纳米材料的结构特征
纳米材料的结构特征
纳米材料的结构特征一、概论纳米材料是新型结构材料的一种,主要是指材料的基本结构单元至少有一维处于纳米尺度范围(一般在11100 nm),并由此具有某些新特性的材料。
纳米材料相对于其他材料而言有五大物理效应即:体积效应、表面效应、量子尺寸效应、量子隧道效应和介电限域效应,这五大效应成就了纳米材料的诸多优势,这里就不一一介绍了。
纳米材料相对于其他材料的优势正是因为其结构的特点,下面讲述纳米材料的结构特征。
二、自然界中存在的纳米材料早在宇宙诞生之初,纳米材料和纳米技术就已经存在了,比如,那些溶洞中的石笋就是一纳米一纳米的生长起来的,所以才千奇百怪;贝壳和牙齿也是一纳米一纳米的生长的,所以才那样坚硬;植物和头发是一纳米一纳米生长的,所以才那样柔韧;荷叶上有用纳米技术生长出来的绒毛,所以才能不沾水,就连人类的身体,也是一纳米一纳米生长起来的,所以才那样复杂。
在地球的漫长演化过程中,自然界的生物,从亭亭玉立的荷花、丑陋的蜘蛛,到诡异的海星,从飞舞的蜜蜂、水面的水黾,到海中的贝壳,从绚丽的蝴蝶、巴掌大的壁虎,到显微镜才能看得到细菌…应该说,它们个个都是身怀多项纳米技术的高手。
它们通过精湛的纳米技艺,或赖以糊口,或赖以御敌,一代一代,在大自然中地顽强存活着,不仅给人们留下了深刻的印象,而且给现代的纳米科技工作者带来了无数灵感和启示。
三、纳米材料的概论1、纳米材料:纳米材料是指三维空间尺度上至少有一维处于纳米量级或由它们作为基本单元构成的材料。
2、纳米科技:纳米科技(纳米科学技术)是指在纳米尺度上研究物质的特性和相互作用以及利用这种特性开发新产品的一门科学技术。
3、纳米结构单元:构成纳米材料的结构单元包括限定的团簇或人造原子团簇、纳米微粒、纳米管、纳米棒、纳米丝、同轴纳米电缆、纳米单层膜及多层膜等。
(1)原子团簇指几个至几百个原子的聚集体,如Fen,CunSm,CnHm(n和m都是整数)和碳簇(C60,C70和富勒烯等)等。
纳米材料的结构与性能
纳米材料的结构与性能纳米材料是指在一维、二维或三维尺度中至少有一个尺寸小于100纳米的材料。
由于其尺寸特殊性,纳米材料具有诸多独特的性能和结构特征。
本文将深入探讨纳米材料的结构与性能,以期对其研究和应用起到一定的帮助。
首先,我们来谈谈纳米材料的结构。
纳米材料的结构形态可以分为多种类型,常见的包括纳米粉末、纳米膜/薄膜、纳米线和纳米颗粒等。
纳米粉末是指粒径小于100纳米的粉末状物质,通常由凝聚或化学方法得到。
纳米膜/薄膜是指在基底上具有纳米级厚度的薄膜,其结构形态可以是连续的,也可以是颗粒状的。
纳米线是一种形态独特的纳米材料,其直径在几十纳米到几百纳米之间,长度可以达到数十微米。
而纳米颗粒则是颗粒状的纳米材料,其尺寸一般在几十纳米至几百纳米之间。
其次,纳米材料的性能是由其特殊的结构决定的。
纳米材料的性能与其尺寸、形态、晶格结构及表面特性等密切相关。
首先,纳米材料具有较大的比表面积。
由于其尺寸小,纳米材料的单位质量表面积要远大于宏观材料,这使得纳米材料具有更多的活性表面,增强了其化学活性、催化性能和吸附能力等。
其次,纳米材料的能带结构与普通材料不同。
由于尺寸效应和限域效应的影响,纳米材料的能带结构发生量子尺寸效应和能带削弱现象,导致纳米材料具有独特的光电特性和电子输运性质。
此外,纳米材料的力学性能也受到了尺寸效应的显著影响,例如纳米线的强度和韧性都明显高于宏观材料。
除了以上结构与性能的关系,我们还需要关注纳米材料的制备方法和应用领域。
目前纳米材料的制备方法包括物理法、化学法、生物法和机械法等。
物理法包括溅射、凝聚等方法,可以制备出高纯度的纳米材料。
化学法则包括溶液法、气相沉积法等,能够制备出各种形貌和复杂结构的纳米材料。
生物法则是利用生物合成途径,通过微生物、植物或动物等生物体合成纳米材料。
机械法则是利用机械力进行纳米结构的制备,例如球磨、研磨等。
而纳米材料的应用领域十分广泛,包括催化、电子学、光电子学、生物医学、环境保护等。
纳米材料
纳米材料研究综述纳米材料是指微观结构至少在一维方向上受纳米尺度调制的各种固态材料, 其晶粒或颗粒尺寸在1~100 nm 数量级, 主要由纳米晶粒和晶粒界面两部分组成, 其晶粒中原子的长程有序排列和无序界面成分的组成后有大量的界面, 晶界原子达15%~50%,且原子排列互不相同,界面周围的晶格原子结构互不相关, 使得纳米材料成为介于晶态与非晶态之间的一种新的结构状态。
此外,由于纳米晶粒中的原子排列的非无限长程有序性,使得通常大晶体材料中表现出的连续能带分裂为接近分子轨道的能级。
高浓度界面及原子能级的特殊结构, 使其具有不同于常规材料和单个分子的性质如表面效应、体积效应、量子尺寸效应、宏观量子隧道效应等, 导致了纳米材料的力学性能、磁性、介电性、超导性光学乃至力学性能发生改变,使之在电子学、光学、化工陶瓷、生物、医药等诸多方面具有重要价值, 得到了广泛应用1 纳米材料研究的现状与特点1.1纳米材料研究的现状上世纪70 年代纳米颗粒材料问世, 80 年代中期在实验室合成了纳米块体材料,80 年代中期以后, 成为材料科学和凝聚态物理研究的前沿热点。
