【高中数学精品课件】正弦函数的图象及性质
合集下载
正弦函数的图像和性质(公开课)精品课件

y
1 -4 -3 -2 -
o
-1
2
3
4
5
6
x
y=sinx (xR) 职业中学 2018.3
2018年3月21日星期三
1
一.正弦函数y=sinx的图像
y 1
五点法:
2
(0,0)
-1
o
( ,1) ( 2 , 0 ) ( , 0 ) 2 x 3 3 2 2 ,1) 2( 2
y
-
sin(x+2k)=sinx, kZ 1.y=sinx x[0,2] y=sinx xR 1
-4 -3 -2
y-1
1
o
2
3
4ቤተ መጻሕፍቲ ባይዱ
5
6
x
-4
-3
-2
-
o
-1
2
3
4
5
6
x
2
2.y=sinx (xR)
2018年3月21日星期三
二.正弦函数 y=sin x(x∈R) 的性质
2018年3月21日星期三
f(x 2k) f(x),(k Z)
是正弦函数y sin x的周期?为什么?
2
8
性质二:正弦函数 y=sinx周期性
对于一个周期函数f(x),如果在它的所有周 期中存在一个最小的正数,那么这个最小的 正数就叫做它的最小正周期。
y=sinx的最小正周期T=2π
y
1
4 3 2
3 2
2
-1
2
3
4
7 2
5 2
2
3 2
5 2
1 -4 -3 -2 -
o
-1
2
3
4
5
6
x
y=sinx (xR) 职业中学 2018.3
2018年3月21日星期三
1
一.正弦函数y=sinx的图像
y 1
五点法:
2
(0,0)
-1
o
( ,1) ( 2 , 0 ) ( , 0 ) 2 x 3 3 2 2 ,1) 2( 2
y
-
sin(x+2k)=sinx, kZ 1.y=sinx x[0,2] y=sinx xR 1
-4 -3 -2
y-1
1
o
2
3
4ቤተ መጻሕፍቲ ባይዱ
5
6
x
-4
-3
-2
-
o
-1
2
3
4
5
6
x
2
2.y=sinx (xR)
2018年3月21日星期三
二.正弦函数 y=sin x(x∈R) 的性质
2018年3月21日星期三
f(x 2k) f(x),(k Z)
是正弦函数y sin x的周期?为什么?
2
8
性质二:正弦函数 y=sinx周期性
对于一个周期函数f(x),如果在它的所有周 期中存在一个最小的正数,那么这个最小的 正数就叫做它的最小正周期。
y=sinx的最小正周期T=2π
y
1
4 3 2
3 2
2
-1
2
3
4
7 2
5 2
2
3 2
5 2
高中数学同步教学课件 正弦型函数的性质与图象

(1)令 2x-π4=-π2+2kπ,k∈Z. 得 x=-π8+kπ(k∈Z),ymax=3. (2)∵x∈-π6,π2,∴2x+π3∈0,43π.
令 u=2x+π3,则 u∈0,43π.
又∵y=sin u 在0,π2上单调递增,在π2,43π上单调递减,
∴当 ∴-
u3∈≤02,sin43πu≤时2,,-即当23≤x∈sin-u≤π6,1,π2时,-
训练1
若 函 数 y = sin(ωx + φ)(x∈R , ω>0 ,
0≤φ<2π) 的 部 分 图 象 如 图 , 则 ω =
π
π
___4_____,φ=___4_____.
由又图∵象T=可2ω知π,T4=∴2ω,=∴π4.T=8. ∵在 x=1 处取得最大值,∴π4+φ=π2+2kπ(k∈Z), ∴φ=2kπ+π4(k∈Z),∵0≤φ<2π,∴φ=π4.
