天线型号下倾角计算器
下倾角计算工具
说明:1.计算下倾角时请输入天线挂高和与周边基站距离
2.计算时需要判断基站所处无线环境,郊区县城按照一般城区考虑
3.设置下倾角还要考虑基站主要覆盖的区域在小区范围中的位置,距离基站较近时,可以考虑加大下倾角1-2度
4.由于下倾角的计算方法,各个规划区不同。
请大家首先判断该站点所属的规划区。
例如:如果是密集城区的站点,带入密集市区的一列,输入天线挂高、根据基站站距列表,输入与周边基站的距离,则得到下倾角。
以此类推。
5.密集市区范围:北京东四环、南二环、西三环、北四环之间区域
6.一般市区:五环内除密集市区的区域,回龙观、天通苑、机场、亦庄等区域,郊区县县城按照一般城区处理
7.郊县道路主要指北京到京外高速公路、国道、郊区县间公路以及郊区县城周边区域
426.6667。
LTE网络仿真中天线初始下倾角计算方法探讨
LTE网络仿真中天线初始下倾角计算方法探讨南作用;薛光达;宋春涛;乔云【期刊名称】《邮电设计技术》【年(卷),期】2013(000)012【摘要】讨论一种基于最近小区修正距离、挂高、技术等因素的算法,并通过无线网络仿真予以验证。
用以在网络建设中初始设置倾角参考使用。
%It discusses the algorithm based on correction distance to the nearest cell, height, technology and other factors. The results are verified by simulation of wireless network for the reference for setting initial angle of antenna in network construction.【总页数】5页(P38-42)【作者】南作用;薛光达;宋春涛;乔云【作者单位】中国联通网络技术研究院,北京100048;中国联通网络技术研究院,北京100048;中国联通网络技术研究院,北京100048;中国联通网络技术研究院,北京100048【正文语种】中文【中图分类】TN929.5【相关文献】1.Super NEC仿真计算技术在天线教学实验中的应用 [J], 赵林;柳超;朱婷婷2.现行准则下财务管理学中财务比率计算方法探讨 [J], 叶映红3.互联网+背景下虚拟仿真技术在计算机网络课程教学中的应用 [J], 吴凯4.互联网+背景下虚拟仿真技术在计算机网络课程教学中的应用 [J], 吴凯5.分布计算在机载天线辐射特性仿真分析中的应用 [J], 陈晨;张凯;郭陈江;许家栋因版权原因,仅展示原文概要,查看原文内容请购买。
天线下倾角设置参考表
天线下倾角设置参考表一、天线类型选择在移动通信网工程设计中,应该根据网络的覆盖要求、话务量分布、抗干扰要求和网络服务质量等实际情况来合理的选择基站天线。
由于天线类型的选择与地形、地物,以及话务量分布紧密相关,可以将天线使用环境大致分为五种类型:城区、密集城区、郊区、农村地区、交通干线等。
1、城区基站天线城区基站密度较高,单站预期覆盖范围较小,选择基站天线时应考虑以下几方面。
(1)为减少干扰,应选用水平半功率角接近于60度的天线。
这样的天线所构成的辐射方向图接近于理想的三叶草型蜂窝结构,与现网适配性较好,有助于控制越区切换。
如下图所示。
(2)城区基站一般不要求大范围覆盖,而更注重覆盖的深度。
由于中等增益天线的有效垂直波束相比于高增益天线较宽,覆盖半径内有效的深度覆盖范围较大,可以改善室内覆盖效果,所以选用中等增益天线较好。
(3)由于城区基站天线安装空间往往有限,所以选用双极化天线比较切合实际。
综上所述,城区基站宜选用水平半功率角为60 度左右的中等增益的双极化天线。
例如水平半功率角为65度的15dBi双极化天线。
2、密集城区基站天线密集城区基站天线的选择与一般城区基站类似。
但由于密集城区基站站距往往只有400米到600 米,在使用水平半功率角为65度的15dBi 双极化天线,且天线有效挂高35 米的情况下,天线下倾角可能设置在14.0 度到11.5 度之间。
此时如果单纯采用机械下倾的方式,倾角过大将引起水平波束变宽,干扰增大,同时上副瓣也会引入较大干扰;而采用电子式倾角天线,则可以较好的解决波形畸变的问题,产生的干扰相对较小。
所以密集城区基站选用电子式倾角的水平半功率角为60 度左右的中等增益双极化天线较为合适。
3、农村地区基站天线在农村地区,鉴于话务量较小,预期覆盖面积较大的特点,选择基站天线时应考虑以下几方面。
(1)对于CDMA网络而言,为提高定向基站两扇区天线服务交叠区间的通信质量(交叠区内有宏观分集的效果),增大交叠区面积,宜选用水平半功率角较大的天线。