可大致分为3 个阶段;第一阶段(1990 年以前), 主要是在实验室探索用各种手段制备各种材料的纳米颗粒粉体, 合成块体(包括薄膜),研究评价表征的方法, 探索纳米材料不同于常规材料的特殊性能;第二阶段(1994 年前), 人们关注的热点是如何利用纳米材料已挖掘出来的奇特的物理、化学和力学性能,设计纳米复合材料, 通常采用纳米微粒与纳米微粒复合, 纳米微粒与常规块体复合及发展复合纳米薄膜;第三阶段(从1994年到现在), 纳米组装体系、人工组装合成的纳米结构的材料体系越来越受到人们的关注,正在成为纳米材料研究的新的热点。
1.2纳米材料研究的特点(1)纳米材料研究的内涵逐渐扩大第一阶段主要集中在纳米颗粒(纳米晶、纳米相、纳米非晶等)以及由它们组成的薄膜与块体,到第三阶段纳米材料研究对象发展到纳米丝、纳米管、微孔和介孔材料(包括凝胶和气凝胶)。
纳米材料的结构与性能特性及其应用前景
纳米材料的结构与性能特性及其应用前景【摘要】文章简要地概述了纳米材料的结构和特殊性质、纳米材料的制备技术和方法以及纳米材料的性能在实际中的应用,并展望了纳米材料在各个领域中的应用前景。
【关键词】纳米材料;结构;效应;性能;制备;应用;前景20世纪90年代,以前人们从未探索过的纳米物质(Nanostructured materials)一跃成为科学家十分关注的研究对象。
新奇的纳米材料刚刚诞生才几年,以其所具有的独特性和新的规律,如材料尺度上的超细微化而产生的表面效应、体积效应、量子尺寸效应、量子隧道效应等及由这些效应所引起的诸多奇特性能,已引起人们的高度重视,使这一领域成为跨世界材料科学研究领域的"热点"]1[。
1、纳米和纳米材料纳米是一种长度的量度单位,1纳米(nm)等于10-9米,1nm的长度大约为4到5个原子排列起来的长度,或者说1nm相当于头发丝直径的10万分之一。
纳米结构(nanostructure)通常是指尺寸在100nm以下的微小结构。
纳米材料(nanostructure materials或nanomaterials)是纳米级结构材料的简称。
狭指由纳米颗粒构成的固体材料,其中纳米颗粒的尺寸最多不超过100纳米,在通常情况下不超过10纳米;从广义上说,纳米材料,是指微观结构至少在一维方向上受纳米尺度(1~100nm)限制的各种固体超细材料,它包括零维的原子团簇(几十个原子的聚集体)和纳米微粒;一维纳米纤维;二维纳米微粒膜(涂层)及三维纳米材料。
2、纳米材料的结构特征纳米材料的结构特点是:纳米尺度结构单元,大量的界面或自由表面,以及结构单元与大量界面单元之间存在的交互作用]2[。
在结构上,大多数纳米粒子呈现为理想单晶,也有呈现非晶态或亚稳态的纳米粒子。
纳米材料的结构上存在两种结构单元;即晶体单元和界面单元。
晶体单元由所有晶粒中的原子组成,这些原子严格地位于晶格位置;界面单元由处于各晶粒之间的界面原子组成,这些原子由超微晶粒的表面原子转化而来]3[。
无机纳米材料
体积效应
纳米材料由有限个原子或分子组成,改变了由无数个原子或分子组成的集体属性,物质本身性质也发生了变化,这种由体积改变引起的效应称为体积效应。 如:金属纳米微粒与金属块体材料的性质不同。
纳米稀土复合氧化物做荧光材料 溶胶凝胶法制备镧-钼复合氧化物超细微粒催化剂(对苯甲醛的选择性)
纳米稀土复合氧化物 及其他纳米复合氧化物
其他无机纳米材料
单击此处添加小标题
纳米SiC的制备:固-固法,固-液法
单击此处添加小标题
应用:制备复合陶瓷(书,141)
单击此处添加小标题
纳米CaCO3的制备与应用
纳米SiC的制备与应用
PLEASE ENTER YOUR TITLE HERE
word
纳米CaCO3的制备与应用
添加标题
CaCO3的分类
添加标题
按粒径 微粒CaCO3;粒1-5μm
添加标题
微细CaCO3;0.1-1μm
添加标题
超细CaCO3;0.02-0.1μm
纳米二氧化硅
纳米二氧化硅是极其重要的高科技超微细无机新材料之一,因其粒径很小,比表面积大,表面吸附力强,表面能大,化学纯度高、分散性能好、热阻、电阻等方面具有特异的性能,以其优越的稳定性、补强性、增稠性和触变性,在众多学科及领域内独具特性,有着不可取代的作用。纳米二氧化硅俗称“超微细白炭黑”,广泛用于各行业作为添加剂、催化剂载体,石油化工,脱色剂,消光剂,橡胶补强剂,塑料充填剂,油墨增稠剂,金属软性磨光剂,绝缘绝热填充剂,高级日用化妆品填料及喷涂材料、医药、环保等各种领域。
纳米晶结构特征及其材料性能研究进展
纳米晶结构特征及其材料性能研究进展纳米技术是近年来备受关注的新型科技,纳米材料一般是由1~100nm之间的粒子组成的。
纳米晶是一类特殊的纳米粒子,由大量的随机取向的超微粒组成的具有规整原子排列的纳米粒子,是单个粒子特征维度尺寸在1~100nm级的晶体材料,每个粒子都是结构完整的小晶粒,相邻晶粒的取向关系是两个晶粒相对旋转加上平移而成的。
纳米晶是介于分子和凝聚态物质之间的一座桥梁。
一、纳米晶的结构特征纳米晶内部结构的高度均一,使纳米晶成为构筑纳米有序结构材料极具潜力的结构单元,并且由于纳米晶的粒径处于纳米级别的尺度,使之具有小尺寸效应、表面效应、量子尺寸效应、宏观量子隧道效应等一些特殊的物理效应。
1.小尺寸效应。
纳米颗粒的尺寸与光波波长、传导电子的德布罗意波长及超导态的相干波长或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏,非晶态纳米微粒表面层附近原子密度减小,纳米颗粒表现出新的光、电、声、磁等体积效应,其他性质都是此效应的延伸。
2.表面效应。
纳米微粒表面原子与总原子数之比随纳米粒子尺寸的减小而急剧增大,随着粒径减小,表面原子数迅速增加,微粒的比表面积、表面能及表面结合能都迅速增大。
