离散数学第七章图的基本概念知识点总结docx

合集下载

离散数学 7-1图概念7-2路与回路

离散数学 7-1图概念7-2路与回路
若一条路中所有的边e1, …, en均不相同,称作迹 。 若一条路中所有的结点v0, v1,…, vn均不相同,称作通路 。 闭的通路,即除v0=vn之外,其余结点均不相同的路,称作圈。
例如
路:v1e2v3e3v2e3v3e4v2e6v5e7v3 迹:v5e8v4e5v2e6v5e7v3e4v2 通路:v4e8v5e6v2e1v1e2v3
学习本节要熟悉如下术语(22个): 路、 路的长度、 回路、 迹、 通路、 圈、 割点、
连通、连通分支、 连通图、 点连通度、
点割集、
边割集、 割边、 边连通度、 可达、 弱分图、
单侧连通、 强连通、 弱连通、 强分图、 单侧分图 掌握5个定理,一个推论。
7-2 路与回路



无向图的连通性
7-1 图的基本概念


图的定义
点的度数
特殊的图 图同构
三、特殊的图
1、多重图 定义7-1.4:含有平行边的图称为多重图。 2、简单图:不含平行边和环的图称为简单图。 3、完全图 定义7-1.5:简单图G=<V,E>中,若每一对结点 间均有边相连,则称该图为完全图。 有n个结点的无向完全图记为Kn。 无向完全图:每一条边都是无向边 不含有平行边和环 每一对结点间都有边相连
3、图的分类:
①无向图:每条边均为无向边的图称为无向图。 ②有向图:每条边均为有向边的图称为有向图。
③混合图:有些边是无向边,有些边是有向边的图称
为混合图。
v1 (孤立点) v5 V1’ v1 环
v2
v4 v3 (a)无向图
V2’
V3’ (b)有向图 V4’
v2
v4 v3 ( c ) 混合图
4、点和边的关联:如ei=(u,v)或ei=<u,v>称u, v与ei关联。 5、点与点的相邻:关联于同一条边的结点称为邻 接点。

离散数学第七章图的基本概念知识点总结docx

离散数学第七章图的基本概念知识点总结docx

图论部分第七章、图的基本概念7.1无向图及有向图无向图与有向图多重集合:元素可以重复出现的集合无序积:A,、B={(x,y) | x A y B}定义无向图G=<V,E>,其中(1)顶点集V二一,元素称为顶点(2)边集E为V 7的多重子集,其元素称为无向边,简称边•例如,G=<V,E>如图所示,其中V={V1, V2,…,V5}, E={(V1,V1),(V1,V2),(V2,V3),(V2,V3),(V2,V5),(V1,V5),(V4,V5)},定义有向图D=<V,E>,其中(1)V同无向图的顶点集,元素也称为顶点(2)边集E为V V的多重子集,其元素称为有向边,简称边•用无向边代替D的所有有向边所得到的无向图称作D的基图,右图是有向图, 试写出它的V和E注意:图的数学定义与图形表示,在同构(待叙)的意义下是一一对应的通常用G表示无向图,D表示有向图,也常用G泛指无向图和有向图,用e k表示无向边或有向边.V(G), E(G), V(D), E(D): G 和D 的顶点集,边集.n阶图:n个顶点的图有限图:V, E都是有穷集合的图零图:E=..平凡图:1阶零图空图:V=.顶点和边的关联与相邻:定义设e k=(v i,v j)是无向图G=<V,E>的一条边,称v i,v j 为e k 的端点,e k与v i (v j)关联.若v i = v j,则称e k与v i (v j)的关联次数为1;若v i = v j, 则称e k为环,此时称e k与v i的关联次数为2;若v i不是e k端点,则称e k与v i的关联次数为0.无边关联的顶点称作孤立点.定义设无向图G=<V,E> , v i,v j V, e k,e i E,若(v i,v j) E,则称v i,v j相邻;若e k,e i 至少有一个公共端点,则称e k,e i相邻.对有向图有类似定义.设e k= v i,v j是有向图的一条边,又称v i是e k的始点,v j是e k的终点,v i邻接到v j, v j邻接于v i.v 的入度d _(v): v 作为边的终点次数之和邻域和关联集邻域和关联集设无向图G 灼IX®,的邻域畀©)=例气〒£伍”如司①八炕]、的R ]邻域 V(v)=A r (v)U{v}[的关轶集J®)=3E £(G)2与咲联}设有向图D 於玖Q'的百堆乎集册护側進E (D)AV 惚Y E(G/\T '的先極元集 Zy (i-r («kcl ;(P )A<a s r>C E(Q AW } *的邻域 A^(v )=r ;(v )UJK (v )、的团邻域 哥何fV 』(i ・)u 阴顶点的度数 设G=<V,E>为无向图,v V,v 的度数(度)d(v): v 作为边的端点次数之和悬挂顶点:度数为1的顶点悬挂边:与悬挂顶点关联的边G 的最大度:(G)=max{d(v)| v V}G 的最小度 (G)=min{d(v)| v V}例如 d(v 5)=3, d(v 2)=4, d(v i )=4, :(G)=4,、(G)=1,v 4是悬挂顶点,e 7是悬挂边,e i 是环设D=<V,E>为有向图,v V,v 的出度d +(v): v 作为边的始点次数之和v 的度数(度)d(v): V 作为边的端点次数之和d(v)= d +(v)+ d -(v)D的最大出度+(D),最小出度、+(D)最大入度厶TD),最小入度_(D)最大度. (D),最小度、(D)例如d+(a)=4, d-(a)=1, d(a)=5,d+(b)=O, d-(b)=3, d(b)=3,+(D)=4, +(D)=0, :"(D)=3,"(D)=1, (D)=5, (D)=3.握手定理定理任意无向图和有向图的所有顶点度数之和都等于边数的2倍,并且有向图的所有顶点入度之和等于出度之和等于边数•证G中每条边(包括环)均有两个端点,所以在计算G中各顶点度数之和时,每条边均提供2度,m条边共提供2m度.有向图的每条边提供一个入度和一个出度,故所有顶点入度之和等于出度之和等于边数推论在任何无向图利有向图中,奇度顶点的个数必为肉数一证设空彷任意團,令曲伪翻!叫叫V|t6l^(v)为朗;则FlU V^V,卩小岭虫,由握手立理可知hH ■工兀)-XrfM + E rf W" M 心由于如罗W)均为他4,所以卩2)也为偶埶但因为吁中顶融齢防奇数,所以强诡为儼L图的度数列设无向图G的顶点集V={v i, V2, ••»*}G 的度数列:d(v i), d(V2),…d (v n)如右图度数列:4,4,2,1,3设有向图D的顶点集V={V1, V2,…v n}D 的度数列:d(v i), d(V2), •••d (v n)D 的出度列:d+(v i), d+(v2), --d+(v n)D 的入度列:d_(v i), d _(v2),…d Iv n)如右图度数列:5,3,3,3出度列:4,0,2,1入度列:1,3,1,2例1 (3,3,3,4), (2,3,4,6,8)能成为图的度数列吗?解不可能•它们都有奇数个奇数•例2已知图G有10条边,4个3度顶点,其余顶点的度数均小于等于2,问G 至少有多少个顶点?解设G有n个顶点•由握手定理,4 3+2 (n-4)_2 10解得n _8例3证明不存在具有奇数个面且每个面都具有奇数条棱的多面体.证用反证法.假设存在这样的多面体,作无向图G=<V,E>, 其中V={v | v为多面体的面},E={(u,v) | u,v V u 与v 有公共的棱u=v}.根据假设,|V|为奇数且- v V, d(v)为奇数.这与握手定理的推论矛盾.多重图与简单图定义(1)在无向图中,如果有2条或2条以上的边关联同一对顶点,则称这些边为平行边,平行边的条数称为重数.⑵在有向图中,如果有2条或2条以上的边具有相同的始点和终点,则称这些边为有向平行边,简称平行边,平行边的条数称为重数.(3) 含平行边的图称为多重图.(4) 既无平行边也无环的图称为简单图.注意:简单图是极其重要的概念匕和勺是平行边蓮数为2临和旳不是平行边不是简单图图的同构定义 设G i =<V i ,E i >, G 2=<V 2,E 2>为两个无向图(有向图),若存在双射函数f: V i >V 2,使得对于任意的V i ,V j V i ,(V i ,V j )・ E l ( <V i ,V j > E i )当且仅当(f(V i ),f(V j )) E 2( Vf(V i ),f(V j )> E 2), 并且,(Vi ,V j )( <V i ,V j >)与(f(V i ),f(V j ))( <f(V i ),f(V j )>) 的重数相同,则称G i 与G 2是同构的,记作G i 三G 2.几点说明:图之间的同构关系具有自反性、对称性和传递性 .能找到多条同构的必要条件,但它们都不是充分条件:① 边数相同,顶点数相同② 度数列相同(不计度数的顺序)③ 对应顶点的关联集及邻域的元素个数相同,等等若破坏必要条件,则两图不同构至今没有找到判断两个图同构的多项式时间算法令和◎是平行边 重数为2 不是例1试画岀4阶3条边的所柯E同构的无向简单图 E K R例2判断下述每一对圉是否同构:度教列不同不同构不同构入(岀】度列不⑶度数列相同但不同构为什么?完全图:n阶无向完全图K n:每个顶点都与其余顶点相邻的n阶无向简单图.简单性质:边数m=n(n-1)/2,「=;=n-1n阶有向完全图:每对顶点之间均有两条方向相反的有向边的n阶有向简单图•简单性质:边数m=n(n-1),八=:=2(n-1),A+=6+=A_=6 _=n_1(1)为§阶完全图乓⑵为3阶有向完全图(3)称为彼得森图(1) ⑵子图:定义设G=<V,E>, G =<V ,E >是两个图(1)若V匸V且E亠E,则称G为G的子图,G为G 的母图,记作G G⑵若G G且V =V,则称G为G的生成子图⑶若V V或E E,称G为G的真子图⑷设V V且V ,以V •为顶点集,以两端点都在V中的所有边为边集的G的子图称作V 的导出子图,记作G[V ]⑸设E E且E ,以E为边集,以E中边关联的所有顶点为顶点集的G的子图称作E的导出子图,记作G[E ]补图:定义设G=<V,E>为n阶无向简单图,以V为顶点集,所有使G成为完全图K n 的添加边组成的集合为边集的图,称为G的补图,记作匚. 若Gm ■,则称G是自补图.例对上一页K4的所有非同构子图,指出互为补图的每一对子图,并指出哪些是自补图.7.2通路、回路、图的连通性简单通(回)路,初级通(回)路,复杂通(回)路定义给定图G=<V,E> (无向或有向的),G中顶点与边的交替序列-=v o e i v i e2 …e i v i,(1)若_i(1半I), V i—1, V i是e i的端点(对于有向图,要求V i-1是始点,V i是终点),则称】为通路,V0是通路的起点,V I是通路的终点,I为通路的长度.又若V0=v l,则称丨为回路•⑵若通路(回路)中所有顶点(对于回路,除V O=V l)各异,贝U称为初级通路(初级回路).初级通路又称作路径,初级回路又称作圈.(3)若通路(回路)中所有边各异,则称为简单通路(简单回路),否则称为复杂通路(复杂回路).说明:表示方法①用顶点和边的交替序列(定义),如-=v o e i v i e2…e i v i②用边的序列,如-=e i e2…e i③简单图中,用顶点的序列,如】=V0V1…v i④非简单图中,可用混合表示法,如-=v o v i e2v2e5v3v4v5环是长度为1的圈,两条平行边构成长度为2的圈.在无向简单图中,所有圈的长度一3;在有向简单图中,所有圈的长度一2.在两种意义下计算的圈个数①定义意义下在无向图中,一个长度为1(1一3)的圈看作21个不同的圈.如v o v i v2v o ,v i v2v o v i , v2v0v l v2, v0v2v l v0 , v l v0v2v1 , v2v l v0v2 看作6 个不同的圈.在有向图中,一个长度为l(l—3)的圈看作l个不同的圈.②同构意义下所有长度相同的圈都是同构的,因而是1个圈.定理在n阶图G中,若从顶点v i到v j (v i=v j)存在通路,则从v i到v j存在长度小于等于n-1的通路.推论在n阶图G中,若从顶点v到v j (v i=v j)存在通路,则从v i到v j存在长度小于等于n—1的初级通路.定理在一个n阶图G中,若存在w到自身的回路,则一定存在v i到自身长度小于等于n的回路.推论在一个n阶图G中,若存在v i到自身的简单回路,则一定存在长度小于等于n的初级回路.无向图的连通性设无向图G=<V,E>,u与V连通:若u与V之间有通路.规定u与自身总连通.连通关系R={<u,v>| u,v V且u、v}是V上的等价关系连通图:任意两点都连通的图.平凡图是连通图.连通分支:V关于连通关系R的等价类的导出子图设V/R={V I,V2,…丫心G[V i], G[V2], ••G[V k]是G的连通分支,其个数记作P(G)=k.G是连通图二p(G)=1短程线与距离u与V之间的短程线:u与V之间长度最短的通路(u与V连通)u与V之间的距离d(u,v): u与V之间短程线的长度若u与v不连通,规定d(u,v)= g性质:d(u,v)_O,且d(u,v)=O := u=vd(u ,v)=d(v,u)d(u ,v)+d (v,w) _d(u ,w)点割集与割点记G-v:从G中删除v及关联的边G-V :从G中删除V中所有的顶点及关联的边G-e :从G中删除eG-E:从G中删除E 中所有边定义设无向图G=vV,E>, V V,若p(G-V )>p(G)且-V V , p(G-V )=p(G),则称V •为G的点割集.若{v}为点割集,则称v为割点.刑仙旳h轴杲点割集必星割虐.{%叫;是点剖隼吗?边割集与割边(桥)定义设无向图G=<V,E>, E E,若p(G-E )>p(G)且-E - E , p(G-E )=p(G),则称E为G的边割集.若{e}为边割集,则称e 为割边或桥.在上一页的图中,{e i,e2},{e i,e3,e5,e6},{e8}等是边割集,e8是桥,{e7,e9,e5,e6}是边割集吗?几点说明:K n无点割集n阶零图既无点割集,也无边割集.若G连通,E为边割集,则p(G-E )=2若G连通,V为点割集,贝U p(G-V )_2有向图的连通性设有向图D=<V,E>u可达V: u到V有通路.规定u到自身总是可达的.可达具有自反性和传递性D弱连通(连通):基图为无向连通图D单向连通:-u,v・V,u可达v或v可达uD强连通:-u,v • V,u与v相互可达强连通=单向连通=弱连通定理(强连通判别法)D强连通当且仅当D中存在经过每个顶点至少一次的回路定理(单向连通判别法)D单向连通当且仅当D中存在经过每个顶点至少一次的通路例下图⑴强连通,(2惮连通,(3}弱连诵(1) (2) ⑶有向图的短程线与距离u到v的短程线:u到v长度最短的通路(u可达v) u与v之间的距离d<u,v>: u到v 的短程线的长度若u不可达v,规定d<u,v>=x.性质:d<u,v>_0,且d<u ,v>=0 = u=v d<u,v>+d<v,w> -d<u ,w>注意:没有对称性7.3图的矩阵表示无向图的关联矩阵定义设无向图G=<V,E>, V={v i, V2,…“*}, E={e i, e2,…,e m},令m ij为v i与e j 的关联次数,称(m ij)n m为G的关联矩阵,记为M(G).性质(1)每一列恰好有两个1或一个2(2) tf-U"⑴«)(+)平行边的列相同有向图的关联矩阵定义设无环有向图D=<V,E>, V={v1, v2, ••»・},E={e1, e2, …e m},令1 片为勺的始点tn严0 »y与弓不关联片为弓的终点则称臨儿伪。