下倾角的计算工具
说明:1.计算下倾角时请输入天线挂高和与周边基站距离
2.计算时需要判断基站所处无线环境,郊区县城按照一般城区考虑
3.设置下倾角还要考虑基站主要覆盖的区域在小区范围中的位置,距离基站较近时,可以考虑加
4.由于下倾角的计算方法,各个规划区不同。
请大家首先判断该站点所属的规划区。
例如:如果
5.密集市区范围:北京东四环、南二环、西三环、北四环之间区域
6.一般市区:五环内除密集市区的区域,回龙观、天通苑、机场、亦庄等区域,郊区县县城按照
7.郊县道路主要指北京到京外高速公路、国道、郊区县间公路以及郊区县城周边区域
426.6667
离基站较近时,可以考虑加大下倾角1-2度
所属的规划区。
例如:如果是密集城区的站点,带入密集市区的一列,输入天线挂高、根据基站站距列表,输入,郊区县县城按照一般城区处理
区县城周边区域
据基站站距列表,输入与周边基站的距离,则得到下倾角。
以此类推。
天线下倾角设置参考表
天线下倾角设置参考表一、天线类型选择在移动通信网工程设计中,应该根据网络的覆盖要求、话务量分布、抗干扰要求和网络服务质量等实际情况来合理的选择基站天线。
由于天线类型的选择与地形、地物,以及话务量分布紧密相关,可以将天线使用环境大致分为五种类型:城区、密集城区、郊区、农村地区、交通干线等。
1、城区基站天线城区基站密度较高,单站预期覆盖范围较小,选择基站天线时应考虑以下几方面。
(1)为减少干扰,应选用水平半功率角接近于60度的天线。
这样的天线所构成的辐射方向图接近于理想的三叶草型蜂窝结构,与现网适配性较好,有助于控制越区切换。
如下图所示。
(2)城区基站一般不要求大范围覆盖,而更注重覆盖的深度。
由于中等增益天线的有效垂直波束相比于高增益天线较宽,覆盖半径内有效的深度覆盖范围较大,可以改善室内覆盖效果,所以选用中等增益天线较好。
(3)由于城区基站天线安装空间往往有限,所以选用双极化天线比较切合实际。
综上所述,城区基站宜选用水平半功率角为60度左右的中等增益的双极化天线。
例如水平半功率角为65度的15dBi双极化天线。
2、密集城区基站天线密集城区基站天线的选择与一般城区基站类似。
但由于密集城区基站站距往往只有400米到600米,在使用水平半功率角为65度的15dBi 双极化天线,且天线有效挂高35米的情况下,天线下倾角可能设置在14.0度到11.5度之间。
此时如果单纯采用机械下倾的方式,倾角过大将引起水平波束变宽,干扰增大,同时上副瓣也会引入较大干扰;而采用电子式倾角天线,则可以较好的解决波形畸变的问题,产生的干扰相对较小。
所以密集城区基站选用电子式倾角的水平半功率角为60度左右的中等增益双极化天线较为合适。
3、农村地区基站天线在农村地区,鉴于话务量较小,预期覆盖面积较大的特点,选择基站天线时应考虑以下几方面。
(1)对于CDMA网络而言,为提高定向基站两扇区天线服务交叠区间的通信质量(交叠区内有宏观分集的效果),增大交叠区面积,宜选用水平半功率角较大的天线。
天线下倾角与覆盖距离计算工具
方法依据:
1、站点覆盖距离要进行严格控制,不要过覆盖,但也需要有一定的重叠覆盖,以上半功率角覆盖点(右图红点)覆盖到下一个站的2/3为界,计算出规划下倾角使用方法
1、根据站间距算合理的下倾角
(1)输入2个站点的经纬度,G列自动输出两个站点的站间距
(2)根据输入的J/K/L列天线挂高、垂直半功率角、现网下倾角,自动计算出近点、中点、远点覆盖距离(M、N、O列)
(3)根据G列的站间距,H列自动算出2/3站间距长度,P列根据2/3站间距、垂直半功率角和天线挂高(H、J、K列)自动算出下倾角。
天线方向角及下倾角测试方法
天线方向角及下倾角测试天线方向角测试方法:使用仪器:指南针型号:DQY-1型指南针的工作环境要求:1.在使用指南针时应距离金属物体、金属管道、导线等2米以上,以免指南针自身磁场受其他磁场干扰,无法获取准确数据。
2.应在晴好天气使用,避免空气中过多的带电粒子对指南针造成影响。
3.使用时应在远离强磁场,如变压器、旋转电机、高压走廊等。
4.应避免在太阳黑子活跃期内使用,由于该期间地球磁场会发生偏转及磁暴现象,指南针获取数据与平时要存在较大差距。
5.在测试者使用指南针时,不要在其半径1米内使用手机通话,以免影响测试数据。
第一种测试方法1.测量者在待测天线正后方一定距离(根据实际情况,尽量远离天线),选择一适当位置。
安装好三脚架并把指南针放置于三脚架托盘上,打开指南针盖并将指南针盖垂直立起与天线面板水平,调节三脚架将指南针调至水平(或测量者手持);2.视线从指南针刻度盘边上的准针通过反光镜中间的观察孔,与前边的校准针再与要测量的天线的支撑杆成直线;3.此时指南针黑针所指的刻度就是该天线的方位角;4.换另一名测试者重复上述步骤;或用另外一块表进行测量。