由于表面原子数的增多,原子配位不足,导致纳米微粒表面存在许多悬键,表面活性很高,极不稳定,同时也引起表面原子电子自旋构象和电子能谱的变化。
3.量子尺寸效应。
当粒子尺寸下降到某一值时,金属材料的费米能级附近的电子能级由准连续变为离散,而半导体材料则能隙变宽,以及由此导致的不同于宏观物体的光、电和超导等性质。
具体到不同的半导体材料,其量子尺寸是不同的,只有半导体材料的粒子尺寸小于量子尺寸,才能明显地观察到量子尺寸效应。
4.宏观量子隧道效应。
宏观量子隧道效应是基本的量子现象之一,即当微观粒子的总能量小于势垒高度时,该粒子仍能穿越这一势垒。
量子尺寸效应、隧道效应将会是未来电子器件的基础,或者它确立了现存微电子器件进一步微型化的极限。
纳米材料的结构与性质的研究
纳米材料的结构与性质的研究纳米材料是具有特殊性质的新型材料,其广泛应用领域涉及电子、光电、材料科学等多个方面。
纳米材料的研究已经成为当前材料科学领域的热点之一。
纳米材料的结构与性质的研究是纳米材料研究的重要内容,下面我们就来了解一下关于纳米材料结构与性质的研究。
一、纳米材料的结构纳米材料的结构主要分为两种,一种是晶体结构,另一种是非晶态结构。
纳米晶体结构一般为多晶体或单晶体,其特点是具有非常高的比表面积和非常小的晶粒尺寸。
而非晶态结构则没有明显的晶体结构,这种结构的纳米材料常见于非晶材料、生物材料、玻璃材料等。
纳米材料的结构对其性质和应用表现有着至关重要的影响。
因此,对纳米材料的结构进行深入研究,对于优化其性能和提高其应用效果至关重要。
二、纳米材料的性质纳米材料与常规晶体材料之间的最主要区别在于其所特有的尺寸效应。
因为纳米尺寸与常规尺寸相比,纳米材料往往需要适应不同的物理和化学环境。
1. 机械性能纳米材料的机械性能是其最为重要的性质之一。
由于纳米材料具有非常高的比表面积、非常小的尺寸和表面缺陷等特点,纳米材料的强度、韧性、延展性等力学性质往往与常规晶体材料有所不同。
特别的,纳米氧化铝材料因其具有超高的比表面积,往往表现出很高的硬度和脆性。
纳米钛材料则表现出更大的韧性。
这些性质的不同还取决于所研究的具体粒子尺寸和形态。
2. 电性能纳米材料的电性能是另一个重要的特征。
由于其尺寸效应的影响,纳米材料的导电性、热电性等往往与常规晶体材料有着明显的差异。
在纳米材料中,电子的能级分布和能带结构以及电子的动力学行为都被尺寸效应所影响。
该效应通常会导致纳米材料呈现出不同的导电和热电性,例如,纳米银的导电性往往高于常规尺寸的银。
3. 光学性能纳米材料的光学性质也是纳米材料在应用中具有的明显优势之一。
许多纳米材料都表现出比常规材料更优越的光学性质,如,纳米晶体的荧光性质、纳米金的表面等离子体共振等等。
另外,这些材料往往还能被用作光学传感器、生物探针和照明等。
纳米技术 第二讲 纳米材料及纳米结构
为了帮助保护您的隐私,PowerPoint 已阻止自动下载此图片。
零维(0D)纳米材料
silica nanoparticles
Pt nanoparticles
一维(1D)纳米材料
金纳米棒
碳纳米管
硅纳米线
ZnO纳米带
二维(2D)材料
“绽放在纳米世界的火红玫瑰” 磁控溅射法在单晶NaCl 衬底上制作Cu纳米薄膜 ,样品厚度约15nm 。
导电性能的转变
1)与常规材料相比, Pd纳米相固体的比电阻 增大; 2)比电阻随粒径的减 小而逐渐增加; 3)比电阻随温度的升 高而上升。
■— 10nm; ▲— 12nm; X — 13nm; + — 22nm; ▼— 25nm; □ — 粗晶。
表面效应
表面效应(Surface Effect) 随着颗粒直径的变小,比表面积(表面积/体积)显著 地增加,颗粒表面原子数相对增多,从而使这些表面原 子具有很高的活性且极不稳定,致使颗粒表现出不一样 的特性,这就是表面效应,又称界面效应。 超微颗粒的表面具有很高的活性,在空气中金属颗粒会 迅速氧化而燃烧。如要防止自燃,可采用表面包覆或有 意识地控制氧化速率,使其缓慢氧化生成一层极薄而致 密的氧化层,确保表面稳定化。利用表面活性,金属超 微颗粒可望成为新一代的高效催化剂和贮气材料。
光谱线频移
纳米颗粒的吸收带通常发生蓝移。 SiC纳米颗粒的红外吸收峰为814cm-1,而块体SiC 固体为794cm-1。 CdS溶胶颗粒的吸收光谱随着尺寸的减小逐渐蓝移 (如下图所示)。 CdS溶胶颗粒 在不同尺寸下 的吸收光谱 谱线1:6nm; 谱线2:4nm; 谱线3:2.5nm; 谱线4:1nm
assembling system)、人工组装合成的纳米结构的材料体系或者 称为纳米尺度的图案材料(patterning materials on the nanometer scale)越来越受到重视。特点是强调按人们的意愿设计、组装、 创造新的体系,更有目的地使该体系具有人们所希望的特性,这也 是实现费曼预言,创造新奇迹的起点。
纳米材料的特性
块体半导体与半导体 纳米晶的能带示意图
2) 表面效应:纳米颗粒大 的表面张力使晶格畸变, 晶格常数变小。对纳米氧 化物和氮化物的研究表明, 第一近邻和第二近邻的距 离变短,键长的缩短导致 纳米颗粒的键本征振动频 率增大,结果使红外吸收 带移向高波数。
CdSe纳米颗粒的吸收光谱蓝移现象 A.P.Alivisatos, J. Phys. Chem. 100, 13227 (1996)