《离散数学》第七章 图的基本概念 讲稿

《离散数学》第七章 图的基本概念 讲稿

7.1 无向图及有向图一、本节主要内容无向图与有向图顶点的度数握手定理简单图完全图子图补图二、教学内容无序对: 两个元素组成的二元组(没有顺序),即无论a,b是否相同,(a,b )=(b, a )无序积: A与B 为两个集合,A&B={(x,y) |x∈A∧y∈B}例A={a1, a2}, B={b1, b2}A&B={(a1 , b1 ), (a1 , b2 ) ,(a2 , b1 ) ,(a2 , b2 )}A&A={(a1 , a1 ), (a1 , a2 ) ,(a2 , a2 )}多重集合: 元素可以重复出现的集合无向图与有向图定义无向图G=<V,E>, 其中(1) V∅≠为顶点集,元素称为顶点(2) E为V&V的多重子集,其元素称为无向边,简称边.例如, G=<V,E>如图所示,其中V={v1, v2, …,v5},E={(v1,v1), (v1,v2), (v2,v3), (v2,v3), (v2,v5), (v1,v5), (v4,v5)}定义无向图G=<V,E>, 其中(1) V≠∅为顶点集,元素称为顶点(2) E为V&V的多重子集,其元素称为无向边,简称边.例如, G=<V,E>如图所示,其中V={v1, v2, …,v5},E={(v1,v1), (v1,v2), (v2,v3), (v2,v3), (v2,v5), (v1,v5), (v4,v5)} 无向图与有向图(续)定义有向图D=<V,E>, 其中(1) V同无向图的顶点集, 元素也称为顶点(2) E为V⨯V的多重子集,其元素称为有向边,简称边.用无向边代替D的所有有向边所得到的无向图称作D的基图右图是有向图,试写出它的V和E无向图与有向图(续)通常用G表示无向图, D表示有向图,也常用G泛指无向图和有向图,用ek表示无向边或有向边.V(G), E(G), V(D), E(D): G和D的顶点集, 边集.n 阶图: n个顶点的图有限图: V, E都是有穷集合的图零图: E=∅平凡图: 1 阶零图顶点和边的关联与相邻定义设ek=(vi, vj)是无向图G=<V,E>的一条边, 称vi, vj为ek的端点, ek与vi ( vj)关联.若vi ≠ vj, 则称ek与vi ( vj)的关联次数为1;若vi = vj, 则称ek为环, 此时称ek与vi 的关联次数为2;若vi不是ek端点, 则称ek与vi 的关联次数为0.无边关联的顶点称作孤立点.定义设无向图G=<V,E>, vi,vj∈V,ek,el∈E,若(vi,vj) ∈E, 则称vi,vj相邻;若ek,el至少有一个公共端点, 则称ek,el相邻.对有向图有类似定义. 设ek=〈vi,vj〉是有向图的一条边, vi,vj是ek端点,又称vi是ek的始点, vj是ek的终点,vi邻接到vj, vj邻接于vi.邻域和关联集设无向图G , v ∈V(G)v 的邻域 N(v)={u|u ∈V(G)∧(u,v)∈E(G)∧u ≠v} v 的闭邻域 = N(v)∪{v} v 的关联集 I(v)={e|e ∈E(G)∧e 与v 关联} 设有向图D, v ∈V(D)v 的后继元集 ={u|u ∈V(D)∧<v,u>∈E(G)∧u ≠v}v 的先驱元集 ={u|u ∈V(D)∧<u,v>∈E(G)∧u ≠v}v 的邻域v 的闭邻域顶点的度数设G=<V ,E>为无向图, v ∈V,v 的度数(度) d(v): v 作为边的端点的次数之和 悬挂顶点: 度数为1的顶点 悬挂边: 与悬挂顶点关联的边 G 的最大度∆(G)=max{d(v)| v ∈V} G 的最小度δ(G)=min{d(v)| v ∈V} 例如 d(v5)=3, d(v2)=4, d(v1)=4, ∆(G)=4, δ(G)=1,v4是悬挂顶点, e7是悬挂边, e1是环顶点的度数(续)设D=<V ,E>为有向图, v ∈V,v 的出度d+(v): v 作为边的始点的次数之和 v 的入度d -(v): v 作为边的终点的次数之和 v 的度数(度) d(v): v 作为边的端点次数之和 d(v)= d+(v)+ d-(v)D 的最大出度∆+(D), 最小出度δ+(D) 最大入度∆-(D), 最小入度δ-(D) 最大度∆(D), 最小度δ(D) 例如 d+(a)=4, d-(a)=1, d(a)=5, d+(b)=0, d-(b)=3, d(b)=3,∆+(D)=4, δ+(D)=0, ∆-(D)=3, δ-(D)=1, ∆(D)=5, δ(D)=3. 图论基本定理——握手定理定理 任意无向图和有向图的所有顶点度数之和都等于边数的2倍, 并且有向图的所有顶点入度之和等于出度之和等于边数.)(v N )(v D +Γ)(v D -Γ)()()(v v v N D D D -+ΓΓ= }{)()(v v N v N D D =证 G 中每条边(包括环)均有两个端点,所以在计算G 中各顶点度数之和时,每条边均提供2度,m 条边共提供2m 度.有向图的每条边提供一个入度和一个出度, 故所有顶点入度之和等于出度之和等于边数. 握手定理(续)推论 在任何无向图和有向图中,度为奇数的顶点个数必为偶数. 证 设G=<V,E>为任意图,令 V1={v | v ∈V ∧d(v)为奇数} V2={v | v ∈V ∧d(v)为偶数}则V1∪V2=V, V1∩V2=∅,由握手定理可知∑∑∑∈∈∈+==21)()()(2V v V v Vv v d v d v d m由于2m,∑∈2)(V v v d 均为偶数,所以 ∑∈1)(V v v d 也为偶数, 但因为V1中顶点度数都为奇数,所以|V1|必为偶数.图的度数列设无向图G 的顶点集V={v1, v2, …, vn} G 的度数序列: d(v1), d(v2), …, d(vn) 如右图度数序列:4,4,2,1,3设有向图D 的顶点集V={v1, v2, …, vn} D 的度数序列: d(v1), d(v2), …, d(vn) D 的出度序列: d+(v1), d+(v2), …, d+(vn) D 的入度序列: d -(v1), d -(v2), …, d -(vn) 如右图度数序列:5,3,3,3出度序列:4,0,2,1 入度序列:1,3,1,2 握手定理的应用例1 (3,3,3,4), (2,3,4,6,8)能成为图的度数序列吗? 解 不可能. 它们都有奇数个奇数.例2 已知图G 有10条边, 4个3度顶点, 其余顶点的度数均小于等于2, 问G 至少有多少个顶点? 解 设G 有n 个顶点. 由握手定理, 4⨯3+2⨯(n-4)≥2⨯10 解得 n ≥8握手定理的应用(续)例3 给定下列各序列,哪组可以构成无向图的度数序列 (2,2,2,2,2) (1,1,2,2,3) (1,1,2,2,2) (1,3,4,4,5)多重图与简单图定义(1) 在无向图中,如果有2条或2条以上的边关联同一对顶点, 则称这些边为平行边, 平行边的条数称为重数.(2)在有向图中,如果有2条或2条以上的边具有相同的始点和终点, 则称这些边为有向平行边, 简称平行边, 平行边的条数称为重数.(3) 含平行边的图称为多重图.(4) 既无平行边也无环的图称为简单图.注意:简单图是极其重要的概念多重图与简单图(续)例如e5和e6 是平行边重数为2不是简单图e2和e3 是平行边,重数为2 e6和e7不是平行边不是简单图图的同构定义设G1=<V1,E1>, G2=<V2,E2>为两个无向图(有向图), 若存在双射函数f: V1→V2, 使得对于任意的vi,vj∈V1,(vi,vj)∈E1(<vi,vj>∈E1)当且仅当(f(vi),f(vj))∈E2(<f(vi),f(vj)>∈E2),并且,(vi,vj)(<vi,vj>)与(f(vi),f(vj))(<f(vi),f(vj)>)的重数相同,则称G1与G2是同构的,记作G1≅G2.图的同构(续)几点说明:图之间的同构关系具有自反性、对称性和传递性.能找到多条同构的必要条件, 但它们都不是充分条件:①边数相同,顶点数相同②度数列相同(不计度数的顺序)③对应顶点的关联集及邻域的元素个数相同,等等若破坏必要条件,则两图不同构图的同构(续)例1 试画出4阶3条边的所有非同构的无向简单图例2 判断下述每一对图是否同构:(1)度数列不同不同构例2 (续)(2)不同构入(出)度列不同度数列相同但不同构为什么?完全图与正则图n阶无向完全图Kn: 每个顶点都与其余顶点相邻的n阶无向简单图.简单性质: 边数m=n(n-1)/2, ∆=δ=n-1n阶有向完全图: 每对顶点之间均有两条方向相反的有向边的n阶有向简单图.简单性质: 边数m=n(n-1), ∆=δ=2(n-1),∆+=δ+=∆-=δ-=n-1n阶k正则图: ∆=δ=k 的n阶无向简单图简单性质: 边数m=nk/2完全图与正则图(续)(1) 为5阶无向完全图K5(2) 为3阶有向完全图(3) 为彼得森图, 它是3 正则图子图定义设G=<V,E>, G '=<V ',E '>是2个图(1) 若V '⊆V且E '⊆E, 则称G '为G的子图, G为G '的母图, 记作G '⊆G(2)若G '⊆G且G '≠ G(即V '⊂V 或E '⊂E),称G '为G的真子图(3) 若G '⊆G 且V '=V,则称G '为G的生成子图(4) 设V '⊆V 且V '≠∅, 以V '为顶点集, 以两端点都在V '中的所有边为边集的G的子图称作V '的导出子图,记作G[V '](5) 设E '⊆E且E '≠∅, 以E '为边集, 以E '中边关联的所有顶点为顶点集的G的子图称作E '的导出子图, 记作G[E ']子图(续)例画出K4的所有非同构的生成子图补图定义设G=<V,E>为n阶无向简单图,以V为顶点集,所有使G成为完全图Kn的添加边组成的集合为边集的图,称为G的补图,记作G≅G.若G ≅ G , 则称G 是自补图.例 画出5阶7条边的所有非同构的无向简单图首先,画出5阶3条边的所有非同构的无向简单图 然后,画出各自的补图7.2 通路、回路与图的连通性一、本节主要内容简单通(回)路, 初级通(回)路, 复杂通(回)路 无向连通图, 连通分支弱连通图, 单向连通图, 强连通图 点割集与割点边割集与割边(桥) 二、教学内容 通路与回路定义 给定图G=<V ,E>(无向或有向的),设G 中顶点与边的交替序列Γ=v0e1v1e2…elvl ,(1) 若∀i(1≤i ≤l), vi -1 和 vi 是ei 的端点(对于有向图, 要求vi -1是始点, vi 是终点), 则称Γ为通路, v0是通路的起点, vl 是通路的终点, l 为通路的长度. 又若v0=vl ,则称Γ为回路. (2) 若通路(回路)中所有顶点(对于回路, 除v0=vl)各异,则称为初级通路(初级回路).初级通路又称作路径, 初级回路又称作圈.(3) 若通路(回路)中所有边各异, 则称为简单通路(简单回路), 否则称为复杂通路(复杂回路). 通路与回路(续) 说明:在无向图中,环是长度为1的圈, 两条平行边构成长度为2的圈. 在有向图中,环是长度为1的圈, 两条方向相反边构成长度为2的圈. 在无向简单图中, 所有圈的长度≥3; 在有向简单图中, 所有圈的长度≥2. 