第七章 7.3 三角函数的性质与图象 7.3.2 正弦型函数的性质与图象
课标要求
1.能根据y=Asin(ωx+φ)的部分图象确定其解析式. 2.会求函数y=Asin(ωx+φ)的周期、单调性、最值、对称性. 3.能利用y=Asin(ωx+φ析 课时精练
y=2sinπ4-x=-2sinx-π4, 令 z=x-π4,则 y=-2sin z. ∵z 是 x 的一次函数且单调递增,
题型二 正弦型函数y=Asin(ωx+φ)的性质
角度1 正弦型函数的值域、最值
例2
(1)函数 y=-2sin2x-π4+1 的最大值是___3____,此时 x=_-__π8_+__k_π_(k_∈__Z__). (2)函数 y=2sin2x+π3,x∈-π6,π2的值域为__[_-___3_,__2_]____.
5.4.1正弦函数、余弦函数的图像-【新教材】人教A版高中数学必修第一册课件

立德树人 和谐发展
你能根据诱导公式,以正弦函数的图象为基础,通
过适当的图形变换得到余弦函数的图象吗?
由未知向已知转
y
化
由诱导公式y=
,将正弦函数的图象向左平移 2 个单位即可得到余弦函数的图象.
1
-4
-3
-2
-
o
2
3
4
5
6
x
6
x
-1
正弦曲
线
正弦函数的图象
形状完全一样
y=cosx与 y=sin(x+ ), xR图象相同 只是位置不同
正弦曲线
6
x
学习新知
立德树人 和谐发展
函数y=sinx,x∈R的图象叫做正弦曲线,正弦曲线的散布
有什么特点? 是一条“波浪起伏”的连续光滑曲线
-6π -5π-4π-3π -2π
1 y
π
-π O
-1
2π
3π
4π
5π
你能画出函数y=|sinx|,x∈[0,2π]的图象吗?
y
1
O
-1
π
2π
x
6πx
合作探究
立德树人 和谐发展
(2)y= -cosx,x [0, 2 ]
(2)按五个关键点列表
3
2
x
0
2
cosx
1
0
-1
0
1
-cosx
-1
0
1
0
-1
2
y=-cosx x [0,2 ]
y
1
●
o
-1 ●
●
2
●
【精品课件】高中数学新北师大版必修第二册 1.5.1正弦函数的图象与性质再认识 课件(79张)

第二步:从圆O1与x轴的交点A起把圆弧分成12等份;
第三步:过圆O1上各分点分别作x轴的垂线,得到对应于角0,
6
,
3
, ,…,2π
2
等分点的正弦值;
第四步:相应地,再把x轴上从0到2π这一段分成12等份;
第五步:再把角x所对应的正弦线向右平移,使它的起点与x轴上表示数x的点重
合;
第六步:最后用光滑曲线把这些正弦线的终点连接起来,就得到了正弦函数
2
2
(4)值域:[-1,1]. 当且仅当x=2kπ+ (k∈Z)时,正弦函数y=sin x取得最大值1;
2
当且仅当x=2kπ- (k∈Z)时,正弦函数y=sin x取得最小值-1.
2
(5)奇偶性:正弦函数y=sin x在R上是奇函数.
(6)对称性:对称轴x=kπ+ ,k∈Z,对称中心(kπ,0),k∈Z.
2
【思考】 (1)-2π是正弦函数的周期吗? 提示:是.2kπ(k∈Z,k≠0)都是它的周期. (2)正弦函数的对称轴之间的距离有什么特点?对称中心呢? 提示:对称轴之间的距离差了π的整数倍.对称中心之间也相差了π的整数倍.
【根底小测】 1.辨析记忆(对的打“√〞,错的打“×〞) (1)正弦函数在区间 [ , 2 ] 上是递增的.( )
2.函数y=sin x是( )
A.增函数
B.减函数
C.偶函数
D.周期函数
【解析】选D.由正弦曲线y=sin x的图象,可得函数y=sin x的增区间是
[2k, (k∈2kZ]),减区间是
2
2
周期为2π的周期函数.