h
纳米氮化硅、碳化硅以及三氧化二铝粉等对红外有一个 宽频带强吸收谱。
不同温度退火下纳米三氧化二铝材料的红外吸收谱 1-4分别对应873,1073,1273和1473K退火4小时的样品
纳米材料的红外吸收谱宽化的主要原因
1) 尺寸分布效应:通常纳米材料的粒径有一定分布,不同颗粒的表面张 力有差异,引起晶格畸变程度也不同。这就导致纳米材料键长有一个分 布,造成带隙的分布,这是引起红外吸收宽化的原因之一。 2) 界面效应:界面原子的比例非常高,导致不饱和键、悬挂键以及缺陷 非常多。界面原子除与体原子能级不同外,互相之间也可能不同,从而 导致能级分布的展宽。与常规大块材料不同,没有一个单一的、择优的 键振动模,而存在一个较宽的键振动模的分布,在红外光作用下对红外 光吸收的频率也就存在一个较宽的分布。
5nm
>10nm
激子带的吸收系数随粒径的减小而增 加,即出现激子的增强吸收并蓝移。
CdSexS1-x玻璃的吸收光谱
曲线1所代表的粒径大于10nm 曲线2所代表的粒径为5nm
5、纳米微粒发光现象
当纳米微粒的尺寸小到一定值时可在 一定波长的光激发下发光。所谓光致发光 (photoluminescence)是指在一定波长光照射 下被激发到高能级激发态的电子重新跃回到 低能级被空穴俘获而发射出光子大块材料相比,纳米微粒的吸收带普遍存在“蓝移” 现象,即吸收带移向短波长方向。 例如,纳米 SiC 颗粒和大块 SiC 固体的红外吸收频率峰值 分别为814cm-1和794cm-1。纳米SiC颗粒的红外吸收频率较大 块固体蓝移了20cm-1。
第四章纳米固体材料全
4.4.2 纳米金属材料的制备
目前比较成熟的纳米金属材料的制备方法主要有: 惰性气体蒸发原位加压法、高能球磨法和非晶晶化法
1.惰性气体蒸发原位加压法 一步法”的步骤是: (1)制备纳米颗粒; (2)颗粒收集; (3)压制成块体。上述步骤一般都是在真空下进行
1.红外吸收 对纳米材料红外吸收的研究表明,红外吸收谱中出现蓝移和宽化。 2.荧光现象 用紫外光激发掺Cr和Fe的纳米相Al2O3时,在可见光范围观察到新的荧 光现象 3.光致发光 光致发光是指在一定波长的光照射下,被激发到高能级的电子重新跃人 低能级,被空穴捕获而发光的微观过程。电子跃迁可分为两类:非辐射 跃迁和辐射跃迁。当能级间距很小时,电子通过非辐射跃迁而发射声子, 不能发光;只有当能级间距较大时,才有可能发射光子,实现辐射跃迁 而发光。退火温度低于673K时,纳米非晶氮化硅块体在紫外光到可见光
4.5.3 在磁学方面的应用 具有铁磁性的纳米材料(如纳米晶Ni、
Fe2O3、Fe3O4等)可作为磁性材料。铁磁 材料可分为软磁材料(既容易磁化又容易去 磁)和硬磁材料(磁化和去磁都十分困难)。 此外,纳米铁氧体磁性材料,除可作软磁
材料和硬磁材料外,还可作:旋磁材料、 矩磁材料和压磁材料。
4.5.4 在电学方面的应用 纳米材料在电学方面主要可以作为导电
范围的发光现象与常规非晶氮化硅不同,出现6个分立的发光带,
4.3.4 纳米固体材料磁学性能(自学)
1.饱和磁化强度 2.磁性转变
由于纳米材料颗粒尺寸很小,这就可能使一些抗磁 体转变为顺磁体。 3.超顺磁性 4.居里温度
居里温度:铁磁质转变为顺磁质时的温度。铁磁质 在高于居里温度时变为顺磁质。不同的铁磁质居里 温度不同。例如铁是769C;镍是358C;钴是1131C。
纳米材料的结构和性质
纳米材料的结构和性质纳米材料是一种具有独特结构和性质的材料,其粒径在1-100纳米之间。
由于其小尺寸和表面效应的存在,纳米材料具有许多优异的物理、化学、生物学等性质,因此在材料科学、物理学、化学、生物医学等领域有着广泛的应用前景。
本文将从纳米材料的结构和性质两个方面进行探讨。
一、纳米材料的结构纳米材料的结构是其独特性质的重要基础。
纳米材料的结构可以分为三类,即一维、二维和三维结构。
1. 一维结构一维纳米材料是指纳米尺寸下的线性结构,如纳米线、纳米管等。
这些结构的直径通常小于100纳米,长度则可能达到数微米至数十微米不等。
由于其结构形态呈现出高度的一致性,因此可用于生物传感、催化剂制备、分子分离、光电器件等领域的应用。
2. 二维结构二维纳米材料是指極薄厚度且沿两个方向同时集成了垂直层板状结构的纳米材料,如纳米片、纳米层等。
由于其大的表面积对材料的响应更为敏感,具有优异的光电、光学、催化等性质,在颜料、光电器件、电化学电容器等方面有着广泛应用。
3. 三维结构三维纳米材料是指纳米级别下三维有机会多孔织构,一般应用于电催化剂、储氢剂、传感器、催化剂等领域。
其特点在于孔隙性、比表面积大、微型孔或中心孔等结构可能使气体、液体或离子流体在内部获得较高效率的交换。
二、纳米材料的性质纳米材料表现出了与传统非纳米材料明显不同的性质,主要为其尺寸效应、表面效应和晶粒大小效应。
1. 尺寸效应纳米材料的尺寸在几纳米到数十纳米之间,因此导致其具有优异的电学、光学、热学性质。
例如,纳米材料的电和热导率可能随着其粒径的减小而增加,并增加化学反应区电离势的振动能、电子离散化能等因素,从而影响其特性。
2. 表面效应由于纳米材料表面积与体积的比值更大,因此其表面在结构、电学、磁学等方面由于体积表现出了显著的效应。
例如,金属纳米粒子的表面等离激元会导致其在光学、电化学等方面表现出了独特的效应。
3. 晶粒大小效应晶粒大小效应主要影响材料的机械、塑料、磁学性质,因为晶粒大小的减小增加了晶体中分子运动的抵触力。