通路与回路(续)定理 在n 阶图G 中,若从顶点vi 到vj (vi ≠vj )存在通 路,则从vi 到vj 存在长度小于等于n -1的通路.推论 在n 阶图G 中,若从顶点vi 到vj (vi ≠vj )存在通121212G G G G G G ≅≅例设与均为无向简单图,当且仅当路,则从vi到vj存在长度小于等于n-1的初级通路.定理在一个n阶图G中,若存在vi到自身的回路,则一定存在vi到自身长度小于等于n的回路.推论在一个n阶图G中,若存在vi到自身的简单回路,则一定存在长度小于等于n的初级回路.无向图的连通性设无向图G=<V,E>,u与v连通: 若u与v之间有通路. 规定u与自身总连通.连通关系R={<u,v>| u,v ∈V且u~v}是V上的等价关系连通图: 平凡图, 或者任意两点都连通的图连通分支: V关于R的等价类的导出子图设V/R={V1,V2,…,Vk}, G[V1], G[V2], …,G[Vk]是G的连通分支, 其个数记作p(G)=k.G是连通图⇔ p(G)=1短程线与距离u与v之间的短程线: u与v之间长度最短的通路(u与v连通)u与v之间的距离d(u,v): u与v之间短程线的长度若u与v不连通, 规定d(u,v)=∞.性质:d(u,v)≥0, 且d(u,v)=0 ⇔ u=vd(u,v)=d(v,u)(对称性)d(u,v)+d(v,w)≥d(u,w) (三角不等式)点割集记G-v: 从G中删除v及关联的边G-V': 从G中删除V'中所有的顶点及关联的边G-e : 从G中删除eG-E': 从G中删除E'中所有边定义设无向图G=<V,E>, 如果存在顶点子集V'⊂V, 使p(G-V')>p(G),而且删除V'的任何真子集V''后(∀ V''⊂V'),p(G-V'')=p(G), 则称V'为G的点割集. 若{v}为点割集, 则称v为割点.点割集(续)例{v1,v4}, {v6}是点割集, v6是割点.{v2,v5}是点割集吗?边割集定义设无向图G=<V,E>, E'⊆E, 若p(G-E')>p(G)且∀E''⊂E',p(G-E'')=p(G), 则称E'为G的边割集. 若{e}为边割集, 则称e为割边或桥.在上一页的图中,{e1,e2},{e1,e3,e5,e6},{e8}等是边割集,e8是桥,{e7,e9,e5,e6}是边割集吗?几点说明:Kn无点割集n阶零图既无点割集,也无边割集.若G连通,E'为边割集,则p(G-E')=2若G连通,V'为点割集,则p(G-V')≥2有向图的连通性设有向图D=<V,E>u可达v: u到v有通路. 规定u到自身总是可达的.可达具有自反性和传递性D弱连通(连通): 基图为无向连通图D单向连通: ∀u,v∈V,u可达v 或v可达uD强连通: ∀u,v∈V,u与v相互可达强连通⇒单向连通⇒弱连通有向图的连通性(续)例下图(1)强连通, (2)单连通, (3) 弱连通有向图的短程线与距离u到v的短程线: u到v长度最短的通路(u可达v)u与v之间的距离d<u,v>: u到v的短程线的长度若u不可达v, 规定d<u,v>=∞.性质:d<u,v>≥0, 且d<u,v>=0 ⇔ u=vd<u,v>+d<v,w> ≥d<u,w>注意: 没有对称性7.3 图的矩阵表示一、本节主要内容无向图的关联矩阵有向图的关联矩阵有向图的邻接矩阵有向图的可达矩阵二、教学内容无向图的关联矩阵定义设无向图G=<V,E>, V={v1, v2, …, vn}, E={e1, e2, …, em}, 令mij为vi与ej的关联次数,称(mij)n⨯m为G的关联矩阵,记为M(G).定义设无向图G=<V,E>, V={v1, v2, …, vn}, E={e1, e2, …, em}, 令mij为vi与ej的关联次数,称(mij)n⨯m为G的关联矩阵,记为M(G).性质关联次数为可能取值为0,1,2有向图的关联矩阵定义 设无环有向图D=<V ,E>, V={v1, v2, …, vn}, E={e1, e2, …, em}, 令则称(mij)n ⨯m 为D 的关联矩阵,记为M(D). 性质:有向图的邻接矩阵定义 设有向图D=<V ,E>, V={v1, v2, …, vn}, E={e1, e2, …, em}, 令 )1(ij a 为顶点vi 邻接到顶点vj 边的条数,称()1(ij a )n ⨯n 为D 的邻接矩阵, 记作A(D), 简记为A. 1110001110()1001200000M G ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦1100010111()0000101110M D -⎡⎤⎢⎥--⎢⎥=⎢⎥-⎢⎥-⎣⎦平行边的列相同)4(2)3(),...,2,1()()2(),...,2,1(2)1(,11mm n i v d m m j m ji ijimj ijni ij =====∑∑∑==(1)1(1)1(1)(),1,2,...,(2)(),1,2,...,nij i j n ij ji a d vi n a d v j n+=-=====∑∑性质D 中的通路及回路数定理 设A 为n 阶有向图D 的邻接矩阵, 则Al(l ≥1)中 元素)(l ij a 为D 中vi 到vj 长度为 l 的通路数, )(l ii a 为vi 到自身长度为 l 的回路数,∑∑==n i nj l ija11)( 为D 中长度为 l 的通路总数,∑=ni l iia1)( 为D 中长度为 l 的回路总数.D 中的通路及回路数(续)推论 设Bl=A+A2+…+Al(l ≥1), 则Bl 中元素为D 中长度小于或等于l 的通路数, 为D 中长度小于或等于l 的回路数. 例 有向图D 如图所示, 求A, A2, A3, A4, 并回答问题:(1) D 中长度为1, 2, 3, 4的通路各有多 少条?其中回路分别为多少条? (2) D 中长度小于或等于4的通路为多 少条?其中有多少条回路?12100010()00010010A D ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦有向图的可达矩阵定义 设D=<V ,E>为有向图, V={v1, v2, …, vn}, 令称(pij)n ⨯n 为D 的可达矩阵, 记作P(D), 简记为P. 性质:P(D)主对角线上的元素全为1.D 强连通当且仅当P(D)的元素全为1. 有向图的可达矩阵(续)例 右图所示的有向图D 的可达矩阵为7.4 最短路径及关键路径一、本节主要内容 最短路 关键路线二、教学内容对于有向图或无向图G 的每条边,附加一个实数w(e),则称w(e)为边e 上的权. G 连同附加在各边上的实数,称为带权图.设带权图G=<V,E,W>,G 中每条边的权都大于等于0.u,v 为G 中任意两个顶点,从u 到v 的所有通⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1101110111110001P路中带权最小的通路称为u 到v 的最短路径.求给定两个顶点之间的最短路径,称为最短路径问题. 算法:Dijkstra(标号法){}()*()*1()*()()1()*1.2./5.i r r i i i i ir i r r j j j j j r i r v l v v v l v r p l l v v v l v r l v v p r T V r ∞==-j ij r r 如果顶点与v 不相邻,则w =为顶点到顶点最短路径的权,如果顶点获得了标号,则称顶点在第步获得了标号(永久性标号)3.为顶点到顶点最短路径的权的上界,如果顶点获得了标号,则称顶点在第步获得了t 标号(临时性标号)4.P 已经获得标号为第步通过集P 为第步未通过集例:求图中v0与v5的最短路径(0)*000(0)0(1)*(0)(1)*1010100,{},T {},1,2,3,4,5{},min {},T T {}(2)T j jj i j i v T l P l w j l l l P P t ∈=======⋃=-0012345j i i i i 第步(r=0):v 获得p 标号v v ,v ,v ,v ,v ,v 获得t 标号第1步(r=1):(1)求下一个p 标号的顶点,将标在顶点v 处,表明顶点v 获得p 标号.修改通过集和未通过集:v v 修改中各顶点的标1(1)(0)(1)*(2)*(1)(2)*2121(2)(1)(2)*2min{,}{},min {},T T {}(2)T min{,}j jj iij i j iv T j j iij ll lw l l l P P t l l l w ∈=+==⋃=-=+i i i i 号:第2步(r=2):(1)求下一个p 标号的顶点,将标在顶点v 处,表明顶点v 获得p 标号.修改通过集和未通过集:v v 修改中各顶点的标号:2.关键路径问题,(){/,}(){/,}D D D V E v V v x x V v x E v v x x V x v E v +=<>∈Γ=∈∧<>∈Γ=∈∧<>∈-设为一个有向图,,则为的后继元集为的先继元集定义:PERT 图设D=<V ,E,W>是n 阶有向带权图1. D 是简单图2. D 中无环路3. 有一个顶点出度为0,称为发点;有一个顶点入度为0,称为收点4. 记边<vi, vj>的权为wij,它常常表示时间1. 最早完成时间:自发点v1开始,沿最长路径(权)到达vi 所需时间,称为vi 的最早完成时间,记为TE (vi ) ,i=1,2,…,nj 1i i j ij v ()234567TE(v )=0,v (1)TE(v )={(v )+w },1,2,,max TE(v )=max{0+1}=1;TE(v )=max{0+2,1+0}=2;TE(v )=max{0+3,2+2}=4;TE(v )=max{1+3,4+4}=8;TE(v )=max{2+4,8+1}=9;TE(v )=max{1+4,2+D i v i TE i n-∈Γ≠=显然的最早完成时间按如下公式计算:813784}=6;TE(v )=max{6+6,9+1}=12;v v v v 关键路径:从发点到收点的一条最长路径,2. 最晚完成时间:在保证收点vn 的最早完成时间不增加的条件下,自发点v1最迟到达vi 所需时间,称为vi 的最晚完成时间,记为TL (vi ).j n n i i j ij v ()876543TL(v )=TL(v ),v ()TL(v )={(v )-w },1,2,,min TL(v )=12;TL(v )=min{12-6}=6;TL(v )=min{12-1}=11;TL(v )=min{11-1}=10;TL(v )=min{10-4}=6;TL(v )=min{6-2,11-4,6-4}=2;TL(D i v i n TL i n∈Γ≠=+显然的最晚完成时间按如下公式计算:21v )=min{2-0,10-3,6-4}=2;TL(v )=min{2-1,2-2,6-3}=0;3. 缓冲时间:TS(vi)=TL(vi)- TE(vi) TS(v1)= TS(v3)= TS(v7)= TS(v8)=0 TS(v2)=2-1=1; TS(v4)=6-4=2; TS(v5)=10-8=2; TS(v6)=11-9=2。