[(k∈2kZ, )3,函数2k是]奇函数,且是
2
2
3.(教材二次开发:例题改编)以下关系式中正确的选项是( ) A.sin 11°<cos 10°<sin 168° B.sin 168°<sin 11°<cos 10° C.sin 11°<sin 168°<cos 10° D.sin 168°<cos 10°<sin 11°
正弦函数的图像和性质PPT优秀课件

2、本节内容的分析
这节课主要学习正弦函数图像的奇偶性和 单调性,以及性质的应用。这两条性质尤其是 单调性在今后的学习中经常用到,而且在今后 的考试中也是常考的考点之一,因此,我们必 须重视本节课的教学。
3、重点、难点分析
重点:正弦函数图像的的性质及应用 难点:奇偶性、单调性的熟练应用 关键:抓住y=sinx的图象的特征
y
1 -3
5 2
-2
3 2
-
2
o
-1
2
3 2
2
5 2
x
3
7 2
4
y=sinx
返回
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰· B· 塔布] 86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔· 卡内基] 87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯· 瑞斯] 88.每个意念都是一场祈祷。――[詹姆士· 雷德非] 89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森] 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰] 91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。――[兰斯顿· 休斯] 92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。――[玛科斯· 奥雷利阿斯] 93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。[约翰· 纳森· 爱德瓦兹] 94.对一个适度工作的人而言,快乐来自于工作,有如花朵结果前拥有彩色的花瓣。――[约翰· 拉斯金] 95.没有比时间更容易浪费的,同时没有比时间更珍贵的了,因为没有时间我们几乎无法做任何事。――[威廉· 班] 96.人生真正的欢欣,就是在于你自认正在为一个伟大目标运用自己;而不是源于独自发光.自私渺小的忧烦躯壳,只知抱怨世界无法带给你快乐。――[萧伯纳] 97.有三个人是我的朋友爱我的人.恨我的人.以及对我冷漠的人。 爱我的人教我温柔;恨我的人教我谨慎;对我冷漠的人教我自立。――[J·E·丁格] 98.过去的事已经一去不复返。聪明的人是考虑现在和未来,根本无暇去想过去的事。――[英国哲学家培根] 99.真正的发现之旅不只是为了寻找全新的景色,也为了拥有全新的眼光。――[马塞尔· 普劳斯特] 100.这个世界总是充满美好的事物,然而能看到这些美好事物的人,事实上是少之又少。――[罗丹] 101.称赞不但对人的感情,而且对人的理智也发生巨大的作用,在这种令人愉快的影响之下,我觉得更加聪明了,各种想法,以异常的速度接连涌入我的脑际。――[托尔斯泰] 102.人生过程的景观一直在变化,向前跨进,就看到与初始不同的景观,再上前去,又是另一番新的气候――。[叔本华] 103.为何我们如此汲汲于名利,如果一个人和他的同伴保持不一样的速度,或许他耳中听到的是不同的旋律,让他随他所听到的旋律走,无论快慢或远近。――[梭罗] 104.我们最容易不吝惜的是时间,而我们应该最担心的也是时间;因为没有时间的话,我们在世界上什么也不能做。――[威廉· 彭] 105.人类的悲剧,就是想延长自己的寿命。我们往往只憧憬地平线那端的神奇【违禁词,被屏蔽】,而忘了去欣赏今天窗外正在盛开的玫瑰花。――[戴尔· 卡内基] 106.休息并非无所事事,夏日炎炎时躺在树底下的草地,听着潺潺的水声,看着飘过的白云,亦非浪费时间。