纳米材料的结构特征
2007物理诺贝尔奖介绍
瑞典皇家科学院诺贝尔奖评委会9号宣布,法国 科学家阿尔贝·费尔和德国科学家彼得·格林贝格尔因 1988年先后各自独立发现“巨磁电阻”效应而共同 获得2007年诺贝尔物理学奖。
阿尔贝·费尔
彼得·格林贝格尔
纳米材料的结构特征
纳米材料的机构特征
一、自然界中的纳米结构与纳米材料 二、纳米材料概论 三、纳米材料的分类
3.1、纳米微粒 3.2、纳米固体 3.3、纳米纤维 3.4、纳米薄膜
一、 自然界中的纳米结构与纳米材料
从纳米科技发展历史的角度来讲,1861年随着胶体化 学的建立,科学家们才开始对直径为1-100 nm的粒子 体系进行研究工作;真正有意识进行纳米粒子实验的 是20世纪30年代日本人为了军事目的进行的“沉烟实 验”,1959年著名物理学家、诺贝尔奖获得者费曼发 表了重要演讲,提出了纳米技术的设想,之后纳米材 料和纳米科技得到了蓬勃的发展。但是,“纳米”并 不是人类的专利,早在宇宙诞生之初,它们就存在了。
纳米材料的晶界组元
晶界组元:纳米材料中 晶界占有很大的体积分 数,因而,对纳米材料 来说,晶界不仅仅是一 种缺陷,更重要的是构 成纳米材料的一个组元, 即晶界组元,是评定纳 米材料的一个重要参数。
(1)纳米固体材料的结构组成 (A)纳米晶体材料的组成:晶粒组元(所有原子都位
于晶粒的格点上) +晶界组元; (B)纳米非晶材料的组成:非晶组元+界面组元; (C)纳米准晶材料的组成:准晶组元+界面组元。
纳米热电材料
纳米储能材料
3.1、纳米微粒 定义尺度
颗粒:指在一定尺寸范围内具有特定形状的几何体。这里所说的一 定一定尺寸一般在毫米到纳米之间,颗粒不仅指固体颗粒,还有雾 滴、油珠等液体颗粒。 一般而言,在室温下,物理化学性质发生显著变化的颗粒尺寸,多数 处于0.1微米以下,因而从功能材料角度出发,可以将超细微颗粒尺 寸的上限定位0.1微米,即100纳米。 目前机械法粉碎获得颗粒的尺寸一般只能到1微米。超微颗粒是指超 越常规制粉手段所获得的微粒。因此1微米可作为超微颗粒的上限, 所以笼统的说超微颗粒尺寸在1到1000纳米之间(小于1微米)。大 于1微米就是通常的微粉,小于1纳米的粒子称为原子簇。 超细微颗粒也被称为纳米粒子,纳米颗粒、纳米微粒等。
三维纳米材料
三维纳米材料三维纳米材料是指在空间维度上为三维的纳米结构,具有纳米尺度的特征。
与传统的纳米材料相比,三维纳米材料在三维空间中具有更加复杂和多样的结构,能够展现出更加丰富的物理、化学和功能性质。
以下是几种常见的三维纳米材料:1. 纳米多孔材料(Nanoporous Materials):纳米多孔材料是一类具有纳米尺度孔隙结构的材料,包括纳米孔阵列、多孔材料等。
这些材料具有高比表面积和丰富的孔隙结构,被广泛应用于催化、分离、吸附等领域。
2. 纳米复合材料(Nanocomposites):纳米复合材料是由纳米材料与基体材料组成的复合结构,具有纳米尺度的增强效应和功能特性。
这些材料具有优异的力学性能、导电性能、热稳定性等,被广泛应用于材料强化、传感器、催化剂等领域。
3. 三维纳米结构阵列(Three-dimensional Nanostructure Arrays):三维纳米结构阵列是由纳米结构沿着三维空间排列形成的材料,如纳米线阵列、纳米棒阵列等。
这些结构具有高度有序的排列、大比表面积和优异的光学、电学性能,被广泛应用于光电器件、传感器、催化剂等领域。
4. 纳米颗粒增强材料(Nanoparticle-Reinforced Materials):纳米颗粒增强材料是由纳米颗粒与基体材料组成的复合结构,用于增强材料的力学性能、导电性能、热稳定性等。
这些材料具有优异的强度、硬度和韧性,被广泛应用于材料加固、航空航天、汽车制造等领域。
5. 三维打印纳米结构(3D Printed Nanostructures):三维打印技术可以制备具有复杂结构的三维纳米材料,包括纳米网格、纳米梯度结构等。
这些材料具有高度定制化和可控性,被广泛应用于仿生材料、微纳米器件等领域。
这些三维纳米材料具有丰富的结构和性质,对于材料科学、纳米技术和工程学具有重要意义。
通过精确控制其结构、组成和功能,可以实现对其性能和应用的优化和拓展。
纳米材料的结构及其性能
纳米材料由于非常小,使纳米材料的几何特点之一是比外表积〔单位质量材料的外表积〕很大,一般在102~104m2/g。
它的另一个特点是组成纳米材料的单元外表上的原子个数与单元中所有原子个数相差不大。
例如:一个由5个原子组成的正方体纳米颗粒,总共有原子个数53=125个,而外表上就有约89个原子,占了纳米颗粒材料整体原子个数的71%以上。
这些特点完全不同于普通的材料。
例如,普通材料的比外表积在10m2/g以下,其外表原子的个数与组成单元的整体原子个数相比拟完全可以忽略不计。
纳米材料由于这两上特殊效应的存在,使得它们的物理、化学性质完全不同于普通材料。
目前许多实验和应用结果已经证实,纳米材料的熔点、磁性、电容性、发光特性、水溶特性等都完全不同于普通材料。
例如,将金属铜或铅做成几个纳米的颗粒,一遇到空气就会燃烧,发生爆炸;用碳纳米管做成的超级电容器,其体积比电容到达600F/cm3,这在同样体积下电容量为传统电容的几百倍;碳纳米管的强度比钢强100倍……3、纳米材料的性能运用纳米技术,将物质加工到一百纳米以下尺寸时,由于它的尺寸已接近光的波长,加上其具有大外表的特殊效应,因此其所表现的特性,例如熔点、磁性、化学、导热、导电特性等等,往往产生既不同于微观原子、分子,也不同于该物质在整体状态时所表现的宏观性质,也即纳米材料表现出物质的超常规特性。