离散数学知识点总结

离散数学知识点总结

注意/技巧:析取符号为V,大写字母Vx + y = 3不是命题前件为假时,命题恒为真运用吸收律命题符号化过程中要注意命题间的逻辑关系,认真分析命题联结词所对应的自然语言中的联结词,不能只凭字面翻译。

也就是说,在不改变原意的基础上,按照最简单的方式翻译通用的方法:真值表法VxP(x)蕴含存在xP(x)利用维恩图解题证明两个集合相等:证明这两个集合互为子集常用的证明方法:任取待证集合中的元素<,>构造相应的图论模型第一章命题逻辑命题和联结词命题的条件:表达判断的陈述句、具有确定的真假值。

选择题中的送分题原子命题也叫简单命题,与复合命题相对简单联结词的真值表要记住非(简单)合取(当且仅当P,Q都为真时,命题为真)析取(当且仅当P,Q都为假时,命题为假),P,Q可以同时成立,是可兼的或条件(→)(当且仅当P为真,Q为假时,命题为假)P是前件,Q是后件只要P,就Q等价于P→Q只有P,才Q等价于非P→非Q,也就是Q→PP→Q特殊的表达形式:P仅当Q、Q每当P双条件(↔)(当且仅当P与Q具有相同的真假值时,命题为真,与异或相反)命题公式优先级由高到低:非、合取和析取、条件和双条件括号省略条件:①不改变先后次序的括号可省去②最外层的括号可省去重言式(永真式)、矛盾式(永假式)、偶然式可满足式:包括重言式和偶然式逻辑等价和蕴含(逻辑)等价:这是两个命题公式之间的关系,写作“⇔”,要与作为联结词的↔区分开来。

如果命题公式A为重言式,那么A⇔T常见的命题等价公式:需要背过被标出的,尽量去理解。

关键是掌握公式是将哪个符号转换为了哪个符号,这对于解证明题有很大的帮助!验证两个命题公式是否等价:当命题变元较少时,用真值表法。

当命题变元较多时,用等价变换的方法,如代入规则、替换规则和传递规则定理:设A、B是命题公式,当且仅当A↔B是一个重言式时,有A和B逻辑等价。

蕴含:若A→B是一个重言式,就称作A蕴含B,记作A⇒B常见的蕴含公式的运用方法同上面的命题等价公式证明A⇒B:①肯定前件,推出后件为真②否定后件,推出前件为假当且仅当A⇒B且B⇒A时,A⇔B,也就是说,要证明两个命题公式等价,可以证明它们相互蕴含联结词的完备集新的联结词:条件否定、异或(不可兼或)、或非(析取的否定)、与非(合取的否定)任意命题公式都可由仅含{非,析取}或{非,合取}的命题公式来等价地表示全功能联结词集合极小全功能联结词集合对偶式对偶式:将仅含有联结词非、析取、合取(若不满足,需先做转换)的命题公式A中的析取变合取,合取变析取,T变F,F变T得到的命题公式A*称为A的对偶式范式析取式:否定+析取合取式:否定+合取析取范式:(合取式)析取(合取式)……析取(合取式)。

