重庆中考反比例函数11题名校模拟分类汇编.
【5套打包】重庆市初三数学下(人教版)第二十六章《反比例函数》测试卷(解析版)
人教版九年级下数学第二十六章反比例函数单元练习题(含答案)一、选择题1.)函数y=(a-2)是反比例函数,则a的值是()A.1或-1B.-2C.2D.2或-22.对于反比例函数y=,当x>1时,y的取值范围是()A.y>3或y<0B.y<3C.y>3D.0<y<33.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+a与反比例函数y=在同一坐标内的图象大致为()A.B.C.D.4.对于反比例函数y=(k≠0),下列说法不正确的是()A.它的图象分布在第一、三象限B.点(k,k)在它的图象上C.它的图象关于原点对称D.在每个象限内y随x的增大而增大5.下列两个变量x、y不是反比例函数的是()A.书的单价为12元,售价y(元)与书的本数x(本)B.xy=7C.当k=-1时,式子y=(k-1)中的y与xD.小亮上学用的时间x(分钟)与速度y(米/分钟)6.已知反比例函数y=的图象如图所示,则一次函数y=kx+b的图象可能是()A.B.C.D.7.一次函数y=ax+b和反比例函数y=在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象可能是()A.B.C.D.8.给出的六个关系式:①x(y+1);②y=;③y=;④y=-;⑤y=;⑥y=;其中y是x的反比例函数是()A.①②③④⑥B.③⑤⑥C.①②④D.④⑥9.如图,正比例函数y=k1x与反比例函数y=的图象相交于A、B两点,若点A的坐标为(2,1),则点B的坐标是()A.(1,2)B.(-2,1)C.(-1,-2)D.(-2,-1)10.下列各变量之间是反比例关系的是()A.存入银行的利息和本金B.在耕地面积一定的情况下,人均占有耕地面积与人口数C.汽车行驶的时间与速度D.电线的长度与其质量二、填空题11.长方形的面积为100,则长方形的长y与宽x间的函数关系是____________.12.某奶粉生产厂要制造一种容积为2升(1升=1立方分米)的圆柱形桶,桶的底面面积s与桶高h有怎样的函数关系式______________.13.某种大米单价是y元/千克,若购买x千克花费了 2.2元,则y与x的表达式是________________.14.已知反比例函数y=的图象过点A(-2,1),若点B(m1,n1)、C(m2,n2)也在该反比例函数图象上,且m1<m2<0,比较n1________n2(填“<”、“>”或“=”).15.小华要看一部300页的小说所需的天数y与平均每天看的页数x成______比例函数,表达式为________.16.三角形的面积一定,它的底和高成______比例.17.若点A(1,m)在反比例函数y=的图象上,则m的值为________.18.已知y=(a-1)是反比例函数,则a=__________.19.已知三角形的面积是定值S,则三角形的高h与底a的函数关系式是h=____,这时h是a的______函数.20.某工厂每月计划用煤Q吨,每天平均耗煤a吨.如果每天节约用煤x吨,那么Q吨煤可以多用y天,写出y与x的函数关系式为________________.三、解答题21.k为何值时,y=(k2+k)是反比例函数.22.已知反比例函数y=(k≠0,k是常数)的图象过点P(-3,5).(1)求此反比例函数的解析式;(2)判断点Q是否在图象上.23.如果函数y=k是反比例函数,求函数的解析式.24.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体实验.测得成人服药后血液中药物深度y(微克/毫升)与服药时间x小时之间的函数关系如图所示(当4≤x≤10时,y与x成反比).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式;(2)问血液中药物浓度不低于4微克/毫升的持续时间为多少小时?25.如图,李老师设计了一个探究杠杆平衡条件的实验:在一个自制类似天平的仪器的左边固定托盘A中放置一个重物,在右边活动托盘B(可左右移动)中放置一定质量的砝码,使得仪器左右平衡.改变活动托盘B与点O的距离x(cm),观察活动托盘B中砝码的质量y(g)的变化情况.实验数据记录如下表:(1)猜测y与x之间的函数关系,求出函数关系式并加以验证;(2)当砝码的质量为24 g时,活动托盘B与点O的距离是多少?(3)将活动托盘B往左移动时,应往活动托盘B中添加还是减少砝码?26.湖州市菱湖镇某养鱼专业户准备挖一个面积为2 000平方米的长方形鱼塘.(1)求鱼塘的长y(米)关于宽x(米)的函数表达式;(2)由于受场地的限制,鱼塘的宽最多只能挖20米,当鱼塘的宽是20米,鱼塘的长为多少米?27.画出反比例函数y=的图象,并根据图象回答下列问题:(1)根据图象指出x=-2时y的值.(2)根据图象指出当-2<x<1时,y的取值范围.(3)根据图象指出当-3<y<2时,x的取值范围.28.下列关系式中的y是x的反比例函数吗?如果是,比例函数k是多少?(1)y=;(2)y=;(3)y=-;(4)y=-3;(5)y=;(6)y=.答案解析1.【答案】A【解析】∵函数y=(a-2)是反比例函数,∴a2-2=-1,a-2≠0.解得a=±1.故选A.2.【答案】D【解析】当x=1时,y=3,∵反比例函数y=中,k=3>0,∴在第一象限内y随x的增大而减小,∴0<y<3.故选D.3.【答案】D【解析】根据二次函数图象开口向上得到a>0,再根据对称轴确定出b,根据图象发现当x =1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.解:∵二次函数图象开口方向向上,∴a>0,∵对称轴为直线x=->0,∴b<0,∵当x=1时,y=a+b+c<0,∴y=bx+a的图象经过第二四象限,且与y轴的正半轴相交,反比例函数y=图象在第二、四象限,只有D选项图象符合.故选D.4.【答案】D【解析】A.反比例函数y=(k≠0),因为k2>0,根据反比例函数的性质它的图象分布在第一、三象限,故本选项错误;B.把点(k,k),代入反比例函数y=(k≠0)中成立,故本选项错误;C.反比例函数y=(k≠0),k2>0根据反比例函数的性质它的图象分布在第一、三象限,是关于原点对称,故本选项错误;D.反比例函数y=(k≠0),因为k2>0,根据反比例函数的性质它的图象分布在第一、三象限,在每个象限内,y随x的增大而减小,故本选项正确.故选D.5.【答案】A【解析】根据反比例函数的三种表达形式,即y=(k为常数,k≠0)、xy=k(k为常数,k≠0)、y=kx-1(k为常数,k≠0)即可判断.A.书的单价为12元,售价y(元)与书的本数x(本),此时y=12x,y与x成正比例,正确;B.y=,符合反比例函数的定义,错误;C.当k=-1时,y=-符合反比例函数的定义,错误;D.由于路程一定,则时间和速度为反比例关系,错误.故选A.6.【答案】C【解析】由反比例函数的图象可知,kb<0,当k>0,b<0时,∴直线经过一、三、四象限,当k<0,b>0时,∴直线经过一、二、四象限,故选C.7.【答案】A【解析】观察函数图象可知,a<0,b>0,c<0,∴二次函数y=ax2+bx+c的图象开口向下,对称轴x=->0,与y轴的交点在y轴负半轴.故选A.8.【答案】D【解析】①x(y+1)是整式的乘法,②y=不是反比例函数;③y=不是反比例函数,④y=-是反比例函数,⑤y=是正比例函数,⑥y=是反比例函数,故选D.9.【答案】D【解析】∵正比例函数与反比例函数的图象均关于原点对称,∴A、B两点关于原点对称,∵A的坐标为(2,1),∴B的坐标为(-2,-1).故选D.10.【答案】B【解析】A.根据题意,得y=(y是本金,x是利息,k是利率).由此看,y与x成正比例关系.故本选项错误;B.根据题意,得y=(x是人口数,y是人均占有耕地数,k是一定的耕地面积).由此看y 与x成反比例关系.故本选项正确;C.根据题意,得S=vt,而S不是定值,所以不能判定v、t间的比例关系.故本选项错误;D.电线的质量与其长度、粗细等都有关系,所以不能判定它们的比例关系.故本选项错误;故选B.11.【答案】y=【解析】根据长方形的面积公式即可求解.长方形的面积为100,则长方形的长y=,故答案是y=.12.【答案】s=(h>0)【解析】根据桶的底面面积=容积÷桶高可列出关系式,且未知数高应>0.由题意,得s=(h>0).13.【答案】y=【解析】直接利用总钱数÷总质量=单价,进而得出即可.据题意,可得y=.14.【答案】<【解析】∵反比例函数y=的图象过点A(-2,1),∴k=-2×1=-2,∵k<0,∴在每一象限内,y随x的增大而增大,而B(m1,n1)、C(m2,n2)在该反比例函数图象上,且m1<m2<0,∴n1<n2.15.【答案】反y=【解析】根据反比例关系和需要的天数等于总页数除以平均每天看的页数解答.∵总页数300一定,∴所需的天数y与平均每天看的页数x成反比例函数,表达式为y=.16.【答案】反【解析】设三角形的底为a,高为h,则S=ah,a=,∵S≠0,∴a、h成反比例.17.【答案】3【解析】∵点A(1,m)在反比例函数y=的图象上,∴m==3.18.【答案】-1【解析】根据题意,a2-2=-1,a=±1,又a≠1,所以a=-1.故答案为-1.19.【答案】反比例【解析】据等量关系“三角形的面积=×底边×底边上的高”列出函数关系式即可.由题意,得三角形的高h与底a的函数关系式是h=,由于S为定值,故h是a的反比例函数.20.【答案】y=-(0<x<a)【解析】根据“多用的天数=节约后用的天数-原计划用的天数”列式整理即可.根据题意,得每天平均耗煤a吨,可用的天数是,如果每天节约用煤x吨,可用的天数是,∴Q吨煤可以多用y天表示为y=-(0<x<a).21.【答案】解∵函数y=(k2+k)是反比例函数,∴解得k=2.故k为2时,y=(k2+k)是反比例函数.【解析】是反比例函数,让未知数的次数为-1,系数不等于0列式求值即可.22.【答案】解(1)∵将P(-3,5)代入反比例函数y=(k≠0,k是常数),得5=,解得k=-15.∴反比例函数表达式为y=-;(2)反比例函数图象经过点Q.理由:∵-×2=-15=k,∴反比例函数图象经过点Q.【解析】(1)直接把点P(-3,5)代入反比例函数y=(k≠0,k是常数),求出k的值即可;(2)把点Q代入反比例函数的解析式进行检验即可.23.【答案】解∵y=k是反比例函数,∴2k2+k-2=-1,解得k1=,k2=-1,∴函数的解析式为y=或y=-.【解析】利用反比例函数的定义得出2k2+k-2=-1,进而求出即可.24.【答案】解(1)由图象可知,当0≤x≤4时,y与x成正比例关系,设y=kx.由图象可知,当x=4时,y=8,∴4k=8,解得k=2;∴y=2x(0≤x≤4);又由题意可知:当4≤x≤10时,y与x成反比,设y=.由图象可知,当x=4时,y=8,∴m=4×8=32;∴y=(4≤x≤10);(2)血液中药物浓度不低于4微克/毫升,即y≥4 ,∴2x≥4且≥4,解得x≥2且x≤8;∴2≤x≤8,所以,持续时间为6小时.【解析】(1)根据图象利用待定系数法,抓住关键点(4,8)分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式;(2)可以令y=4也可以根据题意列不等式,现血液中药物浓度不低于4微克/毫升,即y≥4,解不等式组即可.25.【答案】解(1)由表格猜测y与x之间的函数关系为反比例函数,∴设y=(k≠0),把x=10,y=30代入,得k=300,∴y=,将其余各点代入验证均适合,∴y与x的函数关系式为y=;(2)把y=24代入y=,得x=12.5,∴当砝码的质量为24 g时,活动托盘B与点O的距离是12.5 cm.(3)根据反比例函数的增减性,即可得出,随着活动托盘B与O点的距离不断减小,砝码的示数会不断增大;∴应添加砝码.【解析】(1)观察可得:x,y的乘积为定值300,故y与x之间的函数关系为反比例函数,将数据代入用待定系数法可得反比例函数的关系式;(2)把x=24代入解析式求解,可得答案;(3)利用函数增减性即可得出,随着活动托盘B与O点的距离不断增大,砝码的示数应该不断减小.26.【答案】解(1)由长方形面积为2 000平方米,得到xy=2 000,即y=;(2)当x=20(米)时,y==100(米),则当鱼塘的宽是20米时,鱼塘的长为100米.【解析】(1)根据矩形的面积=长×宽,列出y与x的函数表达式即可;(2)把x=20代入计算求出y的值,即可得到结果.27.【答案】解根据题意,作出y=的图象,(1)根据图象,过(-2,0)作与x轴垂直的直线,与双曲线相交,过交点向y轴引垂线,易得y =-3,故当x=-2时,y的值为-3,(2)根据图象,当-2<x<1时,可得y<-3或y>6.(3)同理,当-3<y<2时,x的取值范围是x<-2或x>3.【解析】根据题意,作出y =的图象,根据所作的图象回答问题即可. 28.【答案】解 (1)y =不是反比例函数,(2)y=不是反比例函数,(3)y =-是反比例函数,比例函数k 是-,(4)y=-3不是反比例函数, (5)y=是反比例函数,比例函数k 是+1.(6)y=是反比例函数,比例函数k 是-.【解析】利用反比例函数的定义(形如y =(k ≠0)的函数,叫做反比例函数)判定即可.新人教版九年级数学下册 第二十六章 反比例函数 单元综合检测题(有答案)一、选择题(每小题3分,共24分) 1.下列各点中,在函数y =图象上的是( ). A .(-2,-4) B .(2,3)C .(-1,6)D .2.在下图中,反比例函数y =的图象大致是( ).3.三角形的面积为1时,底y 与该底边上的高x 之间的函数关系的图象是( ).4.如图,点P 在反比例函数y =(x >0)的图象上,且横坐标为2.若将点P 先向右平移两个单位,再向上平移一个单位后所得的像为点P ′.则在第一象限内,经过点P ′的反比6x-1,32⎛⎫- ⎪⎝⎭21k x+1x例函数图象的解析式是( ).A .y =(x >0)B .y =(x >0)C .y =(x >0)D .y =(x >0) 5.若近视眼镜的度数y (度)与镜片焦距x (m)成反比例,已知400度近视眼镜镜片的焦距为0.25 m ,则y 与x 的关系式为( ).A .y =(x >0) B .y =(x >0) C .y =(x >0) D .y =(x >0) 6.已知点(-1,y 1),(2,y 2),(3,y 3)在反比例函数y =的图象上.下列结论中正确的是( ).A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 1>y 2D .y 2>y 3>y 17.如图,反比例函数y =的图象与一次函数y =kx +b 的图象交于点M ,N ,已知点M 的坐标为(1,3),点N 的纵坐标为-1,根据图象信息可得关于x 的方程=kx +b 的解为( ).A .-3,1B .-3,3C .-1,1D .3,-18.在平面直角坐标系中,直线y =6-x 与函数y =(x >0)的图象相交于A ,B 两点,设点A 的坐标为(x 1,y 1),那么长为x 1,宽为y 1的矩形面积和周长分别为( ).A .4,12B .8,12C . 4,6D .8,6二、填空题(每小题4分,共20分) 9.已知反比例函数y =的图象经过点(1,-2),则k =__________. 5x -5x6x -6x400x 14x100x 1400x21k x--mxmx4xkx10.如图是反比例函数y =(k ≠0)在第二象限内的图象,若图中的矩形OABC 的面积为2,则k =__________.11.如图,反比例函数y =的图象位于第一、三象限,其中第一象限内的图象经过点A (1,2),请在第三象限内的图象上找一个你喜欢的点P ,你选择的P 点坐标为__________.12.过反比例函数y =(k ≠0)图象上一点A ,分别作x 轴,y 轴的垂线,垂足分别为B ,C ,如果△ABC 的面积为3,则k 的值为__________.13.双曲线y 1、y 2在第一象限的图象如图所示,y 1=,过y 1上的任意一点A ,作x 轴的平行线交y 2于B ,交y 轴于C ,若S △AOB =1,则y 2的解析式是__________.三、解答题(共56分)14.(本小题满分10分)如图所示,在平面直角坐标系中,一次函数y =kx +1的图象与反比例函数y =的图象在第一象限相交于点A ,过点A 分别作x 轴、y 轴的垂线,垂足分别为点B ,C .如果四边形OBAC 是正方形,求一次函数的关系式.kxkxkx4x9x15.(本小题满分10分)由物理知识知道,在力F (N)的作用下,物体会在力F 的方向上发生位移s (m),力F 所做的功W (J)满足:W =Fs .当W 为定值时,F 与s 之间的函数图象如图所示.(1)力F 所做的功是多少?(2)试确定F 与s 之间的函数表达式; (3)当F =4 N 时,s 是多少?16.(本小题满分12分)已知如图中的曲线是反比例函数y =(m 为常数)图象的一支.(1)求常数m 的取值范围;(2)若该函数的图象与正比例函数y =2x 的图象在第一象限的交点为A (2,n ),求点A 的坐标及反比例函数的解析式.17.(本小题满分12分)如图所示,一次函数y =ax +b (a ≠0)的图象与反比例函数y =(k ≠0)的图象交于M ,N 两点.5mxkx(1)求反比例函数与一次函数的解析式;(2)根据图象写出使反比例函数的值大于一次函数的值的x 的范围. 18.(本小题满分12分)给出下列命题: 命题1:点(1,1)是直线y =x 与双曲线y =的一个交点; 命题2:点(2,4)是直线y =2x 与双曲线y =的一个交点; 命题3:点(3,9)是直线y =3x 与双曲线y =的一个交点; …….(1)请观察上面命题,猜想出命题n (n 是正整数); (2)证明你猜想的命题n 是正确的.1x8x27x参考答案1. 答案:C2. 答案:D3. 答案:C4. 答案:D5. 答案:C 设y =,将(0.25,400)代入y =,得k =100, ∴y =(x >0). 6. 答案:B 因为-k 2-1<0,所以反比例函数y =的图象在第二、四象限,(2,y 2),(3,y 3)在同一象限,y 随x 的增大而增大,即y 2<y 3<0,又y 1>0,所以y 1>y 3>y 2. 7. 答案:A 由M (1,3)代入y =得,m =3,所以y =,将N 点纵坐标-1代入y =,得x =-3. 所以N (-3,-1),根据图象的意义知,方程=kx +b 的解就是它们的交点坐标的横坐标,所以方程的解为-3或1.8. 答案:A 因为y =6-x 与函数y =的图象相交于A ,B ,则有点A (x 1,y 1)的坐标满足两个关系式y 1=6-x 1,y 1=,且x 1>0,y 1>0. 所以长为x 1,宽为y 1的矩形面积为x 1y 1=4,矩形周长为2(y 1+x 1)=2×6=12,故选A. 9. 答案:-2 10. 答案:-211. 答案:答案不唯一,如(-1,-2) x ,y 满足xy =2且x <0,y <0即可. 12. 答案:6或-6 根据反比例函数的几何意义可得出S △ABC =|k |,所以|k |=6,则k =±6.13. 答案:y 2= y 1=,过y 1上的任意一点A ,作x 轴的平行线交y 2于B ,交y 轴于C ,S △AOB =1.k x kx100x21k x--mx3x 3xmx4x14x 126x 4x∴△CBO 面积为3,∴y 2的解析式是y 2=. 14. 解:∵S 正方形OBAC =OB 2=9,∴OB =AB =3, ∴点A 的坐标为(3,3).∵点A 在一次函数y =kx +1的图象上, ∴3k +1=3,解得k =. ∴一次函数的关系式是y =+1.15. 解:(1)W =Fs =2×7.5=15(J).(2)F =.(3)当F =4 N 时,s ==3.75(m). 16. 解:(1)∵这个反比例函数的图象分布在第一、三象限, ∴5-m >0,解得m <5.(2)∵点A (2,n )在正比例函数y =2x 的图象上, ∴n =2×2=4,则A 点的坐标为(2,4). 又∵点A 在反比例函数y =的图象上, ∴4=,即5-m =8. ∴反比例函数的解析式为y =. 17. 分析:(1)利用点N 的坐标可求出反比例函数的表达式,据此求点M 的坐标.由两点M ,N 的坐标可求出一次函数的表达式;(2)反比例函数的值大于一次函数的值表现在图象上,就是双曲线在直线的上方,由此可求出x 的范围.解:(1)把N (-1,-4)代入y =中,得-4=, 所以k =4.反比例函数的表达式为y =. 又点M (2,m )在双曲线上,所以m =2,即点M (2,2).6x2323x 15s15154F =5mx-52m-8xk x 1k-4x把M (2,2),N (-1,-4)代入y =ax +b 中,得解得 故一次函数的表达式为y =2x -2.(2)由图象可知,当x <-1或0<x <2时,反比例函数的值大于一次函数的值.18. 解:(1)命题n :点(n ,n 2)是直线y =nx 与双曲线y =的一个交点(n 是正整数).(2)把代入y =nx ,左边=n 2,右边=n ·n =n 2, ∵左边=右边,∴点(n ,n 2)在直线上. 同理可证:点(n ,n 2)在双曲线上,∴点(n ,n 2)是直线y =nx 与双曲线y =的一个交点,命题正确.新人教版九年级数学下册 第二十六章 反比例函数 单元综合检测题(有答案)一、选择题(每小题3分,共24分) 1.下列各点中,在函数y =图象上的是( ). A .(-2,-4) B .(2,3)C .(-1,6)D .2.在下图中,反比例函数y =的图象大致是( ).3.三角形的面积为1时,底y 与该底边上的高x 之间的函数关系的图象是( ).22,4.a b m a b +=⎧⎨-+=-⎩2,2.a b =⎧⎨=-⎩3n x2,x n y n=⎧⎨=⎩3n x6x-1,32⎛⎫- ⎪⎝⎭21k x+4.如图,点P 在反比例函数y =(x >0)的图象上,且横坐标为2.若将点P 先向右平移两个单位,再向上平移一个单位后所得的像为点P ′.则在第一象限内,经过点P ′的反比例函数图象的解析式是( ).A .y =(x >0)B .y =(x >0)C .y =(x >0)D .y =(x >0) 5.若近视眼镜的度数y (度)与镜片焦距x (m)成反比例,已知400度近视眼镜镜片的焦距为0.25 m ,则y 与x 的关系式为( ).A .y =(x >0) B .y =(x >0) C .y =(x >0) D .y =(x >0) 6.已知点(-1,y 1),(2,y 2),(3,y 3)在反比例函数y =的图象上.下列结论中正确的是( ).A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 1>y 2D .y 2>y 3>y 17.如图,反比例函数y =的图象与一次函数y =kx +b 的图象交于点M ,N ,已知点M 的坐标为(1,3),点N 的纵坐标为-1,根据图象信息可得关于x 的方程=kx +b 的解为( ).A .-3,1B .-3,3C .-1,1D .3,-18.在平面直角坐标系中,直线y =6-x 与函数y =(x >0)的图象相交于A ,B 两点,设点A 的坐标为(x 1,y 1),那么长为x 1,宽为y 1的矩形面积和周长分别为( ).A .4,12B .8,12C . 4,6D .8,61x5x -5x6x -6x400x 14x100x 1400x21k x--mxmx4x二、填空题(每小题4分,共20分) 9.已知反比例函数y =的图象经过点(1,-2),则k =__________. 10.如图是反比例函数y =(k ≠0)在第二象限内的图象,若图中的矩形OABC 的面积为2,则k =__________.11.如图,反比例函数y =的图象位于第一、三象限,其中第一象限内的图象经过点A (1,2),请在第三象限内的图象上找一个你喜欢的点P ,你选择的P 点坐标为__________.12.过反比例函数y =(k ≠0)图象上一点A ,分别作x 轴,y 轴的垂线,垂足分别为B ,C ,如果△ABC 的面积为3,则k 的值为__________.13.双曲线y 1、y 2在第一象限的图象如图所示,y 1=,过y 1上的任意一点A ,作x 轴的平行线交y 2于B ,交y 轴于C ,若S △AOB =1,则y 2的解析式是__________.三、解答题(共56分)14.(本小题满分10分)如图所示,在平面直角坐标系中,一次函数y =kx +1的图象与kxkxkxkx4x反比例函数y =的图象在第一象限相交于点A ,过点A 分别作x 轴、y 轴的垂线,垂足分别为点B ,C .如果四边形OBAC 是正方形,求一次函数的关系式.15.(本小题满分10分)由物理知识知道,在力F (N)的作用下,物体会在力F 的方向上发生位移s (m),力F 所做的功W (J)满足:W =Fs .当W 为定值时,F 与s 之间的函数图象如图所示.(1)力F 所做的功是多少?(2)试确定F 与s 之间的函数表达式; (3)当F =4 N 时,s 是多少?16.(本小题满分12分)已知如图中的曲线是反比例函数y =(m 为常数)图象的一支.(1)求常数m 的取值范围;(2)若该函数的图象与正比例函数y =2x 的图象在第一象限的交点为A (2,n ),求点A 的坐标及反比例函数的解析式.17.(本小题满分12分)如图所示,一次函数y =ax +b (a ≠0)的图象与反比例函数y =(k ≠0)的图象交于M ,N 两点.9x5mxkx(1)求反比例函数与一次函数的解析式;(2)根据图象写出使反比例函数的值大于一次函数的值的x 的范围. 18.(本小题满分12分)给出下列命题: 命题1:点(1,1)是直线y =x 与双曲线y =的一个交点; 命题2:点(2,4)是直线y =2x 与双曲线y =的一个交点; 命题3:点(3,9)是直线y =3x 与双曲线y =的一个交点; …….