3.1 纳米材料的特性〔四个效应〕当物质尺寸度小到一定程度时,那么必须改用量子力学取代传统力学的观点来描述它的行为,当粉末粒子尺寸由10微米降至10纳米时,其粒径虽改变为1000倍,但换算成体积时那么将有109倍之巨,所以二者行为上将产生明显的差异。
当小颗粒进入纳米级时,其本身和由它构成的纳米固体主要有如下四个方面的效应。
3.1.1 体积效应〔小尺寸效应〕当粒径减小到一定值时,纳米材料的许多物性都与颗粒尺寸有敏感的依赖关系,表现出奇异的小尺寸效应或量子尺寸效应。
例如,对于粗晶状态下难以发光的半导体Si、Ge等,当其粒径减小到纳米量级时会表现出明显的可见光发光现象,并且随着粒径的进一步减小,发光强度逐渐增强,发光光谱逐渐蓝移。
纳米结构材料
纳米结构材料
纳米结构材料是一种具有特殊微观结构的材料,其特点是至少在一个空间方向
上具有纳米尺度的结构特征。
纳米结构材料通常具有独特的物理、化学和力学性能,因此在材料科学领域具有广泛的应用前景。
首先,纳米结构材料具有较大的比表面积。
由于其微观结构的特殊性,纳米结
构材料的比表面积通常远大于传统材料。
这使得纳米结构材料在催化剂、吸附剂等领域具有独特的优势,能够更有效地与其他物质发生作用,提高反应速率和效率。
其次,纳米结构材料具有优异的力学性能。
由于纳米结构材料的微观结构尺度
接近原子尺度,其内部结构通常具有较高的强度和硬度。
这使得纳米结构材料在材料增强、耐磨耐腐蚀等方面具有独特的应用前景,可以用于制备高强度、高韧性的材料。
此外,纳米结构材料还具有特殊的光学和电学性能。
纳米结构材料的微观结构
能够对光和电的传播产生显著影响,因此在光电子器件、传感器等领域具有广泛的应用前景。
例如,纳米结构材料在太阳能电池、光催化等方面的应用已经取得了显著的进展。
总的来说,纳米结构材料是一种具有特殊微观结构和优异性能的材料,其在催
化剂、材料增强、光电子器件等领域具有广泛的应用前景。
随着纳米技术的不断发展,纳米结构材料必将在材料科学领域发挥越来越重要的作用,为人类社会的发展做出更大的贡献。
纳米材料的概述、制备及其结构表征
纳米材料的概述、制备及其结构表征1.引言1.1 概述纳米材料是指具有纳米级尺寸(一般指直径小于100纳米)的材料。
由于其特殊的尺寸效应和界面效应,纳米材料呈现出与宏观材料不同的物理、化学和生物学性质,具有广泛的应用价值和研究前景。
纳米材料的制备方法主要包括物理法、化学法和生物法等。
物理法主要利用物理手段将宏观材料加工成纳米级颗粒,如球磨法、激光烧结法等;化学法则是通过化学反应控制合成纳米材料,如溶胶-凝胶法、溶液法等;生物法则是利用生物体内或生物体外的生物学过程合成纳米材料,如生物矿化法、酶法等。
不同的制备方法可以获得不同形态、尺寸和结构的纳米材料。
纳米材料的结构表征是研究纳米材料的重要手段。
常用的结构表征方法包括透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X射线衍射(XRD)和红外光谱等。
这些技术可以观察和分析纳米材料的形貌、尺寸、晶体结构和化学组成,为纳米材料的制备和性质研究提供重要依据。
纳米材料的应用前景广阔。
由于其特殊性能,纳米材料在能源、催化、电子、生物医学等领域具有重要的应用潜力。
例如,纳米材料可以用于改善太阳能电池的效率、提高催化反应的效果,并在生物传感器和药物输送系统中发挥重要作用。
纳米材料的制备和结构表征对于纳米材料研究具有重要意义。
制备方法的选择和调控可以获得具有特定结构和性能的纳米材料,而结构表征则可帮助我们了解纳米材料的内部结构和相互作用机制,进一步优化和改进纳米材料的性能。
然而,纳米材料研究还面临一些挑战和问题。
首先,制备纳米材料的方法仍然存在一定的局限性,如难以控制材料的形貌和尺寸分布;其次,纳米材料的安全性和环境影响是需要进一步研究和评估的重要问题;此外,纳米材料的应用还需要解决稳定性、可持续性和成本等方面的挑战。
总之,纳米材料具有独特的性质和广泛的应用前景。
通过制备和结构表征的研究,可以进一步深入理解纳米材料的特性和行为,为其在不同领域的应用和发展提供科学依据和技术支持。
材料科学中纳米材料结构特性与功能关系分析
材料科学中纳米材料结构特性与功能关系分析纳米材料是一种材料学中的热门研究领域,其特殊的结构尺寸和表面特性使其具备了许多独特的性能和功能。
本文将对纳米材料的结构特性与功能关系进行深入分析。
首先,纳米材料的结构特性是指其在纳米尺度下的晶体结构、晶界、表面形貌以及孔隙结构等方面的特征。
纳米材料具有高比表面积、大量晶界和高度开放的孔隙结构,这些特点赋予了它们很多独特的性能。
以金属纳米材料为例,由于其细小尺寸和大量晶界的存在,金属纳米材料具有较高的化学活性、特殊的形貌效应和表面等离子体共振效应等。
这些结构特性使得金属纳米材料在催化、传感、生物医学和能源存储等领域具有广阔的应用前景。
其次,纳米材料的结构特性与其功能密切相关。
纳米材料的功能是指其对电、磁、光、力学和化学等的响应能力,包括导电性、磁性、光学性能、力学性能和化学反应活性等。
这些功能特性往往与纳米材料的结构特性密切相关。
