
学 校
400米
80x米


180x米

小明先行路程 + 小明后行路程 =爸爸的路程
两匹马赛跑,黄色马的速度是6m/s,棕色马的速度是 7m/s,如果让黄马先跑5m,棕色马再开始跑,几秒后 可以追上黄色马?
解:设用 x小时才能追上队伍,则
4 0 .5 4 x 1 x4
变式 练习


3、小王、叔叔在400 米长的环形跑道上练习 跑步,小王每秒跑5米, 叔叔每秒跑7.5米。
(1)若两人同时同地反 向出发,多长时间两人 首次相遇?
(2)若两人同时同地同 向出发,多长时间两人 首次相遇?
(1)反向
叔叔 小王
解:设快车开出后 x小时与慢车相遇,则
4 2 5 4 x 5 6 x 0 51
行程问题-——追及问题
前者先走 前者后走
追上
同地不同时出发:
追者走的路程
间隔
同时不同地出发:
前者
追上
追者
追及 问题


例、小明每天早上要
在7:50之前赶到距离家
1000米的学校上学, 一天,小明以80米/分

的速度出发,5分后,
多高?
解:设乙用 x分登山,则
2 6 5 2 x 5 4 x0 1x5240 x16 1 62 540(米 0)
答:乙用16分钟,山有400米高。
练习 一队学生去校外参加劳动,以4千米/
小时的速度步行前往。走了半小时,学校 有紧急通知要传给队长,通讯员骑自行车 以14千米/小时的速度按原路追上去。通讯 员要多长时间才能追上学生队伍?
A 50x
30x B


解:设B车行了x小时后与A车相遇, 根据题意列方程得
50x+30x=240 解得 x=3
答:设B车行了3小时后与A车相遇。
精讲 例题


例1、 A、B两车分 别停靠在相距240千米
线段图分析:
的甲、乙两地,甲车每 小时行50千米,乙车每 小时行30千米。
A 50x

80千米
线段图分析:
A
B
80千米


第二种情况: A车路程+B车路程-相距80千米别 停靠在相距115千米的 甲、乙两地,A车每小 时行50千米,B车每小 时行30千米,A车出发 1.5小时后B车再出发。 若两车相向而行,请问 B车行了多长时间后与 A车相遇?
线段图分析:
相关文档
最新文档