八年级上册数学各章知识点总结
新人版八年级数学(上册)知识点总结归纳
新人教版八年级上册数学知识点总结归纳1 第十一章三角形第十二章全等三角形第十三章轴对称第十四章整式乘法和因式分解第十五章分式第十一章三角形1、三角形的概念由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。
2、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。
(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。
(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
3、三角形的稳定性三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。
三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。
4、三角形的特性与表示三角形有下面三个特性:(1)三角形有三条线段(2)三条线段不在同一直线上三角形是封闭图形(3)首尾顺次相接三角形用符号“∆”表示,顶点是A、B、C的三角形记作“∆ABC”,读作“三角形ABC”。
5、三角形的分类三角形按边的关系分类如下:不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形三角形按角的关系分类如下:直角三角形(有一个角为直角的三角形)三角形锐角三角形(三个角都是锐角的三角形)斜三角形钝角三角形(有一个角为钝角的三角形)把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。
它是两条直角边相等的直角三角形。
6、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。
③证明线段不等关系。
7、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。
人教版八年级上册数学各章节核心概念总结
人教版八年级上册数学各章节核心概念总结第一章线性方程组与二元一次方程- 线性方程组:包含多个线性方程的方程组。
- 二元一次方程:具有两个变量、各项次数为1的方程。
第二章比例与相似- 比例:两个量之间的比较关系。
- 相似:形状和大小相同或相似的物体。
第三章平方根与立方根- 平方根:一个数的平方等于给定数的正平方根。
- 立方根:一个数的立方等于给定数的正立方根。
第四章下册中心与离差- 中心:数据的中心倾向,包括平均数、中位数和众数。
- 离差:数据离开中心的程度。
第五章进一法与退一法- 进一法:四舍五入到一个更大的整数。
- 退一法:四舍五入到一个更小的整数。
第六章母线与棱台、棱锥- 母线:棱台或棱锥底面上两个对顶顶点的连线。
- 棱台:底面是一个多边形,侧面是三角形的多面体。
- 棱锥:底面是一个多边形,侧面是三角形的多面体。
第七章勾股定理- 勾股定理:直角三角形中,直角边的平方等于两直角边上的两个小正方形的面积之和。
第八章统计- 统计:收集、整理、分析和解释数据的过程。
- 数据图:用图形的方式展示数据分布、趋势和关系。
第九章多边形的面积- 多边形:由线段组成的封闭图形。
- 面积:一个平面图形或曲面所包含的单位正方形的个数。
第十章随机事件与概率- 随机事件:在相同条件下可能发生的事件。
- 概率:某个事件发生的可能性。
第十一章三角形的面积- 三角形:三条边围成的封闭图形。
- 面积:三角形所包含的单位正方形的个数。
第十二章分式方程与分式不等式- 分式方程:含有分数的方程。
- 分式不等式:含有分数的不等式。
第十三章平行线与比例线段- 平行线:在同一平面内永远不相交的两条直线。
- 比例线段:在两个或多个相交直线上的线段之间的比。
第十四章三角形的相似- 三角形相似:两个或多个三角形的内角相等,对应边成比例。
第十五章平面直角坐标系- 平面直角坐标系:由两个互相垂直的直线和他们的交点确定的坐标系。
第十六章图形的相似与投影- 图形相似:两个图形形状相同或相似。
八年级上册数学前四章知识点
八年级上册数学前四章知识点第一章:三角形1. 三角形的基本概念- 三角形就像一个三条边围起来的小世界。
它有三个顶点,这就像是三角形的三个小角落。
三条边呢,就把这三个顶点连接起来啦。
三角形的内角和是180°哦,就像三个小伙伴凑在一起,角度的总和是固定的。
不管这个三角形是胖是瘦,是高是矮,内角和都不变。
- 三角形还可以按角来分类,有锐角三角形(三个角都是锐角,就像三个小锐角精灵住在里面)、直角三角形(有一个角是直角,这个直角就像三角形里的小霸王,特别醒目)和钝角三角形(有一个钝角,这个钝角就像个大胖子,把另外两个角挤得小小的)。
按边分类呢,有等边三角形(三边都相等,这可是三角形里的完美对称型,就像三胞胎一样)、等腰三角形(有两条边相等,就像有两个双胞胎兄弟一样)和不等边三角形(三边都不相等,各有各的个性)。
2. 三角形的边与角的关系- 在一个三角形里,大角对大边,小角对小边。
就像在一个小团队里,厉害的角色占的位置就大些。
比如说在直角三角形里,直角所对的边是斜边,斜边可是最长的边,就像老大一样。
而且,三角形的两边之和大于第三边,两边之差小于第三边。
你可以想象一下,要想围成一个三角形,两条短边加起来得比最长边还长才行,不然就围不起来啦。
3. 三角形的高、中线与角平分线- 三角形的高就像从三角形的一个顶点往对边作的一条垂线,这条垂线就像一个小杆子直直地立在那里。
三角形有三条高呢,锐角三角形的三条高都在三角形内部,就像三根小柱子稳稳地支撑着三角形;直角三角形的两条直角边就是两条高,还有一条高在三角形内部;钝角三角形的高就有点调皮了,一条高在三角形内部,另外两条高在三角形外部呢。
- 中线呢,是连接三角形一个顶点和它对边中点的线段。
它就像把三角形的一边分成了两段相等的小线段,而且中线还能把三角形的面积分成相等的两部分,就像把一块蛋糕从中间平均切开一样。
- 角平分线就是把三角形的一个角平均分成两份的射线。
八年级上册数学北师大版知识点总结
第一章勾股定理1. 勾股定理:直角三角形两直角边的平方和等于斜边的平方。
如果直角三角形的两直角边长分别为\(a\),\(b\),斜边长为\(c\),那么\(a^2 + b^2 = c^2\)。
2. 勾股定理的逆定理:如果三角形的三边长\(a\),\(b\),\(c\)满足\(a^2 + b^2 = c^2\),那么这个三角形是直角三角形。
第二章实数1. 无理数:无限不循环小数叫做无理数。
2. 平方根:如果一个数的平方等于\(a\),那么这个数叫做\(a\)的平方根。
一个正数有两个平方根,它们互为相反数;\(0\)的平方根是\(0\);负数没有平方根。
3. 算术平方根:正数\(a\)的正的平方根叫做\(a\)的算术平方根,记作\(\sqrt{a}\)。
4. 立方根:如果一个数的立方等于\(a\),那么这个数叫做\(a\)的立方根。
正数的立方根是正数,负数的立方根是负数,\(0\)的立方根是\(0\)。
第三章位置与坐标1. 在平面内,确定物体的位置一般需要两个数据。
2. 平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
水平的数轴称为\(x\)轴或横轴,竖直的数轴称为\(y\)轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
3. 点的坐标:对于平面内任意一点\(P\),过点\(P\)分别向\(x\)轴、\(y\)轴作垂线,垂足在\(x\)轴、\(y\)轴上对应的数\(a\),\(b\)分别叫做点\(P\)的横坐标、纵坐标,有序数对\((a,b)\)叫做点\(P\)的坐标。
4. 各象限内点的坐标的特征:点\(P(x,y)\)在第一象限:\(x>0\),\(y>0\);点\(P(x,y)\)在第二象限:\(x0\),\(y>0\);点\(P(x,y)\)在第三象限:\(x0\),\(y0\);点\(P(x,y)\)在第四象限:\(x>0\),\(y0\)。
八年级数学上册-知识点总结
《数学》(八年级上册)知识点总结第一章 勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
第二章 实数一、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数值,如sin60o等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。
特别地,0的算术平方根是0。
数学八年级上册知识点总结