(1)请观察上面命题,猜想出命题n (n 是正整数); (2)证明你猜想的命题n 是正确的.1x8x27x参考答案1. 答案:C2. 答案:D3. 答案:C4. 答案:D5. 答案:C 设y =,将(0.25,400)代入y =,得k =100, ∴y =(x >0). 6. 答案:B 因为-k 2-1<0,所以反比例函数y =的图象在第二、四象限,(2,y 2),(3,y 3)在同一象限,y 随x 的增大而增大,即y 2<y 3<0,又y 1>0,所以y 1>y 3>y 2. 7. 答案:A 由M (1,3)代入y =得,m =3,所以y =,将N 点纵坐标-1代入y =,得x =-3. 所以N (-3,-1),根据图象的意义知,方程=kx +b 的解就是它们的交点坐标的横坐标,所以方程的解为-3或1.8. 答案:A 因为y =6-x 与函数y =的图象相交于A ,B ,则有点A (x 1,y 1)的坐标满足两个关系式y 1=6-x 1,y 1=,且x 1>0,y 1>0. 所以长为x 1,宽为y 1的矩形面积为x 1y 1=4,矩形周长为2(y 1+x 1)=2×6=12,故选A. 9. 答案:-2 10. 答案:-211. 答案:答案不唯一,如(-1,-2) x ,y 满足xy =2且x <0,y <0即可. 12. 答案:6或-6 根据反比例函数的几何意义可得出S △ABC =|k |,所以|k |=6,则k =±6.13. 答案:y 2= y 1=,过y 1上的任意一点A ,作x 轴的平行线交y 2于B ,交y 轴于C ,S △AOB =1.k x kx100x21k x--mx3x 3xmx4x14x 126x 4x∴△CBO 面积为3,∴y 2的解析式是y 2=. 14. 解:∵S 正方形OBAC =OB 2=9,∴OB =AB =3, ∴点A 的坐标为(3,3).∵点A 在一次函数y =kx +1的图象上, ∴3k +1=3,解得k =. ∴一次函数的关系式是y =+1.15. 解:(1)W =Fs =2×7.5=15(J).(2)F =.(3)当F =4 N 时,s ==3.75(m). 16. 解:(1)∵这个反比例函数的图象分布在第一、三象限, ∴5-m >0,解得m <5.(2)∵点A (2,n )在正比例函数y =2x 的图象上, ∴n =2×2=4,则A 点的坐标为(2,4). 又∵点A 在反比例函数y =的图象上, ∴4=,即5-m =8. ∴反比例函数的解析式为y =. 17. 分析:(1)利用点N 的坐标可求出反比例函数的表达式,据此求点M 的坐标.由两点M ,N 的坐标可求出一次函数的表达式;(2)反比例函数的值大于一次函数的值表现在图象上,就是双曲线在直线的上方,由此可求出x 的范围.解:(1)把N (-1,-4)代入y =中,得-4=, 所以k =4.反比例函数的表达式为y =. 又点M (2,m )在双曲线上,所以m =2,即点M (2,2).6x2323x 15s15154F =5mx-52m-8xk x 1k-4x把M (2,2),N (-1,-4)代入y =ax +b 中,得解得 故一次函数的表达式为y =2x -2.(2)由图象可知,当x <-1或0<x <2时,反比例函数的值大于一次函数的值.18. 解:(1)命题n :点(n ,n 2)是直线y =nx 与双曲线y =的一个交点(n 是正整数).(2)把代入y =nx ,左边=n 2,右边=n ·n =n 2, ∵左边=右边,∴点(n ,n 2)在直线上. 同理可证:点(n ,n 2)在双曲线上,∴点(n ,n 2)是直线y =nx 与双曲线y =的一个交点,命题正确.人教新版九年级数学下册 第二十六章 反比例函数 单元测试题(有答案) 一、选择题(每小题3分,共30分)1.当x >0时,函数y =-5x的图象在( ) A.第四象限B.第三象限C.第二象限D.第一象限2.设点A (x 1,y 1)和B (x 2,y 2)是反比例函数y =(k ≠0)图象上的两个点,当x 1<x 2<0时,y 1<y 2,则一次函数y =-2x +k 的图象不经过的象限是( ) A.第一象限B.第二象限C.第三象限D.第四象限3.在同一直角坐标系中,函数xky =和3+=kx y (k ≠0)的图象大致是( )4.如图所示,矩形ABCD 中,3,4AB BC ==,动点P 从A 点出发,按A B C →→的方向在AB 和BC 上移动.记PA x =,点D 到直线PA 的距离为y ,则y 关于x 的函数图象大致是( )22,4.a b m a b +=⎧⎨-+=-⎩2,2.a b =⎧⎨=-⎩3n x2,x n y n=⎧⎨=⎩3n xA BC D5.反比例函数y =12kx-的图象经过点(-2,3),则k 的值为( ) A.6B.-6C.D.-6.(2014·兰州中考)若反比例函数y =1k x-的图象位于第二、四象限,则k 的取值可能是( ) A.0 B.2 C.3 D.47.在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也随之改变.密度ρ(单位:kg/m 3)与体积V (单位:m 3)满足函数关系式ρ=kV(k 为常数,k ≠0),其图象如图所示,则k 的值为( ) A.9 B.-9 C. 4 D.-48.已知点、、都在反比例函数4y x=的图象上,则的大小关系是( )A.B. C.D.9.如图所示,反比例函数6y x=-在第二象限的图象上有两点A 、B ,它们的横坐标分别为-1、-3,直线AB 与x 轴交于点C ,则△AOC 的面积为( )A.8B. 10C.12D.24第9题图第10题图10.如图所示,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y =-x +6于A 、B 两点,若反比例函数y=(x >0)的图象与△ABC 有公共点,则k 的取值范围是( ) A.2≤k ≤9 B.2≤k ≤8 C.2≤k ≤5D.5≤k ≤8二、填空题(每小题3分,共24分)11.已知反比例函数ky x=的图象经过点A (–2,3),则当3x =-时,y =_____.12.如图所示,已知一次函数y =kx -4的图象与x 轴,y 轴分别交于A ,B 两点,与反比例函数y =8x在第一象限内的图象交于点C ,且A 为BC 的中点,则k = .13.已知反比例函数xm y 33-=,当______m 时,其图象的两个分支在第一、三象限内;当______m 时,其图象在每个象限内y 随x 的增大而增大. 14.已知),(111y x P ,),(222y x P 是同一个反比例函数图象上的两点.若212+=x x ,且211112+=y y ,则这个反比例函数的表达式为 . 15.现有一批救灾物资要从A 市运往B 市,如果两市的距离为500千米,车速为每小时千米,从A 市到B 市所需时间为y 小时,那么y 与x 之间的函数关系式为_________,y 是x 的________函数.16.如图所示,点A 、B 在反比例函数(k >0,x >0)的图象上,过点A 、B 作x 轴的垂线,垂足分别为M 、N ,延长线段AB 交x 轴于点C ,若OM =MN =NC ,△AOC 的面积为6,则k的值为.第16题图17.若一次函数的图象与反比例函数的图象没有公共点,则实数k 的取值范围是 .18.若M (2,2)和N (b ,-1-n 2)是反比例函数y =xk图象上的两点,则一次函数y =kx +b 的图象经过第象限.三、解答题(共46分)19.(6分)已知一次函数6y kx =-的图象与反比例函数2ky x=-的图象交于A ,B 两点,点A 的横坐标为2.(1)求k 的值和点A 的坐标; (2)判断点B 所在象限,并说明理由.20.(6分)如图所示,直线y =mx 与双曲线k y x=相交于A ,B 两点,A 点的坐标为(1,2).(1)求反比例函数的表达式;(2)根据图象直接写出当mx >k x 时,x 的取值范围;(3)计算线段AB 的长.21.(6分)如图所示是某一蓄水池的排水速度v (m 3/h )与排完水池中的水所用的时间t (h )之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的蓄水量; (2)写出此函数的关系式;(3)若要6 h 排完水池中的水,那么每小时的排水量应该是多少? (4)如果每小时排水量是,那么水池中的水要用多少小时排完?22.(7分)若反比例函数xky =与一次函数42-=x y 的图象都经过点A (a ,2).(1)求反比例函数xky =的解析式; (2) 当反比例函数xky =的值大于一次函数42-=x y 的值时,求自变量x 的取值范围. 23.(7分)如图所示,已知函数y =k x(x >0)的图象经过点A ,B ,点A 的坐标为 (1,2).过点A 作AC ∥y 轴,AC =1(点C 位于点A 的下方),过点C 作CD ∥x 轴,与函数的图象交于点D ,过点B 作BE ⊥CD ,垂足E 在线段CD 上,连接OC ,OD . (1)求△OCD 的面积; (2)当BE =AC 时,求CE 的长.第23题图第24题图24.(7分)如图所示,已知直线1y x m =+与x 轴、y 轴分别交于点A 、B ,与反比例函数2k y x =(x)的图象分别交于点C 、D ,且C 点的坐标为(1-,2).⑴分别求出直线AB 及反比例函数的表达式; ⑵求出点D 的坐标;⑶利用图象直接写出:当x 在什么范围内取值时,1y >2y ?25.(7分)如图所示,一次函数y 1=x +1的图象与反比例函数y 2=(k 为常数,且k ≠0)的图象都经过点A (m ,2). (1)求点A 的坐标及反比例函数的表达式; (2)结合图象直接比较:当x >0时,y 1与y 2的大小.。
重庆全国中考数学反比例函数的综合中考模拟和真题分类汇总
重庆全国中考数学反比例函数的综合中考模拟和真题分类汇总一、反比例函数1.如图.一次函数y=x+b的图象经过点B(﹣1,0),且与反比例函数(k为不等于0的常数)的图象在第一象限交于点A(1,n).求:(1)一次函数和反比例函数的解析式;(2)当1≤x≤6时,反比例函数y的取值范围.【答案】(1)解:把点B(﹣1,0)代入一次函数y=x+b得: 0=﹣1+b,∴b=1,∴一次函数解析式为:y=x+1,∵点A(1,n)在一次函数y=x+b的图象上,∴n=1+1,∴n=2,∴点A的坐标是(1,2).∵反比例函数的图象过点A(1,2).∴k=1×2=2,∴反比例函数关系式是:y=(2)解:反比例函数y= ,当x>0时,y随x的增大而减少,而当x=1时,y=2,当x=6时,y= ,∴当1≤x≤6时,反比例函数y的值:≤y≤2【解析】【分析】(1)根据题意首先把点B(﹣1,0)代入一次函数y=x+b求出一次函数解析式,又点A(1,n)在一次函数y=x+b的图象上,再利用一次函数解析式求出点A的坐标,然后利用代入系数法求出反比例函数解析式,(2)根据反比例函数的性质分别求出当x=1,x=6时的y值,即可得到答案.2.如图,P1、P2(P2在P1的右侧)是y= (k>0)在第一象限上的两点,点A1的坐标为(2,0).(1)填空:当点P1的横坐标逐渐增大时,△P1OA1的面积将________(减小、不变、增大)(2)若△P1OA1与△P2A1A2均为等边三角形,①求反比例函数的解析式;②求出点P2的坐标,并根据图象直接写在第一象限内,当x满足什么条件时,经过点P1、P2的一次函数的函数值大于反比例函数y= 的函数值.【答案】(1)减小(2)解:①如图所示,作P1B⊥OA1于点B,∵A1的坐标为(2,0),∴OA1=2,∵△P1OA1是等边三角形,∴∠P1OA1=60°,又∵P1B⊥OA1,∴OB=BA1=1,∴P1B= ,∴P1的坐标为(1,),代入反比例函数解析式可得k= ,∴反比例函数的解析式为y= ;②如图所示,过P2作P2C⊥A1A2于点C,∵△P2A1A2为等边三角形,∴∠P2A1A2=60°,设A1C=x,则P2C= x,∴点P2的坐标为(2+x, x),代入反比例函数解析式可得(2+x) x= ,解得x1= ﹣1,x2=﹣﹣1(舍去),∴OC=2+ ﹣1= +1,P2C= (﹣1)= ﹣,∴点P2的坐标为( +1,﹣),∴当1<x< +1时,经过点P1、P2的一次函数的函数值大于反比例函数y= 的函数值【解析】【解答】解:(1)当点P1的横坐标逐渐增大时,点P1离x轴的距离变小,而OA1的长度不变,故△P1OA1的面积将减小,故答案为:减小;【分析】(1)当点P1的横坐标逐渐增大时,点P1离x轴的距离变小,而OA1的长度不变,故△P1OA1的面积将减小;(2)①由A1的坐标为(2,0),△P1OA1是等边三角形,求出P1的坐标,代入反比例函数解析式即可;②由△P2A1A2为等边三角形,求出点P2的坐标,得出结论.3.如图,Rt△ABO的顶点A是双曲线y= 与直线y=﹣x﹣(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO= .(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.【答案】(1)解:设A点坐标为(x,y),且x<0,y>0,则S△ABO= •|BO|•|BA|= •(﹣x)•y= ,∴xy=﹣3,又∵y= ,即xy=k,∴k=﹣3.∴所求的两个函数的解析式分别为y=﹣,y=﹣x+2;(2)解:由y=﹣x+2,令x=0,得y=2.∴直线y=﹣x+2与y轴的交点D的坐标为(0,2),A、C两点坐标满足∴交点A为(﹣1,3),C为(3,﹣1),∴S△AOC=S△ODA+S△ODC= OD•(|x1|+|x2|)= ×2×(3+1)=4.【解析】【分析】两解析式的k一样,根据面积计算双曲线中的k较易,由公式=2S△ABO,可求出k;(2)求交点就求两解析式联立的方程组的解,可分割△AOC为S△ODA+S△ODC,即可求出.4.函数学习中,自变量取值范围及相应的函数值范围问题是大家关注的重点之一,请解决下面的问题.(1)分别求出当2≤x≤4时,三个函数:y=2x+1,y= ,y=2(x﹣1)2+1的最大值和最小值;(2)若y= 的值不大于2,求符合条件的x的范围;(3)若y= ,当a≤x≤2时既无最大值,又无最小值,求a的取值范围;(4)y=2(x﹣m)2+m﹣2,当2≤x≤4时有最小值为1,求m的值.【答案】(1)解:y=2x+1中k=2>0,∴y随x的增大而增大,∴当x=2时,y最小=5;当x=4时,y最大=9.∵y= 中k=2>0,∴在2≤x≤4中,y随x的增大而减小,∴当x=2时,y最大=1;当x=4时,y最小= .∵y=2(x﹣1)2+1中a=2>0,且抛物线的对称轴为x=1,∴当x=1时,y最小=1;当x=4时,y最大=19(2)解:令y= ≤2,解得:x<0或x≥1.∴符合条件的x的范围为x<0或x≥1(3)解:①当k>0时,如图得当0<x≤2时,y= 无最大值,有最小值,同理当a<0时,且a≤x<0时,y≤ 有最大值,无最小值,②当k<0时,如图得当0<x≤2时,y= 无最小值,有最大值,同理当a<0时,且a≤x<0时,y≤ 有最小值,无最大值,∴当k<0,a<0时,此时,y= 既无最大值,又无最小值,综上所述,a的取值范围是a<0(4)解:①当m<2时,有2(2﹣m)2+m﹣2=1,解得:m1=1,m2= (舍去);②当2≤m≤4时,有m﹣2=1,解得:m3=3;③当m>4时,有2(4﹣m)2+m﹣2=1,整理得:2m2﹣15m+29=0.∵△=(﹣15)2﹣4×2×29=﹣7,无解.∴m的值为1或3.①当k>0时,如图得当0<x≤2时,y= 无最大值,有最小值,同理当a<0时,且a≤x<0时,y≤ 有最大值,无最小值,②当k<0时,如图得当0<x≤2时,y= 无最小值,有最大值,同理当a<0时,且a≤x<0时,y≤ 有最小值,无最大值,∴当k<0,a<0时,此时,y= 既无最大值,又无最小值,综上所述,a的取值范围是a<0;【解析】【分析】(1)根据k=2>0结合一次函数的性质即可得出:当2≤x≤4时,y=2x+1的最大值和最小值;根据二次函数的解析式结合二次函数的性质即可得出:当2≤x≤4时,y=2(x﹣1)2+1的最大值和最小值;(2)令y= ≤2,解之即可得出x的取值范围;(3)①当k>0时,如图得当0<x≤2时,得到y= 无最大值,有最小值,同理当a<0时,且a≤x<0时,得到y≤ 有最大值,无最小值,②当k<0时,如图得当0<x≤2时,y=无最小值,有最大值,同理当a<0时,且a≤x<0时,y≤ 有最小值,无最大值,于是得到结论;(4)分m<2、2≤m≤4和m>4三种情况考虑,根据二次函数的性质结合当2≤x≤4时有最小值为1即可得出关于m的一元二次方程(一元一次方程),解之即可得出结论.5.如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).(1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;(3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC 的形状并证明你的结论.【答案】(1)解:设反比例函数的解析式为(k>0)∵A(m,﹣2)在y=2x上,∴﹣2=2m,∴解得m=﹣1。
重庆中考反比例函数11题名校模拟分类汇编.doc
中考名校模拟分类汇编——函数综合题目方法解析南开九上期末南开阶段1 如图,直线l与反比例函数xky=在第一象限内的图象交于A、B两点,且与x轴的正半轴交于C点,若AB=2BC,OAB∆的面积为8,则k的值为(▲)A.6 B.9 C.12 D.18南开九下半期如图,一次函数bxy+=的图象与x轴交于点A,与y轴交于点B,与反比例函数xy2=交于点(2,)C m,则点B到OC的距离是( ▲ )A.2 B.5C.52D.552南开阶段2 如图,在ABCRt∆中,︒=∠90ABC,点B在x轴上,且()01,-B,A点的横坐标是2,AB=3BC,双曲线()04>mxmy=经过A点,双曲线xmy-=经过C点,则m的值为(▲)A.12 B.9 C.6 D.3南开阶段3 如图,Rt OAB∆的直角边OA在x轴正半轴上,︒=∠60AOB,反比例函数()03>xxy=的图象与Rt OAB∆两边OB,AB分别交于点C,D.若点C是OB边的中点,则点D的坐标是(▲)A.()3,1 B.()1,3 C.⎪⎪⎭⎫⎝⎛23,2 D.⎪⎪⎭⎫⎝⎛43,4巴蜀九上半期如图,115y x=--与x轴、y轴分别相交于A、B两点,点M为双曲线()0ky xx=<上一点,若ABM∆是以AB为底的等腰直角三角形,则k的值为()A、52-B、5-C、4-D、6-巴蜀4月如图,在矩形OABC中,AB=2BC,点A、点C分别在y轴和x轴的正半轴上,连接OB,反比例函数y=xk错误!未找到引用源。
k≠0,x>0)的图象经过OB的中点D,与BC边交于点E,点E的横坐标是4,则K的值是()A.1 B.2 C.3D.4EDOBAC巴蜀一模巴蜀二模如图,已知双曲线xky=(0<k)经过直角三角形OAB斜边OB 的中点D,且与直角边AB相交于点C.若点A的坐标为(-6,4),则△BOC的面积为()A.4 B.3 C.2 D.1一中九上期末如图,∆ABC是等腰直角三角形,∠ACB=90°,点A在反比例函数xy4-=的图像上,点B、C都在反比例函数xy2-=的图像上,AB//x轴,则点A的坐标为()A.(32,332-) B.(3,334-)C.(334,3-) D.(332,32-)一中九下开学如图,菱形OABC在直角坐标系中,点A的坐标为(5,0),对角线OB=45,反比例函数xky=(k≠0,x>0)经过点C.则k的值等于()A.12 B.8 C.15 D.9yxAOBC一中3月月考如图,正方形ABCD的边BC在x轴的负半轴上,其中E是CD的中点,函数xky=的图象经过点A、E,若B点的坐标是()3,0-,则k的值为()A. 5-B. 4-C. 6-D. 9-一中九下半期如图ABCRt∆在平面坐标系中,顶点A在x轴上,∠ACB=90°,CB∥x轴,双曲线)0(≠=kxky经过C点及AB的三等点D (BD=2AD),6=∆BCDS,则k的值为()A.3 B.6 C.3-D.6-一中一模八中九下开学如图,直线123y x=-与x轴,y轴分别交于A、B两点,ABC∆是以AB为底边的等腰直角三角形,点C在双曲线kyx=上,则k的值为()A.16 B.216C.16-D.162-八中九下月考一八中九下月考二EDC OyxAB八中九下一模育才一诊育才二诊如图,矩形ABCD中,AB=3,BC=4,动点P从B点出发,在BC上移动至点C停止,记PA=x,点D 到直线PA的距离为y,则y关于x的函数解析式是()A、12y x=B、12yx=C、34y x=D、43y x=110中九下开学如图,已知四边形ABCD是平行四边形,BC=2AB.A,B两点的坐标分别是(﹣1,0),(0,2),C,D两点在反比例函数y=(k <0)的图象上,则k=()A. -8B. -10C. -11D. -12巴南九下期中如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,反比例函数kyx=,在第一象限内的图象经过点D,且与AB、BC分别交于E、F两点,若四边形BEDF的面积为6,则k的值为()A.3 B.4 C.5 D. 6江津月考1 如图,第一角限内的点A在反比例函数2=yx的图象上,第四象限内的点B 在反比例函数=kyx图象上,且OA⊥OB,∠OAB =60度,则K值为渝中二诊二外一模如图所示,已知:xy6=(x>0)图象上一点P,PA⊥x轴于点A(a,0),点B坐标为(0,b)(b>0)动点M在y轴上,且在B点上方,动点N在射线AP上,过点B作AB的垂线,交射线AP 于点D,交直线MN于点Q,连接AQ,取AQ的中点为C.若四边形BQNC是菱形,面积为23,此时P点的坐标(). A.(3,2) B.()33,332C.(23,4)D.()235,534全善3月月考如图,反比例函数y=(x<0)的图象经过点A(﹣1,1),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B′在此反比例函数的图象上,则t的值是()A. B. C.D.全善4月月考开县3月如图,反比例函数y=﹣在第二象限的图象上有两点A、B,它们的横坐标分别为﹣1,﹣3,直线AB与x轴交于点C,则△AO C的面积为()A.8 B.10 C.12 D.24万二中入学万二中3月万二中周练1万二中周练2万二中周练3西附月考8 如图,正方形OABC的边OA、OC均在坐标轴上,双曲线(0)ky xx=>经过OB的中点D,与AB边交于点E,与CB边交于点F,直线EF与x轴交于G.若 4.5OAES=,则点G的坐标是()A.(7,0) B.(7.5,0) C.(8,0) D.(8.5,0)DEFCO xyABG八中二模八中二模如图,在平面直角坐标系xoy中,Rt△OAB的直角边在x轴的负半轴上,点C为斜边OB的中点,反比例函数()0≠=kxky的图象经过点C,且与边AB交于点D,则ABAD的值为()A.31B.32C.51D.41。
2021年重庆年中考11题反比例函数综合专题(3) (无答案)
2021重庆年中考11题反比例函数综合专题(3)1(巴蜀2021级初三上定时训练二)如图,过原点的直线与反比例函数(k 0)k y x =>的图像交于A 、B 两点,点A 在第一象限,点C 在x 轴正半轴上,连接AC 交反比例函数图像于点D ,AE 为∠BAC 的角平分线,过点B 作AE 的出现,垂足为E ,连接DE ,若AC=3DC ,△ADE 的面积为12,则k 的值为( )A.4B.9C.8D.102(重庆一外2021级九上第四次周考)如图,菱形ABCD 的顶点A 在反比例函数(k 0)k y x =≠的图像上,点B 、D 在y 轴上,若=120ABCD S 菱形,3tan 5ABD ∠=,B (0,-8),则k 的值为( ) A 12- B 6- C 485-D 24-3(重庆一外2021级九上第三次周考)如图,已知在Rt △ABC 中,∠ABC=90,A (0,1),CD=2AD ,y 轴平分∠ BAC ,顶点C 在反比例函数k y x =的图像上,则k 的值为( )A 32B 22C 33D 234(重庆育才2021级九上第一次月考复习)二次函数2y ax bx c =++的部分图像如图所示,有一下结论:①30a b -=;②240b ac ->。
③520a b c -+>;④430b c +>,其中错误结论的个数是( )A.1B.2C.3D.45(重庆育才2021级九上第一次月考)已知二次函数2y ax bx c =++的图像如图所示,对称轴为直线1x =-,下列结论中,正确的是( )A 0abc >B 20a b +=C 30a c +>D 42a c b +<6(西师附中2021级九上第二次月考)如图,在平面直角坐标系中,BC ⊥y 轴于点C ,∠B=90,双曲线k y x =过点A ,交BC 于点D ,连接OD ,AD ,若34AB OC =,=15OAD S ,则k 的值为( )A 4B 6C 8D 127(西师附中2021级九上第一次月考)如图,在平面直角坐标系中,直角△AOB 的直角顶点O 在坐标原点,OB=5,OA=10,斜边AB 的中点C 恰在y 轴上,反比例函数(k 0)k y x =>的图像经过点B ,则k 的值为( ) A 10 B85 C 165 D 408(西师附中2021级九上定时训练)如图,在平面直角坐标系中,平行四边形ABCD 的边AB//x 轴,点A (-1,3),且D 的纵坐标为9,若反比例函数k y x=经过平行四边形ABCD 顶点D ,对角线交点E ,交边BC 于点F ,且BF :FC=1:5,则k 为( )A.12B.272 C.18 D 279(重庆八中2021级九上第五次定时作业)如图,矩形OABC 和正方形ADEF 描点A 、D 在x 轴正半轴上,点C 在y 轴正半轴上,点F 在AB 上,点B 、E 在反比例函数(k 0)k y x=>的图像上,正方形ADEF 的面积为9,且BF:AF=5:3,则k 的值为( ) A.15 B.714 C.725 D.71510(重庆一中2021级九上国庆定时作业二)如图,反比例函数(k 0)k y x =≠的图像经过等边△ABC 的顶点,A,B ,且原点O 刚好落在AB 上,已知点C 的坐标是(3,4),则k 的值为( )A.6-B.4-C.3-D.2-11(重庆八中2021级九上第二次定时作业)如图,点M 是反比例函数3y =在第一象限内的图象上一点,过M 作y 轴的垂线,垂足为点A ,现将OMA ∆绕点M 顺时针旋转60得到O M A '''∆,线段O A ''与反比例函数在同一象限交于点N ,若=30OMA ∠,则点N 的横坐标A.63-B.31-C.32 D.314+。