离散数学7-树

离散数学7-树

(b)
(a)
V5
2
1
V7
8
9
V2
V4
2
3
V8
5
V1
V1
V4
V5
1
3
V7
V6
8
V4
2
V8
5
6
V1
1
V5
6
V7
V6
8
3
V8
5
6
V7
9
V3
(e)
V3
(f)
(g)
22
V2
V3
(h)
五.应用举例——求最小生成树
例3 用管梅谷算法求下图的最小生成树。
23
五.应用举例——求最小生成树
例3 用管梅谷算法求下图的最小生成树。
成圈。
首先证明T无简单回路。对n作归纳证明。
(i) n=1时,m=n-1=0,显然无简单回路;
(ii)假设顶点数为n-1时无简单回路,现考察顶点数是n的情况:此时至少有一
个顶点v其次数d(v)=1。因为若n个顶点的次数都大于等于2,则不少于n条边,但这与
m=n-1矛盾。
删去v及其关联边得到新图T’,根据归纳假设T’无简单回路,再加回v及其关联
边又得到图T,则T也无简单回路。
再由图的连通性可知,加入任何一边后就会形成圈,且只有一个圈,否则原图
中会含圈。
9
二. 基本定理——证明
证明(4):(3)(4),即证一个无圈图若加入任一边就形成圈,
则该图连通,且其任何一边都是桥。
若图不连通,则存在两个顶点vi和vj,在vi和vj之间没有路,若
加边(vi,vj)不会产生简单回路,但这与假设矛盾。由于T无简单回

第7章 图论 [离散数学离散数学(第四版)清华出版社]

第7章 图论 [离散数学离散数学(第四版)清华出版社]

6/27/2013 6:02 PM
第四部分:图论(授课教师:向胜军)
21
例:
a j i h c g d
1(a)
无 向 图
b
f
e

2(b)
7(j) 8(g) 9(d) 10(i)
6(e)
3(c) 4(h)
5(f)
6/27/2013 6:02 PM
第四部分:图论(授课教师:向胜军)
22
例:
1(b)
有向图
第四部分:图论(授课教师:向胜军)
6
[定义] 相邻和关联
在无向图G中,若e=(a, b)∈E,则称a与 b彼此相邻(adjacent),或边e关联 (incident) 或联结(connect) a, b。a, b称为边e的端点或 结束顶点(endpoint)。 在有向图D中,若e=<a, b>∈E,即箭头 由a到b,称a邻接到b,或a关联或联结b。a 称为e的始点(initial vertex),b称为e的终点 (terminal/end vertex)。
证明思路:将图中顶点的度分类,再利用定理1。
6/27/2013 6:02 PM 第四部分:图论(授课教师:向胜军) 9
[定理3] 设有向图D=<V, E>有n个顶点,m 条边,则G中所有顶点的入度之和等于所 有顶点的出度之和,也等于m。
即:
d ( v i ) d ( v i ) m.
i 1 i 1
n
n
证明思路:利用数学归纳法。
6/27/2013 6:02 PM
第四部分:图论(授课教师:向胜军)
10
一些特殊的简单图:
(1) 无向完全图Kn(Complete Graphs)

离散数学7-1图论

离散数学7-1图论

图7-1.9 不同构的图
作业
P279 (1) (4)
如图7-1.6中的(a)和(b)互为补图。
[定义] 子图(subgraph) 设图G=<V,E>,如果有图G’= <V’,E’>,若有 V’ V ,E’ E,则称图G’是图G的子图。 [定义] 生成子图(spanning subgraph) 如果图G的子图G’包含G的所有结点,则称该图 G’为G的生成子图。如图7-1.8中G'和G"都是 G的生成子图。
[定义] 相对于图G的补图 设图G'=〈V',E'〉是图G=〈V,E〉的子图,若 给定另外一个图G"=〈V",E"〉使得E"=EE', 且 V" 中仅包含 E"的边所关联的结点。则 称G"是子图G'的相对于图G的补图。
图7-1.7 (c )为(b)相对于(a)的补图
如图 7-1.7 中的图 (c) 是图 (b) 相对于图 (a) 的补 图。而图 (b) 不是图 (c) 相对于图 (a) 的补图 , 因为图(b)中有结点c。在上面的一些基本概 念中,一个图由一个图形表示,由于图形的结 点的位置和连线长度都可任意选择 , 故一个 图的图形表示并不是唯一的。下面我们讨 论图的同构的概念。
表7-1.1
结 点 出 度 入 度
a 2 0
b 1 1
c 0 2
d 1 1
结 点 出 度
入 度
v1 1 1
v2 0 2
v3 2 0
v4 1 1
分析本例还可以知道 , 此两图结点的度数也 分别对应相等,如表7-1.1所示。
两图同构的一些必要条件: 1.结点数目相等; 3.边数相等; 3.度数相等的结点数目相等。 需要指出的是这几个条件不是两个图同构的 充分条件,例如图7-1.9中的(a)和(b)满足上 述的三个条件,但此两个图并不同构。

离散数学平面图

离散数学平面图
则满足欧拉公式 v – e + r = 2 即:6-9+r=2,解得r=5
又因为任取K3,3中三个结点,至少有两个点不邻接, 所以不能组成一个面,即K3,3中任何 一个面至少由四条边围成,即:所有面 的次数之和deg(r) >=4r=20 又由定理1知:deg(r)=2|E|=18 即18>=20矛盾不。论怎所么以画,K总3,有3不交是叉点平面图。
❖ 平面图基本性质
设G是一个有v个结点e条边的连通简单平面图,若v3, 则:e<=3v-6。等价于: 若不满足e<=3v-6,则G不是连通平面图。
例题:证明k5图不是平面图。
K5图中,v=5,e=10,10 3*v-6=35-6=9
但定理的条件只是必要条件。
如K3,3中v= 6,e =9, e<3v-6=12 满足条件,但K3,3不是平面图。
离散数学
❖ 图论
1 图的基本概念 2 路与回路 3 图的矩阵表示 4 欧拉图与汉密尔顿图 5 平面图 6 对偶图与着色 7 树与生成树
❖ 平面图基本概念
定义1:设G=<V,E>是一个无向图,如果能把G的所有结点和
边画在平面上,且使得任何两条边除了端点外没有其他的交点, 就称G是一个平面图。
(1)
G为k条边,再添加一条边,只有下述两种情况:
面数不变 点树加1 边数加1
点数不变 面数加1 边数加1
(Vk+1)-(ek+1)+rk=2成立
(Vk)-(ek+1)+(rk+1)=2成立
通过上述归纳法证明欧拉公式v-e+r=2成立。
❖ 平面图基本性质
例1:证明K3,3不是平面图
证:假设K3,3是平面图,

图的知识点总结归纳

图的知识点总结归纳

图的知识点总结归纳图是离散数学中的一个重要概念,它可以用于描述各种实际问题,并在计算机科学、网络理论、算法设计等领域具有广泛的应用。

本文将对图的基本概念、表示方法、图的遍历算法和最短路径算法等进行总结归纳,并讨论其应用。

一、图的基本概念图由节点(顶点)和连接节点的边组成。

顶点之间的连接关系可以是有向的,也可以是无向的。

图的基本概念如下:1. 无向图:无向图中的边没有方向,节点之间的连接是双向的。

例如,社交网络中的朋友关系可以用无向图表示。

2. 有向图:有向图中的边有方向,表示节点之间的单向连接关系。

例如,网页之间的超链接可以用有向图表示。

3. 加权图:加权图中的每条边都有一个权重值,表示边上的距离或者耗费。

例如,地图中的道路可以用加权图表示。

二、图的表示方法图有多种表示方法,常用的有邻接矩阵和邻接表。

1. 邻接矩阵:邻接矩阵是一个二维数组,其中行和列表示图的顶点,矩阵中的元素表示顶点之间的连接关系。

对于无向图,邻接矩阵是对称的;对于有向图,邻接矩阵不一定对称。

2. 邻接表:邻接表是一种链表的集合,其中每个顶点对应一个链表,链表中存储与该顶点相连的其他顶点。

三、图的遍历算法图的遍历算法用于访问图中的所有节点,常用的算法有深度优先搜索(DFS)和广度优先搜索(BFS)。

1. 深度优先搜索(DFS):从一个顶点开始,沿着一条路径一直遍历到最后一个顶点,然后回溯到前一个顶点,再遍历其他路径。

DFS可以使用递归或者栈来实现。

2. 广度优先搜索(BFS):从一个顶点开始,先访问它的所有邻居顶点,然后再依次访问它们的邻居顶点,直到遍历完所有节点。

BFS可以使用队列来实现。

四、最短路径算法最短路径算法用于计算图中两个节点之间的最短路径。

常用的算法有迪杰斯特拉算法和弗洛伊德算法。

1. 迪杰斯特拉算法:迪杰斯特拉算法用于计算从一个顶点到其他所有顶点的最短路径。

算法使用一个距离数组来存储从起点到每个顶点的当前最短距离,并使用一个优先队列来选择下一个访问的顶点。

《离散数学》课件-第七章 图的基本概念

《离散数学》课件-第七章 图的基本概念
• 〔u,v〕∈E1〔f(u),f(v)〕∈E2 • (或<u,v>∈E1 <f(u),f(v)>∈E2) • 且重数相同,则称G1同构于G2,记为
• G1 G2。
• 显然,两图的同构是相互的,即G1同构 于G2,G2同构于G1。
• 由同构的定义可知,不仅结点之间要具 有一一对应关系,而且要求这种对应关 系保持结点间的邻接关系。对于有向图 的同构还要求保持边的方向。
V={a,b,c,d},E={e1,e2,e3,e4,e5,e6}
e1=(a,b), e2=(a,c), e3=(b,d), e4=(b,c), e5=(d,c), e6=(a,d).
它的图形如下图(a)或(b)所示:
a
a
b
d
b
d
c
c
(a)
(b)
如果有些边是有向边,另一些边是无向边, 图G称为混合图。
第七章 图的基本概念
– 7.1 无向图及有向图 – 7.2 通路、回路、图的连通性 – 7.3 图的矩阵表示 – 7.4 最短路径及关健路径
7.1 无向图和有向图
• 什么是图?可用一句话概括,即:图是用 点和线来刻划离散事物集合中的每对事 物间以某种方式相联系的数学模型。
Konigsberg(哥尼斯堡)七桥问题
为偶数.
定理7.2 在任何有向图中,所有结点的入度之 和必等于它们的出度之和.
证明:因为有向图中的每一条有向边都恰好对应 一个出度和一个入度.故所有结点的出度之 和恰好等于有向边的总数.同样地, 所有结 点的入度之和恰好也等于有向边的总数.因 此它们相等.
设V={v1,…,vn}为G的顶点集,则称{d(v1),…d(vn)} 为G的度数序列。
• 如果G2无孤立结点,且由E2所唯一确定,即 以E2为边集,以E2中边关联的结点全体为顶 点集,则称G2是边集E2的导出子图。