新苏科版八年级数学上知识点总结第一章 三角形全等1、全等三角形的定义:能够完全重合的两个三角形叫做全等三角形;理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转后得到的三角形,与原三角形仍然全.等.; ③三角形全等不因位置发生变化而改变;2、全等三角形的性质:⑴全等三角形的对应边相等、对应角相等;理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角;⑵全等三角形的周长相等、面积相等;⑶全等三角形的对应边上的对应中线、角平分线、高线分别相等;3、全等三角形的判定:①边角边公理SAS 有两边和它们的夹角对应相等的两个三角形全等;②角边角公理ASA 有两角和它们的夹边对应相等的两个三角形全等;③推论AAS 有两角和其中一角的对边对应相等的两个三角形全等;④边边边公理SSS 有三边对应相等的两个三角形全等;⑤斜边、直角边公理HL 有斜边和一条直角边对应相等的两个直角三角形全等;4、证明两个三角形全等的基本思路:⑴已知两边:①找第三边SSS ;②找夹角SAS ;③找是否有直角HL.⑵已知一边一角:①找一角AAS 或ASA ;②找夹边SAS.⑶已知两角:①找夹边ASA ;②找其它边AAS.第二章 轴对称1、 轴对称图形相对一个图形的对称而言;轴对称是关于直线对称的两个图形而言;2、 轴对称的性质:①轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;3、线段的垂直平分线:①性质定理:线段垂直平分线上的点到线段两个端点的距离相等;②判定定理:到线段两个端点距离相等的点在这条线段的垂直平分线上;拓展:三角形三条边的垂直平分线的交点到三个顶点....的距离相等4、角的角平分线:①性质定理:角平分线上的点到角两边的距离相等;②判定定理:到角两个边距离相等的点在这个角的角平分线上;拓展:三角形三个角的角平分线的交点到三条边...的距离相等;5、等腰三角形:①性质定理:⑴等腰三角形的两个底角相等;等边对等角⑵等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合;三线合一 ②判断定理:一个三角形的两个相等的角所对的边也相等;等角对等边6、等边三角形:①性质定理:⑴等边三角形的三条边都相等;⑵等边三角形的三个内角都相等,都等于60°;拓展:等边三角形每条边都能运用三线合一....这性质;②判断定理:⑴三条边都相等的三角形是等边三角形;⑵三个角都相等的三角形是等边三角形;有两个角是60°的三角形是等边三角形;⑶有一个角是60°的等腰三角形是等边三角形;7、直角三角形推论:⑴直角三角形中,如果有一个锐角是30°,那么它所对的直角边等于斜边的一半;⑵直角三角形中,斜边上的中线等于斜边的一半;拓展:直角三角形常用面积法...求斜边上的高;第三章勾股定理勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边1、勾股定理:直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2;2、勾股定理的逆定理:如果三角形的三边长a,b,c有关系a2+b2=c2,那么这个三角形是直角三角形;3、勾股数:满足a2+b2=c2的三个正整数,称为勾股数;常见勾股数:3,4,5;6,8,10; 9,12,15;5,12,13;4、简单运用:⑴勾股定理——常用于求边长、周长、面积;理解:①已知直角三角形的两边求第三边,并能求出周长、面积;②用于证明线段平方关系的问题;③利用勾股定理,作出长为n的线段⑵勾股定理的逆定理——常用于判断三角形的形状;理解:①确定最大边不妨设为c;②若c2=a2+b2,则△ABC是以∠C为直角的三角形;若a2+b2<c2,则此三角形为钝角三角形其中c为最大边;若a2+b2>c2,则此三角形为锐角三角形其中c为最大边⑶难点:运用勾股定理立方程解决问题;第四章实数1、平方根:⑴定义:一般地,如果x2=a a≥0,那么这个数x就叫做a的平方根或二次方根;⑵表示方法:正数a 的平方根记做“a ±”,读作“正、负根号a ”;⑶性质:①一个正数有两个平方根,它们互为相反数;②零的平方根是零;③负数没有平方根;2、开平方:求一个数a 的平方根的运算,叫做开平方;3、算术平方根:⑴定义:一般地,如果x 2=a a ≥0,那么这个正数x 就叫做a 的算术平方根;特别地,0的算术平方根是0;⑵表示方法:记作“a ”,读作“根号a ”;⑶性质:①一个正数只有一个算术平方根;②零的算术平方根是零;③负数没有算术平方根; ⑷注意a 的双重非负性:.0,0≥≥a a ⑸()()()()0,0,0222≤-=≥=≥=a a a a a a a a a4、立方根:⑴定义:一般地,如果x 3=a 那么这个数x 就叫做a 的立方根或三次方根; ⑵表示方法:记作“3a ”,读作“三次根号a ”;⑶性质:①一个正数有一个正的立方根;②一个负数有一个负的立方根;③零的立方根是零; ⑷注意:33a a -=-,这说明三次根号内的负号可以移到根号外面; ⑸()a a a ==33235、开立方:求一个数a 的立方根的运算,叫做开立方;6、实数定义与分类:⑴无理数:无限不循环小数叫做无理数;理解:常见类型有三类: ①开方开不尽的数:如7,39等;②有特定意义的数:如圆周率π,或化简后含有π的数,如π+8等;③有特定结构的数:如等;注意省略号⑵实数:有理数和无理数统称为实数;⑶实数的分类:①按定义来分 ②按符号性质来分 整数含0 正有理数 有理数 分数 正实数 正无理数 实数 实数 0无理数 负实数 负有理数 负无理数7、实数比较大小法:理解:⑴正数大于零,负数小于零,正数大于一切负数;⑵数轴比较:数轴上的两个点所表示的数,右边的总比左边的大;⑶绝对值比较法:两个负数,绝对值大的反而小;⑷平方法:a 、b 是两负实数,若a 2>b 2,则a <b ;8、实数的运算:①六种运算:加、减、乘、除、乘方、开方②实数的运算顺序:先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的; ③实数的运算律:加法交换律、加法结合律 、乘法交换律、乘法结合律 、乘法对加法的分配律;9、近似数:由于实际中常常不需要用精确的数描述一个量,甚至在更多情况下不可能得到精确的数,用以描述所研究的量,这样的数就叫近似数;取近似值的方法——四舍五入法;10、科学记数法:把一个数记为n a 10 其中1≤a <1,n 是整数的形式,就叫科学计数法;11、实数和数轴:每一个实数都可以用数轴上的点来表示;反过来,数轴上每一个点都表示一个实数;实数与数轴上的点是一一对应的关系;第五章平面直角坐标系1、在平面内,确定物体的位置一般需要两个数据;2、平面直角坐标系及有关概念:⑴平面直角坐标系:定义:在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系;其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴;它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面;⑵象限:为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限;注意:x轴和y轴上的点坐标轴上的点,不属于任何一个象限;⑶点的坐标的概念:①对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对a,b叫做点P的坐标;②点的坐标用a,b表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒;③平面内点的坐标是有序实数对,当a≠b时,a,b和b,a是两个不同点的坐标;④平面内点的与有序实数对坐标是一一对应的关系;⑷不同位置的点的坐标的特征:①各象限内点的坐标的特征:点Px,y在第一象限:x>0,y>0;点Px,y在第二象限:x<0,y>0;点Px,y在第三象限:x<0,y<0;点Px,y在第四象限:x>0,y<0;②坐标轴上的点的特征:点Px,y在x轴上:y=0,x为任意实数;点Px,y在y轴上:x=0,y为任意实数;点Px,y既在x轴上,又在y轴上:即是原点坐标为0,0;③两条坐标轴夹角平分线上点的坐标的特征:点Px,y在第一、三象限夹角平分线直线y=x上:x与y相等;点Px,y在第二、四象限夹角平分线直线y=-x上:x与y互为相反数;④和坐标轴平行的直线上点的坐标的特征:位于平行于x 轴的直线上的各点的纵坐标相同;位于平行于y 轴的直线上的各点的横坐标相同;⑤关于x 轴、y 轴或原点对称的点的坐标的特征:点P 与点p ’关于x 轴对称:横坐标相等,纵坐标互为相反数,即点Px,y 关于x 轴的对称点为P ’x,-y点P 与点p ’关于y 轴对称:纵坐标相等,横坐标互为相反数,即点Px,y 关于y 轴的对称点为P ’-x,y点P 与点p ’关于原点对称:横、纵坐标均互为相反数,即点Px,y 关于原点的对称点为P ’-x,-y⑥点Px,y 到坐标轴及原点的距离:点Px,y 到x 轴的距离等于|y|;点Px,y 