重庆中考反比例函数专题训练
重庆中考反比例函数专题训练1、 如图,在平面直角坐标系中,一次函数bkx y +=的图象分别交x 轴、y 轴于点A 、点B ,与反比例函数xm y=的图象交于点C 、点D ,DE ⊥x 轴于点E ,已知点C 的坐标是(6,-1),AE=6 ,21tan =∠DAE ;(1)求反比例函数和一次函数的解析式;(2)根据图象回答:当x 为何值时,一次函数的值大于反比例函数的值?2、如图,在平面直角坐标系中,经过点A (-1,0)的一次函数)0(≠+=a b ax y 的图象与反比例函数)0(≠=k x k y 的图象相交于P 、Q 两点,过点P 作PB ⊥x 轴于点B ,已知点B 的坐标是(2,0),23t a n =∠PAB ;(1)求反比例函数和一次函数的解析式;(2)设一次函数与y 轴相交于点C ,求四边形OBPC 的面积;3、已知:如图,在平面直角坐标系中,一次函数)0(1≠+=k b kx y 的图象与反比例函数)0(2≠=m xm y 的图象相交于二、四象限内的A 、B 两点,过点A 作AC ⊥x 轴于点C ,连接OA 、OB 、BC ,已知OC =4,点B 的纵坐标是-6 ,2tan =∠OAC ;(1)求反比例函数和直线AB 的解析式;(2)求四边形OACB 的面积;4、已知:如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象在第一象限只有一个交点,一次函数的图象与x 轴、y 轴分别相交于B 、C 两点,AD 垂直平分OB ,垂足为D 点,13=OA,13132cos=∠ABO(1)求点A 的坐标和反比例函数解析式;(2)求一次函数的解析式;;5、已知:如图,在平面直角坐标系xOy 中,一次函数0(≠+=k b kx y 的图象与反比例函数xm y=(x <0)的图象相交于第二象限内的A 、B 两点,过点A 作AC ⊥x 轴于点C ,已知OA=5,OC =4,点B 的纵坐标是6 ,2tan =∠OAC ;(1)求反比例函数和一次函数的解析式; (2)求△AOB 的面积;6、已知:如图,在平面直角坐标系中,一次函数(1≠+=k b kx y 的图象与反比例函数)0(2≠=m xm y 的图象相交于A 、B 两点,与x 轴相交于点C ,已知BC=BO =5,点D 的坐标是(-6,0) ,32tan =∠OCB ;(1)求反比例函数和直线AB 的解析式;(2)求点A 的坐标;并根据图像直接写出当1y >2y 时x 的取值范围;y7、如图,在平面直角坐标系中,一次函数ax y +=的图象与反比例函数xk y =的图象交于A 、B 两点,与x 轴相交于点D ,与y 轴相交于点C ,已知点D 的坐标是(-2,0),点A 的横坐标是2 ,21tan=∠CDO ;(1)求点A 的坐标;(2)求反比例函数和一次函数的解析式; (3)求△AOB 的面积;8、已知:如图,一次函数)0(1≠+=k b kx y 的图象与反比例函数)0(2≠=m xm y 的图象相交于A 、B 两点,已知OA =10,点B 的坐标是(23-,m ),31ta n =∠A O C;(1)求反比例函数和一次函数的解析式; (2)根据你观察的图像,直接写出使函数值1y <2y 时自变量x 的取值范围;y9、已知:如图,反比例函数xm y=(m >0)的图象与一次函数)0(1≠+=k b kx y 的图象相交于A 、B 两点,AC ⊥x 轴于点C ,若OC=1,且 31tan =∠AOC ,点D 与点C 关于原点O 对称;(1)求反比例函数和一次函数的解析式;(2)根据你观察的图像,写出不等式xm <bkx+成立的解集;10、如图,在平面直角坐标系中,一次函数bax y +=(0≠a)的图象与反比例函数xk y =(0≠k)的图象相交于A 、D 两点,其中D 点的纵坐标为-4,直线bax y+=与y 轴相交于点B ,作AC ⊥y 轴相交于点C ,已知OB=OC=2,21tan=∠ABO ;(1)求点A 的坐标;(2)求反比例函数和直线AB 的解析式; (3)连接OA 、OD ,求△AOD 的面积;11、如图,在平面直角坐标系中,直线AB :bax y +=(0≠a)与反比例函数xm y=(0≠m)的图象交于B 点,与x 轴相交于点A ,已知 CB=BO=5,54tan =∠OAB ,点C 的坐标是(-6,0);(1)求反比例函数和直线AB 的解析式;(2)求线段AB 的长;12、如图,若直线 bax y +=(0≠a)与x 轴相交于点A (25,0),与双曲线xm y=(0≠m)的图象在第二象限交于B 点,且 OA=OB ,△OAB 的面积为25;(1)求双曲线的解析式和直线AB的解析式;(2)求ABO ∠tan 的值;13、如图,在平面直角坐标系xOy 中,一次函数bkx y +=(0≠k)与反比例函数xm y=(0≠m)的图象相交于A 点,与x 轴相交于点B ,AC ⊥x 轴于点C ,AB=10, OB=OC ,43tan =∠ABC ;(1)求反比例函数和一次函数的解析式;(2)若一次函数与反比例函数的图象的另一交点为D 点,连接OA 、OD ,求△AOD 的面积;14、如图,在平面直角坐标系xOy 中,一次函数b kx y +=1(0≠k )与反比例函数xm y =2(m <0)的图象交于点A (-2,n )及另一点,与两坐标轴分别相交于点C 、D 两点,过点A 作AH ⊥x 轴于点H ,若OC=2OH ,△ACH 的面积为9;(1)求反比例函数和一次函数AB 的解析式及另一交点B 的坐标; (2)根据图像,直接写出当1y >2y 时自变量x 的取值范围;15、已知点A 与点B (-3,2)关于y 轴对称,一次函数b mx y +=(0≠m )与反比例函数xk y=的图象都经过点A ,且点C (2,0)在一次函数bmx y+=的图象上,(1)求反比例函数和一次函数AB 的解析式;(2)若两个函数的另一个交点为点D ,求△AOD 的面积;16、如图,在平面直角坐标系xOy 中,已知一次函数bkx y +=(0≠k)的图象经过点A 与点C (0,-4),反比例函数xm y=(0≠m)的图象经过点A (1,-3),且与一次函数的图象相交于另一点B (3,n ); (1)试确定反比例函数和一次函数解析式;(2)根据图像,直接写出反比例函数值大于一次函数值时自变量x 的取值范围;。
第三节 反比例函数(玩转重庆9年中考真题)
第三章函数第三节反比例函数玩转重庆9年中考真题(~) 命题点1 反比例函数与几何图形综合题类型一与三角形结合(9年1考)1.(重庆A卷12题4分)如图,反比例函数y=-6x在第二象限的图象上有两点A、B,它们的横坐标分别为-1、-3,直线AB与x轴交于点C,则△AOC的面积为() A. 8 B. 10 C. 12 D. 24第1题图【拓展猜押1】如图,若双曲线y=kx与边长为5的等边△AOB的边OA,AB分别相交于C,D两点,且OC=3BD,则实数k的值为()拓展猜押1题图A. 23B. 53 2C. 934 D.536类型二与四边形结合(9年4考)2. (重庆A卷12题4分)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1.反比例函数y=3x的图象经过A、B两点,则菱形ABCD的面积为()A. 2B. 4C. 2 2D. 4 2第2题图第3题图3. (重庆B卷12题4分)如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,∠BOC=60°,顶点C的坐标为(m,33),反比例函数y=kx的图象与菱形对角线AO交于D点,连接BD,当DB⊥x轴时,k的值是()A. 6 3B. -6 3C. 12 3D. -12 34. (重庆B卷12题4分)如图,在直角坐标系中,正方形OABC的顶点O与原点重合,顶点A、C分别在x轴、y轴上,反比例函数y=kx(k≠0,x>0)的图象与正方形的两边AB、BC分别交于点M、N,ND⊥x轴,垂足为D,连接OM、ON、MN.下列结论:①△OCN≌△OAM;②ON=MN;③四边形DAMN与△MON 面积相等;④若∠MON=45°,MN=2,则点C的坐标为(0,2+1).其中正确结论的个数是()A. 1B. 2C. 3D. 4第4题图第5题图5. (重庆A卷18题4分)如图,菱形OABC的顶点O是坐标原点,顶点A在x 轴的正半轴上,顶点B、C均在第一象限,OA=2,∠AOC=60°.点D在边AB 上,将四边形ODBC沿直线OD翻折,使点B和点C分别落在这个坐标平面内的点B′和点C′处,且∠C′DB′=60°.若某反比例函数的图象经过点B′,则这个反比例函数的解析式为______________.【变式改编1】如图,菱形OABC的顶点O是坐标原点,顶点A在x轴的正半轴上,顶点B、C均在第一象限,∠AOC=60°,点D在边AB上,将四边形ODBC 沿直线OD翻折,使点B和点C分别落在这个坐标平面内的点B′和点C′处,且∠C′DB′=60°. 若反比例函数y=-33x的图象经过点B′,则菱形OABC的边长为________.变式改编1题图命题点2反比例函数与一次函数、几何图形综合题(9年8考)6. (重庆B卷12题4分)如图,正方形ABCD的顶点B、C在x轴的正半轴上,反比例函数y=kx(k≠0)在第一象限的图象经过顶点A(m,2)和CD边上的点E(n,23).过点E的直线l交x轴于点F,交y轴于点G(0,-2).则点F的坐标是()A. (54,0) B. (74,0) C.(94,0) D. (114,0)第6题图象与反比例函数y=kx(k≠0)的图象交于第二、第四象限内的A,B两点,与y轴交于C点.过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH=43,点B的坐标为(m,-2).(1)求△AHO的周长;(2)求该反比例函数和一次函数的解析式.第7题图8. (重庆B卷22题10分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,-4),连接AO,AO=5,sin∠AOC=3 5.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.第8题图的图象与反比例函数y=kx(k≠0)的图象交于一、三象限内的A、B两点,与x轴交于C点,点A的坐标为(2,m),点B的坐标为(n,-2),tan∠BOC=2 5.(1)求该反比例函数和一次函数的解析式;(2)在x轴上有一点E(O点除外),使得△BCE与△BCO的面积相等,求出点E 的坐标.第9题图【变式改编2】如图,在平面直角坐标系xOy中,反比例函数y=mx的图象与一次函数y=k(x-2)的图象交点为A(3,2),B(a,b).(1)求反比例函数与一次函数的解析式及B点坐标;(2)若C是y轴上的点,且满足△ABC的面积为10.求C点坐标.变式改编2题图【拓展猜押2】如图,△OAB为等腰直角三角形,斜边OB边在x轴负半轴上,一次函数y =-17x +47与△OAB 交于E 、D 两点,与x 轴交于C 点,反比例函数y =k x (k ≠0)的图象的一支过E 点,若S △AED =S △DOC ,则k 的值为 ( )A. 1B. 2C. -1D. -3拓展猜押2题图答案命题点1 反比例函数与几何综合题1. C 【解析】本题考查反比例函数性质、待定系数法求直线解析式及三角形面积的计算.∵点A 、B 都在反比例函数y =-6x 的图象上,且点A 、B 的横坐标分别是-1、-3,代入到函数解析式中,可得A 、B 两点的纵坐标分别为6、2,∴A (-1,6),B (-3,2),设直线AB 的解析式为:y =kx +b ,代入A 、B 两点,得:623k b k b =-+⎧⎨=-+⎩,解得:28k b =⎧⎨=⎩,则直线AB 的解析式为:y =2x +8,令y =0,解得:x =-4,则点C 的坐标为(-4,0),∴OC =4,S △AOC =12OC ·|y A |=12×4×6=12.【拓展猜押1】 C 【解析】因为△AOB 是等边三角形,所以∠AOB =∠ABO =60°,如解图,过点C 作CM ⊥OB 于M ,过点D 作DN ⊥OB 于N ,所以△OCM ∽△BDN ,所以OC DB =OM BN =CM DN ,又因为OC =3BD ,我们不妨设OM =3a ,则BN =a ,所以C (3a ,33a ),D(5-a ,3a ),又因为点C 和点D 均在双曲线上,所以3a ·33a =(5-a )3a ,解之得a 1=12,a 2=0(不合题意,应舍去),所以k =3a ×33a =93a 2=93×14=934.拓展猜押1题解图 第2题解图2. D 【解析】∵当y =3时,即3=3x ,解得x =1,∴A (1,3);当y =1时,即1=3x ,解得x =3,∴B (3,1).如解图,过点A 作AE ∥y 轴交CB 的延长线于E 点,则AE =3-1=2,BE =3-1=2,∴AB =22+22=22,∴在菱形ABCD 中,BC =AB =22,∴S 菱形ABCD =BC ×AE =22×2=4 2.第3题解图3. D 【解析】连接BC ,过点C 作CE ⊥x 轴于E 点,如解图.∵在菱形ABOC 中,OC =OB ,∠BOC =60°,∴△BOC 是等边三角形.∵CE ⊥BO ,∴∠OCE=30°,BE =EO .∵C (m ,33),∴CE =33,∵sin60°=CE OC ,∴OC =CE sin 60°=3332=6,∴OB =6.∵在菱形ABOC 中,∠AOB =12∠BOC =30°,∴tan30°=BD BO ,∴BD =BO ·tan30°=6×33=23,∴D (-6,23),∴k =(-6)·23=-12 3.4. C 【解析】本题是反比例函数和几何图形结合的结论判断题,逐项分析如下:序号 逐项分析 正误①S△CON=S△MOA=12k,∴OC·CN=OA·AM,又∵OC=OA, ∴CN=AM.又∵∠OCB=∠OAB=90°,∴△OCN≌△OAM√②由①知△OCN≌△OAM,∴ON=OM,若ON=MN,则△ONM是等边三角形,∠NOM=60°,题目中没有给出可以得到此结论的条件×③根据①的结论,设正方形边长为a,CN=AM=b.S四边形DAMN=12(a+b)(a-b)=12a2-12b2,S△MON=a2-12ab-12ab-12(a-b)2=12a2-12b2, ∴S四边形DAMN=S△MON√④如解图,延长BA到E,使AE=CN,连接OE,则△OCN≌△OAE,∴∠EOA=∠NOC,ON=OE,∴∠MOE=∠MOA+∠CON=90°-∠MON=45°,∴∠MOE=∠MON,又∵OM=OM,∴△NOM≌△EOM,∴ME=MN=2,即CN+AM=2,∴CN=AM=1,Rt△NMB中,BN=BM=MN2=2,∴AB=2+1, ∴C(0, 2+1)√第4题解图5. y=33x-【解析】∵四边形OABC是菱形,∴∠ABC=∠AOC=60°.由折叠的性质知∠CDB=∠C′DB′=60°,∴△CDB为等边三角形,如解图,∴DB=BC=2,∴点D与点A重合.∴点B′与点B关于OA即x轴对称.易求得点B 的坐标为(3,3),故点B′的坐标为(3,-3),所以经过点B′的反比例函数的解析式为y=33x-.第5题解图变式改编1题解图【变式改编1】2【解析】如解图,∵四边形OABC是菱形,∠AOC=60°,∴△AOC和△ABC都是等边三角形,由轴对称的性质可知∠CDB=∠C′DB′=60°,CD=C′D,DB=B′D,∴点D与点A重合.过点B′作B′E⊥x轴于点E,则∠B′ED=90°,在Rt△DB′E中,∠EDB′=60°,设AB′=x,∴OE=x+x 2=3x2,EB′=32x,∵点B′在第四象限,∴点B′(32x,-32x).∵点B′在反比例函数y=-33x的图象上,则32x·(-32x)=-33,解得x=2,则菱形OABC的边长是2.命题点2反比例函数与一次函数、几何图形综合题6.C【解析】∵四边形ABCD是正方形,点A的坐标为(m,2),∴正方形ABCD的边长为2,即BC=2.∵点E的坐标为(n,23),点E在边CD上,∴点E的坐标为(m +2,23).把A (m ,2)和E (m +2,23)代入y =k x,得2232k mkm ⎧=⎪⎪⎨⎪=⎪+⎩,解得21k m =⎧⎨=⎩,∴点E 的坐标为(3,23).∵点G 的坐标为(0,-2),设直线GE 的解析式为:y=ax +b (a ≠0),可得,2233b a b -=⎧⎪⎨=+⎪⎩,解得892a b ⎧=⎪⎨⎪=-⎩,∴直线GE 的解析式为:y=89x -2.∵点F 在直线GE 上,且点F 在x 轴上,可设点F 的坐标为(c ,0),代入GE 的解析式,令y =0,求得c =94,∴点F 的坐标为(94,0). 7. 解:(1)在Rt △AOH 中,tan ∠AOH =43,OH =3, ∴AH =OH·tan ∠AOH =4,∴AO 22OH AH +=32+42=5,∴C △AOH =AO +OH +AH =5+3+4=12. .......................................................(5分) (2)由(1)得,A (-4,3),把A (-4,3)代入反比例函数y =kx 中,得k =-12,∴反比例函数解析式为y =12x-,...................................................................(7分) 把B (m ,-2)代入反比例函数y =12x-中,得m =6, ∴B (6,-2),..................................................................................................(8分) 把A (-4,3),B (6,-2)代入一次函数y =ax +b 中,得6243a b a b +=-⎧⎨-+=⎩, ∴121a b ⎧=-⎪⎨⎪=⎩, ∴一次函数的解析式为y =-12x +1. ...............................................................(10分)8.第8题解图解:(1)如解图,过点A 作AE ⊥x 轴于点E , ∵OA =5,sin ∠AOC =35, ∴AE =OA ·sin ∠AOC =5×35=3, OE =22OA AE -=4,∴A (-4,3),........................................................................................................(3分)设反比例函数的解析式为y =kx (k ≠0), 把A (-4,3)代入解析式,得k =-12, ∴反比例函数的解析式为y =12x-. .................................................................(5分) (2)把B (m ,-4)代入y =12x-中,得m =3,∴B (3,-4).设直线AB 的解析式为:y =k x +b ,把A (-4,3)和B (3,-4)代入得,4334k b k b -+=⎧⎨+=-⎩,解得11k b =-⎧⎨=-⎩, ∴直线AB 的解析式为:y =-x -1,.................................................................(8分) 则直线AB 与y 轴的交点D (0,-1),∴S △AOB =S △AOD +S △BOD =12×1×4+12×1×3=3.5. ......................................(10分)第9题解图9. 解:(1)如解图,过点B 作BD ⊥x 轴于点D .∵点B 的坐标为(n ,-2), ∴BD =2.在Rt △BDO 中,tan ∠BOC =BDOD ,∵tan ∠BOC =2OD=25, ∴OD =5. ..........................................................................................................(1分)又∵点B 在第三象限,∴点B 的坐标为(-5,-2).(2分) 将B (-5,-2)代入y =k x ,得-2=5k-,∴k =10,..............................................................................................................(3分) ∴该反比例函数的解析式为y =10x. .................................................................(4分) 将点A (2,m )代入y =10x,得m =102=5, ∴A (2,5).........................................................................................................(5分) 将A (2,5)和B (-5,-2)分别代入y =ax +b ,得2552a b a b +=⎧⎨-+=-⎩,解得13a b =⎧⎨=⎩,...............................................................................(6分) ∴该一次函数的解析式为y =x +3. ..................................................................(7分) (2)在y =x +3中,令y =0,即x +3=0, ∴x =-3,∴点C 的坐标为(-3,0),∴OC =3. .........................................................................................................(8分) 又∵在x 轴上有一点E (O 除外),使S △BCE =S △BCO ,∴CE =OC =3,..............................................................................................(9分) ∴OE =6,∴E (-6,0)...................................................................................................(10分) 【变式改编2】 解:(1)把点A (3,2)分别代入反比例函数解析式和一次函数解析式得,3m=2,k (3-2)=2, 解得m =6,k =2,∴反比例函数解析式为y =6x,一次函数解析式为y =2x -4; 由624y xy x ⎧=⎪⎨⎪=-⎩,解得121231,26x x y y ==-⎧⎧⎨⎨==-⎩⎩,∴B 点坐标(-1,-6).变式改编2题解图(2)设一次函数与y 轴交于D 点,如解图, 在y =2x -4中,令x =0得y =-4, ∴D 点坐标为(0,-4), ∵S △ABC =S △ACD +S △BCD =10,∴12×CD ×3+12×CD ×1=10,解得CD =5, ∴C 点坐标为(0,1)或(0,-9).拓展猜押2题解图【拓展猜押2】 D 【解析】如解图,作EF ⊥OB 于F ,AG ⊥OB 于G ,设E (m ,n ),∴OF =-m ,EF =n ,∵△OAB 为等腰直角三角形,∴∠ABO =45°,∵EF⊥OB,∴EF=BF=n,∴OB=-m+n,∴AG=12OB=12(-m+n),∵一次函数y=-17x+47与x轴交于C点,∴C(4,0),∴BC=-m+n+4,∵S△AED=S△DOC ,∴S△ABO=S△EBC,∴12OB·AG=12BC·EF,即12(-m+n)·12(-m+n)=12(-m+n+4)·n,整理得,m2=n2+8n,∵点E是直线y=-17x+47上的点,∴n=-17m+47,得出m=4-7n,代入m2=n2+8n化简得,3n2-4n+1=0,解得n=1或n=13,∴m=-3或m=53>0(舍去),∴E(-3,1),∵反比例函数y=kx(k≠0)的图象过E点,∴k=mn=-3.。
重庆2020中考专题训练之反比例函数(pdf版,无答案)
反比例函数
(八中 2019 级九上周考 1)如图,点 P m, m 是反比例函数 y 9 在第一象限内的图像上一点,点
x
A、B 均在 x 轴上,若△PAB 为等边三角形,则△POB 的面积为( )
9
A、
2
B、 3 3
9 12 3
C、
4
93 3
D、
2
(八中 2019 级九上周考 2)如图所示,四边形 OABC 是矩形,△ADE 是等腰直角三角形,∠ADE=90°,
2
3 3
,3
3
C、
4,3 2
D、
4
3 5
,5
3 2
6
(巴蜀 2019 级九上月考模拟 2)如图,已知点 A 是双曲线 y 2 在第一象限的分支上的一个动点, x