――[约翰· 罗伯克] 107.没有人会只因年龄而衰老,我们是因放弃我们的理想而衰老。年龄会使皮肤老化,而放弃热情却会使灵魂老化。――[撒母耳· 厄尔曼] 108.快乐和智能的区别在于:自认最快乐的人实际上就是最快乐的,但自认为最明智的人一般而言却是最愚蠢的。――[卡雷贝· C· 科尔顿] 109.每个人皆有连自己都不清楚的潜在能力。无论是谁,在千钧一发之际,往往能轻易解决从前认为极不可能解决的事。――[戴尔· 卡内基] 110.每天安静地坐十五分钟· 倾听你的气息,感觉它,感觉你自己,并且试着什么都不想。――[艾瑞克· 佛洛姆] 111.你知道何谓沮丧---就是你用一辈子工夫,在公司或任何领域里往上攀爬,却在抵达最高处的同时,发现自己爬错了墙头。--[坎伯] 112.「伟大」这个名词未必非出现在规模很大的事情不可;生活中微小之处,照样可以伟大。――[布鲁克斯] 113.人生的目的有二:先是获得你想要的;然后是享受你所获得的。只有最明智的人类做到第二点。――[罗根· 皮沙尔· 史密斯] 114.要经常听.时常想.时时学习,才是真正的生活方式。对任何事既不抱希望,也不肯学习的人,没有生存的资格。 ――[阿萨· 赫尔帕斯爵士] 115.旅行的精神在于其自由,完全能够随心所欲地去思考.去感觉.去行动的自由。――[威廉· 海兹利特] 116.昨天是张退票的支票,明天是张信用卡,只有今天才是现金;要善加利用。――[凯· 里昂] 117.所有的财富都是建立在健康之上。浪费金钱是愚蠢的事,浪费健康则是二级的谋杀罪。――[B·C·福比斯] 118.明知不可而为之的干劲可能会加速走向油尽灯枯的境地,努力挑战自己的极限固然是令人激奋的经验,但适度的休息绝不可少,否则迟早会崩溃。――[迈可· 汉默] 119.进步不是一条笔直的过程,而是螺旋形的路径,时而前进,时而折回,停滞后又前进,有失有得,有付出也有收获。――[奥古斯汀] 120.无论那个时代,能量之所以能够带来奇迹,主要源于一股活力,而活力的核心元素乃是意志。无论何处,活力皆是所谓“人格力量”的原动力,也是让一切伟大行动得以持续的力量。――[史迈尔斯] 121.有两种人是没有什么价值可言的:一种人无法做被吩咐去做的事,另一种人只能做被吩咐去做的事。――[C·H·K·寇蒂斯] 122.对于不会利用机会的人而言,机会就像波浪般奔向茫茫的大海,或是成为不会孵化的蛋。――[乔治桑] 123.未来不是固定在那里等你趋近的,而是要靠你创造。未来的路不会静待被发现,而是需要开拓,开路的过程,便同时改变了你和未来。――[约翰· 夏尔] 124.一个人的年纪就像他的鞋子的大小那样不重要。如果他对生活的兴趣不受到伤害,如果他很慈悲,如果时间使他成熟而没有了偏见。――[道格拉斯· 米尔多] 125.大凡宇宙万物,都存在着正、反两面,所以要养成由后面.里面,甚至是由相反的一面,来观看事物的态度――。[老子] 126.在寒冷中颤抖过的人倍觉太阳的温暖,经历过各种人生烦恼的人,才懂得生命的珍贵。――[怀特曼] 127.一般的伟人总是让身边的人感到渺小;但真正的伟人却能让身边的人认为自己很伟大。――[G.K.Chesteron] 128.医生知道的事如此的少,他们的收费却是如此的高。――[马克吐温] 129.问题不在于:一个人能够轻蔑、藐视或批评什么,而是在于:他能够喜爱、看重以及欣赏什么。――[约翰· 鲁斯金]
正弦函数图像与性质.ppt

C.轮船招商局的轮船
D.福州船政局的军舰
[解析]
由材料信息“19世纪七十年代,由江苏沿江居民
到上海”可判断最有可能是轮船招商局的轮船。 [答案] C
[题组冲关] 1.中国近代史上首次打破列强垄断局面的交通行业是 ( )
A.公路运输
C.轮船运输
B.铁路运输
D.航空运输
解析:根据所学1872年李鸿章创办轮船招商局,这是洋务 运动中由军工企业转向兼办民用企业、由官办转向官督商 办的第一个企业。具有打破外轮垄断中国航运业的积极意 义,这在一定程度上保护了中国的权利。据此本题选C项。 答案:C
台湾 架设第一条电报线,成为中国自