取得数据的平均值即第二种测试方法1.测量者在待测天线正前方一定距离(根据实际情况,尽量远离天线),选择一适当位置。
安装好三脚架并把指南针放置于三脚架托盘上,打开指南针盖并将指南针盖垂直立起与天线面板水平,调节三脚架将指南针调至水平(或测量者手持);2.从指南针刻度盘边上的准针通过反光镜中间的观察孔,与前边的校准针再与要测量的天线的支撑杆成直线;3.此时指南针白针所指的刻度就是该天线的方位角;4.换另一名测试者重复上述步骤;或用另外一块表进行测量。
取得数据的平均值即第三种测试方法1.测量者在待测天线板面垂直方向一定距离(根据实际情况,尽量远离天线),选择一适当位置。
安装好三脚架并把指南针放置于三脚架托盘上,打开指南针盖并将指南针盖垂直立起与天线面板侧面水平,调节三脚架将指南针调至水平(或测量者手持);2.指南针刻度盘边上的准针通过反光镜中间的观察孔,与前边的校准针再与要测量的天线的支撑杆成直线;3.此时指南针黑针所指的刻度加或减90度(在面向天线正面逆时针一侧加90度,顺时针减90度)就是该天线的方位角;4.换另一名测试者重复上述步骤;或用另外一块表进行测量。
天线下倾角计算
下倾角=
站间距
站高
1097
6655515129877662014121098772517141210988302016131210994025201614131211503024201715141260
34
27
23
20
17
16
14
由距离算倾角射灯参数
定向天线参数站高(m)45站高(m)30距离(m)65距离(m)
381垂直波瓣宽度30垂直波瓣宽度6下倾角49.71275
下倾角7.5 6.5 5.5远点
郊区工业园区密集城区
上式是将天线的主瓣方向对准小区边缘时得出的,在实际的调整工作中,一般在由此得出的俯仰角角度的基础上再
上述的LTE对于网络结构的基本要求并不是绝对的,需要和实际的具体场景结
表1 理论下倾角
450其中:H-站高、D-最近站间距、b-天线的垂直波瓣宽度(可参见天线文件)
理论下倾角计算公式:
150200250300350400
5
4465566577687610971210813
12
9
由倾角算距离定向天线参数站高66水平覆盖距离站高(m)40楼间距D 85-246.315
倾角8垂直波瓣宽度50垂直波瓣宽度6下倾角10Dmin(m)########垂直覆盖距离82.29332
站高以下Dmax(m)457.2380.6325.8
82.29332
超过站高
郊区工业园区密集城区
由此得出的俯仰角角度的基础上再加上1-2度,使信号更有效地覆盖在本小区之内。
射灯垂直覆盖距离
场景结合起来。
500600800(可参见天线文件)。
天线下倾角的确定
天线下倾角的确定天线倾角的确定已知条件--天线高度H,所希望得到的覆盖半径R,天线垂直平面的半功率角A。
需确定天线倾角B。
BHA/2CRtg(B-A/2)=H/R=>B=arctg(H/R)+A/2说明:不考虑路径损耗,D点功率电平是C点的一半,即小3dB。
由此计算覆盖半径不完全合理。
但是厂家只提供半功率角指标。
实际作天线倾角时,比B值大1-2度更合理些。
上式同样表明天线高度与小区覆盖半径的关系。
D例:设高度=15,距离=72,A为天线垂直面半功率角为8度(具体看天线型号),计算结果为:arctg(15/72)=0.2050.205*57.296=11.74arctg(15/72)+A/2=0.205+A/2=11.74+4=15.74度(计算式中的57.296=1弧度. 1角度=180/∏=57.296度,0.205为弧度值,转换为角度:0.205*57.296=11.74),arctg(15/72)=0.205(这个公式算出来的天线主瓣是覆盖在小区边缘的,即覆盖在72米处,为控制小区覆盖范围需加上天线垂直面半功率角/2,再加上1-2度才能把信号完全控制在小区覆盖范围内)自由空间损耗公式计算:LS(dB)=32.45+20lgf(MHZ)+20lgd(KM)900(MHZ)计算结果:=20lg(4∏/C)+20lgf(MHZ)+20lgd(KM)=20lg(4∏/3)-160+119.08+20lgd+60=12.44+20lgd+19.08=31.52+20lgd1800(MHZ)计算结果:=20lg(4∏/C)+20lgf(MHZ)+20lgd(KM)=20lg(4∏/3)-160+125.1+20lgd+60=12.44+ 25.1+20lgd=37.5+20lgd。