连接 AO 并延长,交另一分支于点 B,以 AB 为斜边作等腰 Rt△ABC,随着点 A 的运动,点 C 的位
点 A、D 在 x 轴的正半轴上,点 C 在 y 轴的正半轴上,点 B、E 在反比例函数 y k x 0 的图像
x
上,△ADE 的面积为 9 ,且 AB 5 DE ,则 k 的值为(
)
2
3
A、18
B、 45 2
C、 52 6
D、16
2
(南开 2019 级九上入学测试)如图,在平面直角坐标系中,△ABO 的顶点 A 在 x 轴上,反比例函
x
坐标为(0,b)(b>0),动点 M 在 y 轴上,且在 B 点上方,动点 N 在射线 AP 上,过点 B 作 AB 的
垂线,交射线 AP 于点 D,交直线 MN 于点 Q,取 AQ 中点为 C,若四边形 BQNC 是菱形,面积为 2 3 ,
重庆市十一中2024年中考数学模拟试卷(九年级下开学考试)附参考答案
重庆市十一中2024年中考数学模拟试卷(九年级下开学考试)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑. 1.实数-5的相反数是( ) A.5B.-5C.15D.-152.下图是由几个小正方体搭成的几何体,则这个几何体的左视图为( )3.反比例函数的图象经过点A(3,2),下列各点在此反比例函数图象上的是( ) A.(-3,2)B.(3,-2)C.(-6,-1)D.(-1,6)4.如图,△ABC 与△DEF 是位似图形,点O 为位似中心,位似比为2︰3.若△ABC 的面积为8,△DEF 的面积是( ) A.12B.16C.18D.205.将含45°角的直角三角板按如图所示摆放,直角顶点在直线m 上,其中一个锐角顶点在直线n 上.若m ∥n ,∠1=30°,则∠2的度数为( ) A.45°B.60°C.75°D.90°6.估算√6×√15+1的结果( ) A.在7和8之间B.在8和9之间C.在9和10之间D.在10和11之间7.一组图形按下列规律排序,其中第①个图形有2个爱心,第②个图形有5个爱心,ADF COEB 4题图7题图 ①②③④…5题图mn12D.C. B. A.第③个图形有8个爱心,…,按此规律排列下去,则第⑧个图形的爱心的个数是( ) A.26B.25C.24D.238.如图,AB 是⊙0的直径,BC 是⊙0的切线,连接0C 交⊙0于点D ,连接AD ,若∠A=30°,AD=√3,则CD 的长为( ) A.3B.2C.√3D.19.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,连接AE ,AF ,EF ,∠EAF=45°.若∠FEC=α,则∠BAE 一定等于( ) A.12αB.90°-12αC.45°-12αD.90°-α10.已知x >y >z >0>m >n ,对多项式x -y+z -m -n ,任意添加绝对值运算(不可添加为单个字母的绝对值或绝对值中含有绝对值的情况)后,称这种操作为“绝对操作”.例如:|x -y|+z -m -n ,x -|y+z|-|m -n|,x -y+|z -m -n|等.对多项式进行“绝对操作”后,可进一步对其进行运算.下列说法其中正确的个数是( ) ①存在八种“绝对操作”,使其化简的结果与原多项式相等. ②不存在任何“绝对操作”,使其运算结果与原多项式之和为0. ③所有的“绝对操作”共有7种不同的结果. A.0B.1C.2D.3二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡...中对应的横线上. 11.计算:2sin60°-(13)0=______.9题图ADBFCE 8题图12.若一个正n 边形的每个内角为135°,则n 的值为______.13.2023年10月26日上午,神州十七号载人飞船载着杨洪波、唐胜杰、江新林3名航天员奔赴“天宫”,从2003年的神舟五号到2023年的神州十七号,20年中国载人航天工程共有20位航天员问鼎苍穹,截止到目前为止,我国航天员在太空的时间已累计达到近21200个小时,其中,数字21200用科学记数法表为______.14.现有四张完全相同的刮刮卡,涂层下面的文字分别是“赢”、“在”、“一”、“诊”.小明从中随机抽取两张并刮开,则这两张刮刮卡上的文字恰好是“一”和“诊”的概率是______.15.如图,菱形ABCD 的边长为6,∠A=60°,BD̂是以点A 为圆心,AB 长为半径的弧,CD ̂是以点B 为圆心,BC 长为半径的弧,则阴影部分的面积为______(结果保留根号).16.若整数a 使关于x 的不等式组{x −a >2x −3a <−2无解,且使关于y 的分式方程ay y−5-55−y=-3有非负整数解,则满足条件的a 的值之和为______.17.如图,在等腰直角△ABC 中,AC=4,∠C=90°,M 为BC 边上任意一点,连接AM , 将△ACM 沿AM 翻折得到△AC ´M ,连接BC ´,并延长交AC 于点N ,若点N 是AC 的中点,则CM 的长为______.18.一个四位正整数的各个数位上的数字互不相等且均不为0,若满足千位数字与个位数字之和等于百位数字与十位数字之和,则称这个四位数M 为“博雅数”.将“博雅数”M=abcd̅̅̅̅̅̅的千位数字与十位数字对调,百位数字与个位数字对调得到一个新的17题图BANCM C ´15题图C四位数N.若N 能被9整除,则a+d=______.在此条件下,若F(M)=M+N 13为整数,则满足条件的M 的最大值为______.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡...中对应的位置上. 19.计算.(1)(2a -1)(2a+1)-a(4a -1);(2)(1-1x+1)÷xx 2+2x+1.20.学习了矩形的判定后,小蒋对等腰三角形底边上的高和底角顶点到顶角外角平分线的距离的数量关系进行了拓展性研究.请根据他的思路完成以下作图与填空. 用直尺和圆规,作等腰三角形ABC 的外角∠CAM 的角平分线AN ,再过点C 作CH 上AN 于点H.(只保留作图痕迹)已知:如图,三角形ABC 中AC=AB ,AD 是底边BC 上的高,AN 平分∠CAM ,CH ⊥AN 于点H.求证:AD=CH. 证明:∵AN 平分CAM ∴∠CAN=12∠CAM∵AC=AB ,AD 是底边BC 上的高 ∴①=12∠CMB ,∠ADC=90°又∵∠BAC+∠CAM=180° ∴∠DAH=12(∠CAB+∠CAM)=②又∵CH ⊥AN 于点H ∴③=90°∴四边形ADCH 为矩形 ∴AD=CH小蒋进一步研究发现,任意等腰三角形均有此特征.请你依照题意完成下面命题:等腰三角形底边上的高等于④.21.某公司计划购入语音识别输入软件,提高办公效率.市面上有A 、B 两款语音识别输入软件,该公司准备择优购买.为了解两款软件的性能,测试员小林随机选取了20段短文,其中每段短文都含10个文字.他用标准普通话以相同的语速朗读每段短文来测试这两款软件,并将语音识别结果整理、描述和分析,下面给出了部分信息. A 款软件每段短文中识别正确的字数记录为:5,5,6,6,6,6,6,6,6,7,9,9,9,9,9,10,10,10,10,10.A 、B 两款软件每段短文中识别正确的字数的统计表根据以上信息,解答下列问题.(1)上述表中的a=______,b=______,c=______.B 款软件每段短文中识别正确的字数折线统计图ABCM D(2)若你是测试员小林,根据上述数据,你会向公司推荐哪款软件?请说明理由(写出一条理由即可).(3)若会议记录员用A、B两款软件各识别了800段短文,每段短文有10个文字,请估计两款软件一字不差....地识别正确的短文共有多少段?22.某学校食堂不定期采购某调味加工厂生产的“0添加”有机生态酱油和生态食醋两种食材.(1)该学校花费1720元一次性购买了酱油、食醋共100瓶,已知酱油和食醋的单价分别是18元、16元,求学校购买了酱油和食醋各多少瓶?(2)由于学校食材的消耗量下降和加工厂调味品的价格波动,现该学校分别花费900元、600元一次性购买酱油和食醋两种调味品,已知购买酱油的数量是食醋数量的1.25倍,每瓶食醋比每瓶酱油的价格少3元,求学校购买食醋多少瓶?23.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点D从点B出发,沿着折线B→C→A(含端点)运动,速度为每秒1个单位长度,到达A点停止运动,设点D的运动时间为t,点D到AB的距离DG为y1,请解答下列问题.(1)直接写出y1关于t的函数关系式,并写出t的取值范围.(t>0),在直角坐标系中分别画出y1,y2的图象,并写出函数y1的一(2)若函数y2=15t条性质.(3)根据函数图象,直接估计当y1≥y2时t的取值范围.(保留1位小数,误差不超过0.2)C24.小明和小红相约周末游览合川钓鱼城,如图,A ,B ,C ,D ,E 为同一平面内的五个景点.已知景点E 位于景点A 的东南方向400√6米处,景点D 位于景点A 的北偏东60°方向1500米处,景点C 位于景点B 的北偏东30°方向,若景点A ,B 与景点C ,D 都位于东西方向,且景点C ,B ,E 在同一直线上. (1)求景点A 与景点B 之间的距离.(结果保留根号)(2)小明从景点A 出发,从A 到D 到C ,小红从景点E 出发,从E 到B 到C ,两人在各景点处停留的时间忽略不计.已知两人同时出发且速度相同,请通过计算说明谁先到达景点C.(参考数据:√3≈1.73)25.如图,抛物线y=a x ²+5a x +b 经过点D(-1,-5),且交x 轴于A(-6,0),B 两点(点A 在点B 的左侧),交y 轴于点C. (1)求抛物线的解析式.(2)如图1,过点D 作DM ⊥x 轴,垂足为M ,点P 在直线AD 下方抛物线上运动,过点P 作PE ⊥AD ,PF ⊥DM ,求√2PE+PF 的最大值,以及此时点P 的坐标.(3)将原抛物线沿射线CA 方向平移√52个单位长度,在平移后的抛物线上存在点G ,使得∠CAG=45°,请写出所有符合条件的点G 的横坐标,并写出其中一个的求解过程.EABCD30°60°45°26.如图,在△ABC 中,∠ACB=90°,∠A=60°,点D 是边AB 上一动点,连接CD ,将CD 绕点D 逆时针旋转α度得到线段DE.(1)如图1所示,α=90°,连接CE ,作EF ⊥BC 交BC 于F ,若CD=4,∠ACD=∠BDE ,求EF 的长.(2)如图2,α=60°,G 为AB 中点,连接GE ,延长GE 交BC 于F ,问:DG ,EG ,EF 之间的关系.(3)如图3,在(2)小问的基础上,AC=4,在线段CG 上取一点P ,使得3CP=GP ,Q 为CB 上一动点,将△CPQ 沿PQ 翻折得到△C ´PQ ,点D ,P 在运动过程中,当C ´E 最短时,请直接写出△ABE 的面积.重庆市十一中2024年中考数学模拟试卷(九年级下开学考试)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡...上题号右图2ABCDF G E图3A BCF G D EQ C ´ P图1A B CEFD图2侧正确答案所对应的方框涂黑. 1.实数-5的相反数是( ) A.5B.-5C.15D.-151.解:互为相反数的数之和为0,故选A 。
2024年重庆市第十一中学校中考一诊数学模拟试题
2024年重庆市第十一中学校中考一诊数学模拟试题 学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列各数中是无理数( )A .1.010010001B .3-CD .1032.如图,由5个大小相同的小正方体搭成的几何体,它的俯视图是( )A .B .C .D .3.关于反比例函数3y x=,下列结论正确的是( )A .图像位于第二、四象限B .图像与坐标轴有公共点C .图像所在的每一个象限内,y 随x 的增大而减小D .图像经过点(),2a a +,则1a =4.如图,△ABC 与△DEF 是位似图形,且位似中心为O ,OB :OE =2:3,若△ABC 的面积为4,则△DEF 的面积为( )A .2B .6C .8D .95.如图,AB CD ∥,若55D ∠=︒,则1∠的度数为( )A .125︒B .135︒C .145︒D .155︒6的值应在( ) A .4和5之间 B .5和6之间 C .6和7之间 D .7和8之间 7.烷烃是一类由碳、氢元素组成的有机化合物,在生产生活中可作为燃料、润滑剂等原料,也可用于动、植物的养护.通常用碳原子的个数命名为甲烷、乙烷、丙烷、⋯、癸烷(当碳原子数目超过10个时即用汉文数字表示,如十一烷、十二烷)⋯等,甲烷的化学式为4CH ,乙烷的化学式为26C H ,丙烷的化学式为38C H ⋯,其分子结构模型如图所示,按照此规律,十二烷的化学式为 ( )A .1224C HB .1225C H C .1226C HD .1228C H 8.如图,正五边形ABCDE 内接于O e ,连接,OC OD ,则BAE COD ∠-∠=( )A .60︒B .54︒C .48︒D .36︒9.如图,矩形ABCD 中,点E 为CD 边的中点,连接AE ,过E 作EF AE ⊥交BC 于点F ,连接AF ,若EFC α∠=,则BAF ∠的度数为( )A .290-o αB .452α︒+ C .452α-o D .90α︒-10.对于若干个数,先将每两个数作差,再将这些差的绝对值进行求和,这样的运算称为对这若干个数的“差绝对值运算”,例如,对于1,2,3进行“差绝对值运算”,得到:1223134-+-+-=.①对-2,3,5,9进行“差绝对值运算”的结果是35;②x ,52-,5的“差绝对值运算”的最小值是152; ③a ,b ,c 的“差绝对值运算”化简结果可能存在的不同表达式一共有6种;以上说法中正确的个数为( )A .3个B .2个C .1个D .0个二、填空题1102sin 45(3)π=︒--.12.如图,用两个可以自由转动的转盘做“配紫色”游戏:分别转动两个转盘,若其中一个转出红色,另一个转出蓝色即可配出紫色,那么可配成紫色的概率是 .13.一个正多边形每个内角与它相邻外角的度数比为2:1,则这个正多边形的边数为.14.若关于x 的不等式组()32112123x a x x x ⎧->-⎪⎨-+≥-⎪⎩的解集为1x ≥,关于y 的分式方程111y a y y +=+-有整数解,则满足条件整数a 的乘积为. 15.如图,直径AB 为6的半圆,绕A 点逆时针旋转60°,此时点B 到了点B ′,则图中阴影部分的面积是.16.某学校连续三年组织学生参加义务植树活动,第一年植树400棵,第三年植树625棵,设该校植树棵数的年平均增长率为x ,根据题意列出方程17.如图,在四边形ABCD 中,120AB AC AD BC BAC =⊥∠=o ,,作DAC ∠平分线AN 交CD 于点M ,交BD 延长线于点N ,且2AN =,则CM DM=.18.对于四位数M abcd =,若千位上的数字与百位上的数字的差的两倍等于十位上的数字与个位上的数字的差,则把M 叫做“双倍差数”,将“双倍差数”M 的个位数字去掉得到的数记为s ,将千位数字去掉得到的数记为t ,并规定()10()F M s t b d =---,则(64)F ab =;若一个四位数1201100010030(08M a b c d a =++++≤≤,07b ≤≤,03c ≤≤,08d ≤≤,a ,b ,c ,d 均为整数)是“双倍差数”,且()F M 除以13余1,则满足条件的M 的最小值为.三、解答题19.计算:(1)()()()()22222x y x y x y y x y +-+--+ (2)222224422a a a a a a a a +⎛⎫+÷ ⎪-+--⎝⎭. 20.为提高学生面对突发事故的应急救护能力,某校组织了一场关于防自然灾害的知识讲座,并在讲座后进行了满分为100分的“防自然灾害知识测评”,学校在七、八年级中分别随机抽取了50名学生的分数进行整理分析,已知分数x 均为整数,B ,C ,D ,E 五个等级,分别是:A :90100x ≤≤,B :8090x ≤<,C :7080x ≤<,E :060x ≤<.并给出了部分信息:【一】七年级D等级的学生人数占七年级抽取人数的20%;八年级C等级中最低的10个分数分别为:70,70,72,73,73,73,74,74,75,75 【二】两个年级学生防自然灾害知识测评分数统计图:【三】两个年级学生防自然灾害知识测评分数样本数据的平均数、中位数、众数如下:(1)直接写出a,m的值,并补全条形统计图;(2)根据以上数据,你认为在此次测评中,哪一个年级的学生对防自然灾害知识掌握较好?请说明理由(说明一条理由即可);(3)若分数不低于80分表示该生对防自然灾害知识掌握较好,且该校七年级有1800人,八年级有1700人,对防自然灾害知识掌握较好的学生人数.,珈跏21.由平行四边形如何构造菱形?如图,平行四边形ABCD中,BE平分ABC的思路是:过点A作BE的垂线AG,垂足为G,交线段BC于点F,然后利用四边相等的四边形是菱形即可完成构造,请根据以上思路完成作图和填空.证明:用直尺和圆规过点A作BE的垂线AG交BE于点G,交BC于点F,连接EF(只保留作图痕迹)∵四边形ABCD是平行四边形,∴①______∴AEB CBE ∠=∠,∵BE 平分ABC ∠,∴ABE CBE ∠=∠,∴②______∴AB AE =,∵AF BE ⊥,∴90AGB FGB ∠=∠=︒,又∵BG BG =,∴()ASA ABG FBG V V ≌,∴③______,∵AB AE =,AF BE ⊥,∴AF 垂直平分BE ,∴④______,BF BA EF AE ===,∴四边形ABFE 是菱形.22.如图1,在一张长方形纸片的四个角分别剪去一个边长相等的正方形,可折叠成如图2的一个无盖长方体纸盒.图1 图2(1)若图1中原长方形纸片长20cm ,宽16cm ,被剪掉的正方形边长为cm a ,折叠得到的无盖长方体纸盒的长、宽、高之和为24cm ,求a 的值;(2)现有60张同样规格的长方形纸片,可制作成60个无盖长方体纸盒,剪下来的正方形恰好全部制作成正方体(每个正方体需要6个正方形),现把20名同学分为甲、乙两组,甲组制作无盖长方体纸盒,乙组制作正方体,若甲组平均每人制作的无盖长方体纸盒个数是乙组平均每人制作的正方体个数的一半,求甲组有多少名同学?23.如图,在四边形ABCD 中,AD BC ∥,90D ?,过点A 作AE BC ⊥于点E ,5AB =,7BC =,3BE =.动点P 从点B 出发,沿B A D →→运动,到达点D 时停止运动.设点P 的运动路程为x ,APE V 的面积为1y ..(1)请直接写出1y 与x 之间的函数关系式以及对应的x 的取值范围;(2)请在直角坐标系中画出1y 的图象,并写出函数1y 的一条性质;(3)若直线2y 的图象如图所示,结合你所画1y 的函数图象,直接写出当12y y >时x 的取值范围.(保留一位小数,误差不超过0.2)24.如图,某公园有一条三角形健身步道A →B →C →A ,其中B 在A 的正东方,C 在A东北方向,一天老王以每分钟90米的速度从点A 出发沿路线A →B →C →A 开始散步,10分钟后到达步道的B 处,此时他发现C 在B 的北偏西15︒方向上.(A ,B ,C 在同一平1.73)(1)求健身步道BC 的长;(结果保留根号)(2)为了让市民养成全民运动、健康生活的良好习惯,改善健身环境,公园决定对健身步道进行扩建.计划将步道AB 段向正东方向延伸至P 处,修建新步道CP ,BP ,且在P 处测得C 在P 的北偏西60︒方向上.若修建步道的成本为每米80元,公园对扩建预算的费用为20万元,请通过计算说明预算费用是否够用?25.如图,在平面直角坐标系xOy 中,已知抛物线214y x bx c =++交x 轴于点()2,0A -,()7,0B ,与y 轴交于点C .(1)求抛物线的函数表达式;(2)如图,若点M 是第四象限内抛物线上一点,MN y ∥轴交BC 于点N ,MQ BC ∥交x 轴于点Q ,求32MN BQ +的最大值;(3)如图,在y 轴上取一点()0,7G ,抛物线沿BG 方向平移抛物线与x 轴交于点,E F ,交y 轴于点D ,点P 在线段FD 上运动,线段OF 关于线段OP 的对称线段OF '所在直线交新抛物线于点H ,直线F P '与直线BG 所成夹角为45︒,直接写出点H 的横坐标.26.如图,平行四边形ABCD 中,30D ∠=o ,过A 作AM BC ⊥,在BM 上取一点E ,将EM 绕点E 逆时针旋转得线段EN .(1)如图1,若点E 是BM 中点,3CD =,EM 旋转后点N 恰好落在边AB 上,求MN 的长度.(2)如图2,将EM 绕点E 逆时针旋转2B ∠得线段EN ,当AB AC =时,在CM 上取一点F ,使EF EB =,连,,AN AF NF ,猜想AN 与AF 的大小关系并证明.(3)如图3,若点E 为BM 中点,点P 为MN 中点,4AB =,当AP 最小时,直接写出EMN S ∆.。
2024年中考数学真题分类汇编(全国通用)(第一期)专题13 反比例函数及其应用(41题)(解析版)
专题13反比例函数及其应用(41题)一、单选题1.(2024·安徽·中考真题)已知反比例函数()0ky k x=≠与一次函数2y x =-的图象的一个交点的横坐标为3,则k 的值为()A .3-B .1-C .1D .3【答案】A【分析】题目主要考查一次函数与反比例函数的交点问题,根据题意得出231y =-=-,代入反比例函数求解即可【详解】解:∵反比例函数()0ky k x=≠与一次函数2y x =-的图象的一个交点的横坐标为3,∴231y =-=-,∴13k-=,∴3k =-,故选:A2.(2024·重庆·中考真题)反比例函数10y x=-的图象一定经过的点是()A .()1,10B .()2,5-C .()2,5D .()2,8【答案】B【分析】本题考查了求反比例函数值.熟练掌握求反比例函数值是解题的关键.分别将各选项的点坐标的横坐标代入,求纵坐标,然后判断作答即可.【详解】解:解:当1x =时,10101y =-=-,图象不经过()1,10,故A 不符合要求;当2x =-时,1052y =-=-,图象一定经过()2,5-,故B 符合要求;当2x =时,1052y =-=-,图象不经过()2,5,故C 不符合要求;当2x =时,1052y =-=-,图象不经过()2,8,故D 不符合要求;故选:B .3.(2024·天津·中考真题)若点()()()123,1,,1,,5A x B x C x -都在反比例函数5y x=的图象上,则123,,x x x 的大小关系是()A .123x x x <<B .132x x x <<C .321x x x <<D .213x x x <<4.(2024·广西·中考真题)已知点()11,M x y ,()22,N x y 在反比例函数y x=的图象上,若120x x <<,则有()A .120y y <<B .210y y <<C .120y y <<D .120y y <<5.(2024·浙江·中考真题)反比例函数y x=的图象上有()1,P t y ,()24,Q t y +两点.下列正确的选项是()A .当4t <-时,210y y <<B .当40t -<<时,210y y <<C .当40t -<<时,120y y <<D .当0t >时,120y y <<【答案】A【分析】本题考查了反比例函数图象上的点的坐标特征,由于反比例函数4y x=,可知函数位于一、三象限,分情况讨论,根据反比例函数的增减性判断出1y 与2y 的大小.【详解】解:根据反比例函数4y x=,可知函数图象位于一、三象限,且在每个象限中,y 都是随着x 的增大而减小,反比例函数4y x=的图象上有()1,P t y ,()24,Q t y +两点,当40t t <+<,即4t <-时,120y y >>;当04t t <<+,即40t -<<时,120y y <<;当04t t <<+,即0t >时,120y y >>;故选:A .6.(2024·河北·中考真题)节能环保已成为人们的共识.淇淇家计划购买500度电,若平均每天用电x 度,则能使用y 天.下列说法错误的是()A .若5x =,则100y =B .若125y =,则4x =C .若x 减小,则y 也减小D .若x 减小一半,则y 增大一倍【答案】C【分析】本题考查的是反比例函数的实际应用,先确定反比例函数的解析式,再逐一分析判断即可.【详解】解:∵淇淇家计划购买500度电,平均每天用电x 度,能使用y 天.∴500xy =,∴500y x=,当5x =时,100y =,故A 不符合题意;当125y =时,5004125x ==,故B 不符合题意;∵0x >,0y >,∴当x 减小,则y 增大,故C 符合题意;若x 减小一半,则y 增大一倍,表述正确,故D 不符合题意;故选:C .7.(2024·四川泸州·中考真题)已知关于x 的一元二次方程2210x x k ++-=无实数根,则函数y kx =与函数2y x=的图象交点个数为()A .0B .1C .2D .38.(2024·重庆·中考真题)已知点()3,2-在反比例函数()0y k x=≠的图象上,则k 的值为()A .3-B .3C .6-D .69.(2024·黑龙江牡丹江·中考真题)矩形OBAC 在平面直角坐标系中的位置如图所示,反比例函数y x=的图象与AB 边交于点D ,与AC 边交于点F ,与OA 交于点E ,2OE AE =,若四边形ODAF 的面积为2,则k 的值是()A .25B .35C .45D .85【答案】D【分析】本题考查了矩形的性质、三角形面积的计算、反比例函数的图象和性质、相似三角形的判定和性质;熟练掌握矩形的性质和反比例函数的性质是解决问题的关键.过点E 作EM OC ⊥,则EM AC ,设k E a a ⎛⎫⎪⎝⎭,,由OME OCA ∽,可得3322k OC a AC a ==⋅,,再由O O F OBD CF A OBAC D S S S S =++ 矩形四边形,列方程,即可得出k 的值.