到y 轴的距离等于|x|;点Px,y 到原点的距离等于22y x ;第六章一次函数1、函数:一般地,在某一变化过程中有两个变量x 与y,如果给定一个x 值,相应地就确定了一个y 值,那么我们称y 是x 的函数,其中x 是自变量,y 是因变量;2、自变量取值范围:使函数有意义的自变量的取值的全体,叫做自变量的取值范围;一般从整式取全体实数,分式分母不为0、二次根式被开方数为非负数、实际意义几方面考虑;3、函数的三种表示法:⑴关系式解析法:两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式解析法;⑵列表法:把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法;⑶图象法:用图象表示函数关系的方法叫做图象法;4、由函数关系式画其图像的一般步骤:①列表:列表给出自变量与函数的一些对应值②描点:以表中每对对应值为坐标,在坐标平面内描出相应的点③连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来;5、正比例函数和一次函数概念与性质:⑴正比例函数和一次函数的概念:①一般地,若两个变量x,y 间的关系可以表示成b kx y +=k,b 为常数,k ≠0的形式,则称y 是x 的一次函数x 为自变量,y 为因变量;②特别地,当一次函数b kx y +=中的b=0时即kx y =k 为常数,k ≠0,称y 是x 的正比例函数;③正比例函数是特殊的一次函数;⑵一次函数的图像: 所有一次函数的图像都是一条直线⑶一次函数、正比例函数图像的主要特征:①一次函数b kx y +=的图像是经过点0,b 的直线;②正比例函数kx y =的图像是经过原点0,0的直线;⑷正比例函数的性质:一般地,正比例函数kx y =有下列性质:①当k>0时,图像经过第一、三象限,y 随x 的增大而增大;②当k<0时,图像经过第二、四象限,y 随x 的增大而减小;⑸一次函数的性质:一般地,一次函数b kx y +=有下列性质:①当k>0时,y 随x 的增大而增大②当k<0时,y 随x 的增大而减小6、正比例函数和一次函数解析式的确定:理解:⑴确定一个正比例函数,就是要确定正比例函数y=kxk ≠0中的常数k;⑵确定一个一次函数,需要确定一次函数y=kx+bk ≠0中的常数k 和b;⑶解这类问题的一般方法是待定系数法;具体法方:过点必代,交点必联;7、一次函数与一元一次方程的关系:理解:①任何一个一元一次方程都可转化为:kx+b=0k、b为常数,k≠0的形式.而一次函数解析式形式正是y=kx+bk、b为常数,k≠0.当函数y值为0时,•即kx+b=0就与一元一次方程完全相同.②由于任何一元一次方程都可转化为kx+b=0k、b为常数,k≠0的形式.所以解一元一次方程可以转化为:当一次函数值为0时,求相应的自变量的值.③从图象上看,这相当于已知直线y=kx+b确定它与x轴交点的横坐标值.。
八年级上册数学各章知识点总结
《实数》知识点梳理及题型解析一、知识归纳(一)平方根与开平方1. 平方根的含义如果一个数的平方等于 , 那么这个数就叫做 的平方根。
即 , 叫做 的平方根。
2.平方根的性质与表示⑴表示: 正数 的平方根用 表示, 叫做正平方根, 也称为算术平方根, 叫做 的负平方根。
⑵一个正数有两个平方根: (根指数2省略) 0有一个平方根, 为0, 记作 , 负数没有平方根 ⑶平方与开平方互为逆运算⑷a 的双重非负性例: 得知⑸如果正数的小数点向右或者向左移动两位, 它的正的平方根的小数点就相应地向右或向左移动一位。
区分:4的平方根为 的平方根为 4开平方后, 得 3.计算a 的方法⎪⎪⎪⎩⎪⎪⎪⎨⎧精确到某位小数 =非完全平方类 =完全平方类 773294 *若 , 则(二)立方根和开立方1. 立方根的定义如果一个数的立方等于 , 呢么这个数叫做 的立方根, 记作 2.立方根的性质任何实数都有唯一确定的立方根。
正数的立方根是一个正数。
负数的立方根是一个负数。
0的立方根是0. 3.开立方与立方开立方: 求一个数的立方根的运算。
()a a =33a a =3333a a -=- (a 取任何数)这说明三次根号内的负号可以移到根号外面。
*0的平方根和立方根都是0本身。
(三)推广: 次方根1.如果一个数的 次方( 是大于1的整数)等于 ,这个数就叫做 的 次方根。
当为奇数时, 这个数叫做的奇次方根。
当为偶数时, 这个数叫做的偶次方根。
2.正数的偶次方根有两个:;0的偶次方根为0:;负数没有偶次方根。
正数的奇次方根为正。
0的奇次方根为0。
负数的奇次方根为负。
(四)实数1.实数: 有理数和无理数统称为实数实数的分类:①按属性分类: ②按符号分类2.实数和数轴上的点的对应关系:实数和数轴上的点一一对应, 即每一个实数都可以用数轴上的一个点表示.数轴上的每一个点都可以表示一个实数.的画法: 画边长为1的正方形的对角线在数轴上表示无理数通常有两种情况:①尺规可作的无理数, 如②尺规不可作的无理数 , 只能近似地表示, 如π, 1.010010001……思考:(1)-a2一定是负数吗?-a一定是正数吗?(2)大家都知道是一个无理数, 那么-1在哪两个整数之间?(3)的整数部分为a,小数部分为b, 则a= , b= 。
八年级数学上册知识点总结(推荐12篇)
八年级数学上册知识点总结第1篇第十一章三角形一、知识框架:知识概念:1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。
5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
8、多边形的内角:多边形相邻两边组成的角叫做它的内角。
9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。
12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13、公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和。
性质2:三角形的一个外角大于任何一个和它不相邻的内角。
⑶多边形内角和公式:边形的内角和等于·180°⑷多边形的.外角和:多边形的外角和为360°。
⑸多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形。
②边形共有条对角线。
第十二章全等三角形一、知识框架:二、知识概念:1、基本定义:⑴全等形:能够完全重合的两个图形叫做全等形。
⑵全等三角形:能够完全重合的两个三角形叫做全等三角形。
⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点。
⑷对应边:全等三角形中互相重合的边叫做对应边。
人教版八年级上册数学知识点汇总
八年级上册第十一章:三角形(1)三角形:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形. (2)三个角都是锐角的三角形叫做锐角三角形.有一个角是钝角的三角形叫做钝角三角形.有一个角是直角的三角形叫做直角三角形.(3)如图:线段,,AC BC AC 是三角形的边.点,,A B C 是三角形的顶点.,,A B C ∠∠∠是相邻两边组成的角,叫做三角形的内角,简称三角形的角. 顶点是,,A B C 的三角形,记作ABC ∆,读作“三角形ABC ”.ABC ∆的三边,有时也用,,a b c 来表示,顶点A 所对的边BC 用a 表示,顶点B 所对的边AC 用b 表示,顶点C 所对的边AB 用c 表示.(4)三边都相等的三角形叫做等边三角形,有两条边相等的三角形叫做等腰三角形. (5)如图在等腰三角形ABC 中,相等的两条边AB 和AC 叫做腰,另一边BC 叫做底边,两腰与底边的夹角B ∠和C ∠叫做底角,等腰三角形的两个底角相等两腰的夹角A ∠叫做顶角.(6)等边三角形是特殊的等腰三角形,即底边和腰相等的等腰三角形. (7)三角形的三边关系(构成三角形的条件):三角形的两边之和大于第三边,两边之差小于第三边.(8)如图1,从ABC ∆的顶点A 向它所对的边BC 所在直线画垂线,垂足为D ,所得线段AD 叫做ABC ∆的边BC 上的高.即:AD BC ⊥.(9)如图2,连接ABC ∆的顶点A 和它所对的边BC 的中点D ,所得线段AD 叫做ABC ∆的边BC 上的中线.即:12BD CD BC ==. (10)如图3,在ABC ∆中,画A ∠的平分线AD ,交A ∠所对的边BC 于点D ,所得线段AD 叫做ABC ∆的角平分线.即:12BAD CAD BAC ∠=∠=∠.ACBbac腰腰底边CB A(11)三角形有三条高.锐角三角形的三条高交于三角形的内部于一点,直角三角形的三条高交于直角顶点,钝角三角形的三条高交于三角形的外部于一点,叫做垂心.(12)三角形有三条中线.