《离散数学》word版

《离散数学》word版

第七章图在自然界和人类社会的实际生活中,用图形来描述和表示某些事物之间的关系既方便又直观。

例如用工艺流程图来描述某项工程中各工序之间的先后关系,用网络图来描述某通讯系统中各通讯站之间信息传递关系,用开关电路图来描述IC中各元件电路导线连接关系等等。

图论起源于18世纪,它是研究由线连成的点集的理论。

一个图中的结点表示对象,两点之间的连线表示两对象之间具有某种特定关系(先后关系、胜负关系、传递关系和连接关系等)。

事实上,任何一个包含了某种二元关系的系统都可以用图形来模拟。

由于我们感兴趣的是两对象之间是否有某种特定关系,所以图形中两点之间连接与否最重要,而连接线的曲直长短则无关紧要。

由此经数学抽象产生了图的概念。

研究图的基本概念和性质、图的理论及其应用构成了图论的主要内容。

7.1 图的基本概念7.1.1图的定义7.1.1.1无向图定义7.1.1 设A,B是任意集合。

集合{(a,b)|aA且bB}称为A和B的无序积,记为A&B。

在无序积中,两个元素间的顺序是无关紧要的,即(a,b)=(b,a)。

定义7.1.2 无向图G是一个二元组<V,E>,记作G=<V,E>,其中V是一个非空有限集合,其元素称为结点(顶点)。

E是一个V&V的多重子集,其元素称为边(无向边)。

我们可用平面上的点来表示顶点,两点间的连线表示边,从而将任一个无向图用图形表示出来。

[例7.1.1]无向图G=<V,E>,其中V={a,b,c,d,e,f},E={(a,b),(a,c),(a,d),(b,b),(b,c),(b,c),(b,d),(c,d)}。

7.1.1.2有向图定义7.1.3 有向图G是一个二元组<V,E>,记作G=<V,E>,其中V是一个非空有限集合,其元素称为顶点,E是一个V V的多重子集,其元素称为有向边或弧,简称为边。

注:1)在有向图G=<V,E>中,若e=〈u,v〉,则称u和v为e的起点和终点;2)自回路既可看成是有向边又可看成是无向边;3)去掉有向图中边的方向得到的图称为该有向图的基图。

离散数学知识点(可编辑修改word版)

离散数学知识点(可编辑修改word版)

1.内容及范围主要来自 ppt,标签对应书本2.可能有错,仅供参考离散数学知识点说明:定义:红色表示。

定理性质:橙色表示。

公式:蓝色表示。

算法: 绿色表示页码:灰色表示数理逻辑:1.命题公式:命题,联结词(⌝,∧,∨,→,↔),合式公式,子公式2.公式的真值:赋值,求值函数,真值表,等值式,重言式,矛盾式3.范式:析取范式,极小项,主析取范式,合取范式,极大项,主合取范式4.联结词的完备集:真值函数,异或,条件否定,与非,或非,联结词完备集5.推理理论:重言蕴含式,有效结论,P 规则,T 规则, CP 规则,推理6.谓词与量词:谓词,个体词,论域,全称量词,存在量词7.项与公式:项,原子公式,合式公式,自由变元,约束变元,辖域,换名,代入8.公式语义:解释,赋值,有效的,可满足的,不可满足的9.前束范式:前束范式10.推理理论:逻辑蕴含式,有效结论,∀-规则(US),∀+规则(UG),∃-规则(ES),∃+规则(EG), 推理集合论:1.集合: 集合, 外延性原理, ∈, ⊆, ⊂, 空集, 全集, 幂集, 文氏图, 交, 并, 差, 补, 对称差2.关系: 序偶, 笛卡尔积, 关系, domR, ranR, 关系图, 空关系, 全域关系, 恒等关系3.关系性质与闭包:自反的, 反自反的, 对称的, 反对称的, 传递的,自反闭包 r(R),对称闭包 s(R), 传递闭包 t(R)4.等价关系: 等价关系, 等价类, 商集, 划分5.偏序关系:偏序, 哈斯图, 全序(线序), 极大元/极小元, 最大元/最小元, 上界/下界6.函数: 函数, 常函数, 恒等函数, 满射,入射,双射,反函数, 复合函数7.集合基数:基数, 等势, 有限集/无限集, 可数集, 不可数集代数结构:1.运算及其性质:运算,封闭的,可交换的,可结合的,可分配的,吸收律, 幂等的,幺元,零元,逆元2.代数系统:代数系统,子代数,积代数,同态,同构。

离散数学第七章图的基本概念

离散数学第七章图的基本概念

4.无向图的连通性
若无向图G中任何两顶点都连通,则称G是连通图.
对于任意的无向图G.设V1,V2,…,Vk是顶点之间连通关系的 等价类,则称他们的导出子图为G的连通分支.用p(G)表示G 的连通分支数.
V1 e1
e2 e3
V3
e4 V2
V4
a
de
h
i
b
c
f
g
5.有向图的连通性
若略去有向图D中各边的键头,所得无向图是无向连通图,则 称D是弱连通图(或称D是连通图).
(2) mij d (vi )(i 1,2,..., n)
j 1
mn
nm
n
(3) mij mij d(vi ) 2m
j1 i1
i1 j1
i 1
m
(4) mij 0 vi是孤立点 j 1
(5)若第j列与第k列相同, 则说明e j与ek为平行边.
2.有向图的关联矩阵
设有向图D=<V,E>,V={v1,v2,…,vn},E={e1,e2,…,em} 1, vi为ej的始点
e1,e2,e3},{e1,e2,
e2
e4},{e9}等边割集 ,e9是桥.
e3 V4
e5 e6
V5 e4
V6
e9
V7
7.3 图的矩阵表示
1.无向图的关联矩阵
设无向图G=<V,E>,V={v1,v2,…,vn},E={e1,e2,…,em}
令mij为顶点vi与ej的关联次数, 则称(mij)n×m为G的关联矩阵.记为M(G)
若Γ 满足:vi-1,vi为ei的端点(若G为有向图,vi-1是ei的始 点,vi是ei的终点)i=1,2,…,k,则称Γ 为G中通路,v0,vk分 别称为通路的始点和终点,Γ 中边的数目k称为通路长度.

Ch 7.1 图的基本概念

Ch 7.1 图的基本概念

标定图,非标定图,基图
标定图(labeled graph): 顶点或边带标记 非标定图(unlabeled graph): 顶点和边不带标记 基图(底图): 有向图去掉边的方向后得到的无向图
b
c
a
d
相邻(adjacent), 关联(incident)
相邻: 点与点,边与边
邻接到,邻接于: u邻接到v, v邻接于u
……
实例(1) 单词图
给定3字母的单词集S={BIT, BAT, BUT, CAT, HAT, BAD, BAR}
如果单词W2 能够由单词W1通过下列步骤之一获得, 称 W1 可以变换为W2
(1) 交换W1 中两个字母 (2) 用另外一个字母来替代W1中的一个字母 如果两个单词可以互相变换,则对应的G中的顶点就
解得, n8
握手定理的应用(2)
问题:在一个部门的25个人中间,由于意见不同,是否 可能每个人恰好与其他3个人意见一致?
解答:不可能。考虑一个图,其中顶点代表人,如果两 个人意见相同,可用边连接,所以每个顶点都是3度。 原图存在奇数个奇数度的顶点,这是不可能的。
说明 (1) 很多离散问题可以用图模型求解。 (2)图模型中,边经常代表两个顶点之间的关系。 (3)为建立图模型,需决定顶点和边的含义。
关于图的说明
一个图由若干个结点和边所组成,与边的长短及结 点的位置无关。
图可简记为G=<V, E>,其中V 是非空结点集,E 是 边集 。
a
e1 b
e6 e2 e3
e4
e5
c
a
d
e1
b e4
e3 e5
e6
d e2
c
无向图(undirected graph)

《离散数学》第七章_图论-第2节-预习

《离散数学》第七章_图论-第2节-预习

定理7-2.1推论
推论1: 在n阶图G中,若从不同结点vj到vk有 路,则从vj到vk有长度小于等于n-1的通路。 证明: 若路不是通路, 则路上有重复结点, 删除所有重复结点之间的回路, 得到的是通 路, 其长度小于等于n-1。 推论2:在一个具有n个结点的图中,如果存在 经过结点vi回路(圈),则存在一条经过vi 的长度不大于n的回路(圈)。
Whitney定理
(最小点割集<=最小边割集<=最小点度数)
Whitney定理的证明
证明:设G中有n个结点m条边。 (2)若G连通 1)证明λ(G)≤δ(G)
若G是平凡图,则λ(G)=0≤δ(G); 若G是非平凡图,由于每一结点上关联的所有 边显然包含一个边割集,因而删除最小度数 δ(G)对应结点所关联的边,则使G不连通,即 存在一个边割集的元素个数小于等于δ(G) , 即λ(G)≤δ(G)。
e6,e5都是割边
边连通度(edgeconnectivity)
为了破坏连通性,至少需要删除多少条边? 边连通度: G是无向连通图, (G) = min{ |E’| | E’是G的边割集 } 即产生一个不连通图需删去的边的最小数 目。 规定: G非连通: (G)=0 (Kn) = n-1
0
ei (vi 1 , vi ), (ei v i 1 , v i )
v
v1 v 2 0 e e 1 2
v i 1 v i ei
vn en
结点数=边数+1
路长度 :边的数目。
回路(closed walk)
回路: … v e v e v
0 1 1 2
当v 0 v n时
i 1
圈(cycles)
C1 C2 C3 C4 C5