出行 (1)新式交通促进了经济发展,改变了人们的通讯手段和 , 方式 转变了人们的思想观念。
(2)交通近代化使中国同世界的联系大大增强,使异地传输更为便 捷。 (3)促进了中国的经济与社会发展,也使人们的生活
多姿多彩 。
[合作探究· 提认知]
电视剧《闯关东》讲述了济南章丘朱家峪人朱开山一家, 从清末到九一八事变爆发闯关东的前尘往事。下图是朱开山 一家从山东辗转逃亡到东北途中可能用到的四种交通工具。
依据材料概括晚清中国交通方式的特点,并分析其成因。
提示:特点:新旧交通工具并存(或:传统的帆船、独轮车, 近代的小火轮、火车同时使用)。 原因:近代西方列强的侵略加剧了中国的贫困,阻碍社会发 展;西方工业文明的冲击与示范;中国民族工业的兴起与发展;
政府及各阶层人士的提倡与推动。
[串点成面· 握全局]
A
[题组冲关] 3.假如某爱国实业家在20世纪初需要了解全国各地商业信
息,可采用的最快捷的方式是
(
)
A.乘坐飞机赴各地了解 B.通过无线电报输送讯息 C.通过互联网 D.乘坐火车赴各地了解
数学:《正弦函数的图像与性质——ωφ的图象》课件新人教版必修可编辑全文

有何关系?
2024/10/13
思考 :怎样由y sin x的图象得到y 2sin(1 x )
36 的图象?
(1)向右平移
函数y sin x
6
y sin( x )的图象
6
(2)横坐标伸长到原来的3倍 y sin(1 x )的图象
纵坐标不变
36
(3)纵坐标伸长到原来的2倍 y 2sin(1 x )的图象
y
2
y=2sinx
1
y=sinx
2
O
1
y=
1sinx
2 2
yx 2
1
2024/10/13
O
1
2
2 x
一、函数y=Asinx(A>0)的图象
2024/10/13
y
y=2sinx
2
1
O
1 y= 1sinx
2
2
2 x
函数y=Asinx (A >0且A≠1)的图象可以看作是把 y=sinx 的图象上所有点的纵坐标伸长 (当A>1时) 或缩短(当0<A<1时) 到原来的A倍(横坐标不变) 而得到的。 y=Asinx ,x∈R的值域为[-A,A],最 大值 为A,最小值为-A.
新课讲解:
例1 作函数
y 2sin x
及
y
1 sin 2
x
的图象。
解:1.列表
x
0
2
3 2
2
sin x
0
1
0
1
0
2sin x 0
2
0
2
0
1 2
sin
x
0
1 2
0
1 2
0
2024/10/13
思考 :怎样由y sin x的图象得到y 2sin(1 x )
36 的图象?
(1)向右平移
函数y sin x
6
y sin( x )的图象
6
(2)横坐标伸长到原来的3倍 y sin(1 x )的图象
纵坐标不变
36
(3)纵坐标伸长到原来的2倍 y 2sin(1 x )的图象
y
2
y=2sinx
1
y=sinx
2
O
1
y=
1sinx
2 2
yx 2
1
2024/10/13
O
1
2
2 x
一、函数y=Asinx(A>0)的图象
2024/10/13
y
y=2sinx
2
1
O
1 y= 1sinx
2
2
2 x
函数y=Asinx (A >0且A≠1)的图象可以看作是把 y=sinx 的图象上所有点的纵坐标伸长 (当A>1时) 或缩短(当0<A<1时) 到原来的A倍(横坐标不变) 而得到的。 y=Asinx ,x∈R的值域为[-A,A],最 大值 为A,最小值为-A.
新课讲解:
例1 作函数
y 2sin x
及
y
1 sin 2
x
的图象。
解:1.列表
x
0
2
3 2
2
sin x
0
1
0
1
0
2sin x 0
2
0
2
0
1 2
sin
x
0
1 2
0
1 2
0
正弦函数的图象和性质课件(共29张PPT)

问题情境 根据正弦函数的定义可知,任意给定一个角α,唯
一确定一个正弦值 sinα.习惯上,我们用x表示角α的弧 度数(自变量), y 表示因变量,于是正弦函数可记作
y = sinx, x∈R , 其中x表示角的弧度值函数的定义域是实数集 R .