锐角三角形、直角三角形、钝角三角形的三条中线都交于三角形的内部于一点,叫做重心.(13)三角形有三条角平分线.锐角三角形、直角三角形、钝角三角形的三条角平分线都交于三角形的内部于一点,叫做内心.(14)三角形的高、中线、角平分线都是线段. (15)三角形具有稳定性,四边形具有不稳定性.(16)三角形的一条中线将大三角形分成两个面积相等的小三角形.(17)三角形的内角和定理:三角形的内角和等于180°,即:∠A+∠B+∠C=180°. (18)直角三角形的两个锐角互余.(19)直角三角形可以用符号“Rt ∆”表示,直角三角形ABC 可以写成Rt ABC ∆. (20)由三角形内角和定理可得:有两个角互余的三角形是直角三角形.(21)如图,把ABC ∆的一边BC 延长,得到ACD ∠.像这样,三角形的一边与另一边的延长线组成的角,叫做三角形的外角. 推论:三角形的外角等于与它不相邻的两个内角的和. (22)多边形:在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形.三角形是最简单的多边形.(23)如果一个多边形由n 条线段组成,那么这个多边形就叫做n 边形.(24)多边形相邻两边组成的角叫做它的内角.如图1的A ∠,B ∠,C ∠,D ∠,E ∠是五边形ABCDE 的5个内角.多边形的边与它的邻边的延长线组成的角叫做多边形的外角.如图2中的1∠是五边形ABCDE 的一个外角.(25)连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.如图,AC AD 是五边形ABCDE 的两条对角线.(26)正多边形:各个角都相等,各条边都相等的多边形叫做正多边形.(27)一般地,从n 边形的一个顶点出发,可以作(3)n -条对角线,它们将n 边形分为(2)n - 个三角形,n 边形的内角和等于(10)82n ︒⨯-.图3DD图2图1DABCA BCC BA DC B A 图2图1EDC B A ED C B A EDCBA(28)多边形的内角和公式:2180()n -⨯︒.多边形的对角线条数公式:()32n n -. (29)多边形的外角和等于360︒.第十二章:全等三角形(1)全等形:能够完全重合的两个图形叫做全等形.(2)全等三角形:能够完全重合的两个三角形叫做全等三角形.(3)一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.(4)把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.例如,如图ABC ∆和DEF ∆全等,记作ABC ∆≌DEF ∆.其中点A 和点D ,点B 和点E ,点C 和点F 是对应顶点;AB 和DE ,BC 和EF ,AC 和DF 是对应边;A ∠和D ∠,B ∠和E ∠,C ∠和F ∠是对应角.全等用符号“≌”表示,读作“全等于”.记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.(5)全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.全等三角形的周长相等,面积相等,对应角的角平分线相等,对应边上的中线相等,对应边上的高相等.(6)三角形全等的判定方法:①三边分别对应相等的两个三角形全等(简写成“边边边”或“SSS ”).②两边及其夹角分别对应相等的两个三角形全等(简写成“边角边”或“SAS ”). ③两角及其夹边分别对应相等的两个三角形全等(简写成“角边角”或“ASA ”). ④两角分别相等且其中一组对角的对边相等的两个三角形全等(简写成“角角边”或“AAS ”).⑤斜边和一条直角边分别对应相等的两个直角三角形全等(简写成“斜边、直角边”或“HL ”).(7)角平分线的性质:角平分线上的点到角两边的距离相等.(8)角平分线的判定:如果一个点到角两边的距离相等,那么这个点在角的平分线上.D E F C B A第十三章:轴对称(1)轴对称图形:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形, 这条直线就是它的对称轴.(2)把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.(3)垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线. (4)图形轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.(5)常见的轴对称图形:圆(无数条对称轴)、正方形(4条对称轴)、长方形(2条对称轴)、等腰三角形(1条对称轴)、等边三角形(3条对称轴)、菱形(2条对称轴). (6)线段的垂直平分线的性质:垂直平分线上的点到线段两端的距离相等.(7)垂直平分线的判定:如果一个点到线段两端的距离相等,那么这个点在线段的垂直平分线上.(8)点关于x 轴对称,x 不变,y 互为相反数.如:()2,3-和()2,3;()4,3--和()4,3-.点关于y 轴对称,y 不变,x 互为相反数.如:()2,3-和()2,3--;()4,3--和()4,3-.点关于原点对称,x ,y 都互为相反数.如:()2,3-和()2,3-;()4,3--和()4,3. (9)等腰三角形:有两边相等的三角形是等腰三角形.(10)等腰三角形的性质:①等腰三角形的两个底角相等,两条腰相等. ②等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.简称“三线合一”. (11)等边三角形:三边都相等的特殊的等腰三角形.(12)等边三角形的性质:等边三角形的三个内角都相等,并且每个角都是60︒. (13)等边三角形的判定:①三个角都相等的三角形是等边三角形.②有一个角是60︒的等腰三角形是等边三角形.(14)在直角三角形中,30︒所对的直角边等于斜边的一半.(15)路径最短问题:将军饮马问题:在直线l 上找一点C ,使得AC BC +最短.造桥选址问题:在河岸a 与河岸b 之间,造一道垂直于两河岸的桥,使得 AE DE DB ++路径最短.归纳:在解决最短路径问题时,我们通常利用轴对称、平移等变化把已知问题转化为容易解决的问题,从而作出最短路径的选择.作法:过直线l 作关于点A 的对称点A',连接A'B 交直线l 于点C ,所以点C 即为所求.即:AC+BC 路径最短.l作法:过点A 作AF ⊥河岸a ,截取AC 等于河宽,连接BC交河岸b 于点D ,过点D 作DE ⊥a ,垂足为点E ,连接AE ,所以DE 即为所求.即:AE+DE+DB 路径最短.b第十四章:整式的乘法与因式分解(1)同底数幂的乘法:同底数幂相乘,底数不变,指数相加.即:m n m na a a +⋅=(,m n 都是正整数).例:527x x x ⋅=; 2131n n n xx x ++⋅=; ()347x x x -⋅=-.特别地:()()2323;.x x x x -=-=-(2)幂的乘方:幂的乘方,底数不变,指数相乘.即:()nm mn a a =(,m n 都是正整数).例:()()()532215263610=10.x x x x -=---=-; ;(3)积的乘方:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘. 即:()nn n ab a b =(n 为正整数).例:()3333228;a a a =⋅= ()()()333226228;x x x -=-⋅=-()22232326224339ab a b a b ⎛⎫⎛⎫-=-⋅⋅=- ⎪ ⎪⎝⎭⎝⎭.(4)单项式乘单项式:单项式与单项式相乘,先把它们的系数、同底数幂相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式. 例:()()()()()223535315a b a a a b a b --=-⨯-⋅⋅=⎡⎤⎣⎦ ;()()()()()32262627225858540x xy x xy x x yx y -=⋅-=⨯-⋅⋅=-⎡⎤⎣⎦ .(5)单项式乘多项式:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加. 例:()()()()()222324314341124x x x x x xx -+=-+-⨯=-- ;()22232221211122323223ab ab ab ab ab ab ab a b a b ⎛⎫-⋅=⋅+-⋅=-⎪⎝⎭ .(6)多项式乘多项式:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.例:()()()()22312332112362372x x x x x x x x x x x ++=⋅+⨯+⋅+⨯=+++=++ ;()()222288898x y x y x xy xy y x xy y --=--+=-+ ; ()()2232222333x y x xy y x x y xy x y xy y x y +-+=-++-+=+ . 