【详解】过点E 作EM OC ⊥,则EM AC ,∴OME OCA ∽,∴OM EM OEOC AC OA==设k E a a ⎛⎫ ⎪⎝⎭,,∵2OE AE =∴23OM EM OC AC ==,∴3322kOC a AC a==⋅,∴3322O OBD DAF OCF OBAC kS S S S a a=++=⋅⋅ 矩形四边形即3322222k k k a a++=⋅⋅,解得:85k =故选D10.(2024·黑龙江大兴安岭地·中考真题)如图,双曲线()0y x x=>经过A 、B 两点,连接OA 、AB ,过点B 作BD y ⊥轴,垂足为D ,BD 交OA 于点E ,且E 为AO 的中点,则AEB △的面积是()A .4.5B .3.5C .3D .2.5设12,A a a ⎛⎫⎪⎝⎭,0a >,∵BD y ⊥轴,AF BD ⊥∴AF y ∥轴,DF =∴AFE ODE ∽,∴116394.52222ABE S AF BE a a =⨯⨯=⨯⨯== ,故选:A .11.(2024·江苏扬州·中考真题)在平面直角坐标系中,函数42=+y x 的图像与坐标轴的交点个数是()A .0B .1C .2D .4【答案】B【分析】根据函数表达式计算当0x =时y 的值,可得图像与y 轴的交点坐标;由于42x +的值不可能为0,即0y ≠,因此图像与x 轴没有交点,由此即可得解.本题主要考查了函数图像与坐标轴交点个数,掌握求函数图像与坐标轴交点的计算方法是解题的关键.【详解】当0x =时,422y ==,∴42=+y x 与y 轴的交点为()0,2;由于42x +是分式,且当2x ≠-时,402x ≠+,即0y ≠,∴42=+y x 与x 轴没有交点.∴函数42=+y x 的图像与坐标轴的交点个数是1个,故选:B .12.(2024·吉林长春·中考真题)如图,在平面直角坐标系中,点O 是坐标原点,点()4,2A 在函数()0,0ky k x x=>>的图象上.将直线OA 沿y 轴向上平移,平移后的直线与y 轴交于点B ,与函数()0,0ky k x x=>>的图象交于点C .若5BC =,则点B 的坐标是()A .(5B .()0,3C .()0,4D .(0,5【答案】B【分析】本题主要考查反比例函数、解直角三角形、平移的性质等知识点,掌握数形结合思想成为解题的关键.∵()4,2A ,∴4OE =,222425OA =+=∴42sin 5525OE OAE OA ∠===∵()4,2A 在反比例函数的图象上,∴221BD BC CD =-=,∴413OB OD BD =-=-=,∴()0,3B 故选:B .13.(2024·四川宜宾·中考真题)如图,等腰三角形ABC 中,AB AC =,反比例函数()0y k x=≠的图象经过点A 、B 及AC 的中点M ,BC x ∥轴,AB 与y 轴交于点N .则ANAB的值为()A .13B .14C .15D .25【答案】B【分析】本题考查反比例函数的性质,平行线分线段成比例定理,等腰三角形的性质等知识,找到坐标之间的关系是解题的关键.作辅助线如图,利用函数表达式设出A 、B 两点的坐标,利用D ,M 是中点,找到坐标之间的关系,利用平行线分线段成比例定理即可求得结果.【详解】解:作过A 作BC 的垂线垂足为D ,BC 与y 轴交于E 点,如图,在等腰三角形ABC 中,AD BC ⊥,D 是BC 中点,设,k A a a ⎛⎫ ⎪⎝⎭,,k B b b ⎛⎫ ⎪⎝⎭,由BC 中点为D ,AB AC =,故等腰三角形ABC 中,∴BD DC a b ==-,二、填空题14.(2024·北京·中考真题)在平面直角坐标系xOy 中,若函数()0ky k x=≠的图象经过点()13,y 和()23,y -,则12y y +的值是.15.(2024·云南·中考真题)已知点()2,P n 在反比例函数y x=的图象上,则n =.【答案】5【分析】本题考查反比例函数图象上点的坐标特征,将点()2,P n 代入10y x=求值,即可解题.【详解】解: 点()2,P n 在反比例函数10y x=的图象上,1052n ∴==,故答案为:5.16.(2024·山东威海·中考真题)如图,在平面直角坐标系中,直线()10y ax b a =+≠与双曲线()20y k x=≠交于点()1,A m -,()2,1B -.则满足12y y ≤的x 的取值范围.【答案】10x -≤<或2x ≥【分析】本题考查了一次函数与反比例函数的交点问题,根据图象解答即可求解,利用数形结合思想解答是解题的关键.【详解】解:由图象可得,当10x -≤<或2x ≥时,12y y ≤,∴满足12y y ≤的x 的取值范围为10x -≤<或2x ≥,故答案为:10x -≤<或2x ≥.17.(2024·湖南·中考真题)在一定条件下,乐器中弦振动的频率f 与弦长l 成反比例关系,即kf l=(k 为常数.0k ≠),若某乐器的弦长l 为0.9米,振动频率f 为200赫兹,则k 的值为.【答案】180【分析】本题考查了待定系数法求反比例函数解析式,把0.9l =,200f =代入kf l=求解即可.【详解】解:把0.9l =,200f =代入kf l =,得2000.9k =,解得180k =,故答案为:180.18.(2024·陕西·中考真题)已知点()12,A y -和点()2,B m y 均在反比例函数y x=-的图象上,若01m <<,则12y y +0.【答案】</小于19.(2024·湖北武汉·中考真题)某反比例函数y x=具有下列性质:当0x >时,y 随x 的增大而减小,写出一个满足条件的k 的值是.【答案】1(答案不唯一)【分析】本题考查的是反比例函数的性质,反比例函数的图象是双曲线,当0k >,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小,当0k <,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.直接根据反比例函数的性质写出符合条件的的值即可.【详解】解:∵当0x >时,y 随x 的增大而减小,∴0k >故答案为:1(答案不唯一).20.(2024·黑龙江齐齐哈尔·中考真题)如图,反比例函数(0)ky x x=<的图象经过平行四边形ABCO 的顶点A ,OC 在x 轴上,若点()1,3B -,3ABCO S = ,则实数k 的值为.【答案】6-【分析】本题考查了反比例函数,根据,A B 的纵坐标相同以及点A 在反比例函数上得到A 的坐标,进而用代数式表达AB 的长度,然后根据3ABCO S = 列出一元一次方程求解即可.【详解】ABCO 是平行四边形,A B ∴纵坐标相同()1,3B - A ∴的纵坐标是3A 在反比例函数图象上∴将3y =代入函数中,得到3k x =,33k A ⎛⎫∴ ⎪⎝⎭13k AB ∴=--3,ABCO S B = 的纵坐标为333AB ∴⨯=即:1333k ⎛⎫--⨯= ⎪⎝⎭解得:6k =-故答案为:6-.21.(2024·内蒙古包头·中考真题)若反比例函数12y x =,23y x=-,当13x ≤≤时,函数1y 的最大值是a ,函数2y 的最大值是b ,则b a =.【答案】12/0.5【分析】此题主要考查了反比例函数的性质,负整数指数幂,正确得出a 与b 的关系是解题关键.直接利用反比例函数的性质分别得出a 与b ,再代入b a 进而得出答案.【详解】解: 函数12y x=,当13x ≤≤时,函数1y 随x 的增大而减小,最大值为a ,1x ∴=时,12y a ==,23y x =- ,当13x ≤≤时,函数2y 随x 的增大而减大,函数2y 的最大值为21y b =-=,1122b a -∴==.故答案为:12.22.(2024·四川遂宁·中考真题)反比例函数1k y x-=的图象在第一、三象限,则点()3k -,在第象限.【答案】四/423.(2024·江苏扬州·中考真题)如图,在平面直角坐标系中,点A 的坐标为(1,0),点B 在反比例函数(0)ky x x=>的图像上,BC x ⊥轴于点C ,30BAC ∠=︒,将ABC 沿AB 翻折,若点C 的对应点D 落在该反比例函数的图像上,则k 的值为.∴33(13,),1,22B a a D a a ⎛⎫++ ⎪ ⎪⎝⎭,∵点B 的对应点D 落在该反比例函数的图像上,∴()3313122k a a a a ⎛⎫=+=⋅+ ⎪ ⎪⎝⎭,解得:233a =,∵反比例函数图象在第一象限,∴2321332333k ⎛⎫=+⨯= ⎪⎝⎭,故答案为:23.24.(2024·内蒙古呼伦贝尔·中考真题)如图,在平面直角坐标系中,点A ,B 的坐标分别为()5,0,()2,6,过点B 作BC x ∥轴交y 轴于点C ,点D 为线段AB 上的一点,且2BD AD =.反比例函数(0)ky x x=>的图象经过点D 交线段BC 于点E ,则四边形ODBE 的面积是.【答案】12【分析】本题主要考查了反比例函数的图象与性质,反比例函数图象上点的坐标特征,反比例函数k 的几何意义,作BM x ⊥轴于M ,作DN x ⊥轴于N ,则DN BM ∥,由点A ,B 的坐标分别为()5,0,()2,6得2BC OM ==,6BM OC ==,3AM =,然后证明ADN ABM ∽△△得DN AN ADBM AM AB ==,求出2DN =,则4ON OA AN =-=,故有D 点坐标为()4,2,求出反比例函数解析式8y x =,再求出4,63E ⎛⎫⎪⎝⎭,最后根据∵点A ,B 的坐标分别为∴2BC OM ==,BM =∵DN BM ∥,∴ADN ABM ∽△△,∴DN AN ADBM AM AB==,25.(2024·四川广元·中考真题)已知y =与()0y x x=>的图象交于点()2,A m ,点B 为y 轴上一点,将OAB 沿OA 翻折,使点B 恰好落在()0ky x x=>上点C 处,则B 点坐标为.【答案】()0,4【分析】本题考查了反比例函数的几何综合,折叠性质,解直角三角形的性质,勾股定理,正确掌握相关性质内容是解题的关键.先得出()2,23A 以及()430y x x=>,根据解直角三角形得130∠=︒,根据折叠性质,330∠=︒,然后根据勾股定理进行列式,即()222324OB OC ==+=.【详解】解:如图所示:过点A 作AH y ⊥轴,过点C 作CD x ⊥轴,∵3y x =与()0ky x x=>的图象交于点()2,A m ,∴把()2,A m 代入3y x =,得出3223m =⨯=,∴()2,23A ,把()2,23A 代入()0ky x x=>,解得22343k =⨯=,∴()430y x x=>,设43C m m ⎛⎫ ⎪ ⎪⎝⎭,,在23Rt tan 1323AH AHO OH ∠=== ,,26.(2024·广东深圳·中考真题)如图,在平面直角坐标系中,四边形AOCB 为菱形,tan 3AOC ∠=,且点A 落在反比例函数3y x=上,点B 落在反比例函数()0ky k x=≠上,则k =.∵4tan 3AOC ∠=,∴43AD OD =,∴设4AD a =,则3OD a =,∴点()34A a a ,,∵点A 在反比例函数3y x=上,∴343a a ⋅=,∴12a =(负值已舍),则点322A ⎛⎫⎪⎝⎭,,∴2AD =,32OD =,∴2252OA OD AD =+=,∵四边形AOCB 为菱形,∴52AB OA ==,AB CO ∥,∴点()42B ,,∵点B 落在反比例函数()0ky k x=≠上,∴428k =⨯=,故答案为:8.27.(2024·广东广州·中考真题)如图,平面直角坐标系xOy 中,矩形OABC 的顶点B 在函数(0)k y x x=>的图象上,(1,0)A ,(0,2)C .将线段AB 沿x 轴正方向平移得线段A B ''(点A 平移后的对应点为A '),A B ''交函数(0)k y x x=>的图象于点D ,过点D 作DE y ⊥轴于点E ,则下列结论:①2k =;②OBD 的面积等于四边形ABDA '的面积;③A E '2④B BD BB O ''∠=∠.其中正确的结论有.(填写所有正确结论的序号)∵1212AOB A OD S S '==⨯= ,∴BOK AKDA S S '= 四边形,∴BOK BKD AKDA S S S S '+=+ 四边形∴OBD 的面积等于四边形ABDA 如图,连接A E ',∵DE y ⊥轴,90DA O EOA ''∠=∠=︒,∴四边形A DEO '为矩形,∴A E OD '=,∴当OD 最小,则A E '最小,设()2,0D x x x ⎛⎫> ⎪⎝⎭,∴2224224OD x x x x=+≥⋅⋅=,∴2OD ≥,∴A E '的最小值为2,故③不符合题意;如图,设平移距离为n ,∴()1,2B n '+,∵反比例函数为2y x=,四边形A B CO ''为矩形,∴90BB D OA B '''∠=∠=︒,21,1D n n ⎛⎫+ ⎪+⎝⎭,∴BB n '=,1OA n '=+,22211n B D n n '=-=++,2A B ''=,∴2112n BB n B D n OA n A B ''+==='''+,∴B BD A OB ''' ∽,∴B BD B OA '''∠=∠,∵B C A O ''∥,∴CB O A OB '''∠=∠,∴B BD BB O ''∠=∠,故④符合题意;故答案为:①②④【点睛】本题考查的是反比例函数的图象与性质,平移的性质,矩形的判定与性质,相似三角形的判定与性质,勾股定理的应用,作出合适的辅助线是解本题的关键.28.(2024·四川乐山·中考真题)定义:函数图象上到两坐标轴的距离都小于或等于1的点叫做这个函数图象的“近轴点”.例如,点()0,1是函数1y x =+图象的“近轴点”.(1)下列三个函数的图象上存在“近轴点”的是(填序号);①3y x =-+;②2y x =;③221y x x =-+-.(2)若一次函数3y mx m =-图象上存在“近轴点”,则m 的取值范围为.(2)()33y mx m m x =-=-中,3x =时,0y =,∴图象恒过点()3,0,当直线过()1,1-时,()113m -=-,∴12m =,∴102m <≤;当直线过()1,1时,()113m =-,∴12m =-,∴102m -≤<;∴m 的取值范围为102m -≤<或102m <≤.故答案为:102m -≤<或102m <≤.三、解答题29.(2024·甘肃·中考真题)如图,在平面直角坐标系中,将函数y ax =的图象向上平移3个单位长度,得到一次函数y ax b =+的图象,与反比例函数()0k y x x =>的图象交于点()24A ,.过点()02B ,作x 轴的平行线分别交y ax b =+与()0k y x x=>的图象于C ,D 两点.(1)求一次函数y ax b =+和反比例函数k y x=的表达式;(2)连接AD ,求ACD 的面积.∵()24A ,,∴()()11642622ACD A C S CD y y =⋅-=⨯⨯-=△.30.(2024·青海·中考真题)如图,在同一直角坐标系中,一次函数y x b =-+和反比例函数y x=的图象相交于点()1,A m ,(),1B n .(1)求点A ,点B 的坐标及一次函数的解析式;(2)根据图象,直接写出不等式9x b x-+>的解集.【答案】(1)()1,9A ,()9,1B ,10y x =-+(2)0x <或19x <<【分析】本题主要考查了一次函数与反比函数的交点问题:(1)分别把点()1,A m ,点(),1B n 代入9y x =,可求出点A ,B 的坐标,即可求解;(2)直接观察图象,即可求解.【详解】(1)解:把点()1,A m 代入9y x =中,得:991m ==,∴点A 的坐标为()1,9,把点(),1B n 代入9y x =中,得:991n ==,∴点B 的坐标为()9,1,把1x =,9y =代入y x b =-+中得:19b -+=,∴10b =,∴一次函数的解析式为10y x =-+,(2)解:根据一次函数和反比例函数图象,得:当0x <或19x <<时,一次函数y x b =-+的图象位于反比例函数9y x=的图象的上方,31.(2024·吉林·中考真题)已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的解析式(不要求写出自变量R 的取值范围).(2)当电阻R 为3Ω时,求此时的电流I .32.(2024·山东·中考真题)列表法、表达式法、图像法是三种表示函数的方法,它们从不同角度反映了自变量与函数值之间的对应关系.下表是函数2y x b =+与k y x=部分自变量与函数值的对应关系:x72-a 12x b +a1________kx ________________7(1)求a 、b 的值,并补全表格;(2)结合表格,当2y x b =+的图像在k y x=的图像上方时,直接写出x 的取值范围.【答案】(1)25a b =-⎧⎨=⎩,补全表格见解析(2)x 的取值范围为702x -<<或1x >;【分析】本题考查的是一次函数与反比例函数的综合,利用图像法写自变量的取值范围;(1)根据表格信息建立方程组求解,a b 的值,再求解k 的值,再补全表格即可;(2)由表格信息可得两个函数的交点坐标,再结合函数图像可得答案.【详解】(1)解:当72x =-时,2x b a +=,即7b a -+=,当x a =时,21x b +=,即21a b +=,∴721a b a b -=-⎧⎨+=⎩,解得:25a b =-⎧⎨=⎩,∴一次函数为25y x =+,当1x =时,7y =,∵当1x =时,7k y x==,即7k =,∴反比例函数为:7y x =,当72x =-时,7722y ⎛⎫=÷-=- ⎪⎝⎭,当1y =时,2x a ==-,当2x =-时,72y =-,补全表格如下:x72-2-12x b +2-17∴当2y x b =+的图像在k y x =的图像上方时,33.(2024·湖北·中考真题)一次函数y x m =+经过点()3,0A -,交反比例函数y x =于点(),4B n .(1)求m n k ,,;(2)点C 在反比例函数k y x=第一象限的图象上,若AO OB C A S S <△△,直接写出C 的横坐标a 的取值范围.∴304m n m -+=⎧⎨+=⎩,解得31m n =⎧⎨=⎩,∴点()1,4B ,∵反比例函数k y x=经过点()1,4B ,∴144k =⨯=;(2)解:∵点()30A -,,点()1,4B ,∴3AO =,∴1134622AOB B S AO y =⨯=⨯⨯=△,1322AOC C C S AO y y =⨯=△,由题意得362C y <,∴4C y <,∴1C x >,∴C 的横坐标a 的取值范围为1a >.34.(2024·四川凉山·中考真题)如图,正比例函数12y x =与反比例函数()20y x x=>的图象交于点()2A m ,.(1)求反比例函数的解析式;(2)把直线112y x =向上平移3个单位长度与()20k y x x=>的图象交于点B ,连接,AB OB ,求AOB 的面积.【答案】(1)28y x =(2)6【分析】本题考查了一次函数与反比例函数的交点问题,待定系数法求函数解析式,一次函数的平移等知识,熟练掌握函数的平移法则是关键.联立方程组8132yxy x⎧=⎪⎪⎨⎪=+⎪⎩,解得24xy=⎧⎨=⎩,81xy=-⎧⎨=-⎩(舍去),(2,4)B∴35.(2024·贵州·中考真题)已知点()1,3在反比例函数y x=的图象上.(1)求反比例函数的表达式;(2)点()3,a -,()1,b ,()3,c 都在反比例函数的图象上,比较a ,b ,c 的大小,并说明理由.【答案】(1)3y x=(2)a c b <<,理由见解析【分析】本题主要考查了反比例函数的性质,以及函数图象上点的坐标特点,待定系数法求反比例函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.(1)把点()1,3代入ky x=可得k 的值,进而可得函数的解析式;(2)根据反比例函数表达式可得函数图象位于第一、三象限,再根据点A 、点B 和点C 的横坐标即可比较大小.【详解】(1)解:把()1,3代入k y x =,得31k =,∴3k =,∴反比例函数的表达式为3y x=;(2)解:∵30k =>,∴函数图象位于第一、三象限,∵点()3,a -,()1,b ,()3,c 都在反比例函数的图象上,3013-<<<,∴0a c b <<<,∴a c b <<.36.(2024·河南·中考真题)如图,矩形ABCD 的四个顶点都在格点(网格线的交点)上,对角线AC ,BD 相交于点E ,反比例函数()0ky x x=>的图象经过点A .(1)求这个反比例函数的表达式.(2)请先描出这个反比例函数图象上不同于点A 的三个格点,再画出反比例函数的图象.(3)将矩形ABCD 向左平移,当点E 落在这个反比例函数的图象上时,平移的距离为________.(3)解:∵()6,4E 向左平移后,E 在反比例函数的图象上,∴平移后点E 对应点的纵坐标为4,当4y =时,64x=,解得32x =,∴平移距离为39622-=.故答案为:92.37.(2024·四川乐山·中考真题)如图,已知点()1,A m 、(),1B n 在反比例函数()30y x x=>的图象上,过点A 的一次函数y kx b =+的图象与y 轴交于点()0,1C .(1)求m 、n 的值和一次函数的表达式;(2)连接AB ,求点C 到线段AB 的距离.【答案】(1)3m =,3n =,21y x =+(2)点C 到线段AB 的距离为322【分析】(1)根据点()1,A m 、(),1B n 在反比例函数3y x=图象上,代入即可求得m 、n 的值;根据一次函数y kx b =+过点()1,3A ,()0,1C ,代入求得k ,b ,即可得到表达式;(2)连接BC ,过点A 作AD BC ⊥,垂足为点D ,过点C 作CE AB ⊥,垂足为点E ,可推出BC x ∥轴,BC 、AD 、DB 的长度,然后利用勾股定理计算出AB 的长度,最后根据1122ABC S BC AD AB CE =⋅=⋅ ,计算得CE 的长度,即为点C 到线段AB 的距离.【详解】(1) 点()1,A m 、(),1B n 在反比例函数3y x=图象上∴3m =,3n =又 一次函数y kx b =+过点()1,3A ,()0,1C ∴31k b b +=⎧⎨=⎩∴BC x ∥轴,3BC = 点()1,3A ,()3,1B ,AD ∴点()1,1D ,2AD =,DB 在Rt ADB 中,AB AD =38.(2024·四川眉山·中考真题)如图,在平面直角坐标系xOy 中,一次函数y kx b =+与反比例函数()0my x x=>的图象交于点()1,6A ,(),2B n ,与x 轴,y 轴分别交于C ,D 两点.(1)求一次函数和反比例函数的表达式;(2)若点P 在y 轴上,当PAB 的周长最小时,请直接写出点P 的坐标;(3)将直线AB 向下平移a 个单位长度后与x 轴,y 轴分别交于E ,F 两点,当12EF AB =时,求a 的值.【答案】(1)一次函数的表达式为28y x =-+,反比例函数的表达式为6y x=(2)点P 的坐标为()0,5(3)6a =或10a =【分析】本题考查了待定系数法求函数的解析式,轴对称-最短路径问题,勾股定理,正确地求出函数的解析式是解题的关键.(1)根据已知条件列方程求得6m =,得到反比例函数的表达式为6y x=,求得()3,2B ,解方程组即可得到结论;(2)如图,作点A 关于y 轴的对称点E ,连接EB 交y 轴于P ,则此时,PAB 的周长最小,根据轴对称的性质得到()1,6E -,得到直线BE 的解析式为5y x =-+,当0x =时,5y =,于是得到点P 的坐标为()0,5;(3)将直线AB 向下平移a 个单位长度后得直线EF 的解析式为28y x a =-+-,得到()8,0082a E F a -⎛⎫- ⎪⎝⎭.,,根据勾股定理即可得到结论.【详解】(1)解: 一次函数y kx b =+与反比例函数()0my x x=>的图象交于点()1,6A ,(),2B n ,61m∴=,6m ∴=,∴反比例函数的表达式为6y x=,把(),2B n 代入6y x=得,62n=,3n ∴=,()3,2B ∴,把()1,6A ,()3,2B 代入y kx b =+得,632k b k b +=⎧⎨+=⎩,解得28k b =-⎧⎨=⎩,∴一次函数的表达式为28y x =-+;此时,PAB 的周长最小,点()1,6A ,()1,6E ∴-,39.(2024·甘肃临夏·中考真题)如图,直线y kx =与双曲线4y x=-交于A ,B 两点,已知A 点坐标为(),2a .(1)求a ,k 的值;(2)将直线y kx =向上平移()0m m >个单位长度,与双曲线4y x=-在第二象限的图象交于点C ,与x 轴交于点E ,与y 轴交于点P ,若PE PC =,求m 的值.【答案】(1)2,1a k =-=-(2)2m =【分析】(1)直接把点A 的坐标代入反比例函数解析式,求出a ,然后利用待定系数法即可求得k 的值;(2)根据直线y x =-向上平移m 个单位长度,可得直线CD 解析式为y x m =-+,根据三角形全等的判定和性质即可得到结论.【详解】(1)解:∵点A 在反比例函数图象上,∴42a=-,解得2a =-,将()2,2A -代入y kx =,1k ∴=-;(2)解:如图,过点C 作CF y ⊥轴于点F ,CF OE ∴∥,FCP OEP ∴∠=∠,CFP EOP ∠=∠,PE PC = ,()AAS CFP EOP ∴ ≌,CF OE\=,OP PF =,∵直线y x =-向上平移m 个单位长度得到y x m =-+,令0x =,得y m =,令0y =,得x m =,40.(2024·四川广元·中考真题)如图,已知反比例函数1y x=和一次函数2y mx n =+的图象相交于点()3,A a -,3,22B a ⎛⎫+- ⎪⎝⎭两点,O 为坐标原点,连接OA ,OB .(1)求1ky x=与2y mx n =+的解析式;(2)当12y y >时,请结合图象直接写出自变量x 的取值范围;(3)求AOB 的面积.(1)根据题意可得3322a a ⎛⎫-=-+ ⎪⎝⎭,即有3a =,问题随之得解;(2)12y y >表示反比例函数1ky x=的图象在一次函数2y mx n =+的图象上方时,对应的自变量的取值范围,据此数形结合作答即可;(3)若AB 与y 轴相交于点C ,可得()0,1C ,则1OC =,根据()12AOB AOC BOC B A S S S OC x x =+=- ,问题即可得解.【详解】(1)由题知3322a a ⎛⎫-=-+ ⎪⎝⎭,∴3a =,∴()3,3A -,9,22B ⎛⎫- ⎪⎝⎭,∴19y x=-,把()3,3A -,9,22B ⎛⎫- ⎪⎝⎭代入2y mx n =+得33922m n m n -+=⎧⎪⎨+=-⎪⎩,∴231m n ⎧=-⎪⎨⎪=⎩,∴2213y x =-+;(2)由图象可知自变量x 的取值范围为30x -<<或92x >(3)若AB 与y 轴相交于点C ,当0x =时,22113y x =-+=,∴()0,1C ,即:1OC =,∴()11915132224AOB AOC BOC B A S S S OC x x ⎛⎫=+=-=⨯⨯+= ⎪⎝⎭ .41.(2024·内蒙古赤峰·中考真题)在平面直角坐标系中,对于点()11,M x y ,给出如下定义:当点()22,N x y ,满足1212x x y y +=+时,称点N 是点M 的等和点.(1)已知点()1,3M ,在()14,2N ,()23,1N -,()30,2N -中,是点M 等和点的有_____;(2)若点()3,2M -的等和点N 在直线y x b =+上,求b 的值;(3)已知,双曲线1ky x=和直线22y x =-,满足12y y <的x 取值范围是4x >或20x -<<.若点P 在双曲线1ky x=上,点P 的等和点Q 在直线22y x =-上,求点P 的坐标.故答案为:()14,2N 和()30,2N -;(2)解:设点N 的横坐标为a ,∵点N 是点()3,2M -的等和点,∴点N 的纵坐标为()325a a +--=+,∴点N 的坐标为(),5a a +,∵点N 在直线y x b =+上,∴5a a b +=+,∴5b =;(3)解:由题意可得,0k >,双曲线分布在一、三象限内,设直线与双曲线的交点分别为点A B 、,如图,由12y y <时x 的取值范围是4x >或20x -<<,可得点A 的横坐标为4,点B 的横坐标为2-,把4x =代入2y x =-得,422y =-=,∴()4,2A ,把()4,2A 代入1k y x =得,24k =,∴8k =,∴反比例函数解析式为18y x =,设8,P m m ⎛⎫ ⎪⎝⎭,点Q 的横坐标为n ,∵点Q 是点P 的等和点,∴点Q 的纵坐标为8m n m+-,∴8,Q n m n m ⎛⎫+- ⎪⎝⎭,∵点Q 在直线22y x =-上,∴82m n n m+-=-,整理得,820m m -+=,去分母得,2280m m +-=,解得14m =-,12m =,经检验,4,2m m =-=是原方程的解,∴点P 的坐标为()4,2--或()2,4.。