离散数学-第七章-图论

离散数学-第七章-图论

5
离 例1、G1=<V,E>
散 数
V={v0, v1, v2,v3}
学 E={(v0,v2),(v0,v3),(v1,v2),(v1,v3),(v2,v3)}
v0
v3
v1



v2


4/24/2020 2:55 PM
G1
6
离 例2、
散 数 学
G2=<V,E> V={v0, v1, v2,v3}
中的所有边,称为删除E´ 。
(2)设vV,用G-v表示从G中去掉v及所关联的 一切边,称为删除结点v;又设V´ V,用G-V´ 表示从G中删除V´中所有结点,称为删除V´ 。
学 u,v之间存在路,则称u,v是连通的,记作uv 。
定义2.3 设无向图G是平凡图或G中任何两个结 点都是连通的,则称G为连通图,否则称G为非连 通图或分离图。

任意一个连通无向图的任两个不同结
七 点都存在一条通路。



4/24/2020 2:55 PM
38

非连通图G可分为几个不相连通的子图,
七 章
边,构成一个无向重图,问题化为图论中简单道路
的问题。


4/24/2020 2:55 PM
3
离 一、图的基本概念
散 数 学
旧金山
丹佛
洛杉矶
第 七 章


4/24/2020 2:55 PM
底特律
芝加哥
纽约 华盛顿
4

散 设A、B是两个集合,称


A&B={{a,b}|aA, bB}

(离散数学)图的基本概念

(离散数学)图的基本概念
2014-5-3 离散数学 4
一、基本图类与相关概念(续)
无向图:无向图G是一个二元组<V, E>,其中 (1) V是一个非空集合,称为顶点集V(G), V中元素称为顶点或结点; (2) E是无序积V&V的多重子集(即集合中的
元素可重复出现),称为边集E(G),
E中元素称为无向边,简称边。
2014-5-3 离散数学 5
2014-5-3
离散数学
7
一、基本图类与相关概念(续)
有向图画法:用小圆圈表示V中顶点,若<a, b>E,
则在顶点a与b之间画一条有向边,其箭头从a指向b。
如:D = <V, E>,V = { v1, v2, v3, v4 },E = { <v1, v2>,
<v1, v3>, <v2, v2>, <v3, v4>, <v4, v2>, <v4, v2> }
e2 e v4 e e
6
3
v1
2014-5-3
e1
v2
5
e
4
v3
6
离散数学
一、基本图类与相关概念(续)
2、有向图
有向图:有向图D是一个二元组<V, E>,其中 (1) V是一个非空集合,称为顶点集V(D); (2) E是笛卡尔积V V的多重子集,称为边集 E(D),E中元素称为有向边,也简称边。
一、基本图类与相关概念(续)
实际上,图是画出来的。画法:用小圆圈表示V中
顶点,若(a, b)E,则在顶点a与b之间连线段。
如:G = <V, E>,V = { v1, v2, v3, v4 }, E ={ (v1, v2), (v1, v4), (v2, v1), (v2, v3), (v2, v3), (v3, v4) }