天线下倾角计算、天线参数、天线隔离度小工具
天线倾角计算小工具
以上计算的倾角没有考虑原有基站高度和倾角(因为联通提供的信息都不准假设均匀覆盖,考虑1/3的重叠区域计算出需要新建基站需要覆盖的距离,新站割接入网后,需要进行网络优化,原有基站的一些
天线的垂直波束宽度15dBi和17dBi的天线是不一样的,我做了修正。
需要覆盖距离
414
1440
1500
300
2100
972
ogleearth直接拉出)
和倾角(因为联通提供的信息都不准,全部是6度和3度,没有意义)
出需要新建基站需要覆盖的距离,再求反tg;作为初步估算。
的一些情况比如倾角会发生变化,仅供参考。
线是不一样的,我做了修正。
然后拆成两部分,你就按总下倾角12°及以下的机械倾角统一定为6°,12°以上的机械倾
然后总下倾角减去机械倾角就是电子倾角了
机械倾角统一定为8°。
优秀科技成果上报申请正文-基站天线下倾角计算工具
基站天线下倾角自动计算工具一、项目背景简介在GSM通信系统建设初期,为了降低干扰,提高网络质量,调整频点就基本可以解决问题。
然而,随着移动通信行业的发展,网络规模和基站密度的不断加大,基站间的干扰也逐步加大,当网络规模和基站密度增加到一定程度后,单靠频率规划已经很难或不能满足载噪比了,因此合理并且有效地调整天线的下倾角也就成了重要措施之一。
以前使用的天线调整工具都是一次只能对一个天线进行计算的,不适合大批量调整时的天线下倾角计算工作,而面对数以千计的天线数量,没有批量计算工具,该工作确实难以进行。
在此形式下,我们通过思索和探讨,开发了基站天线下倾角计算工具。
该工具的开发主要依据基站的经纬度、天线挂高、切换关系、海拔高度等数据。
根据经纬度计算处地球上任意两点间的距离作为两个基站间的距离,对基站间距、天线挂高、覆盖距离等使用反三角函数计算出天线下倾角。
通过此工具,可以方便地将一个BSC下的基站天线的下倾角进行计算,避免了以前的工具逐个计算麻烦,适应了大批量计算和调整的情况,而且,该工具还根据所小区的每个切换关系计算出一个天线下倾角度,不同的切换关系有不同的下倾角度。
该项目完成后,我们使用次工具对一个BSC下的基站天线进行重新调整,调整完成后,该BSC的干扰降低话音质量上升明显,掉话率下降明显,过覆盖情况已经消除,切换成功率大幅度提高。
二、项目技术方案的详细阐述1.设计思路利用基站的经纬度,计算出两个基站间距,继而确定覆盖半径,再根据天线挂高和覆盖半径计算出天线的下倾角。
2.详细说明1 优化工具的思路假设某目标小区天线主瓣波束与地平面的关系可以用以下几何图形表示,其中所需覆盖半径为D(m),天线高度为H(m),倾角为α,垂直半功率角为β,如图1,所示:图1:天线下倾角计算图上图反映出,当天线倾角为0度时,天线波束主瓣即主要能量沿水平方向辐射;当天线下倾α时,主瓣方向的延长线最终必将与地面的一点(A点)相交,由于天线在垂直方向有一定的波束宽度,因此在A点往B点方向,仍会有较强的能量辐射;根据天线技术的性能,在半功率角β内,天线增益下降缓慢,超过半功率角后,天线增益(特别是上波瓣)迅速下降,因此在考虑天线倾角大小时可以认为半功率角延长线到地面的交点(B点)内为该天线的实际覆盖范围。
天线下倾角计算工具
Allgon Allgon Argus Deltec Deltec Andrew Andrew Andrew Andrew Andrew Andrew Andrew Andrew RFS RFS RFS RFS RFS RFS RFS MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB
Page 5
377530765.xls
7.5 7.5 7.5 7.5 7.5 10 7.5 10 10 7.5 8 30 13 7 30 13 10 13 6 8.5 6.5 8.5 10 7 6.5 6.7 27 8.5 6.5 6.5 6.5 6.5 6.7 27 14 7 6.5 6.5 6.5 14 10 7 9 7 9.5 13 6.5 13 8.5 13 8.5 MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB 海天 海天 海天 海天 海天 海天 海天 海天 海天 海天 海天 海天 海天 海天 海天 海天 海天 海天 海天 海天 海天 海天 海天 海天 海天 海天 海天 海天 海天 海天 海天 海天
Antenna Height
Dmin (m) Dmax (m)
e
Page 1
377530765.xls
AM-X-CB-15 FX-X-CB-17 AM-X-CB-15 AM-X-CB-17 FX-X-CB-15