2024年重庆市中考数学预测模拟试题及答案
2024年重庆中考数学预测模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)实数的相反数是()A.﹣B.C.﹣6D.62.(4分)下列四个图形分别是四届国际数学家大会的会标,其中不属于中心对称图形的是()A.B.C.D.3.(4分)如图,是A市某一天的气温随时间变化的情况,则这天的日温差(最高气温与最低气温的差)是()A.4℃B.8℃C.12℃D.16℃4.(4分)在平面直角坐标系xOy中,以原点O为位似中心,把△ABO缩小为原来的,得到△CDO,则点A(﹣4,2)的对应点C的坐标是()A.(﹣2,1)B.(﹣2,1)或(2,﹣1)C.(﹣8,4)D.(﹣8,4)或(8,﹣4)5.(4分)如图,直线AB∥CD,∠ABE=45°,∠E=20°,则∠D的度数为()A.20°B.25°C.30°D.35°6.(4分)下列图形都是由●按照一定规律组成的,其中第①个图共有四个●,第②个图中共有8个●,第③个图中共有13个●,第④个图中共有19个●,…,照此规律排列下去,则第10个图形中●的个数为()A.50B.53C.64D.767.(4分)估算的值()A.在0与1之间B.在0与2之间C.在2与3之间D.在3与4之间8.(4分)如图,AB是⊙O的切线,B为切点,连接AO交⊙O于点C,延长AO交⊙O于点D,连接BD.若∠A =2∠D,且AB=2,则AC的长度是()A.1B.C.D.9.(4分)如图,正方形ABCD中,点E、F、G、H分别为边AB、BC、AB、CD上的点,连接DF、DG、E,若HB=DF,BE>CH,∠ADG=∠FDG.当∠BEH=α时,则∠AGD的度数为()A.αB.90°﹣αC.D.135°﹣α10.(4分)我们知道,两个奇数相加、相减的结果是偶数,两个偶数相加、相减的结果是偶数,一个奇数与一个偶数相加、相减的结果是奇数,现有由n(n≥2)个正整数排成的一组数,记为x1,x2,x3⋯x n,任意改变它们的顺序后记作y1,y2,y3…y n,若P=(x1﹣y1)(x2﹣y2)(x3﹣y3)…(x n﹣y n),下列说法①p可以为0;②当n是奇数时,P是偶数;③当n是偶数时,P是奇数.其中正确的个数是()A.0B.1C.2D.3二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算=.12.(4分)若一个多边形每个内角为160°,则这个多边形的边数是.13.(4分)一个不透明的口袋中有2个红球和1个白球,它们除了颜色其他完全相同,从中随机取出一个小球,记下颜色后放回,摇匀后再从中随机取出一个小球,记下颜色,则两次取出的小球颜色相同的概率为.14.(4分)如图,A是反比例函数y=图象上一点,AB⊥y轴交于点B,C是y轴负半轴上一点,且满足OC:OB =3:2,连接AC交x轴于点D,若S△ABC=25,则k=.15.(4分)如图,正方形ABCD边长为4cm,以A为圆心,4cm为半径画弧,再以AD为直径作半圆.那么阴影部分的面积cm2.16.(4分)若关于x的不等式组有且只有4个整数解,且关于y的分式方程的解为正整数,则符合条件的所有整数a的和为.17.(4分)如图,△ABC中,AB=AC=13,BC=24,点D在BC上(BD>AD),将△ACD沿AD翻折,得到△AED,AE交BC于点F.当DE⊥BC时,tan∠CBE的值为.18.(4分)一个四位正整数M,如果千位数字与十位数字之和的两倍等于百位数字与个位数字之和,则称M为“共进退数”,并规定F(M)等于M的前两位数所组成的数字与后两位数所组成的数字之和,G(M)等于M的前两位数所组成的数字与后两位数所组成的数字之差,如果F(M)=60,那么M各数位上的数字之和为;有一个四位正整数(0≤x≤8,0≤y≤9,0≤z≤8,且为整数)是一个“共进退数”,且F(N)是一个平方数,是一个整数,则满足条件的数N是.三.解答题(共8小题,满分78分)19.(8分)计算:(1)(2x+y)2﹣(2x+y)(2x﹣y)﹣2y(x+y)(2).20.(10分)在学习了矩形后,小雨借助尺规找到了直角三角形斜边的中点,通过倍长中线构造了矩形,然后利用矩形对角线的性质探究出了直角三角形斜边上的中线与斜边的数量关系.请根据她的思路完成以下作图与填空:(1)已知在Rt△ABC中,∠ABC=90°,用直尺和圆规,作AC的垂直平分线交BC于点E,垂足为点O,连接BO并延长,在射线BO上截取OD=OB,连接AD、CD.(不写作法,保留作图痕迹)(2)在(1)问所作的图形中,求证:.证明:∵OE垂直平分AC,∴点O是AC的中点.∴OA=.∵OB=OD,∴四边形ABCD是平行四边形.∵∠ABC=,∴四边形ABCD是.∴.∵,∴OB=.21.(10分)2023年8月24日,日本无视多方反对,单方面强行启动福岛核事故污染水排海,属无视国际公共利益的极端自私和不负责任之举.为了加强学生对核污染的了解,增强学生的环境保护意识,某学校对初三年级1000名学生进行了一次“海洋保护知识测试”(满分50分且分数均为整数,规定49分及以上为优秀).从该年级甲、乙两班中各随机抽取20名学生的成绩进行整理、描述和分析,给出了下列信息.甲班20名学生的测试成绩为:44,46,43,45,49,49,48,49,45,47,46,47,45,49,43,50,50,50,48,47班级平均数中位数众数优秀率甲班4747b35%乙班47a49c乙班20名学生的测试成绩频数分布表:成绩分组/分频数频率40<x≤4210.0542<x≤4410.0544<x≤4630.1546<x≤4860.3048<x≤5090.45其中,乙班学生测试成绩高于46分,但不超过48分的成绩为:47,48,48,47,48,48.(1)根据以上信息可以求出:a=,b=,c=.(2)你认为甲乙两个班哪个班的学生测试成绩较好,并说明理由(一条即可).(3)请估计该校初三年级参加此次测试中成绩优秀的学生人数.22.(10分)列方程解应用题:人们提倡“节能减排,低碳出行”,随着新能源电动汽车的迅猛发展,在很多高速公路服务区里既有加油站同时又配有充电桩.(1)在某个服务区,新能源电动汽车的充电桩比燃油汽车的加油枪多4个,爱观察的小萌发现:在1个小时内,平均每个充电桩可以为2辆电动车充电,平均一个加油枪可以为7辆燃油车加油,这样在这1小时内共为80辆车提供了充电、加油的服务.那么这个服务区的充电桩和加油枪分别有多少个?(2)一般情况下,在高速公路上行驶时燃油汽车平均每公里的汽油费是新能源电动汽车平均每公里电费的倍,两位车主在服务区分别花250元给燃油车加油、花60元给新能源电动车充电,最后燃油汽车可行驶的里程比新能源电动汽车可行驶的里程多100公里,那么新能源汽车在高速路上行驶时平均每公里费用为多少元?23.(10分)如图,在四边形ABCD中,AB∥CD,CE⊥AB于点E,AE=8,BE=CE=4,DC=2.动点P从点A 出发,沿A→B方向以每秒2个单位长度的速度运动,同时动点Q从点E出发,沿折线E→C→D方向以每秒1个单位长度的速度运动.当点Q到达点D时,P、Q两点都停止运动.设动点P运动的时间为x秒,△PEQ的面积为y.(1)请直接写出y关于x的函数关系式并注明自变量x的取值范围;(2)在给定的平面直角坐标系中,画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,直接写出△PEQ的面积为4时x的值.24.(10分)去五云山寨参加社会实践活动是南开中学高二年级的传统,其中的特色项目——以长征之名,走青春奋斗之路的徒步活动更是走出了南开人越难越开的坚毅不屈和心怀天下的气宇轩昂.如图,徒步活动的起点位于点D处,终点位于点A处,现有两条路线可以选择:①D﹣E﹣A,②D﹣C﹣B﹣A.已知点E在点D的北偏西30°方向,点A在点E的正西方向1500米处,点C在点D的正西方向2500米处,点B在点C的北偏西30°方向且距离C点1000米处,点A在点B的正北方向.(参考数据:)(1)求AB的长度(结果保留根号);(2)已知沿路线①徒步的速度为4.5km/h,沿路线②徒步的速度比路线①快0.5km/h,请通过计算说明,选择哪条路线所用时间较少?25.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+2与x轴交于A(﹣1,0),B(4,0)两点,交y轴于点C.(1)求抛物线的表达式;(2)点P是直线BC上方抛物线上的一动点,过点P作PE∥y轴交BC于点E,在y轴上取一点F,使得EF=EC,求PE+CF的最大值及此时点P坐标;(3)将原抛物线沿射线CB方向平移个单位长度得到新抛物线y1,过点B作直线MN垂直于BC交y轴于点N,交新抛物线y1于点M,请直接写出点M的横坐标.26.(10分)已知△ABC是等腰直角三角形,AB=AC,D为平面内一点.(1)如图1,当D点在AB的中点时,连接CD,将CD绕点D逆时针旋转90°,得到ED,若AB=4,求△ADE 的周长;(2)如图2,当D点在△ABC外部时,E、F分别是AB、BC的中点,连接EF、DE、DF,将DE绕E点逆时针旋转90°得到EG,连接CG、DG、FG,若∠FDG=∠FGE,请探究FD、FG、CG之间的数量关系并给出证明;(3)如图3,当D在△ABC内部时,连接AD,将AD绕点D逆时针旋转90°,得到ED,若ED经过BC中点F,连接AE、CE,G为CE的中点,连接GF并延长交AB于点H,当AG最大时,请直接写出的值.2024年重庆中考数学预测模拟试卷(答案)一.选择题(共10小题,满分40分,每小题4分)1.(4分)实数的相反数是()A.﹣B.C.﹣6D.6【答案】A2.(4分)下列四个图形分别是四届国际数学家大会的会标,其中不属于中心对称图形的是()A.B.C.D.【答案】A3.(4分)如图,是A市某一天的气温随时间变化的情况,则这天的日温差(最高气温与最低气温的差)是()A.4℃B.8℃C.12℃D.16℃【答案】C4.(4分)在平面直角坐标系xOy中,以原点O为位似中心,把△ABO缩小为原来的,得到△CDO,则点A(﹣4,2)的对应点C的坐标是()A.(﹣2,1)B.(﹣2,1)或(2,﹣1)C.(﹣8,4)D.(﹣8,4)或(8,﹣4)【答案】B5.(4分)如图,直线AB∥CD,∠ABE=45°,∠E=20°,则∠D的度数为()A.20°B.25°C.30°D.35°【答案】B6.(4分)下列图形都是由●按照一定规律组成的,其中第①个图共有四个●,第②个图中共有8个●,第③个图中共有13个●,第④个图中共有19个●,…,照此规律排列下去,则第10个图形中●的个数为()A.50B.53C.64D.76【答案】D7.(4分)估算的值()A.在0与1之间B.在0与2之间C.在2与3之间D.在3与4之间【答案】C8.(4分)如图,AB是⊙O的切线,B为切点,连接AO交⊙O于点C,延长AO交⊙O于点D,连接BD.若∠A =2∠D,且AB=2,则AC的长度是()A.1B.C.D.【答案】B9.(4分)如图,正方形ABCD中,点E、F、G、H分别为边AB、BC、AB、CD上的点,连接DF、DG、E,若HB=DF,BE>CH,∠ADG=∠FDG.当∠BEH=α时,则∠AGD的度数为()A.αB.90°﹣αC.D.135°﹣α【答案】C10.(4分)我们知道,两个奇数相加、相减的结果是偶数,两个偶数相加、相减的结果是偶数,一个奇数与一个偶数相加、相减的结果是奇数,现有由n(n≥2)个正整数排成的一组数,记为x1,x2,x3⋯x n,任意改变它们的顺序后记作y1,y2,y3…y n,若P=(x1﹣y1)(x2﹣y2)(x3﹣y3)…(x n﹣y n),下列说法①p可以为0;②当n是奇数时,P是偶数;③当n是偶数时,P是奇数.其中正确的个数是()A.0B.1C.2D.3【答案】C二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算=.【答案】见试题解答内容12.(4分)若一个多边形每个内角为160°,则这个多边形的边数是18.【答案】见试题解答内容13.(4分)一个不透明的口袋中有2个红球和1个白球,它们除了颜色其他完全相同,从中随机取出一个小球,记下颜色后放回,摇匀后再从中随机取出一个小球,记下颜色,则两次取出的小球颜色相同的概率为.【答案】.14.(4分)如图,A是反比例函数y=图象上一点,AB⊥y轴交于点B,C是y轴负半轴上一点,且满足OC:OB =3:2,连接AC交x轴于点D,若S△ABC=25,则k=﹣20.【答案】﹣20.15.(4分)如图,正方形ABCD边长为4cm,以A为圆心,4cm为半径画弧,再以AD为直径作半圆.那么阴影部分的面积2πcm2.【答案】2π.16.(4分)若关于x的不等式组有且只有4个整数解,且关于y的分式方程的解为正整数,则符合条件的所有整数a的和为8.【答案】8.17.(4分)如图,△ABC中,AB=AC=13,BC=24,点D在BC上(BD>AD),将△ACD沿AD翻折,得到△AED,AE交BC于点F.当DE⊥BC时,tan∠CBE的值为.【答案】见试题解答内容18.(4分)一个四位正整数M,如果千位数字与十位数字之和的两倍等于百位数字与个位数字之和,则称M为“共进退数”,并规定F(M)等于M的前两位数所组成的数字与后两位数所组成的数字之和,G(M)等于M的前两位数所组成的数字与后两位数所组成的数字之差,如果F(M)=60,那么M各数位上的数字之和为15;有一个四位正整数(0≤x≤8,0≤y≤9,0≤z≤8,且为整数)是一个“共进退数”,且F(N)是一个平方数,是一个整数,则满足条件的数N是1125.【答案】15,1125.三.解答题(共8小题,满分78分)19.(8分)计算:(1)(2x+y)2﹣(2x+y)(2x﹣y)﹣2y(x+y)(2).【答案】(1)2xy;(2).20.(10分)在学习了矩形后,小雨借助尺规找到了直角三角形斜边的中点,通过倍长中线构造了矩形,然后利用矩形对角线的性质探究出了直角三角形斜边上的中线与斜边的数量关系.请根据她的思路完成以下作图与填空:(1)已知在Rt△ABC中,∠ABC=90°,用直尺和圆规,作AC的垂直平分线交BC于点E,垂足为点O,连接BO并延长,在射线BO上截取OD=OB,连接AD、CD.(不写作法,保留作图痕迹)(2)在(1)问所作的图形中,求证:.证明:∵OE垂直平分AC,∴点O是AC的中点.∴OA=OC.∵OB=OD,∴四边形ABCD是平行四边形.∵∠ABC=90° ,∴四边形ABCD是矩形.∴AC=BD.∵,∴OB=AC.【答案】OC,90°,矩形,AC=BD,AC.21.(10分)2023年8月24日,日本无视多方反对,单方面强行启动福岛核事故污染水排海,属无视国际公共利益的极端自私和不负责任之举.为了加强学生对核污染的了解,增强学生的环境保护意识,某学校对初三年级1000名学生进行了一次“海洋保护知识测试”(满分50分且分数均为整数,规定49分及以上为优秀).从该年级甲、乙两班中各随机抽取20名学生的成绩进行整理、描述和分析,给出了下列信息.甲班20名学生的测试成绩为:44,46,43,45,49,49,48,49,45,47,46,47,45,49,43,50,50,50,48,47班级平均数中位数众数优秀率甲班4747b35%乙班47a49c乙班20名学生的测试成绩频数分布表:成绩分组/分频数频率40<x≤4210.0542<x≤4410.0544<x≤4630.1546<x≤4860.3048<x≤5090.45其中,乙班学生测试成绩高于46分,但不超过48分的成绩为:47,48,48,47,48,48.(1)根据以上信息可以求出:a=48,b=49,c=45%.(2)你认为甲乙两个班哪个班的学生测试成绩较好,并说明理由(一条即可).(3)请估计该校初三年级参加此次测试中成绩优秀的学生人数.【答案】(1)48,49,45%;(2)乙班的学生测试成绩较好,理由:乙班的优秀率大于甲班;(3)580人.22.(10分)列方程解应用题:人们提倡“节能减排,低碳出行”,随着新能源电动汽车的迅猛发展,在很多高速公路服务区里既有加油站同时又配有充电桩.(1)在某个服务区,新能源电动汽车的充电桩比燃油汽车的加油枪多4个,爱观察的小萌发现:在1个小时内,平均每个充电桩可以为2辆电动车充电,平均一个加油枪可以为7辆燃油车加油,这样在这1小时内共为80辆车提供了充电、加油的服务.那么这个服务区的充电桩和加油枪分别有多少个?(2)一般情况下,在高速公路上行驶时燃油汽车平均每公里的汽油费是新能源电动汽车平均每公里电费的倍,两位车主在服务区分别花250元给燃油车加油、花60元给新能源电动车充电,最后燃油汽车可行驶的里程比新能源电动汽车可行驶的里程多100公里,那么新能源汽车在高速路上行驶时平均每公里费用为多少元?【答案】(1)这个服务区的充电桩有12个,加油枪有8个;(2)新能源汽车在高速路上行驶时平均每公里费用为0.15元.23.(10分)如图,在四边形ABCD中,AB∥CD,CE⊥AB于点E,AE=8,BE=CE=4,DC=2.动点P从点A出发,沿A→B方向以每秒2个单位长度的速度运动,同时动点Q从点E出发,沿折线E→C→D方向以每秒1个单位长度的速度运动.当点Q到达点D时,P、Q两点都停止运动.设动点P运动的时间为x秒,△PEQ的面积为y.(1)请直接写出y关于x的函数关系式并注明自变量x的取值范围;(2)在给定的平面直角坐标系中,画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,直接写出△PEQ的面积为4时x的值.【答案】(1)y=;(2)图象见解析过程,该函数的性质:函数值的最大值为8;(3)x的值为2或5.24.(10分)去五云山寨参加社会实践活动是南开中学高二年级的传统,其中的特色项目——以长征之名,走青春奋斗之路的徒步活动更是走出了南开人越难越开的坚毅不屈和心怀天下的气宇轩昂.如图,徒步活动的起点位于点D处,终点位于点A处,现有两条路线可以选择:①D﹣E﹣A,②D﹣C﹣B﹣A.已知点E在点D的北偏西30°方向,点A在点E的正西方向1500米处,点C在点D的正西方向2500米处,点B在点C的北偏西30°方向且距离C点1000米处,点A在点B的正北方向.(参考数据:)(1)求AB的长度(结果保留根号);(2)已知沿路线①徒步的速度为4.5km/h,沿路线②徒步的速度比路线①快0.5km/h,请通过计算说明,选择哪条路线所用时间较少?【答案】(1)米;(2)选择路线①所用时间少.25.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+2与x轴交于A(﹣1,0),B(4,0)两点,交y轴于点C.(1)求抛物线的表达式;(2)点P是直线BC上方抛物线上的一动点,过点P作PE∥y轴交BC于点E,在y轴上取一点F,使得EF=EC,求PE+CF的最大值及此时点P坐标;(3)将原抛物线沿射线CB方向平移个单位长度得到新抛物线y1,过点B作直线MN垂直于BC交y轴于点N,交新抛物线y1于点M,请直接写出点M的横坐标.【答案】(1)y=﹣x2+x+2;(2)PE+CF的最大值为:4.5,此时点P(3,2);(3)点M的横坐标为.26.(10分)已知△ABC是等腰直角三角形,AB=AC,D为平面内一点.(1)如图1,当D点在AB的中点时,连接CD,将CD绕点D逆时针旋转90°,得到ED,若AB=4,求△ADE 的周长;(2)如图2,当D点在△ABC外部时,E、F分别是AB、BC的中点,连接EF、DE、DF,将DE绕E点逆时针旋转90°得到EG,连接CG、DG、FG,若∠FDG=∠FGE,请探究FD、FG、CG之间的数量关系并给出证明;(3)如图3,当D在△ABC内部时,连接AD,将AD绕点D逆时针旋转90°,得到ED,若ED经过BC中点F,连接AE、CE,G为CE的中点,连接GF并延长交AB于点H,当AG最大时,请直接写出的值.【答案】(1)△ADE的周长为2+2+2;(2)FD=CG+FG,证明见解答;(3)的值为.。
重庆三中九年级数学下册第二十六章《反比例函数》经典练习卷(含答案)