以纳米颗粒为例,其表面原子的活性较高,使得纳米颗粒具有优异的催化性能,可用于提高化学反应速率和选择性。
另外,纳米材料的量子尺寸效应和表面等离子体共振效应也赋予了其独特的光学性能,如波长选择吸收和发射、非线性光学效应等。
此外,纳米材料的结构特性还影响着其力学性能和磁性能。
由于纳米材料的尺寸和晶界的存在,其力学性能往往显著不同于宏观物体。
纳米材料往往具有高强度、高韧性和较低的形变能力,这些特性使得纳米材料在材料强度、耐磨性和抗腐蚀性方面具有巨大潜力。
另外,纳米材料的磁性也受到其结构特性的影响。
磁性纳米材料通常具有高饱和磁化强度和低矫顽力,可应用于记录媒体、磁性传感器和医学诊疗等领域。
最后,纳米材料的结构特性还决定了其在能源和环境领域中的应用潜力。
纳米材料的高比表面积和开放孔隙结构使其具有高效的气体吸附和催化分解能力,可应用于高效能源转换和环境净化领域。
例如,纳米材料广泛应用于太阳能电池、燃料电池和储能设备等领域,其高效的光催化性能和电催化性能为可持续能源的开发和利用提供了有力支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纳米Cr微粒的外形
几种典型的纳米金属微粒的晶体惯态
3.2纳米固体
纳米固体材料是一类有广阔应用前景的新型材料,它是由纳米量级的 超细微粒压制烧结而成的人工凝聚态固体。这种材料具有新型的固 态结构,其性质与处于晶态或非晶态的同种材料大不一样,因此将它 称为纳米固体材料。1963年,日本名古屋大学教授田良二首先用蒸 发冷凝法获得了表面清洁的纳米粒子。1984年由德国H.格莱特教 授领导的小组首先研制成第一批人工金属固体(Cu、Pa、Ag和Fe)。 同年美国阿贡实验室研制成TiO2纳米固体。 纳米固体材料的主要特征是具有巨大的颗粒间界面,如5纳米颗粒 所构成的固体每立方厘米将含1019个晶界,原子的扩散系数要比大 块材料高1014-1016倍,从而使得纳米材料具有高韧性。
纳米材料的晶界组元 晶界组元:纳米材料中 晶界占有很大的体积分 数,因而,对纳米材料 来说,晶界不仅仅是一 种缺陷,更重要的是构 成纳米材料的一个组元, 即晶界组元,是评定纳 米材料的一个重要参数。
(1)纳米固体材料的结构组成
(A)纳米晶体材料的组成:晶粒组元(所有原子都位 于晶粒的格点上) +晶界组元; (B)纳米非晶材料的组成:非晶组元+界面组元; (C)纳米准晶材料的组成:准晶组元+界面组元。 颗粒组元:晶粒组元、非晶组元和准晶组元的统称。
纳米固体
纳米固体材料:一般称为纳米结构材料,简称为纳米材料,是由颗 粒或晶粒尺寸为1~100nm的粒子凝聚而成的三维块体,其结构可以 是晶体、非晶或准晶。 结构特点:小晶粒+大界面 界面特点: (1)量大(对于5—10nm的固体结构,组成晶界的原子高达15—50 % ); (2)原子排列具有变化性、多样性; (3)低能组态:晶界原子在压制时具有足够的移动性调整自己处于 低能状态。
2.纳米微粒:纳米微粒(nanoparticles)是指
颗粒尺寸为纳米量级的超细微粒,它的尺 度大于原子团簇(cluster),小于通常的微粉, 通常把仅包含几个到数百个原子或尺寸小 于1nm 的粒子称为簇,它是介于单个原子 与固态之间的原子集合体。 3.人造原子:是由一定数量的实际原子组成 的聚集体,它们的尺寸小于100nm。研究 人造原子特有的量子效应将为设计和制造 纳米结构器件奠定理论基础。
界面组元:晶界组元和界面组元的统称。
(2)纳米固体材料的界面组元的特点
(A)原子密度降低
界面部分:平均原子密度比同成分的晶体少10%~30%; 典型的非晶体:密度大约为同成分晶体密度的96%~98%。 (B)最近邻原子配位数变化 晶界的原子间距差别也较大,导致最近邻原子配位数的变 化。
同粗晶材料的晶界结构相比,纳米材料的晶界结 构具有以下特点: 1.晶界具有大量未被原子占据的位置或空间 2.低的配位数和密度 3.存在三叉晶界
三、纳米材料的分类
零维(0D)材料 【量子点】
一维(1D)材料 【量子线】 按空间维度 二维(2D)材料 【量子阱】
三维(3D)材料 【纳米块体】
纳米微粒
纳米固体 按结构
纳米纤维
纳米薄膜 纳米半导体 纳米电子材料
纳米磁性材料
按材料物性 纳米铁电体 按应用
纳米光电子材料
纳米生物医用材料
纳米超导材料
纳米晶粒的固溶度
纳米晶粒对异质原子具有很大的固溶度。一些 在固态甚至在液态下完全不互溶的元素的原子 在纳米晶条件下具有很高的互溶性,如在粗晶 情况下互不相溶的Fe-Ag、Fe-Cu系在纳米状态 下可以形成固溶体,因此利用纳米材料具有高 固溶度的特性,可以制备出根据传统平衡相图 不可能制备出的具有高固溶度的新合金,这无 论在学术上还是在应用上都具有很大的意义。
超细微颗粒也被称为纳米粒子,纳米颗粒、纳米微粒等。
纳米颗粒的尺度范围
纳米颗粒的形貌
纳米微粒的结晶形态多为球形或类球形,有分散的,也有链 条的。
纳米微粒的形貌与制备工艺密切相关
晶体结构和结晶性质与成分和温度有关。
由于诸多因素的影响,例如:温度、动力学、杂质和表面能 因素,粒子可以有特殊的结构、形状和尺寸分布。
由于制备方法不同,纳米微粒不仅粒径不同,而且形状也不同。例如,对于纳米Cr 微粒,当直径小于20纳米时,微粒基本是球形,并且成链条形状,如图(a)所示。 对于大于20纳米的 微粒,他的二维形态是正方形或矩形,如图(b)所示。 Cr 而对于粒子大于20纳米的 微粒,他的截面呈六边形,如图(c)所示。 Cr