特别地:()()22a b b a -=- ;()()33a b b a -=--.(7)同底数幂的除法:同底数幂相除,底数不变,指数相减.即:mnm na a a-÷=(0a ≠,,m n 都是正整数,并且m n >).例:835x x x ÷= ;()83835x x x x x -÷=-÷=- .(8)规定:任何不等于0的数的0次幂都等于1.即:()010a a =≠ .例:02=1 ; (01=1- ;()03.14=1π- .(9)单项式除以单项式:单项式除以单项式,先把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式. 例:()()()32323223231231234a b x ab a a b b x a x ÷=÷⋅÷⋅÷⋅= ; ()42343212872874x y x y x y xy --÷=÷⋅⋅= ; ()5345431215155153a b c a b ab c ab c ---÷=-÷=-⎡⎤⎣⎦ .(10)多项式除以单项式:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.例:()32322126331236333421a a a a a a a a a a a a -+÷=÷-÷+÷=-+ ; ()()()()656565ab a a ab a a a b -÷-=÷--÷-=-+ .(11)平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差.即:()()22a b a b a b +-=- .例:()()()22232323294x x x x +-=-=- ; ()()()()22222224x y x y x y x y -+--=--=- ;()()()()()22222221524544541y y y y y y y y y y y +---+=--+-=---+=-+.(12)完全平方公式:两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.即:()2222a b a ab b +=++ ;()2222a b a ab b -=-+ .例:()()()222224424168m n m m n n m mn n +=+⋅⋅+=++ ;2222111122224y y y y y ⎛⎫⎛⎫-=-⋅⋅+=-+ ⎪ ⎪⎝⎭⎝⎭ ;22222323322942434433169x y x x y y x xy y ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=-⋅⋅+=-+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ .总结:平方差公式和完全平方公式的应用其实是多项式乘多项式的特殊应用.(13)添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.即:“正”变“负”,“负”变“正”. 例:()a b c a b c +-=+- ;()a b c a b c --=-+ ;()a b c a b c ++=--- ;总结:添括号法则和去括号法则有类似之处,上式从右往左的变形就是去括号.(13)因式分解:把一个多项式化成几个整式的积的形式,像这样的式子变形叫做这个多项式的因式分解,也叫做把这个多项式分解因式. ()()2111x x x -+-因式分解整式乘法.(14)提公因式法:一般地,如果多项式各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一因式的乘积的形式,这种分解因式的方法叫做提公因式法.例:()32322812423a b ab c ab a bc +=+; 2a ()b c +()3b c -+()b c =+()23a -.(15)平方差公式因式分解:两个数的平方差,等于这两个数的和与这两个数的差的积.即:()()22a b a b a b -=+-.例:()()()22249232323x x x x -=-=+-; ()()()()()()()224422222222x y x y x y x y x y x y x y -=-=+-=++-;()()()32111a b ab ab a ab a a -=-=+-.(16)完全平方式因式分解:两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.即:()2222a ab b a b ++=+;()2222a ab b a b -+=-.例:()()2222162494243343x x x x x ++=+⨯⋅+=+;()()()222222244442222x xy y x xy yx x y y x y ⎡⎤-+-=--+=--⋅⋅+=--⎣⎦;()()22222363323ax axy ay a x xy y a x y ++=++=+;()()()()()222212362666a b a b a b a b a b +-++=+-⨯++=+-.(17)公式法:可以看出,如果把乘法公式的等号两边互换位置,就可以得到用于分解因式的公式,用来把某些具有特殊形式的多项式分解因式,这种分解因式的方法叫做公式法. (18)十字相乘法:将式子()2x p q x pq +++化为()()x p x q ++的形式的因式分解叫做十字相乘法.例:()()271025x x x x ++=++;()()22842x x x x --=-+; 2712y y -+()3y =-()4y -;()()271892x x x x +-=+-.(19)注意:因式分解时,有公因式先提取公因式,再考虑公式法因式分解,再考虑十字相乘法进行因式分解,因式分解要做到彻底分解,直到不能分解为止.第十五章:分式(1)分式:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子AB叫做分式.分式AB中,A 叫做分子,B 叫做分母. 特别地:22,x x x x都是分式,不能约分. (2)分式有意义的条件:分母不为0.(3)分式值为0的条件:①分子为0;②分母不为0.两个条件必须同时满足.在分式A B 中,若AB有意义,则0B ≠; 若0A B =,则0,0A B =≠;若0A B >,则00A B >⎧⎨>⎩或00A B <⎧⎨<⎩; 若0AB <,则00A B >⎧⎨<⎩或00A B <⎧⎨>⎩.(4)分式的基本性质:分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变.即:(),0A A C A A C C B B C B B C⋅÷==≠⋅÷,其中,,A B C 都是整式. 例:332x x x x xy xy x y ÷==÷ ; ()()2222333336632x xy x x xy x y x x x x+÷++==÷; ()2222222a b b a b ab b a a b a b-⋅--==⋅. (5)约分:把一个分式的分子与分母的公因式约去,叫做分式的约分.例:()()2222333336632x xy x x xy x yx x x x+÷++==÷.(6)最简分式:分式经过约分后,其分子与分母没有公因式.像这样分子与分母没有公因式的分式叫做最简分式.例:2x y ,2x y x+.例:2322255153a bc ac ab c b -=- ;()()()22233936933x x x x x x x x +---==++++ ;()()()222661262333x y x xy y x y x y x y --+==--- .(7)通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.例:232a b 和2a bab c -;2222333222bc bc a b a b bc a b c ⋅==⋅,()2222222222a b a a b a ab ab cab c a a b c -⋅--==⋅. 25x x -和35x x +;()()()2225221055525x x x x x x x x x ++==--+-,()()()2235331555525x x x x xx x x x --==++--.(8)最简公分母:在分式的通分中,取各分母的所有因式的最高次幂的积作公分母,它叫做最简公分母.例:232a b 和2a bab c -;2222333222bc bc a b a b bc a b c ⋅==⋅,()2222222222a b a a b a ab ab cab c a a b c -⋅--==⋅. 