一、选择题1.正比例函数1y 的图像与反比例函数2y 的图像相交于点(2,4)A ,下列说法正确的是( )A .反比例函数2y 的解析式是28y x =-B .两个函数图像的另一个交点坐标为(2,4)C .当2x <-或02x <<时,12y y <D .正比例函数1y 与反比例函数2y 都随x 的增大而增大2.下列函数中,y 随x 的增大而减少的是( )A .1y x =-B .2y x =-C .()30y x x =->D .4y x=()0x < 3.与点()2,3-在同一反比例函数图象上的点是( ) A .()1.5,4- B .()1,6-- C .()6,1D .()2,3-- 4.若点A (a ,b )在反比例函数2y x =的图像上,则代数式ab-4的值为( ) A .0 B .-2 C .2 D .-65.已知点A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3)是函数y =﹣2x 图象上的点,且x 1<0<x 2<x 3,则y 1,y 2,y 3的大小关系是( )A .y 1>y 2>y 3B .y 1<y 2<y 3C .y 1>y 3>y 2D .无法确定 6.(2017广东省卷)如图,在同一平面直角坐标系中,直线()110y k x k =≠与双曲线()220k y k x=≠相交于A B 、两点,已知点A 的坐标为()1,2,则点B 的坐标为( )A .()1,2--B .()2,1--C .()1,1--D .()2,2-- 7.已知0k >,函数y kx k =+和函数k y x=在同一坐标系内的图象大致是( ) A . B .C .D .8.反比例函数y=kb x 的图象如图所示,则一次函数y=kx+b (k≠0)的图象的图象大致是( )A .B .C .D .9.已知(5,-1)是双曲线(0)k y k x =≠上的一点,则下列各点中不在该图象上的是( ) A .1(,15)3- B .(5,1) C .(1,5)- D .1(10,)2- 10.如图,△ABC 的三个顶点分别为A (1,2),B (2,5),C (6,1).若函数在第一象限内的图像与△ABC 有交点,则的取值范围是A .2≤≤B .6≤≤10C .2≤≤6D .2≤≤11.已知电压U 、电流I 、电阻R 三者之间的关系式为:U IR =(或者U I R =),实际生活中,由于给定已知量不同,因此会有不同的可能图象,图象不可能是( ) A . B .C .D .12.一次函数y =kx ﹣k 与反比例函数y =k x在同一直角坐标系内的图象大致是( ) A . B . C . D .13.已知二次函数2y ax bx c =++的图象如图,则一次函数y ax bc =+与反比例函数abc y x=在平面直角坐标系中的图象可能是( ).A .B .C .D .14.如图,直线y =x +2与y 轴交于点A ,与直线y =﹣3x +10交于点B ,P 是线段AB 的中点,已知反比例函数y =k x的图象经过点P ,则k 的值为( )A .1B .3C .6D .815.如图,正方形ABCD 的顶点A ,B 分别在x 轴和y 轴上与双曲线18y x=恰好交于BC 的中点E ,若2OB OA =,则ABO S △的值为( )A .6B .8C .12D .16第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题16.如图,平行四边形OABC 的顶点A C 、的坐标分别为()()3,4,6,0--函数()0k y x x=<的图象经过点B ,则k 的值为__________.17.如图,反比例函数y =k x(x >0)经过A ,B 两点,过点A 作AC ⊥y 轴于点C ,过点B 作BD ⊥y 轴于点D ,过点B 作轴BE ⊥x 于点E ,连接AD ,已知AC =2,BE =2,S 矩形BEOD =16,则S △ACD =_____.18.如图,在平面直角坐标系中,点(6,0)A 、(3,4)B ,点C 是OB 上一点,D 为AC 的中点,若反比例函数(0)k y x x=>过C 、D 两点,则k 的值为______.19.如图,在平面直角坐标系xOy 中,已知直线(0)y kx k =>分别交反比例函数1y x=和9y x=在第一象限的图象于点A ,B ,过B 作BD x ⊥轴于点D ,交1y x =的图象于点C .若BA BC =,则k 的值为________.20.如图,正方形ABCD 的边长为10,点A 的坐标为()8,0-,点B 在y 轴上,若反比例函数(0)k y k x==的图象过点C ,则该反比例函数的解析式为_________.21.近视眼镜的度数y (度)与镜片焦距x (米)成反比例,已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数y 与镜片焦距x 之间的函数关系式为________.(无需确定x 的取值范围)22.如图,函数y =1x 和y =﹣3x的图象分别是l 1和l 2.设点P 在l 1上,PC ⊥x 轴,垂足为C ,交l 2于点A ,PD ⊥y 轴,垂足为D ,交l 2于点B ,则△PAB 的面积为_____.23.将x=23代入反比例函数y=-1x 中,所得的函数值记为1y ,又将x=1y +1代入反比例函数y=-1x 中,所得的函数值记为2y ,又将x=2y +1代入反比例函数y=-1x 中,所得的函数值记为3y ,…,如此继续下去,则y 2020=______________24.如图,在平面直角坐标系中,菱形ABCD 的顶点A 、B 在反比例函数y k x =(k >0,x >0)的图象上,横坐标分别为1,4,对角线BD ∥x 轴,若菱形ABCD 的面积为9.则k 的值为____.25.如图,直线3y x =-+与y 轴交于点A ,与反比例函数()0k y x x=<的图象交于点C ,过点C 作CB x ⊥轴于点B ,若3AO BO =,则k 的值为________.26.已知矩形ABCD 的顶点A ,B 在反比例函数y =2x 的图象上,顶点C ,D 在反比例函数y =6x的图象上,且点A 的横坐标为2,则矩形ABCD 的面积为__________. 三、解答题27.如图,已知A 为反比例函数(0)k y x x=<的图像上一点,过点A 作AB y ⊥轴,垂足为B .若OAB 的面积为2,求k 的值.28.如图,已知反比例函数y =k x的图象经过点A (4,m ),AB ⊥x 轴,且△AOB 的面积为2. (1)求k 和m 的值; (2)若点C (x ,y )也在反比例函数y =k x 的图象上,当-3≤x ≤-1时,求函数值y 的取值范围.29.已知反比例函数kyx=(x>0)的图象与一次函数142y x=-+的图象交于点(6,n).求k和n的值.30.已知一次函数y=kx+b(k≠0)的图象经过A(3,18)和B(﹣2,8)两点.(1)求一次函数的解析式;(2)若一次函数y=kx+b(k≠0)的图象与反比例函数y=mx(m≠0)的图象只有一个交点,求交点坐标.。
重庆备战中考数学 反比例函数 培优易错试卷练习(含答案)
一、反比例函数真题与模拟题分类汇编(难题易错题)1.如图,反比例函数y= 的图象与一次函数y= x的图象交于点A、B,点B的横坐标是4.点P是第一象限内反比例函数图象上的动点,且在直线AB的上方.(1)若点P的坐标是(1,4),直接写出k的值和△PAB的面积;(2)设直线PA、PB与x轴分别交于点M、N,求证:△PMN是等腰三角形;(3)设点Q是反比例函数图象上位于P、B之间的动点(与点P、B不重合),连接AQ、BQ,比较∠PAQ与∠PBQ的大小,并说明理由.【答案】(1)解:k=4,S△PAB=15.提示:过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP与y轴交于点C,如图1,把x=4代入y= x,得到点B的坐标为(4,1),把点B(4,1)代入y= ,得k=4.解方程组,得到点A的坐标为(﹣4,﹣1),则点A与点B关于原点对称,∴OA=OB,∴S△AOP=S△BOP,∴S△PAB=2S△AOP.设直线AP的解析式为y=mx+n,把点A(﹣4,﹣1)、P(1,4)代入y=mx+n,求得直线AP的解析式为y=x+3,则点C的坐标(0,3),OC=3,∴S△AOP=S△AOC+S△POC= OC•AR+ OC•PS= ×3×4+ ×3×1= ,∴S△PAB=2S△AOP=15;(2)解:过点P作PH⊥x轴于H,如图2.B(4,1),则反比例函数解析式为y= ,设P(m,),直线PA的方程为y=ax+b,直线PB的方程为y=px+q,联立,解得直线PA的方程为y= x+ ﹣1,联立,解得直线PB的方程为y=﹣ x+ +1,∴M(m﹣4,0),N(m+4,0),∴H(m,0),∴MH=m﹣(m﹣4)=4,NH=m+4﹣m=4,∴MH=NH,∴PH垂直平分MN,∴PM=PN,∴△PMN是等腰三角形;(3)解:∠PAQ=∠PBQ.理由如下:过点Q作QT⊥x轴于T,设AQ交x轴于D,QB的延长线交x轴于E,如图3.可设点Q为(c,),直线AQ的解析式为y=px+q,则有,解得:,∴直线AQ的解析式为y= x+ ﹣1.当y=0时, x+ ﹣1=0,解得:x=c﹣4,∴D(c﹣4,0).同理可得E(c+4,0),∴DT=c﹣(c﹣4)=4,ET=c+4﹣c=4,∴DT=ET,∴QT垂直平分DE,∴QD=QE,∴∠QDE=∠QED.∵∠MDA=∠QDE,∴∠MDA=∠QED.∵PM=PN,∴∠PMN=∠PNM.∵∠PAQ=∠PMN﹣∠MDA,∠PBQ=∠NBE=∠PNM﹣∠QED,∴∠PAQ=∠PBQ.【解析】【分析】(1)过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP 与y轴交于点C,如图1,可根据条件先求出点B的坐标,然后把点B的坐标代入反比例函数的解析式,即可求出k,然后求出直线AB与反比例函数的交点A的坐标,从而得到OA=OB,由此可得S△PAB=2S△AOP,要求△PAB的面积,只需求△PAO的面积,只需用割补法就可解决问题;(2)过点P作PH⊥x轴于H,如图2.可用待定系数法求出直线PB的解析式,从而得到点N的坐标,同理可得到点M的坐标,进而得到MH=NH,根据垂直平分线的性质可得PM=PN,即△PMN是等腰三角形;(3)过点Q作QT⊥x轴于T,设AQ交x轴于D,QB的延长线交x轴于E,如图3.可设点Q为(c,),运用待定系数法求出直线AQ的解析式,即可得到点D的坐标为(c﹣4,0),同理可得E(c+4,0),从而得到DT=ET,根据垂直平分线的性质可得QD=QE,则有∠QDE=∠QED.然后根据对顶角相等及三角形外角的性质,就可得到∠PAQ=∠PBQ.2.如图,点A在函数y= (x>0)图象上,过点A作x轴和y轴的平行线分别交函数y= 图象于点B,C,直线BC与坐标轴的交点为D,E.(1)当点C的横坐标为1时,求点B的坐标;(2)试问:当点A在函数y= (x>0)图象上运动时,△ABC的面积是否发生变化?若不变,请求出△ABC的面积,若变化,请说明理由.(3)试说明:当点A在函数y= (x>0)图象上运动时,线段BD与CE的长始终相等.【答案】(1)解:∵点C在y= 的图象上,且C点横坐标为1,∴C(1,1),∵AC∥y轴,AB∥x轴,∴A点横坐标为1,∵A点在函数y= (x>0)图象上,∴A(1,4),∴B点纵坐标为4,∵点B在y= 的图象上,∴B点坐标为(,4);(2)解:设A(a,),则C(a,),B(,),∴AB=a﹣ = a,AC= ﹣ = ,∴S△ABC= AB•AC= × × = ,即△ABC的面积不发生变化,其面积为;(3)解:如图,设AB的延长线交y轴于点G,AC的延长线交x轴于点F,∵AB∥x轴,∴△ABC∽△EFC,∴ = ,即 = ,∴EF= a,由(2)可知BG= a,∴BG=EF,∵AE∥y轴,∴∠BDG=∠FCE,在△DBG和△CFE中∴△DBG≌△CEF(AAS),∴BD=EF.【解析】【分析】(1)由条件可先求得A点坐标,从而可求得B点纵坐标,再代入y= 可求得B点坐标;(2)可设出A点坐标,从而可表示出C、B的坐标,则可表示出AB和AC的长,可求得△ABC的面积;(3)可证明△ABC∽△EFC,利用(2)中,AB和AC的长可表示出EF,可得到BG=EF,从而可证明△DBG≌△CFE,可得到DB=CF.3.如图,一次函数y1=k1x+b与反比例函数y2= 的图象交于点A(4,m)和B(﹣8,﹣2),与y轴交于点C.(1)m=________,k1=________;(2)当x的取值是________时,k1x+b>;(3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP 与线段AD交于点E,当S四边形ODAC:S△ODE=3:1时,求点P的坐标.【答案】(1)4;(2)﹣8<x<0或x>4(3)解:由(1)知,y1= x+2与反比例函数y2= ,∴点C的坐标是(0,2),点A 的坐标是(4,4).∴CO=2,AD=OD=4.∴S梯形ODAC= •OD= ×4=12,∵S四边形ODAC:S△ODE=3:1,∴S△ODE= S梯形ODAC= ×12=4,即OD•DE=4,∴DE=2.∴点E的坐标为(4,2).又点E在直线OP上,∴直线OP的解析式是y= x,∴直线OP与y2= 的图象在第一象限内的交点P的坐标为(4 ,2 ).【解析】【解答】解:(1)∵反比例函数y2= 的图象过点B(﹣8,﹣2),∴k2=(﹣8)×(﹣2)=16,即反比例函数解析式为y2= ,将点A(4,m)代入y2= ,得:m=4,即点A(4,4),将点A(4,4)、B(﹣8,﹣2)代入y1=k1x+b,得:,解得:,∴一次函数解析式为y1= x+2,故答案为:4,;(2)∵一次函数y1=k1x+2与反比例函数y2= 的图象交于点A(4,4)和B(﹣8,﹣2),∴当y1>y2时,x的取值范围是﹣8<x<0或x>4,故答案为:﹣8<x<0或x>4;【分析】(1)由A与B为一次函数与反比例函数的交点,将B坐标代入反比例函数解析式中,求出k2的值,确定出反比例解析式,再将A的坐标代入反比例解析式中求出m的值,确定出A的坐标,将B坐标代入一次函数解析式中即可求出k1的值;(2)由A与B 横坐标分别为4、﹣8,加上0,将x轴分为四个范围,由图象找出一次函数图象在反比例函数图象上方时x的范围即可;(3)先求出四边形ODAC的面积,由S四边形ODAC:S△ODE=3:1得到△ODE的面积,继而求得点E的坐标,从而得出直线OP的解析式,结合反比例函数解析式即可得.4.已知反比例函数y= 的图象经过点A(﹣,1).(1)试确定此反比例函数的解析式;(2)点O是坐标原点,将线段OA绕O点顺时针旋转30°得到线段OB.判断点B是否在此反比例函数的图象上,并说明理由;(3)已知点P(m, m+6)也在此反比例函数的图象上(其中m<0),过P点作x轴的垂线,交x轴于点M.若线段PM上存在一点Q,使得△OQM的面积是,设Q点的纵坐标为n,求n2﹣2 n+9的值.【答案】(1)解:由题意得1= ,解得k=﹣,∴反比例函数的解析式为y=﹣(2)解:过点A作x轴的垂线交x轴于点C.在Rt△AOC中,OC= ,AC=1,∴OA= =2,∠AOC=30°,∵将线段OA绕O点顺时针旋转30°得到线段OB,∴∠AOB=30°,OB=OA=2,∴∠BOC=60°.过点B作x轴的垂线交x轴于点D.在Rt△BOD中,BD=OB•sin∠BOD= ,OD= OB=1,∴B点坐标为(﹣1,),将x=﹣1代入y=﹣中,得y= ,∴点B(﹣1,)在反比例函数y=﹣的图象上(3)解:由y=﹣得xy=﹣,∵点P(m, m+6)在反比例函数y=﹣的图象上,其中m<0,∴m( m+6)=﹣,∴m2+2 m+1=0,∵PQ⊥x轴,∴Q点的坐标为(m,n).∵△OQM的面积是,∴OM•QM= ,∵m<0,∴mn=﹣1,∴m2n2+2 mn2+n2=0,∴n2﹣2 n=﹣1,∴n2﹣2 n+9=8.【解析】【分析】(1)由于反比例函数y= 的图象经过点A(﹣,1),运用待定系数法即可求出此反比例函数的解析式;(2)首先由点A的坐标,可求出OA的长度,∠AOC的大小,然后根据旋转的性质得出∠AOB=30°,OB=OA,再求出点B的坐标,进而判断点B是否在此反比例函数的图象上;(3)把点P(m, m+6)代入反比例函数的解析式,得到关于m的一元二次方程;根据题意,可得Q点的坐标为(m,n),再由△OQM的面积是,根据三角形的面积公式及m<0,得出mn的值,最后将所求的代数式变形,把mn的值代入,即可求出n2﹣2 n+9的值.5.如图,点P(x,y1)与Q(x,y2)分别是两个函数图象C1与C2上的任一点.当a≤x≤b 时,有﹣1≤y1﹣y2≤1成立,则称这两个函数在a≤x≤b上是“相邻函数”,否则称它们在a≤x≤b 上是“非相邻函数”.例如,点P(x,y1)与Q (x,y2)分别是两个函数y=3x+1与y=2x﹣1图象上的任一点,当﹣3≤x≤﹣1时,y1﹣y2=(3x+1)﹣(2x﹣1)=x+2,通过构造函数y=x+2并研究它在﹣3≤x≤﹣1上的性质,得到该函数值的范围是﹣1≤y≤1,所以﹣1≤y1﹣y2≤1成立,因此这两个函数在﹣3≤x≤﹣1上是“相邻函数”.(1)判断函数y=3x+2与y=2x+1在﹣2≤x≤0上是否为“相邻函数”,并说明理由;(2)若函数y=x2﹣x与y=x﹣a在0≤x≤2上是“相邻函数”,求a的取值范围;(3)若函数y= 与y=﹣2x+4在1≤x≤2上是“相邻函数”,直接写出a的最大值与最小值.【答案】(1)解:是“相邻函数”,理由如下:y1﹣y2=(3x+2)﹣(2x+1)=x+1,构造函数y=x+1,∵y=x+1在﹣2≤x≤0,是随着x的增大而增大,∴当x=0时,函数有最大值1,当x=﹣2时,函数有最小值﹣1,即﹣1≤y≤1,∴﹣1≤y1﹣y2≤1,即函数y=3x+2与y=2x+1在﹣2≤x≤0上是“相邻函数”(2)解:y1﹣y2=(x2﹣x)﹣(x﹣a)=x2﹣2x+a,构造函数y=x2﹣2x+a,∵y=x2﹣2x+a=(x﹣1)2+(a﹣1),∴顶点坐标为:(1,a﹣1),又∵抛物线y=x2﹣2x+a的开口向上,∴当x=1时,函数有最小值a﹣1,当x=0或x=2时,函数有最大值a,即a﹣1≤y≤a,∵函数y=x2﹣x与y=x﹣a在0≤x≤2上是“相邻函数”,∴﹣1≤y1﹣y2≤1,即,∴0≤a≤1(3)解:y1﹣y2= ﹣(﹣2x+4)= +2x﹣4,构造函数y= +2x﹣4,∵y= +2x﹣4∴当x=1时,函数有最小值a﹣2,当x=2时,函数有最大值,即a﹣2≤y≤ ,∵函数y= 与y=﹣2x+4在1≤x≤2上是“相邻函数”,∴﹣1≤y1﹣y2≤1,即,∴1≤a≤2;∴a的最大值是2,a的最小值1【解析】【分析】(1)y1﹣y2=(3x+2)﹣(2x+1)=x+1,构造函数y=x+1,因为y=x+1在﹣2≤x≤0,是随着x的增大而增大,所以当x=0时,函数有最大值1,当x=﹣2时,函数有最小值﹣1,即﹣1≤y≤1,所以﹣1≤y1﹣y2≤1,即函数y=3x+2与y=2x+1在﹣2≤x≤0上是“相邻函数”;(2)y1﹣y2=(x2﹣x)﹣(x﹣a)=x2﹣2x+a,构造函数y=x2﹣2x+a,因为y=x2﹣2x+a=(x﹣1)2+(a﹣1),所以顶点坐标为:(1,a﹣1),又抛物线y=x2﹣2x+a的开口向上,所以当x=1时,函数有最小值a﹣1,当x=0或x=2时,函数有最大值a,即a﹣1≤y≤a,因为函数y=x2﹣x与y=x﹣a在0≤x≤2上是“相邻函数”,所以﹣1≤y1﹣y2≤1,即0≤a≤1;(3)当x=1时,函数有最小值a﹣2,当x=2时,函数有最大值,因为函数y=与y=﹣2x+4在1≤x≤2上是“相邻函数”,﹣1≤y1﹣y2≤1,即1≤a≤2,所以a的最大值是2,a 的最小值1.6.如图,过原点O的直线与双曲线交于上A(m,n)、B,过点A的直线交x轴正半轴于点D,交y轴负半轴于点E,交双曲线于点P.(1)当m=2时,求n的值;(2)当OD:OE=1:2,且m=3时,求点P的坐标;(3)若AD=DE,连接BE,BP,求△PBE的面积.【答案】(1)解:∵点A(m,n)在双曲线y=上,∴mn=6,∵m=2,∴n=3;(2)解:由(1)知,mn=6,∵m=3,∴n=2,∴A(3,2),∵OD:OE=1:2,设OD=a,则OE=2a,∵点D在x轴坐标轴上,点E在y轴负半轴上,∴D(a,0),E(0,﹣2a),∴直线DE的解析式为y=2x﹣2a,∵点A(3,2)在直线y=2x﹣2a上,∴6﹣2a=2,∴a=2,∴直线DE的解析式为y=2x﹣4①,∵双曲线的解析式为y=②,联立①②解得,(点A的横纵坐标,所以舍去)或,∴P(﹣2,﹣3);(3)解:∵AD=DE,点D在x轴坐标轴上,点E在y轴负半轴上,A(m,n),∴E(0,﹣n),D( m,0),∴直线DE的解析式为y= x﹣n,∵mn=6,∴m=,∴y= x﹣n③,∵双曲线的解析式为y=④,联立③④解得,∴(点A的横纵坐标,所以舍去)或,∴P(﹣2m,﹣2n),∵A(m,n),∴直线AB的解析式为y=x⑤.联立④⑤解得,(点A的横纵坐标,所以舍去)或∴B(﹣m,﹣n),∵E(0,﹣n),∴BE∥x轴,∴S△PBE= BE×|y E﹣y P|= ×m×|﹣n﹣(﹣2n)|= mn=3.【解析】【分析】(1)把A(2,n)代入解析式即可求出n;(2)先求出A点坐标,设OD=a,则OE=2a,得D(a,0),E(0,﹣2a),直线DE的解析式为y=2x﹣2a,把点A(3,2)代入求出a,再联立两函数即可求出交点P;(3)由AD=DE,点D在x轴坐标轴上,点E在y轴负半轴上,故A(m,n),E(0,﹣n),D( m,0),求得直线DE 的解析式为y= x﹣n,又mn=6,得y= x﹣n,与y=联立得,即为P点坐标,由直线AB的解析式为y= x与双曲线联立解得B (﹣m,﹣n),再根据S△PBE= BE×|y E﹣y P|= ×m×|﹣n﹣(﹣2n)|求出等于3.7.理数学兴趣小组在探究如何求tan15°的值,经过思考、讨论、交流,得到以下思路:思路一如图1,在Rt△ABC中,∠C=90°,∠ABC=30°,延长CB至点D,使BD=BA,连接AD.设AC=1,则BD=BA=2,BC= .tanD=tan15°= = = .思路二利用科普书上的和(差)角正切公式:tan(α±β)= .假设α=60°,β=45°代入差角正切公式:tan15°=tan(60°﹣45°)= == .思路三在顶角为30°的等腰三角形中,作腰上的高也可以…思路四…请解决下列问题(上述思路仅供参考).(1)类比:求出tan75°的值;(2)应用:如图2,某电视塔建在一座小山上,山高BC为30米,在地平面上有一点A,测得A,C两点间距离为60米,从A测得电视塔的视角(∠CAD)为45°,求这座电视塔CD的高度;(3)拓展:如图3,直线与双曲线交于A,B两点,与y轴交于点C,将直线AB绕点C旋转45°后,是否仍与双曲线相交?若能,求出交点P的坐标;若不能,请说明理由.【答案】(1)解:方法一:如图1,在Rt△ABC中,∠C=90°,∠ABC=30°,延长CB至点D,使BD=BA,连接AD.设AC=1,则BD=BA=2,BC= .tan∠DAC=tan75°= = = = ;方法二:tan75°=tan(45°+30°)= = = =(2)解:如图2,在Rt△ABC中,AB= = = ,sin∠BAC= ,即∠BAC=30°.∵∠DAC=45°,∴∠DAB=45°+30°=75°.在Rt△ABD中,tan∠DAB= ,∴DB=AB•tan∠DAB= •()= ,∴DC=DB﹣BC= = .答:这座电视塔CD的高度为()米(3)解:①若直线AB绕点C逆时针旋转45°后,与双曲线相交于点P,如图3.过点C 作CD∥x轴,过点P作PE⊥CD于E,过点A作AF⊥CD于F.解方程组:,得:或,∴点A(4,1),点B(﹣2,﹣2).对于,当x=0时,y=﹣1,则C(0,﹣1),OC=1,∴CF=4,AF=1﹣(﹣1)=2,∴tan∠ACF= ,∴tan∠PCE=tan(∠ACP+∠ACF)=tan(45°+∠ACF)= = =3,即 =3.设点P的坐标为(a,b),则有:,解得:或,∴点P的坐标为(﹣1,﹣4)或(,3);②若直线AB绕点C顺时针旋转45°后,与x轴相交于点G,如图4.由①可知∠ACP=45°,P(,3),则CP⊥CG.过点P作PH⊥y轴于H,则∠GOC=∠CHP=90°,∠GCO=90°﹣∠HCP=∠CPH,∴△GOC∽△CHP,∴.∵CH=3﹣(﹣1)=4,PH= ,OC=1,∴,∴GO=3,G(﹣3,0).设直线CG的解析式为,则有:,解得:,∴直线CG的解析式为.联立:,消去y,得:,整理得:,∵△= ,∴方程没有实数根,∴点P 不存在.综上所述:直线AB绕点C旋转45°后,能与双曲线相交,交点P的坐标为(﹣1,﹣4)或(,3).【解析】【分析】tan∠DAC=tan75°,tan∠DAC用边的比值表示.在Rt△ABC中,由勾股定理求出AB,由三角函数得出∠BAC=30°,从而得到∠DAB=75°,在Rt△ABD中,可求出DB,DC=DB﹣BC.分两种情况讨论,设点P的坐标为(a,b),根据tan∠PCE和P在图像上列出含有a,b的方程组,求出a,b.利用已知证明△GOC∽△CHP,根据相似三角形的性质可求出G的坐标,设出直线CG的解析式,与反比例函数组成方程组消元,△<0 点P不存在.8.如图,直线 y=kx与双曲线 =-交于A、B两点,点C为第三象限内一点.(1)若点A的坐标为(a,3),求a的值;(2)当k=-,且CA=CB,∠ACB=90°时,求C点的坐标;(3)当△ABC为等边三角形时,点C的坐标为(m,n),试求m、n之间的关系式.【答案】(1)解:把(a,3)代入 =-,得,解得a=-2;(2)解:连接CO,作AD⊥y轴于D点,作CE垂直y轴于E点,则∠ADO=∠CEO=90°,∴∠DAO+∠AOD=90°,∵直线 y=kx与双曲线 =-交于A、B两点,∴OA=OB,当CA=CB,∠ACB=90°时,∴CO=AO,∠BOC=90°,即∠COE+∠BOE=90°,∵∠AOD=∠BOE,∴∠DAO=∠EOC,∴△ADO≌△OEC,又k=-,由y=- x和y=-解得,,所以A点坐标为(-2,3),由△ADO≌△OEC得,CE=OD=3,EO=DA=2,所以C(-3,-2);(3)解:连接CO,作AD⊥y轴于D点,作CE⊥y轴于E点,则∠ADO=∠CEO=90°,∴∠DAO+∠AOD=90°,∵直线 y=kx与双曲线 =-交于A、B两点,∴OA=OB,∵△ABC为等边三角形,∴CA=CB,∠ACB=60°,∠BOC=90°,即∠COE+∠BOE=90°,∵∠AOD=∠BOE,∴∠DAO=∠EOC,∴△ADO∽△OEC,∴,∵∠ACO= ∠ACB=30°,∠AOC=90°,∴,∵C的坐标为(m,n),∴CE=-m,OE=-n,∴AD=- n,OD=- m,∴A( n,- m),代入y=-中,得mn=18.【解析】【分析】(1)将点A的坐标代入反比例函数的解析式即可求出a的值;(2)连接CO,作AD⊥y轴于D点,作CE垂直y轴于E点,根据垂直的定义得出∠ADO=∠CEO=90°,故∠DAO+∠AOD=90°,根据双曲线的对称性得出OA=OB,当CA=CB,∠ACB=90°时,根据直角三角形斜边上的中线等于斜边的一半及等腰三角形的三线合一得出CO=AO,∠BOC=90°,即∠COE+∠BOE=90°,根据等角的余角相等得出∠DAO=∠EOC,从而利用AAS判断出△ADO≌△OEC,,解联立直线与双曲线的解析式组成的方程组,得出A 点的坐标,由△ADO≌△OEC得,CE=OD=3,EO=DA=2,进而得出C点坐标;(3)连接CO,作AD⊥y轴于D点,作CE⊥y轴于E点,根据垂直的定义得出∠ADO=∠CEO=90°,故∠DAO+∠AOD=90°,根据双曲线的对称性得出OA=OB,△ABC为等边三角形,故CA=CB,∠ACB=60°,∠BOC=90°,即∠COE+∠BOE=90°,根据等角的余角相等得出∠DAO=∠EOC,从而判断出△ADO∽△OEC,根据相似三角形的旋转得出,根据锐角三角函数的定义,及特殊锐角三角函数值得出,C的坐标为(m,n),故CE=-m,OE=-n,AD=- n,OD=-m,从而得出A点的坐标,再代入反比例函数的解析式即可求出mn=18.9.你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细(横截面积)s(mm2)的反比例函数,其图象如图.(1)写出y与s的函数关系式;(2)求当面条粗3.2mm2时,面条的总长度是多少m?【答案】(1)解:设y与x的函数关系式为y= ,将x=4,y=32代入上式,解得:k=4×32=128,故y= .答:y与x的函数关系式y=(2)解:当x=3.2时,y= =40.