Page 2
377530765.xls
rwa80017 rwa80016 K-730376 K-730378 a-909015 ap906516 K-736347 rwa80014 k-739622 PCSD18-06516-2D bcd87010 cts09-06016-0d MTPA-880-S8-RK7-H MTPA-880-S8-R D100-0005-0042 D100-0005-0162 CTS08G-06515-0DM CTS08G-06515-0D CTS08G-09014-0D CTS08G-09014-0DM CTS09-09015-0DM MPTA880-S8-RK7-H RWA80016N RWA80017NE CGDS7217041 CGDS7218051 CGDS7330001 CGDS7255041 CGDS725504 CGDS7233041 CGDS7247031 CGDS7248021 CGDSCTS08G090140DM CGDSPCSD18065160DM CGDSPCSD18090150DM CGDS739622S CGDS739648S CGDS739623S CGDS739638S CGDS739494S CGDSMTPA880S4RK7H CGDSPCPA1795S8RR7C PCSD18-06516-2D K-739623 A-8065160D A-8065130D
无线网络优化使用小工具
天线下倾角的计算方法
一、基础理论
1、定义
天线下倾角=机械下倾角+电子下倾角
机械下倾角:通过天线的上下安装件来调整的,这种方式是以安装抱杆为参照物,与天线形成夹角来计算的。
电子下倾角:通过改变共线阵天线振子的相位,改变垂直分量和水平分量的幅值大小,改变合成分量场强强度,从而使天线的垂直方向性图下倾
2、理论计算
已知:H--天线的高度, D--小区的覆盖半径, β-天线的垂直平面半功率角, P—预制下倾角,为可选项,计算α--天线的俯仰角
答:α=arctg(H/D)+β/2-{P}
波束宽度分为水平波束宽度和垂直波束宽度,定义如下:
水平波束宽度:在水平方向上,在最大辐射方向两侧,辐射功率下降3dB 的两个方向的夹角。
垂直波束宽度:在垂直方向上,在最大辐射方向两侧,辐射功率下降3dB 的两个方向的夹角。
在雷达气象中,波束宽度定义为:波束两个半功率点之间的夹角。
与天线增益有关,一般天线增益越大,波束就越窄,探测角分辨率就越高。
附件为实用计算工具。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15.7222574 4583.54601 15.0115484 1527.53837 14.3521269 916.150622 13.7382735 653.994219 13.1650853 508.248189 12.6283343 415.415883 12.1243557 351.075494 11.6499564 303.830165 11.2023417 267.64625 10.7790547 239.030575 10.3779268 215.820687 9.99703605 196.606281 9.63467344 180.42834 9.28931375 166.611991 8.95959143 154.668524 8.6442801 144.23534 8.34227515 135.037737
农村
2865
7° 25 m Dmax (m)
2865
8° 25 m Dmax (m)
2865
6° 35 m Dmax (m) 市区
1002
7° 35 m Dmax (m)
Page 1
253929703.xls
5.5
221
1002
8° 35 m Dmax (m)
垂直波瓣宽度(3dB带宽) = 天线安装高度(m) = 下倾角 Dmin (m) 6 198
Page 3
253929703.xls 7 垂直波瓣宽度(3dB带宽) = 7° 9 天线安装高度(m) = 40 m 6.5 覆盖距离 6.5 下倾角 Dmin (m) Dmax (m) 6 0 653.994219 infinite 8.5 1 18.2356235 infinite 7 14 15 7 10 8.5 8 8 8 8 9 9 9.5 9.5 6 8 9 7 6 13 10.8 9 9 11 7 5.4 9 7.5 7.5 10 12 12 9 6 6 7.5 7 10 7 12.5 8.5 12.5 8 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 17.325608 16.4909666 infinite infinite 垂直波瓣宽度(3dB带宽) = 天线安装高度(m) = 下倾角 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