最简公分母为:222a b c .25x x -和35x x +;()()()2225221055525x x x x x x x x x ++==--+-,()()()2235331555525x x x x xx x x x --==++--. 最简公分母为:()()55x x +-.(9)分式的乘法法则:分式乘分式,用分式的积作为积的分子,分母的积作为积的分母. (10)分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.即:a c a cb d b d ⋅⋅=⋅;ac ad a d b d b c b c⋅÷=⋅=⋅. 例:3324423263x y xy y x x y x ⋅==; 32233222222254422425105ab a b ab cd ab cd bd c cd c a b a b c ac -÷=⋅=-=--; ()()()()()()()2222222441121422121a a a a a a a a a a a a a a ---+--⋅=⋅=-+-+--+-;()()()221117497777mm m m m m m m m ÷=⋅-=---+-+ ; ()()222535323225922532595353353533533x x x x x x x x x x x x x x x x x +--÷⋅=⋅⋅=⋅⋅=--+-+-+(11)分式的乘方:分式的乘方把分子、分母分别乘方.即:nn n a a b b⎛⎫= ⎪⎝⎭.例:()()22224222224393a b a b a b c c c -⎛⎫-==⎪⎝⎭; 32263323333392622248a b a c a b d c a b cd d a c d a a cd ⎛⎫⎛⎫÷⋅=⋅⋅=- ⎪ ⎪--⎝⎭⎝⎭ . (12)分式的加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减.即:ab a bc c c ±±=;a c ad bc ad bc b d bd bd bd±±=±=. 例:()()()222222223532532333x y x y x x y x x y x y x y x y x y x y x y x y+++-+-====----+-- ; ()()()()()()2211232323234232323232323232349p q p q p q p q p p q p q p q p q p q p q p q p q p q -+-+++=+==+-+-+-+--其中22449pp q -也可以写成()()42323p p q p q +-.(13)式与数有相同的混合运算顺序:先乘方,再乘除,后加减,有括号先算括号里面的. (14)整数指数幂的运算性质:①mnm na a a +⋅=(,m n 是整数);②()nmmn a a =(,m n 是整数); ③()nn nab a b =(n 是整数). (15)规定:()110nnn a a a a -⎛⎫==≠ ⎪⎝⎭.简称:底数互为倒数,指数互为相反数.例:1111222-⎛⎫== ⎪⎝⎭;()221242-⎛⎫-=-= ⎪⎝⎭;()1111222-⎛⎫-=-=- ⎪⎝⎭ . (16)小于1的正数可以用科学记数法表示为10na -⨯的形式,其中110a ≤<,n 是正整数.例:60.00000257 2.5710-=⨯;90.000000001023 1.02310-=⨯;9110nm m -=.观察0的个数,n 比0的个数多1.(17)分式方程:分母中含有未知数的方程叫做分式方程.例:90603030v v =+-;572x x =-.(18)解分式方程的基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边乘最简公分母.这也是解分式方程的一般方法.(19)一般地,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为0,因此应做如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解.例:233x x =- ; ()()31112x x x x -=--+ . 解:()332x x -= 解:(法一)()()131112x x x x x x --=---+ 392x x -=()()13112x x x =--+ 329x x -= ()()()3112x x x -=-+9x = 23x += 检验:当9x =时,()3540x x -=≠. 1x =∴9x =是原分式方程的解. 检验:当1x =时,()()120x x -+=.∴原分式方程无解.()()31112x x x x -=--+解:(法二)()()()2123x x x x +--+= ()22223x x x x +-+-= 23x += 1x = 检验:当1x =时,()()120x x -+=.∴原分式方程无解.(20)分式的化简求值.例:先化简,再求值22244242x x x x x x -+-÷-+,其中12x =.解原式()()()()222222x x x x x x -+=⋅+--12x =- 当12x =时,原式121322==-- .(21)实际应用:=工作总量工作时间工作效率 ;sv t= ;在用分式方程解决实际问题时,一定要注意检验.。
八年级上册数学各单元知识点总结
八年级上册数学各单元知识点总结第一章:小数1.小数的概念小数是用数字和小数点来表示分数的一种方法,分母为10的分数叫做小数,数字中的小数点的左边表示整数部分,右边表示小数部分,小数点的位置可以被移动。
2.小数的加减乘除小数的加减乘除运算和整数一样,只需要注意小数点的位置。
3.小数与分数的转化通过小数点的位置,可以把小数转化为分数;通过分数的化简,可以把分数转化为小数。
4.小数的比较把小数转化为分数后,比较大小即可。
第二章:代数式1.代数式的概念代数式由变量、系数和常数构成的表达式,其中变量表示数值未知的量,系数是变量的系数,常数也是代数式的一部分,代数式可以进行运算。
2.代数式的加减乘除代数式进行加减乘除运算的方法和数字一样,只需把同类项加减即可。
3.同类项的合并同类项是指字母相同,次数相同的项,合并同类项可以简化表达式。
4.代数式的因式分解代数式的因式分解是指把一个代数式分解成为简单的乘积形式。
第三章:图形的认识1.图形的基本概念平面图形是二维几何图形,从简单到复杂可以分为直线、射线、线段、角、三角形、四边形、多边形、圆形等。
2.物体的视图物体的视图是指物体呈不同角度时在不同平面上所看到的形状,分为正视图和侧视图。
3.图形的相似性如果两个图形除了大小不同,其他地方完全相同,那么这两个图形就是相似的,可以通过比例来描述它们之间的关系。
4.角的度量角的度量有两种方式,一种是用角度来表示,一种是用弧度来表示。
第四章:方程1.方程的概念方程是指等号两边的式子,表示两个量或两个式子相等的关系,其中未知数是方程的一部分。
2.方程的解法方程的解法分为两种,一种是通过变形、化简来解决,另一种是通过列方程组来解决。
3.一元一次方程组一元一次方程组是指只有一个未知数,各方程的最高次数均为一次的方程组。
4.二元一次方程组二元一次方程组是指有两个未知数,各方程的最高次数均为一次的方程组。
第五章:百分数1.百分数的概念百分数是把一个数表示为百分之几的形式,以百分号“%”来表示。
八年级上册数学知识点总结(热门14篇)
八年级上册数学知识点总结第1篇一、函数:一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。
二、自变量取值范围使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。
三、函数的三种表示法及其优缺点(1)关系式(解析)法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。
(2)列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图象法用图象表示函数关系的方法叫做图象法。
四、由函数关系式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
五、正比例函数和一次函数1、正比例函数和一次函数的概念一般地,若两个变量x,y间的关系可以表示成(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。
特别地,当一次函数中的b=0时(即)(k为常数,k0),称y是x的正比例函数。
2、一次函数的图像:所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线。
第七章知识点1、二元一次方程含有两个未知数,并且所含未知数的项的次数都是1的'整式方程叫做二元一次方程。