纳米纤维的定义:
一种为狭义的定义,指纤维直径在1~100nm尺度范 围内的纤维; 另一种为广义的定义,除了纤维直径在1~100nm尺 度范围内的纤维外,还包括用纳米粒子、狭义纳米纤 维制备得到的传统纤维。我们通常所说的纳米纤维皆 为狭义的纳米纤维。 现在很多企业为了商品的宣传效果,把填加了纳米级 (即小于100nm)粉末填充物的纤维也称为纳米纤维。
纳米纤维的分类:
纳米纤维与传统的纤维材料一样,按 其来源来分类,有以下几种 天然纳米纤维 有机纳米纤维 金属纳米纤维 陶瓷纳米纤维等。 天然纤维中,直径在纳米尺度的代表是蜘 蛛丝。
3.4、纳米薄膜 薄膜材料是相对于体材料而言的,是人们 采用特殊的方法,在固体材料的表面沉积或 制备的一层性质于体材料完全不同的物质层。 薄膜材料受到重视的原因在于它往往具有特 殊的材料性能或材料组合。
什么是纳米材料? 纳米材料是指三维空间尺度上至少有一维处于纳米量 级或由它们作为基本单元构成的材料。 什么是纳米科技? 纳米科技(纳米科学技术)是指在纳米尺度上研究物质 的特性和相互作用以及利用这种特性开发新产品的一门 科学技术。
纳米结构单元 构成纳米材料的结构单元包括限定的团簇或人造 原子团簇、纳米微粒、纳米管、纳米棒、纳米丝、 同轴纳米电缆、纳米单层膜及多层膜等 。 1 、原子团簇 指几个至几百个原子的聚集体,如 Fen,CunSm,CnHm(n和m都是整数)和碳簇 (C60,C70和富勒烯等)等。一元原子团簇: 包括金属团簇(如Nan,Nin等)和非金属团簇(如 C60,C70团簇);二元原子团簇:包括InnPm, AgnSm;多元原子团簇:Vn(C6H6)m,原子簇化 合物:原子团簇与其他分子以配位化学键结合形 成的化合物。
纳米结构的巨磁电阻材料: 磁场导致物体电阻率改变的 现象称为磁电阻效应,对于一般金属其效应常可忽略。但 是某些纳米薄膜具有巨磁电阻效应。在巨磁电阻效应发现 后的第6年,1994年IBM公司研制成巨磁电阻效应的读出 磁头,将磁盘记录密度一下子提高了17倍。
2007物理诺贝尔奖介绍
瑞典皇家科学院诺贝尔奖评委会9号宣布,法国 科学家阿尔贝· 费尔和德国科学家彼得· 格林贝格尔因 1988年先后各自独立发现“巨磁电阻”效应而共同 获得2007年诺贝尔物理学奖。
纳米热电材料
纳米敏感材料
纳米储能材料
3.1、纳米微粒
定义尺度 颗粒:指在一定尺寸范围内具有特定形状的几何体。这里所说的一
定一定尺寸一般在毫米到纳米之间,颗粒不仅指固体颗粒,还有雾 滴、油珠等液体颗粒。 一般而言,在室温下,物理化学性质发生显著变化的颗粒尺寸,多数 处于0.1微米以下,因而从功能材料角度出发,可以将超细微颗粒尺 寸的上限定位0.1微米,即100纳米。 目前机械法粉碎获得颗粒的尺寸一般只能到1微米。超微颗粒是指超 越常规制粉手段所获得的微粒。因此1微米可作为超微颗粒的上限, 所以笼统的说超微颗粒尺寸在1到1000纳米之间(小于1微米)。大 于1微米就是通常的微粉,小于1纳米的粒子称为原子簇。
纳米材料的结构特征
纳米材料的机构特征
一、自然界中的纳米结构与纳米材料
二、纳米材料概论 三、纳米材料的分类
3.1、纳米微粒 3.2、纳米固体 3.3、纳米纤维 3.4、纳米薄膜
一、 自然界中的纳米结构与纳米材料
从纳米科技发展历史的角度来讲,1861年随着胶体化 学的建立,科学家们才开始对直径为1-100 nm的粒子
化学起源说
生物纳米结构
荷
叶
壁
虎
水
黾
蝴 蜜 蜂
蝶
蜘
什么是纳米? 纳米(nanometer)是一个长度单位,1 纳米(nm) = 10-9 米(m)。l nm的长度约相当于10个氢原子紧密地排列在一 起所具有的长度。 什么是纳米结构? 纳米结构通常是指尺寸在100纳米以下(1-100 nm )的 微小结构。
纳米陶瓷的成型与烧结
纳米陶瓷的定义:纳米陶瓷是指晶粒尺寸,晶界宽度, 第二相分布,气孔尺寸,缺陷尺寸均处在100nm及其以 下的一种陶瓷材料,是纳米材料的一个分支,是属于三 维的纳米块体材料。 纳米陶瓷的特性:由于晶粒尺寸很少,晶界数量的大幅 度增加,可使材料的强度,韧性和超塑性大大提高,对 材料的电学、热学、磁学、光学性质产生重要影响,为 材料的利用开拓了一个崭新的领域。纳米陶瓷有望从根 本上解决陶瓷脆性大、加工困难、烧结温度高等弊端。 纳米陶瓷的制备:从基本的工艺上看,同普通陶瓷的 制备相类似,即将合成的纳米粉体成型,然后烧结。
体系进行研究工作;真正有意识进行纳米粒子实验的
是20世纪30年代日本人为了军事目的进行的“沉烟实 验”,1959年著名物理学家、诺贝尔奖获得者费曼发
表了重要演讲,提出了纳米技术的设想,之后纳米材
料和纳米科技得到了蓬勃的发展。但是,“纳米”并 不是人类的专利,早在宇宙诞生之初,它们就存在了。
生命起源中的纳米尺度进程
3.3、纳米纤维
所谓的纤维,是大家十分熟悉的名词。在日常生 活中,做服装用的羊毛,蚕丝,亚麻,棉花等都是纤 维,此种纤维的主要成分是纤维素((C6H10O5) n )。除了上述有机聚合物构成的纤维外,还有金属 纤维,矿物纤维,陶瓷纤维等。 纤维有两个明显的几何特征。第一,纤维有较大 的长度直径比a,蚕丝和化学纤维的a都可以趋于无穷 大;第二,纤维的直径必须较细,这是出现一定柔韧 性所必需的。普通传统纤维材料的直径多为5~50um.