天线型号 800/900-30-20D ACE-15-65 ACS-13-90B ACS-15-65B
Page 2
253929703.xls
AM-X-CB-15-65-00T AM-X-CB-17-65-00T AM-X-CG-15-65-00T AM-X-CG-17-65-00T CCA-108F CCA-108FB DB809KE-XC FX-X-CB-17-65-00T FX-X-CB-17-65-03T FX-X-CB-17-65-06T FX-X-CB-17-65-09T HTDBS 096817(3) HTQ-08-11(3)
1002
Байду номын сангаас
垂直波瓣宽度(3dB带宽) = 7° 天线安装高度(m) = 55 m 覆盖距离 下倾角 Dmin (m) Dmax (m) 0 899.242051 infinite 1 698.84126 infinite 2 571.196839 infinite 3 482.728805 infinite 4 417.766476 6302.37576 5 368.013593 2100.36526 6 328.66704 1259.70711 7 296.753445 899.242051 8 270.333637 698.84126 9 248.088968 571.196839 10 229.091487 482.728805 11 212.66922 417.766476 12 198.323593 368.013593 13 185.676888 328.66704 14 174.437714 296.753445 15 164.377673 270.333637 16 155.315209 248.088968 17 147.104182 229.091487 18 139.625634 212.66922 19 132.781746 198.323593 20 126.49134 185.676888
Page 4
253929703.xls
CPX308DR-CI CTS08G-09014-ODM CPX308BR-CI
HTDBS089017
apxv906514 AP869014-0T0
8.5 8.96 8.5 7 9 9 垂直波瓣宽度(3dB带宽) = 7° 天线安装高度(m) = 75 m 覆盖距离 下倾角 Dmin (m) Dmax (m) 0 1226.23916 infinite 1 952.965355 infinite 2 778.904781 infinite 3 658.266552 infinite 4 569.681558 8594.14876 5 501.836718 2864.13445 6 448.182327 1717.78242 7 404.663788 1226.23916 8 368.636777 952.965355 9 338.303138 778.904781 10 312.397483 658.266552 11 290.003482 569.681558 12 270.441263 501.836718 13 253.195757 448.182327 14 237.86961 404.663788 15 224.151372 368.636777 16 211.793466 338.303138 17 200.596612 312.397483 18 190.398592 290.003482 19 181.066017 270.441263 20 172.488191 253.195757 垂直波瓣宽度(3dB带宽) = 天线安装高度(m) = 下倾角 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
65 65 65 65 360 360 360 65 65 65 65
7.5 7 14 7 9 9 9 7 7 7 7
15 17 15 17 9.5 9.5 11 17 17 17 17
Page 6