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
情感目标 通过本节课学习,使学生养成乐于学习、勇于探索的良好品质
核心素养
通过思考、讨论等活动,提升学生数学的直观想象、逻辑推理、数据分析、 数学建模的核心素养
创设情境,生成问题 在在活初初动中中1,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
2.正弦函数的性质 探索研究
观察单位圆中的正弦线(图5-24)或正弦函数的图 象,你发现正弦函数有哪些性质?
调动思维,探究新知 在活初动中2,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
(1)值域
因为在单位圆中,正弦线的长都小于或等于半径的
长1,所以 sin x 1即-1≤sin x≤1,这就是说,正弦函
数学
基础模块(上册)
第五章 三角函数
5.3.1正弦函数的图象和性质
人民教育出版社
第五章 三角函数 5.3.1 正弦函数的图象和性质
学习目标
知识目标 理解正弦曲线的概念,认识正弦函数的图象及正弦函数图象的研究方法
能力目标
一确定一个正弦值 sinα.习惯上,我们用x表示角α的弧 度数(自变量), y 表示因变量,于是正弦函数可记作
y = sinx, x∈R , 其中x表示角的弧度值函数的定义域是实数集 R .
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
情感目标 通过本节课学习,使学生养成乐于学习、勇于探索的良好品质
核心素养
通过思考、讨论等活动,提升学生数学的直观想象、逻辑推理、数据分析、 数学建模的核心素养
创设情境,生成问题 在在活初初动中中1,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
2.正弦函数的性质 探索研究
观察单位圆中的正弦线(图5-24)或正弦函数的图 象,你发现正弦函数有哪些性质?
调动思维,探究新知 在活初动中2,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
(1)值域
因为在单位圆中,正弦线的长都小于或等于半径的
长1,所以 sin x 1即-1≤sin x≤1,这就是说,正弦函
数学
基础模块(上册)
第五章 三角函数
5.3.1正弦函数的图象和性质
人民教育出版社
第五章 三角函数 5.3.1 正弦函数的图象和性质
学习目标
知识目标 理解正弦曲线的概念,认识正弦函数的图象及正弦函数图象的研究方法
能力目标
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探究性质
观察正弦函数图象,你发现了哪些性质?
探究余弦函数
诱导公式:
cos x sin( )
思考: 能否由正弦函数图象导出余弦
函数图象?
探究余弦函数
y1-4 -3源自-2- o-1
正弦函数的图象
y=cosx=sin(x+ ), xR
2
余弦函数的图象
y
1
-4 -3
-2
- o
-1
2
3
4
5 6 x
正弦曲线
正弦函数的图象及性质
复习回顾 1.任意角的正弦函数如何定义? 2.如何探究函数的性质?
探索新知
如何画出正弦函数 y sin x 的图象?
动态生成
探究一 利用三角函数线生成正弦函数 y sin x, x 0,2 的图象. 探究二
由 y sin x, x 0,2 图象生成正弦函数 y sin x , x R 图象.
探究二:如何由 y sin x, x 0,2 的图象得
到 y sin x在 x R上的图象?
y 正弦曲线
-4 -3
-2
1
- o
-1
2
3
4
5 6 x
sin(x+2)=sin x
周期函数:
对于函数 f (x) ,如果存在一个非零常数 T ,使得当 x 取定义域内的每一个值时,
都有 f (x+T)=f (x) ,则称函数 f (x) 为周期函数, T 为函数的周期.
形状完全一样 只是位置不同
余弦曲线
2
3
4
5 6 x
数学活动
数学活动
试作出函数 y=1+sinx, x∈[0, 2π]上的简图.
y 2
y=1+sinx,x[0, 2] 1
o
2 -1
2
3
2
x
2 y=sinx,x[0, 2]
课堂小结