2、二元一次方程的解适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
3、二元一次方程组含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。
4、二元一次方程组的解二元一次方程组中各个方程的。
公共解,叫做这个二元一次方程组的解。
人教版八年级上册数学各单元知识点归纳总结
人教版八年级上册数学各单元知识点归纳总结
第一章:三角形的初步知识
1. 三角形的基本性质:稳定性、内角和定理(三角形内角和为180度)。
2. 三角形的分类:等腰三角形、等边三角形、直角三角形、锐角三角形、钝角三角形。
3. 三角形的边与角的关系:边长与角度的关系,如a:b:c=sinA:sinB:sinC。
第二章:全等三角形
1. 全等三角形的定义及性质。
2. 全等三角形的判定方法:SSS(三边全等)、SAS(两边及夹角全等)、ASA(两角及夹边全等)、AAS(两角及非夹边全等)、HL(直角边斜边公理)。
3. 全等三角形的证明方法。
第三章:轴对称与中心对称
1. 轴对称与中心对称的基本性质。
2. 轴对称与中心对称图形的识别与证明。
3. 图形变换的基本方法。
第四章:四边形
1. 四边形的性质:平行四边形、矩形、菱形、正方形、梯形、等腰梯形等的基本性质。
2. 四边形的判定方法。
3. 四边形的面积计算。
第五章:一次函数
1. 函数的基本概念:自变量、因变量、常数。
2. 一次函数的定义及性质。
3. 一次函数的图象表示方法。
4. 一次函数的解析式及求法。
5. 一次函数的应用:求最值、求交点等。
第六章:一元一次不等式
1. 不等式的基本性质。
2. 一元一次不等式的解法:去分母、去括号、移项合并同类项等。
3. 一元一次不等式的应用:比较大小、求解最值等。
八年级上册数学各章知识点总结
千里之行,始于足下。
八年级上册数学各章知识点总结八年级上册数学共包含11个章节,分别是:
1. 有理数与小数
- 有理数的概念与性质
- 整数、自然数、非负有理数、负有理数
- 有理数的大小比较、绝对值
- 有理数的加减法
2. 整式的加减
- 代数式的概念与计算
- 整式的加减法
3. 一次方程与整式方程
- 一次方程的概念与解法
- 整式方程的概念与解法
- 代数方程的实际应用
4. 图形的周长与面积
- 平行四边形的周长与面积
- 三角形的周长与面积
- 面积问题的应用
5. 相似与全等
- 相似的概念
- 相似三角形的性质
- 全等的概念与判定
第1页/共2页
锲而不舍,金石可镂。
6. 线性方程组
- 二元一次方程组的概念与解法
- 线性方程组实际应用
7. 线段与角
- 线段的比例与相似
- 角的概念与性质
- 多个角的运算
8. 三角形的面积
- 高的概念与性质
- 三角形面积公式
9. 几何图形的旋转
- 点与图形的旋转
- 旋转图形的性质与运算
10. 数据的分析与统计
- 统计图与样本调查
- 数据的分析与统计
11. 平面直角坐标系
- 直角坐标系的概念与性质
- 坐标的求法与距离计算
以上是八年级上册数学的知识点总结,希望对你有帮助!。
新人教版八年级上册数学各章节知识点总结(最新整理)
轴对称图形可以经过旋转得出。 用坐标轴表示轴对称:关于 x 轴对称(x,y)与(x,-y);关于 y 轴对称(x,y)与(-x,y)。 第三节等腰三角形 有两个边相等的三角形叫做等腰三角形。 等腰三角形的性质:1)等腰三角形的两个底角相等。简言之:等边对等角。
1 ap
(
a≠0,p是正
整数), 而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的;当a<0时,a-p的值可能是正也可能是负的,如
(2)2
1 (2)2
1 4
, (2)3
1 (2)3
1 8
;
④运算要注意运算顺序。 2.整式的除法 1)单项式除法单项式 单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的 指数作为商的一个因式; 2)多项式除以单项式
一般地, (a)n
a n (当n为偶数时), a n (当n为奇数时).
底数有时形式不同,但可以化成相同。 要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。 3.积的乘方法则
一般地,对于任意底数a、b与任意正整数n,有 (ab)n an bn (n为正整数)。即积的乘方,等于把积
②相同字母相乘,运用同底数的乘法法则;
③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式; ④单项式乘法法则对于三个以上的单项式相乘同样适用; ⑤单项式乘以单项式,结果仍是一个单项式。
2)单项式与多项式相乘:就是用单项式去乘多项式的每一项,再把所得的积相加。即单项式乘以多项式, 是通过乘法对加法的分配律,把它转化为单项式乘以单项式。
人教版八年级数学上册各章节知识点考点汇总
人教版八年级数学(上)知识点人教版八年级上册主要包括全等三角形、轴对称、实数、一次函数和整式的乘除与分解因式五个章节的内容。
第十一章全等三角形一.知识框架二.知识概念1.全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。
2.全等三角形的性质:全等三角形的对应角相等、对应边相等。
3.三角形全等的判定公理及推论有:(1)“边角边”简称“SAS”(2)“角边角”简称“ASA”(3)“边边边”简称“SSS”(4)“角角边”简称“AAS”(5)斜边和直角边相等的两直角三角形(HL)。
4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。
5.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).在学习三角形的全等时,教师应该从实际生活中的图形出发,引出全等图形进而引出全等三角形。
通过直观的理解和比较发现全等三角形的奥妙之处。
在经历三角形的角平分线、中线等探索中激发学生的集合思维,启发他们的灵感,使学生体会到集合的真正魅力。
第十二章 轴对称一.知识框架二.知识概念1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
2.性质: (1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
(2)角平分线上的点到角两边距离相等。
(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。
(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
(5)轴对称图形上对应线段相等、对应角相等。
3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《实数》知识点梳理及题型解析一、知识归纳(一)平方根与开平方1. 平方根的含义如果一个数的平方等于a ,那么这个数就叫做a 的平方根。
即a x =2,x 叫做a 的平方根。
2.平方根的性质与表示开平方:求一个数a 的平方根的运算。
⑷a 的双重非负性例:y x x =-+-44 得知0,4==y x⑸如果正数的小数点向右或者向左移动两位,它的正的平方根的小数点就相应地向右或向左移动一位。
区分:4的平方根为____ 4的平方根为____ ____4=4开平方后,得____3.计算a的方法⎪⎪⎪⎩⎪⎪⎪⎨⎧精确到某位小数 =非完全平方类 =完全平方类 773294 (二)立方根和开立方1.立方根的定义如果一个数的立方等于a ,呢么这个数叫做a 的立方根,记作3a2. 立方根的性质任何实数都有唯一确定的立方根。
正数的立方根是一个正数。
负数的立方根是一个负数。
0的立方根是0. 3. 开立方与立方开立方:求一个数的立方根的运算。
()a a =33a a =3333a a -=- (a 取任何数)这说明三次根号内的负号可以移到根号外面。
*0的平方根和立方根都是0本身。
(三)推广: n 次方根1. 如果一个数的n 次方(n 是大于1的整数)等于a ,这个数就叫做a 的n 次方根。
当n 为奇数时,这个数叫做a 的奇次方根。
当n 为偶数时,这个数叫做a 的偶次方根。
2. 正数的偶次方根有两个:n a ±;0的偶次方根为0:00=n ;负数没有偶次方根。
正数的奇次方根为正。
0的奇次方根为0。
负数的奇次方根为负。
(四)实 数1. 实数:有理数和无理数统称为实数 实数的分类:① 按属性分类: ② 按符号分类2. 实数和数轴上的点的对应关系:实数和数轴上的点一一对应,即每一个实数都可以用数轴上的一个点表示. 数轴上的每一个点都可以表示一个实数.2的画法:画边长为1的正方形的对角线在数轴上表示无理数通常有两种情况:①尺规可作的无理数,如2②尺规不可作的无理数 ,只能近似地表示,如π,1.010010001…… 思考:(1)-a 2一定是负数吗?-a 一定是正数吗? (2)大家都知道是一个无理数,那么-1在哪两个整数之间?(3)15的整数部分为a,小数部分为b ,则a= , b= 。