253929703.xls 垂直波瓣宽度(3dB带宽) = 7° 天线安装高度(m) = 50 m 覆盖距离 下倾角 Dmin (m) Dmax (m) 0 817.492774 infinite 1 635.310237 infinite 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 519.269854 438.844368 infinite infinite 垂直波瓣宽度(3dB带宽) = 天线安装高度(m) = 下倾角 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
253929703.xls 垂直波瓣宽度(3dB带宽) = 天线安装高度(m) = 天线型号(可选) = 覆盖距离 下倾角 Dmin (m) Dmax (m) 0 668 infinite 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
6° 35 m Vertical Beamwidth
6° 25 m Dmax (m)
Antenna Height
Dmin (m) Dmax (m)
垂直波瓣宽度(3dB带宽) = 天线安装高度(m) = 下倾角 Dmin (m) 3.5 219 垂直波瓣宽度(3dB带宽) = 天线安装高度(m) = 下倾角 Dmin (m) 4 190 垂直波瓣宽度(3dB带宽) = 天线安装高度(m) = 下倾角 Dmin (m) 4.5 167 垂直波瓣宽度(3dB带宽) = 天线安装高度(m) = 下倾角 Dmin (m) 5 249 垂直波瓣宽度(3dB带宽) = 天线安装高度(m) = 下倾角 Dmin (m)
垂直波瓣宽度(3dB带宽) = 7° 天线安装高度(m) = 45 m 覆盖距离 Dmin (m) Dmax (m) 735.743496 infinite 571.779213 infinite 467.342869 394.959931 infinite infinite
341.808935 5156.48926 301.102031 1718.48067 268.909396 1030.66945 242.798273 735.743496 221.182066 571.779213 202.981883 467.342869 187.43849 394.959931 174.002089 341.808935 162.264758 301.102031 151.917454 268.909396 142.721766 242.798273 134.490823 221.182066 127.07608 202.981883 120.357967 187.43849 114.239155 174.002089 108.63961 162.264758 103.492915 151.917454
501 400 333 285 249 221 198 180 165 152 140 131 122 114 108 102 96 91 87 82
infinite infinite infinite 2005 1002 668 501 400 333 285 249 221 198 180 165 152 140 131 122 114
rwa80017 rwa80016 K-730376 K-730378 a-909015 ap906516 K-736347 rwa80014 k-739622 PCSD18-06516-2D bcd87010 cts09-06016-0d MTPA-880-S8-RK7-H MTPA-880-S8-R D100-0005-0042 D100-0005-0162 CTS08G-06515-0DM CTS08G-06515-0D CTS08G-09014-0D CTS08G-09014-0DM CTS09-09015-0DM MPTA880-S8-RK7-H RWA80016N RWA80017NE CGDS7217041 CGDS7218051 CGDS7330001 CGDS7255041 CGDS725504 CGDS7233041 CGDS7247031 CGDS7248021 CGDSCTS08G090140DM CGDSPCSD18065160DM CGDSPCSD18090150DM CGDS739622S CGDS739648S CGDS739623S CGDS739638S CGDS739494S CGDSMTPA880S4RK7H CGDSPCPA1795S8RR7C PCSD18-06516-2D K-739623 A-8065160D A-8065130D a906016 CTSD08-06513 CTSD08-06515