离散数学_第7章 图论 -1-2图的基本概念、路和回路

离散数学_第7章 图论 -1-2图的基本概念、路和回路

第9章 图论
返回总目录
第9章 图论
第7章 图论
图论是一个重要的数学分支。数学家欧拉1736年发 表了关于图论的第一篇论文,解决了著名的哥尼斯堡七 桥问题。克希霍夫对电路网络的研究、凯来在有机化学 的计算中都应用了树和生成树的概念。随着科学技术的 发展,图论在运筹学、网络理论、信息论、控制论和计 算机科学等领域都得到广泛的应用。本章首先给出图、 简单图、完全图、子图、路和图的同构等概念,接着研 究了连通图性质和规律,给出了邻接矩阵、可达性矩阵、 连通矩阵和完全关联矩阵的定义。最后将介绍欧拉图与 哈密尔顿图、二部图、平面图和图的着色、树和根树。
v3
e7
a e6e3
e2
b e5
(本课程仅讨论无向图和有向图)
v4
c
9章 图论
【例7.1.1】无向图G=V(G),E(G),G
其中:V(G)=a,b,c,d
E(G)=e1,e2,e3,e4
G:G(e1)=(a,b) G(e2)=(b,c) G(e3)=(a,c) G(e4)=(a,a)
试画出G的图形。
即,deg(v)=deg-(v)+deg+(v),或简记为d(v)=d-(v)+d+(v)
4)最大出度:+(G) =max deg+(v) | vV
5)最小出度:+(G) = min deg+(v) | vV
6)最大入度: (G) =max deg-(v) | vV
7)最小入度: (G) = min deg-(v) | vV
解:G的图形如图7.1.2所示。
图 7.1.2
由于在不引起混乱的情况下,图的边可以用有序对或无序 对直接表示。因此,图可以简单的表示为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图论部分第七章、图的基本概念7.1 无向图及有向图无向图与有向图多重集合: 元素可以重复出现的集合无序积: A&B={(x,y) | x∈A∧y∈B}定义无向图G=<V,E>, 其中(1) 顶点集V≠∅,元素称为顶点(2) 边集E为V&V的多重子集,其元素称为无向边,简称边.例如, G=<V,E>如图所示, 其中V={v1, v2, …,v5}, E={(v1,v1), (v1,v2), (v2,v3),(v2,v3), (v2,v5), (v1,v5), (v4,v5)} ,定义有向图D=<V,E>, 其中(1) V同无向图的顶点集, 元素也称为顶点(2) 边集E为V⨯V的多重子集,其元素称为有向边,简称边.用无向边代替D的所有有向边所得到的无向图称作D的基图,右图是有向图,试写出它的V和E注意:图的数学定义与图形表示,在同构(待叙)的意义下是一一对应的通常用G表示无向图, D表示有向图, 也常用G泛指无向图和有向图, 用e k表示无向边或有向边.V(G), E(G), V(D), E(D): G和D的顶点集, 边集.n 阶图: n个顶点的图有限图: V, E都是有穷集合的图零图: E=∅平凡图: 1 阶零图空图: V=∅顶点和边的关联与相邻:定义设e k=(v i,v j)是无向图G=<V,E>的一条边, 称v i,v j 为e k的端点, e k与v i (v j)关联. 若v i ≠v j, 则称e k与v i (v j)的关联次数为1;若v i = v j, 则称e k为环, 此时称e k与v i 的关联次数为2; 若v i不是e k端点, 则称e k与v i 的关联次数为0. 无边关联的顶点称作孤立点.定义设无向图G=<V,E>, v i,v j∈V, e k,e l∈E,若(v i,v j) ∈E, 则称v i,v j相邻; 若e k,e l 至少有一个公共端点, 则称e k,e l相邻.对有向图有类似定义. 设e k=〈v i,v j〉是有向图的一条边,又称v i是e k的始点, v j是e k的终点, v i邻接到v j, v j邻接于v i.邻域和关联集顶点的度数设G=<V,E>为无向图, v∈V,v的度数(度) d(v): v作为边的端点次数之和悬挂顶点: 度数为1的顶点悬挂边: 与悬挂顶点关联的边G的最大度∆(G)=max{d(v)| v∈V}G的最小度δ(G)=min{d(v)| v∈V}例如d(v5)=3, d(v2)=4, d(v1)=4,∆(G)=4, δ(G)=1,v4是悬挂顶点, e7是悬挂边, e1是环设D=<V,E>为有向图, v∈V,v的出度d+(v): v作为边的始点次数之和v的入度d-(v): v作为边的终点次数之和v的度数(度) d(v): v作为边的端点次数之和d(v)= d+(v)+ d-(v)D的最大出度∆+(D), 最小出度δ+(D)最大入度∆-(D), 最小入度δ-(D)最大度∆(D), 最小度δ(D)例如d+(a)=4, d-(a)=1, d(a)=5,d+(b)=0, d-(b)=3, d(b)=3,∆+(D)=4, δ+(D)=0, ∆-(D)=3,δ-(D)=1,∆(D)=5, δ(D)=3.握手定理定理任意无向图和有向图的所有顶点度数之和都等于边数的2倍, 并且有向图的所有顶点入度之和等于出度之和等于边数.证G中每条边(包括环)均有两个端点,所以在计算G中各顶点度数之和时,每条边均提供2度,m条边共提供2m度. 有向图的每条边提供一个入度和一个出度, 故所有顶点入度之和等于出度之和等于边数.图的度数列设无向图G的顶点集V={v1, v2, …, v n} G的度数列: d(v1), d(v2), …, d(v n)如右图度数列:4,4,2,1,3设有向图D的顶点集V={v1, v2, …, v n} D的度数列: d(v1), d(v2), …, d(v n)D的出度列: d+(v1), d+(v2), …, d+(v n)D的入度列: d-(v1), d-(v2), …, d-(v n) 如右图度数列:5,3,3,3出度列:4,0,2,1入度列:1,3,1,2例1 (3,3,3,4), (2,3,4,6,8)能成为图的度数列吗?解不可能. 它们都有奇数个奇数.例2 已知图G有10条边, 4个3度顶点, 其余顶点的度数均小于等于2, 问G 至少有多少个顶点?解设G有n个顶点. 由握手定理,4⨯3+2⨯(n-4)≥2⨯10解得n≥8例3 证明不存在具有奇数个面且每个面都具有奇数条棱的多面体.证用反证法. 假设存在这样的多面体,作无向图G=<V,E>, 其中V={v | v为多面体的面},E={(u,v) | u,v∈V∧u与v有公共的棱∧u≠v}.根据假设, |V|为奇数且∀v∈V, d(v)为奇数. 这与握手定理的推论矛盾.多重图与简单图定义(1) 在无向图中,如果有2条或2条以上的边关联同一对顶点, 则称这些边为平行边, 平行边的条数称为重数.(2)在有向图中,如果有2条或2条以上的边具有相同的始点和终点, 则称这些边为有向平行边, 简称平行边, 平行边的条数称为重数.(3) 含平行边的图称为多重图.(4) 既无平行边也无环的图称为简单图.注意:简单图是极其重要的概念图的同构定义设G1=<V1,E1>, G2=<V2,E2>为两个无向图(有向图), 若存在双射函数f: V1→V2, 使得对于任意的v i,v j∈V1,(v i,v j)∈E1(<v i,v j>∈E1)当且仅当(f(v i),f(v j))∈E2(<f(v i),f(v j)>∈E2),并且, (v i,v j)(<v i,v j>)与(f(v i),f(v j))(<f(v i),f(v j)>)的重数相同,则称G1与G2是同构的,记作G1≅G2.几点说明:图之间的同构关系具有自反性、对称性和传递性.能找到多条同构的必要条件, 但它们都不是充分条件:① 边数相同,顶点数相同② 度数列相同(不计度数的顺序)③ 对应顶点的关联集及邻域的元素个数相同,等等若破坏必要条件,则两图不同构至今没有找到判断两个图同构的多项式时间算法完全图:n阶无向完全图K n: 每个顶点都与其余顶点相邻的n阶无向简单图.简单性质: 边数m=n(n-1)/2, ∆=δ=n-1n阶有向完全图: 每对顶点之间均有两条方向相反的有向边的n阶有向简单图.简单性质: 边数m=n(n-1), ∆=δ=2(n-1),∆+=δ+=∆-=δ-=n-1子图:定义设G=<V,E>, G '=<V ',E '>是两个图(1) 若V '⊆V且E '⊆E,则称G '为G的子图, G为G '的母图, 记作G '⊆G(2) 若G '⊆G 且V '=V,则称G '为G的生成子图(3) 若V '⊂V 或E '⊂E,称G '为G的真子图(4) 设V '⊆V 且V '≠∅, 以V '为顶点集, 以两端点都在V '中的所有边为边集的G的子图称作V '的导出子图,记作G[V '](5) 设E '⊆E且E '≠∅, 以E '为边集, 以E '中边关联的所有顶点为顶点集的G的子图称作E '的导出子图, 记作G[E ']补图:定义设G=<V,E>为n阶无向简单图,以V为顶点集,所有使G成为完全图K n的添加边组成的集合为边集的图,称为G的补图,记作 .若G≅, 则称G是自补图.例对上一页K4的所有非同构子图, 指出互为补图的每一对子图, 并指出哪些是自补图.7.2 通路、回路、图的连通性简单通(回)路, 初级通(回)路, 复杂通(回)路定义给定图G=<V,E>(无向或有向的),G中顶点与边的交替序列Γ=v0e1v1e2…e l v l,(1) 若∀i(1≤i≤l), v i-1, v i是e i的端点(对于有向图, 要求v i-1是始点, v i是终点), 则称Γ为通路, v0是通路的起点, v l是通路的终点, l为通路的长度. 又若v0=v l,则称Γ为回路.(2) 若通路(回路)中所有顶点(对于回路, 除v0=v l)各异,则称为初级通路(初级回路).初级通路又称作路径, 初级回路又称作圈.(3) 若通路(回路)中所有边各异, 则称为简单通路(简单回路), 否则称为复杂通路(复杂回路).说明:表示方法① 用顶点和边的交替序列(定义), 如Γ=v0e1v1e2…e l v l② 用边的序列, 如Γ=e1e2…e l③ 简单图中, 用顶点的序列, 如Γ=v0v1…v l④ 非简单图中,可用混合表示法,如Γ=v0v1e2v2e5v3v4v5环是长度为1的圈, 两条平行边构成长度为2的圈.在无向简单图中, 所有圈的长度≥3; 在有向简单图中, 所有圈的长度≥2.在两种意义下计算的圈个数① 定义意义下在无向图中, 一个长度为l(l≥3)的圈看作2l个不同的圈. 如v0v1v2v0 , v1v2v0v1 , v2v0v1v2, v0v2v1v0 , v1v0v2v1 , v2v1v0v2看作6个不同的圈.在有向图中, 一个长度为l(l≥3)的圈看作l个不同的圈.② 同构意义下所有长度相同的圈都是同构的, 因而是1个圈.定理在n阶图G中,若从顶点v i到v j(v i≠v j)存在通路,则从v i到v j存在长度小于等于n-1的通路.推论在n阶图G中,若从顶点v i到v j(v i≠v j)存在通路,则从v i到v j存在长度小于等于n-1的初级通路.定理在一个n阶图G中,若存在v i到自身的回路,则一定存在v i到自身长度小于等于n的回路.推论在一个n阶图G中,若存在v i到自身的简单回路,则一定存在长度小于等于n的初级回路.无向图的连通性设无向图G=<V,E>,u与v连通: 若u与v之间有通路. 规定u与自身总连通.连通关系R={<u,v>| u,v∈V且u~v}是V上的等价关系连通图:任意两点都连通的图. 平凡图是连通图.连通分支: V关于连通关系R的等价类的导出子图设V/R={V1,V2,…,V k}, G[V1], G[V2], …,G[V k]是G的连通分支, 其个数记作p(G)=k.G是连通图⇔p(G)=1短程线与距离u与v之间的短程线: u与v之间长度最短的通路(u与v连通)u与v之间的距离d(u,v): u与v之间短程线的长度若u与v不连通, 规定d(u,v)=∞.性质:d(u,v)≥0, 且d(u,v)=0 ⇔u=vd(u,v)=d(v,u)d(u,v)+d(v,w)≥d(u,w)点割集与割点记G-v: 从G中删除v及关联的边G-V ': 从G中删除V '中所有的顶点及关联的边G-e : 从G中删除eG-E': 从G中删除E'中所有边定义设无向图G=<V,E>, V '⊂V, 若p(G-V ')>p(G)且∀V ''⊂V ', p(G-V '')=p(G), 则称V '为G的点割集. 若{v}为点割集, 则称v为割点.边割集与割边(桥)定义设无向图G=<V,E>, E '⊆E, 若p(G-E ')>p(G)且∀E ''⊂E ',p(G-E '')=p(G), 则称E '为G的边割集. 若{e}为边割集, 则称e为割边或桥.在上一页的图中,{e1,e2},{e1,e3,e5,e6},{e8}等是边割集,e8是桥,{e7,e9,e5,e6}是边割集吗?几点说明:K n无点割集n阶零图既无点割集,也无边割集.若G连通,E '为边割集,则p(G-E ')=2若G连通,V '为点割集,则p(G-V ')≥2有向图的连通性设有向图D=<V,E>u可达v: u到v有通路. 规定u到自身总是可达的.可达具有自反性和传递性D弱连通(连通): 基图为无向连通图D单向连通: ∀u,v∈V,u可达v或v可达uD强连通: ∀u,v∈V,u与v相互可达强连通⇒单向连通⇒弱连通定理(强连通判别法) D强连通当且仅当D中存在经过每个顶点至少一次的回路定理(单向连通判别法) D单向连通当且仅当D中存在经过每个顶点至少一次的通路有向图的短程线与距离u到v的短程线: u到v长度最短的通路(u可达v)u与v之间的距离d<u,v>: u到v的短程线的长度若u不可达v, 规定d<u,v>=∞.性质:d<u,v>≥0, 且d<u,v>=0 ⇔u=vd<u,v>+d<v,w> ≥d<u,w>注意: 没有对称性7.3 图的矩阵表示无向图的关联矩阵定义设无向图G=<V,E>, V={v1, v2, …, v n}, E={e1, e2, …, e m},令m ij为v i与e j 的关联次数,称(m ij)n⨯m为G的关联矩阵,记为M(G).性质(1) 每一列恰好有两个1或一个2有向图的关联矩阵定义设无环有向图D=<V,E>, V={v1, v2, …, v n},E={e1, e2, …, e m}, 令性质(1) 每一列恰好有一个1和一个-1(2) 第i行1 的个数等于d+(v i), -1 的个数等于d-(v i)(3) 1的总个数等于-1的总个数, 且都等于m(4) 平行边对应的列相同有向图的邻接矩阵有向图的可达矩阵7.4 最短路径及关键路径带权图G=<V,E,w>, 其中w:E→R.∀e∈E, w(e)称作e的权. e=(v i,v j), 记w(e)=w ij . 若v i,v j不相邻, 记w ij =∞.设L是G中的一条路径, L的所有边的权之和称作L的权, 记作w(L).u和v之间的最短路径: u和v之间权最小的通路.标号法(E.W.Dijkstra, 1959)PERT图与关键路径PERT图(计划评审技术图)设有向图G=<V,E>, v∈Vv的后继元集Γ+(v)={x|x∈V∧<v,x>∈E}v的先驱元集Γ-(v)={x|x∈V∧<x,v>∈E}PERT图:满足下述条件的n阶有向带权图D=<V,E,w>,(1) D是简单图,(2) D中无回路,(3) 有一个入度为0的顶点, 称作始点; 有一个出度为0的顶点, 称作终点.通常边的权表示时间, 始点记作v1, 终点记作v n关键路径关键路径: PETR图中从始点到终点的最长路径v i的最早完成时间TE(v i): 从始点v1沿最长路径到v i所需的时间TE(v1)=0TE(v i)=max{TE(v j)+w ji|v j∈Γ-(v i)}, i=2,3,⋯,nv i的最晚完成时间TL(v i): 在保证终点v n的最早完成时间不增加的条件下, 从始点v1最迟到达v i的时间TL(v n)=TE(v n)TL(v i)=min{TL(v j)-w ij|v j∈Γ+(v i)}, i=n-1,n-2,⋯,1v i的缓冲时间TS(v i)=TL(v i)-TE(v i), i=1,2,⋯,nv i在关键路径上⇔TS(v i)=0最晚完成时间TL(v8)=12TL(v7)=min{12-6}=6TL(v6)=min{12-1}=11TL(v5)=min{11-1}=10TL(v4)=min{10-4}=6TL(v3)=min{6-2,11-4,6-4}=2TL(v2)=min{2-0,10-3,6-4}=2TL(v1)=min{2-1,2-2,6-3}=0 缓冲时间TS(v1)=0-0=0TS(v2)=2-1=1TS(v3)=2-2=0TS(v4)=6-4=2TS(v5=10-8=2TS(v6)=11-9=2TS(v7)=6-6=0TS(v8)=12-12=0 关键路径: v1v3v7v8。

相关文档
最新文档