(4)判断下面的语句对不对?并说明判断的理由。
①无限小数都是无理数;②无理数都是无限小数;③带根号的数都是无理数;④有理数都是实数,实数不都是有理数;⑤实数都是无理数,无理数都是实数;⑥实数的绝对值都是非负实数;⑦有理数都可以表示成分数的形式。
3. 实数大小比较的方法(1)在实数范围内,正数和零统称为非负数。
(2)非负数有三种形式①任何一个实数a的绝对值是非负数,即|a|≥0;②任何一个实数a的平方是非负数,即a2≥0;③任何非负数的算术平方根是非负数,即0≥a(3)非负数具有以下性质①非负数有最小值零;②非负数之和仍是非负数;③几个非负数之和等于0,则每个非负数都等于0二、题型解析题型一、有关概念的识别例1.下面几个数:.1.23,1.010010001…,,3π,,,其中,无理数的个数有()A、1B、2C、3D、4【变式1】下列说法中正确的是()A、的平方根是±3B、1的立方根是±1C、=±1D、是5的平方根的相反数题型二、计算类型题例2.设,则下列结论正确的是()A. B.C. D.例3.计算:例4.先化简,再求值:11()ba b b a a b ++++,其中51+51-. 例5.若312-a 和331b -互为相反数,求ba的值。
题型三、实数非负性的应用例6.已知实数a 、b 、c 满足,2b c +2)21(-c =0,,求a+b+c 的值.例7.若111--+-=x x y ,求x ,y 的值。
例8.已知:=0,求实数a, b的值【变式1】5y2+22=xx,求x y的平方根和算术平方根。
-x++-【变式2】已知(x-6)2++|y+2z|=0,求(x-y)3-z3的值。
题型四、数形结合题例9、如图,实数a、b在数轴上的位置,化简222-a b a b()类型五、实数应用题例10.有一个边长为11cm的正方形和一个长为13cm,宽为8cm的矩形,要作一个面积为这两个图形的面积之和的正方形,问边长应为多少。
类型六、拓展提升例11.已知的整数部分为a,小数部分为b,求a2-b2的值.例12.把下列无限循环小数化成分数:①②③二次根式1、二次根式: 形如)0(≥a a 的式子。
①二次根式必须满足:含有二次根号“”;被开方数a 必须是非负数。
②非负性2、最简二次根式:满足:①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式的二次根式。
3、化最简二次根式的方法和步骤:(1)如果被开方数含分母,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。
(2)如果被开方数含能开得尽方的因数或因式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。
3、二次根式有关公式 (1))0()(2≥=a a a (2)aa =2(3)乘法公式)0,0(≥≥•=b a b a ab(4)除法公式)0,0(φb a ba b a ≥= 4、二次根式的加减法则:先将二次根式化为最简二次根式,再将被开方数相同的二次根式进行合并。
5、二次根式混合运算顺序:先乘方,再乘除,最后加减,有括号的先算括号里的。
勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2。
2.勾股定理逆定理:如果三角形三边长a,b,c 满足a 2+b 2=c 2。
,那么这个三角形是直角三角形。
3. 互逆命题:题设、结论正好相反的两个命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
(例:勾股定理与勾股定理逆定理)4.直角三角形的性质(1)直角三角形的两个锐角互余。
°(2)在直角三角形中,30的角所对的直角边等于斜边的一半。
(3)如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2。
(4)、直角三角形斜边上的中线等于斜边的一半5、常用关系式由三角形面积公式可得:AB •CD=AC •BC全等三角形知识概念1.全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。
2.全等三角形的性质: 全等三角形的对应角相等、对应边相等。
3.三角形全等的判定公理及推论有:(1)“边角边”简称“SAS”(2)“角边角”简称“ASA”(3)“边边边”简称“SSS”(4)“角角边”简称“AAS”(5)斜边和直角边相等的两直角三角形(HL)。
4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。
5.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).在学习三角形的全等时,教师应该从实际生活中的图形出发,引出全等图形进而引出全等三角形。
通过直观的理解和比较发现全等三角形的奥妙之处。
在经历三角形的角平分线、中线等探索中激发学生的集合思维,启发他们的灵感,使学生体会到集合的真正魅力。
轴对称知识概念1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
2.性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
(2)角平分线上的点到角两边距离相等。
(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。
(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
(5)轴对称图形上对应线段相等、对应角相等。
3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。
5.等腰三角形的判定:等角对等边。
6.等边三角形角的特点:三个内角相等,等于60°,7.等边三角形的判定:三个角都相等的三角形是等腰三角形。
有一个角是60°的等腰三角形是等边三角形有两个角是60°的三角形是等边三角形。
8.直角三角形中,30°角所对的直角边等于斜边的一半。
9.直角三角形斜边上的中线等于斜边的一半。
本章内容要求学生在建立在轴对称概念的基础上,能够对生活中的图形进行分析鉴赏,亲身经历数学美,正确理解等腰三角形、等边三角形等的性质和判定,并利用这些性质来解决一些数学问题。
实数)(无限不循环小数负有理数正有理数无理数⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧--⎩⎨⎧---)()32,21()32,21()()3,2,1()3,2,1,0(无限循环小数有限小数整数负分数正分数小数分数负整数自然数整数有理数、、ΛΛΛΛ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧实数()10.⎧>b1.算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么正数x 叫做a 的算术平方根,记作a 。
0的算术平方根为0;从定义可知,只有当a ≥0时,a 才有算术平方根。
2.平方根:一般地,如果一个数x 的平方根等于a ,即x 2=a ,那么数x 就叫做a 的平方根。
3.正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。
4.正数的立方根是正数;0的立方根是0;负数的立方根是负数。
实数部分主要要求学生了解无理数和实数的概念,知道实数和数轴上的点一一对应,能估算无理数的大小;了解实数的运算法则及运算律,会进行实数的运算。
重点是实数的意义和实数的分类;实数的运算法则及运算律。
5.数a 的相反数是-a ,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0())0,0(0,0>≥=≥≥=⨯b a b a b a b a ab b a第十四章、一次函数知识概念1.一次函数:若两个变量x,y 间的关系式可以表示成y=kx+b(k ≠0)的形式,则称y 是x 的一次函数(x 为自变量,y 为因变量)。
特别地,当b=0时,称y 是x 的正比例函数。
(1) (3)(2)2.正比例函数一般式:y=kx(k≠0),其图象是经过原点(0,0)的一条直线。
3.正比例函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k<0时,直线y=kx经过第二、四象限,y随x的增大而减小,在一次函数y=kx+b中:当k>0时,y随x的增大而增大; 当k<0时,y随x的增大而减小。