答:当面条粗3.2mm2时,面条的总长度是40米【解析】【分析】(1)根据图象可设出关系式,再把一个点的坐标代入可求出关系式;(2)把x=3.2代入关系式可求出y的值,即得答案.10.如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折现”)(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;(2)如图2,双曲线y= 与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.①试求△PAD的面积的最大值;②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D的坐标;若不能,请说明理由.【答案】(1)解:如图1,新函数的性质:1.函数的最小值为0;2.函数图象的对称轴为直线x=3.由题意得,点A的坐标为(-3,0),分两种情况:①当x-3时,y=x+3;②当x<-3时,设函数解析式为y=kx+b,在直线y=x+3中,当x=-4时,y=-1,则点(-4,-1)关于x轴的对称点为(-4,1),把点(-4,1),(-3,0),代入y=kx+b中,得:,解得:,∴y=-x-3.综上,新函数的解析式为y=.(2)解:如图2,①∵点C(1,a)在直线y=x+3上,∴a=4,∵点C(1,4)在反比例函数y=上,∴k=4,∴反比例函数的解析式为y=.∵点D是线段AC上一动点,∴设点D的坐标为(m,m+3),且-3<m<1,∵DP∥x轴,且点P在双曲线上,∴点P的坐标为(,m+3),∴PD=-m,∴S△PAD=(-m)(m+3)=m2-m+2=(m+)2+,∵a=<0,∴当m=时,S有最大值,最大值为,又∵-3<<1,∴△PAD的面积的最大值为.②在点D的运动的过程中,四边形PAEC不能为平行四边形,理由如下:当点D为AC的中点时,其坐标为(-1,2),此时点P的坐标为(2,2),点E的坐标为(-5,2),∵DP=3,DE=4,∴EP与AC不能互相平分,∴四边形PAEC不能为平行四边形.【解析】【分析】(1)根据一次函数的性质,结合函数图象写出新函数的两条性质;利用待定系数法求新函数解析式,注意分两种情况讨论;(2)①先求出点C的坐标,再利用待定系数法求出反比例函数解析式,设出点D的坐标,进而得到点P的坐标,再根据三角形的面积公式得出函数解析式,利用二次函数的性质求解即可;②先求出A的中点D的坐标,再计算DP、DE的长度,如果对角线互相平分,则能成为平行四边形,如若对角线不互相平分,则不能成为平行四边形.11.如图,已知直线与x、y轴交于M、N,若将N向右平移个单位后的N,,恰好落在反比例函数的图像上.(1)求k的值;(2)点P为双曲线上的一个动点,过点P作直线PA⊥x轴于A点,交NM延长线于F 点,过P点作PB⊥y轴于B交MN于点E.设点P的横坐标为m.①用含有m的代数式表示点E、F的坐标②找出图中与△EOM 相似的三角形,并说明理由.【答案】(1)解:当时,,,.把代入得,(2)解:①由(1)知 ..当时, ,.当时,,,∴E(2 -, ).② , , , ,,,,由一次函数解析式得∠OME=∠ONF=45°【解析】【分析】(1)当x=0时,求出y=2,得出N(0,2) ,由平移的性质得出N'(3,2) .把 (3,2) 代入 y=得k=6.(2)①由(1)可设P(m,) .当x=m时,求出y=−m+2 ,即F(m,2-m) ;当y=时,求出x=2−,即E(2 -,).②∵ON=2 , EM=, OM=2 , NF=,从而得出OMNF=EMON.由一次函数解析式得∠OME=∠ONF=45°;推出ΔEOM∼ΔOFN.12.已知,抛物线的图象经过点,.(1)求这个抛物线的解析式;(2)如图1,是抛物线对称轴上一点,连接,,试求出当的值最小时点的坐标;(3)如图2,是线段上的一点,过点作轴,与抛物线交于点,若直线把分成面积之比为的两部分,请求出点的坐标.【答案】(1)解:将,的坐标分别代入.得解这个方程组,得,所以,抛物线的解析式为(2)解:如图1,由于点、关于轴对称,所以连接,直线与轴的交点即为所求的点,由,令,得,解得,,点的坐标为,又,易得直线的解析式为:.当时,,点坐标(3)解:设点的坐标为,所以所在的直线方程为.那么,与直线的交点坐标为,与抛物线的交点坐标为.由题意,得① ,即,解这个方程,得或(舍去).② ,即,解这个方程,得或(舍去),综上所述,点的坐标为,或,.【解析】【分析】(1)将点、的坐标代入可得出、的值,继而得出这个抛物线的解析式;(2)由于点、关于轴对称,所以连接,直线与轴的交点即为所求的点,利用待定系数法确定直线的解析式,然后求得该直线与轴的交点坐标即可;(3)如图2,交于,设,根据一次函数和二次函数图象上点的坐标特征,设点的坐标为,,.然后分类讨论:分别利用或,列关于的方程,然后分别解关于的方程,从而得到点坐标13.如图,抛物线与轴交于两点( 在的左侧),与轴交于点,点与点关于抛物线的对称轴对称.(1)求抛物线的解析式及点的坐标:(2)点是抛物线对称轴上的一动点,当的周长最小时,求出点的坐标;(3)点在轴上,且,请直接写出点的坐标.【答案】(1)解:根据题意得,解得抛物线的解析式为抛物线的对称轴为直线点与点关于抛物线的对称轴对称点的坐标为(2)解:连接点与点关于抛物线的对称轴对称.为定值,当的值最小即三点在同一直线上时的周长最小由解得,在的左侧,由两点坐标可求得直线的解析式为当时,当的周长最小时,点的坐标为(3)解:点坐标为或【解析】【分析】(1)利用待定系数法即可求出n,利用对称性C、D关于对称轴对称即可求出点D坐标.(2)A,P,D三点在同一直线上时△PAC的周长最小,求出直线AD的解析式即可解决问题.(3)分两种情形①作DQ∥AC交x轴于点Q,此时∠DQA=∠DAC,满足条件.②设线段AD的垂直平分线交AC于E,直线DE与x的交点为Q′,此时∠Q′DA=′CAD,满足条件,分别求解即可.14.【问题】如图1,在Rt△ABC中,∠ACB=90°,AC=BC,过点C作直线l平行于AB.∠EDF=90°,点D 在直线l上移动,角的一边DE始终经过点B,另一边DF与AC交于点P,研究DP和DB的数量关系.(1)【探究发现】如图2,某数学兴趣小组运用“从特殊到一般”的数学思想,发现当点D 移动到使点P与点C重合时,通过推理就可以得到DP=DB,请写出证明过程;(2)【数学思考】如图3,若点P是AC上的任意一点(不含端点A、C),受(1)的启发,这个小组过点D作DG⊥CD交BC于点G,就可以证明DP=DB,请完成证明过程;(3)【拓展引申】如图4,在(1)的条件下,M是AB边上任意一点(不含端点A、B),N是射线BD上一点,且AM=BN,连接MN与BC交于点Q,这个数学兴趣小组经过多次取M点反复进行实验,发现点M在某一位置时BQ的值最大.若AC=BC=4,请你直接写出BQ的最大值.【答案】(1)解:∵∠ACB=90°,AC=BC∴∠CAB=∠CBA=45°∵CD∥AB∴∠CBA=∠DCB=45°,且BD⊥CD∴∠DCB=∠DBC=45°∴DB=DC即DB=DP(2)解:∵DG⊥CD,∠DCB=45°∴∠DCG=∠DGC=45°∴DC=DG,∠DCP=∠DGB=135°,∵∠BDP=∠CDG=90°∴∠CDP=∠BDG,且DC=DG,∠DCP=∠DGB=135°,∴△CDP≌△GDB(ASA)∴DB=DP(3)解:如图4,过点M作MH⊥MN交AC于点H,连接CM,HQ,∵MH⊥MN,∴∠AMH+∠NMB=90°∵CD∥AB,∠CDB=90°∴∠DBM=90°∴∠NMB+∠MNB=90°∴∠HMA=∠MNB,且AM=BN,∠CAB=∠CBN=45°∴△AMH≌△BNQ(ASA)∴AH=BQ∵∠ACB=90°,AC=BC=4,∴AB=4 ,AC-AH=BC-BQ∴CH=CQ∴∠CHQ=∠CQH=45°=∠CAB∴HQ∥AB∴∠HQM=∠QMB∵∠ACB=∠HMQ=90°∴点H,点M,点Q,点C四点共圆,∴∠HCM=∠HQM∴∠HCM=∠QMB,且∠A=∠CBA=45°∴△ACM∽△BMQ∴∴∴BQ= +2∴AM=2 时,BQ有最大值为2.【解析】【分析】(1)DB=DP,理由如下:根据等腰直角三角形的性质得出∠CAB=∠CBA=45°,根据二直线平行,内错角相等得出∠CBA=∠DCB=45°,根据三角形的内角和得出∠DCB=∠DBC=45°,最后根据等角对等边得出 DB=DC ,即DB=DP;(2)利用ASA判断出△CDP≌△GDB ,再根据全等三角形的对应边相等得出DB=DP;(3)如图4,过点M作MH⊥MN交AC于点H,连接CM,HQ,利用ASA判断出△AMH≌△BNQ 根据全等三角形的对应边相等得出AH=BQ,进而判断出点H,点M,点Q,点C四点共圆,根据圆周角定理得出∠HCM=∠HQM ,然后判断出△ACM∽△BMQ ,根据相似三角形的对应边成比例得出,根据比例式及偶数次幂的非负性即可得出求出答案.15.如图,一次函数y=kx+b(k<0)与反比例函数y= 的图象相交于A、B两点,一次函数的图象与y轴相交于点C,已知点A(4,1)(1)求反比例函数的解析式;(2)连接OB(O是坐标原点),若△BOC的面积为3,求该一次函数的解析式.【答案】(1)解:∵点A(4,1)在反比例函数y= 的图象上,∴m=4×1=4,∴反比例函数的解析式为y=(2)解:∵点B在反比例函数y= 的图象上,∴设点B的坐标为(n,).将y=kx+b代入y= 中,得:kx+b= ,整理得:kx2+bx﹣4=0,∴4n=﹣,即nk=﹣1①.令y=kx+b中x=0,则y=b,即点C的坐标为(0,b),∴S△BOC= bn=3,∴bn=6②.∵点A(4,1)在一次函数y=kx+b的图象上,∴1=4k+b③.联立①②③成方程组,即,解得:,∴该一次函数的解析式为y=﹣x+3【解析】【分析】(1)由点A的坐标结合反比例函数系数k的几何意义,即可求出m的值;(2)设点B的坐标为(n,),将一次函数解析式代入反比例函数解析式中,利用根与系数的关系可找出n、k的关系,由三角形的面积公式可表示出来b、n的关系,再由点A在一次函数图象上,可找出k、b的关系,联立3个等式为方程组,解方程组即可得出结论.。
专题02 选择压轴之反比例函数-备战2022年中考数学满分真题模拟题分类汇编(重庆专用)(原卷版)
专题02 选择压轴之反比例函数1.(2021•重庆)如图,在平面直角坐标系中,菱形ABCD 的顶点D 在第二象限,其余顶点都在第一象限,//AB x 轴,AO AD ^,AO AD =.过点A 作AE CD ^,垂足为E ,4DE CE =.反比例函数(0)ky x x=>的图象经过点E ,与边AB 交于点F ,连接OE ,OF ,EF .若118EOF S D =,则k 的值为( )A .73B .214C .7D .2122.(2020•重庆)如图,在平面直角坐标系中,矩形ABCD 的对角线AC 的中点与坐标原点重合,点E 是x 轴上一点,连接AE .若AD 平分OAE Ð,反比例函数(0,0)ky k x x=>>的图象经过AE 上的两点A ,F ,且AF EF =,ABE D 的面积为18,则k 的值为( )A .6B .12C .18D .243.(2018•重庆)如图,在平面直角坐标系中,菱形ABCD 的顶点A ,B 在反比例函数(0,0)ky k x x=>>的图象上,横坐标分别为1,4,对角线//BD x 轴.若菱形ABCD 的面积为452,则k 的值为( )A .54B .154C .4D .54.(2021•九龙坡区校级模拟)如图所示,点A ,B 是反比例函数ay x=图象在第三象限内的点,连接AO 并延长与ay x=在第一象限的图象交于点C ,连接OB ,并以OB 、OC 为邻边作平行四边形OBDC (点D 在第四象限内).作AE x ^轴于点E ,5AE =,以AE 为边作菱形AGFE ,使得点F 、G 分别在y 轴的正、负半轴上,连接AB .若2OE OG -=,15AOB S D =,OE OF >,另一反比例函数ky x=的图象经过点D ,则k 的值为( )A .10-B .12-C .13-D .15-5.(2021•沙坪坝区校级开学)如图,在平面直角坐标系中,菱形ABCD 的顶点A ,D 在反比例函数(0,0)ky k x x=¹>的图象上,对角线BD 平行x 轴,点O 在BC 上,且BO CO =,连接AO ,DO ,若50AOD S D =,则k 的值为( )A .25B .752C .45D .10526.(2021•沙坪坝区校级模拟)如图,在平行四边形ABCO 中,过点B 作//BE y 轴,且E 为OC 的四等分点()OE EC >,D 为AB 中点,连接BE 、DE 、DC ,反比例函数(0)ky k x=>的图象经过D 、E 两点,若DEC D 的面积为3,则k 的值为( )A .274B .7C .272D .2777.(2021•重庆模拟)如图,正方形ABCD 的顶点B 在x 轴上,点A 、点C 在双曲线(0,0)ky k x x=>>上.若直线BC 的解析式为122y x =-,则k 的值为( )A .24B .12C .6D .48.(2021•沙坪坝区校级模拟)如图,在等腰AOB D 中,AO AB =,顶点A 为反比例函数ky x=(其中0)x >图象上的一点,点B 在x 轴正半轴上,过点B 作BC OB ^,交反比例函数ky x=的图象于点C ,连接OC 交AB 于点D ,若BCD D 的面积为2,则k 的值为( )A .20B .503C .16D .4039.(2020春•沙坪坝区校级月考)如图,等腰ABC D ,AB AC =,tan 2ABC Ð=,3ABC S D =,若将ABC D 绕着点C 顺时针旋转90°得到ECD D ,点A 和点D 都在双曲线(0)ky x x=>上,则k 的值是( )A .6B .C .9D .1210.(2021•沙坪坝区校级模拟)如图,在平面直角坐标系中,BCD D 为直角三角形,90BCD Ð=°,其中(0,4)B ,1tan 2OBC Ð=,点D 在反比例函数(0)ky x x=>图象上,且CD =,以BC 为边作平行四边形BCEF ,其中点F 在反比例函数(0)ky x x=>图象上,点E 在x 轴上,则点E 的横坐标为( )A B .52C .3D .7211.(2021•万州区模拟)在平面直角坐标系中,平行四边形ABCD 的顶点A 在y 轴上,点C 坐标为(4,0)-,E 为BC 上靠近点C 的三等分点,点B 、E 均在反比例函数(0,0)k y k x x =<<的图象上,若1tan 2OAD Ð=,则k 的值为( )A .2-B .-C .6-D .-12.(2021•北碚区校级模拟)如图,平行四边形OABC 的顶点C 在x 轴的正半轴上,O 为坐标原点,cos AOC Ð=OA 为斜边在OA 的右边作等腰Rt AOD D ,反比例函数(0)ky x x=>的图象经过点A ,交BC 于点E ,连接DE ,若//DE x 轴,DE =,则k 的值为( )A .12B .16C .18D .2413.(2021•江都区模拟)如图所示,平行四边形OABC 的顶点C 在x 轴的正半轴上,O 为坐标原点,以OA为斜边构造等腰Rt AOD D ,反比例函数(0)ky x x=>的图象经过点A ,交BC 于点E ,连接DE .若cos AOC Ð=//DE x 轴,DE =,则k 的值为( )A .12B .16C .18D .2414.(2020春•南岸区校级月考)在平面直角坐标系中,ABCD Y 的顶点A 在y 轴上,点C 坐标为(3,0),E 为BC 中点,点B ,点E 均在反比例函数(0,0)k y k x x =>>的图象上,若1tan 2OAD Ð=,则k 的值是( )A .4B .C .2D .15.(2021•九龙坡区校级模拟)如图所示,四边形ABCD 的顶点都在坐标轴上,若//AD BC ,ACD D 与BCDD的面积分别为20和40,若双曲线(0,0)ky k x x=<<恰好经过边AB 的四等分点()E BE AE <,则k 的值为( )A .5-B .10-C .15-D .20-16.(2021•沙坪坝区校级一模)如图,B ,C 是反比例函数1(0)ky x x=<图象上的两点,(2,)A m 是反比例函数22(0)y x x-=>图象上一点,连接AB ,BC ,AC ,若90BCA Ð=°,AC 恰好经过原点,AB 与y 轴交于点(0,5)D ,则k 的值为( )A .233-B .172-C .8-D .10-17.(2021•九龙坡区校级模拟)如图,矩形OABC 的顶点A 、C 分别在x 轴、y 轴的正半轴上,点D 在边OC上,且BD OC =,以BD 为边向下作矩形BDEF ,使得点E 在边OA 上,反比例函数(0)ky k x=¹的图象经过边EF 与AB 的交点G .若3DE =, 2.25AG =,则k 的值为( )A .10.8B .9.6C .3.2D .318.(2021•沙坪坝区校级模拟)如图,在平面直角坐标系中,菱形ABCD 的对角线AC ,BD 的交点与坐标原点O 重合,AB 与x 轴交于点E ,反比例函数(0,0)ky k x x=>>的图象经过点D .若点(1,2)C -,(2,0)E -,则k 的值为( )A .256B .4C .167D .32919.(2021•九龙坡区校级模拟)如图,在等腰AOB D 中,AO AB =,顶点A 为反比例函数ky x=(其中0)x >图象上的一点,点B 在x 轴正半轴上,过点B 作BC OB ^,交反比例函数ky x=的图象于点C ,连接OC 交AB于点D ,若8,OB OA ==,则BCD D 的面积为( )A .163B .6C .245D .520.(2021•渝中区模拟)如图,点A 在函数1(0)y x x =>的图象上,点B 、C 在函数3(0)y x x=>的图象上,若//AC y 轴,//AB x 轴,且34AB AC =,则BC 等于( )A .5B .6C .D21.(2021•九龙坡区模拟)如图,双曲线(0)ky x x=>与矩形OBCD 的边BC 、CD 分别交于点E 、F ,且与矩形的对角线OC 交于点A ,连接EF ,与对角线OC 交于点H ,G 是对角线OC 上的一点,连接GF 、GE.若43EFGSD=,::3:1:2OG GH HC=,3sin5COBÐ=,则点A的坐标为( )A.9(4,27)16B.C.12(5,9)5D.22.(2020春•沙坪坝区校级月考)如图,双曲线9(0)y xx=>经过矩形OABC的顶点B.双曲线(0)ky xx=>交AB,BC于点E、F,且与矩形的对角线OB交于点D.连接EF,若:2:3OD OB=.则BEFD的面积为( )A.169B.2C.2518D.323.(2021•渝中区校级二模)如图,已知直线113y x=-与坐标轴交于A点和B点,与反比例函数(0)ky xx=>的图象交于点C,以AB为边向上作平行四边形ABED,D点刚好在反比例图象上,连接CE,CD,若//CE x 轴,四边形BCDE 面积为10,则k 的值为( )A .10B .283C .9D .46524.(2021•九龙坡区模拟)如图,点A 、C 在x 轴上,点B 、D 在反比例函数k y x =的图象上,OA OC =,BD 过原点O ,DC 与反比例函数k y x=交于点E ,点F 在AB 上且2AF FB =,连接CF 交BD 于点G ,FGB D 的面积为2,若//OE FC ,则k 的值为( )A .6B .9C .12D .1825.(2021•北碚区校级模拟)如图,在平面直角坐标系中,ABC D 的边BC 经过原点,AC 边交x 轴于点E ,反比例函数(0)m y m x =<的图象经过ABC D 的顶点B 、C ,反比例函数(0,0)k y k x x=>>的图象经过ABC D的顶点A ,交AC 边于点D ,且4DC AD =.连接BD ,//BD x 轴.若四边形BOED 的面积为10,则k 的值为( )A .43B .2C .103D .426.(2021春•渝北区校级月考)如图所示,在平面直角坐标系中,菱形ABCD 的顶点B ,D 在反比例函数(0)k y k x=>的图象上,对角线BD 过原点O ,延长BA 交反比例函数的图象于点E ,连接DE ,若A 为BE 的中点,且点A 的坐标为(1,2)-,则k 的值为( )A .163B .329C .92D .427.(2021•两江新区模拟)如图,点B ,C 在反比例函数k y x=上,连接BC 分别交x ,y 轴于点D 、点E ,且AC OA ^,将DOC D 沿OC 翻折,点D 刚好落在y 轴上的点F 处,CF 与x 轴交于点G ,已知:1:2AC OF =,2DOB S D =,则k 的值为( )A .3B .4C .5D .628.(2021•重庆模拟)如图,一次函数162y x =-+与反比例函数(0)k y k x=>交于A 、B 两点,过A 、B 两点分别作x 轴、y 轴的平行线交于点C ,连接OC 交AB 于点D ,连接OA .若ADO D 的面积是BDC D 面积的32倍,则k 的值是( )A .8B .10C .10.5D .1229.(2021•沙坪坝区校级模拟)如图,在平面直角坐标系中,正方形ABCD 的面积为20,顶点A 在y 轴上,顶点C 在x 轴上,顶点D 在双曲线(0)k y x x=>的图象上,边CD 交y 轴于点E ,若CE ED =,则k 的值为( )A .52B .3C .72D .430.(2021•渝中区校级模拟)如图,等腰ABC D 中,AB AC =,边AC 过原点O ,AE BC ^于点E ,连接E 点和AB 边的中点D 点,交x 轴于点F .若D 点在反比例函数(0)k y k x =¹的图象上,E 点在反比例函数2(0)k y k x--=¹的图象上,ADE D 的面积是10,:1:2DF EF =,则k 的值是( )A .7B .385C .8D .26331.(2021•北碚区校级模拟)如图,一次函数(0)y mx n m =+¹的图象与反比例函数y =的图象相交于A 、B 两点,延长BO 交反比例函数图象的另一支于点C ,连接AC 交x 轴于点D ,若14AD AC =,则ABC D面积为( )A .BC .D32.(2021•九龙坡区模拟)如图,双曲线(0)k y x x=>经过OABC Y 的顶点A ,与BC 、AC 分别交于点D 、E ,连接EB .若3BD CD =且EBC D 的面积为5,则k 的值为( )A .113B .163C .203D .22333.(2020•九龙坡区校级模拟)如图,在平面直角坐标系中,ABCD Y 的顶点A 、B 都在x 轴上,AD 边与y 轴交于点F ,对角线AB 、CD 的交点E 落在反比例函数(0)k y x x=>图象上,ABCD Y 的面积是16,且AF DF =,则k 的值为( )A .1B .2C .4D .834.(2021•北碚区校级模拟)如图,ABC D 中,点B ,C 分别在y 轴,x 轴上,点D 是AB 的中点,点E ,F 是AC 的四等分点,连接DF ,//DF x 轴,反比例函数k y x =的图象恰好经过点D ,E ,若ADF D 的面积为4,则k 的值为( )A .9B .12C .15D .1835.(2021春•沙坪坝区校级月考)如图,在平面直角坐标系中,矩形ABCD 的顶点A 、B 分别在y 轴、x 轴上,连接对角线AC ,//AC x 轴,点F 为AD 边的中点,点G 在对角线AC 上,已知点F 、G 均在反比例函数(0,0)k y k x x=>>的图象上,:1:3OB AG =,10ABF S D =,则k 的值为( )A.20B.452C.24D.733。
2020重庆中考反比例函数专题训练四
反比例函数专题训练四1、如图,正方形ABCD的顶点A,B分别在x轴和y轴上,与双曲线y=恰好交于BC的中点E,若OB=2OA,则S△ABO的值为( )A.6 B.8 C.12 D.1612、如图,点A与点B关于原点对称,点C在第四象限,∠ACB=90°.点D是x轴正半轴上一点,AC平分∠BAD,E是AD的中点,反比例函数y =(k>0)的图象经过点A,E.若△ACE的面积为6,则k的值为( C)A.4 B.6 C.8 D.125、如图,在平面直角坐标系中,△OAE为等腰三角形,AO=AE,且点E在x轴上,若反比例函数y= (k>0,x>0)经过点A,过点E作OA的平行线,交反比例函数于点B,连接AB,若△AEB的为1,则k的值为( )A、B、2C、-6、(2020春•沙坪坝区校级月考)如图,过原点的直线AB与反比例函数y=(k>0)的图象交于A,B两点,C为反比例函数图象上一点,连接AC,AC的延长线交x轴于点D,连接BD.若A,C两点的横坐标分别为a,3a,且△ABD的面积为12,则k的值为( )A.3 B.4 C.5 D.67、如图,在平面直角坐标系中,△ABE的顶点E在y轴上,原点O在AB边上,反比例函数y=(k≠0)的图象恰好经过顶点A和B,并与BE边交于点C,若BC:CE=3:1,△OBE的面积为,则k的值为( )A.﹣2 B.﹣4 C.﹣6 D.﹣78、如图,已知线段BC平行于x轴,AB⊥x轴于点A,过点C的双曲线y=交OB于D,且OD=2DB,若△OBC的面积等于,则k的值为( )A.4 B.3 C.D.﹣29、如图,在平面直角坐标系中,平行四边形ABCD的边AB在y轴上,点D(4,4),cos∠BCD=,若反比例函数y=(k≠0)的图象经过平行四边形对角线的交点E,则k的值为(B)A.14 B.7 C.8 D.10、如图所示,菱形ABCD的顶点A、C在x轴上,反比例函数y=经过点D和BC中点E,若菱形ABCD的面积是16,则k的值为( )A.﹣1 B.﹣C.﹣D.﹣211、如图,在平面直角坐标系中,△ABE的顶点E在y轴上,原点O在AB边上,反比例函数y=(k≠0)的图象恰好经过顶点A和B,并与BE边交于点C,若BC:CE=3:1,△OBE的面积为,则k的值为( )A.﹣2 B.﹣4 C.﹣6 D.﹣712、(2019•九龙坡区校级模拟)如图,在平面直角坐标系中,Rt△AOB的边OA在y轴上,OB在x轴上,反比例函数y=(k≠0)与斜边AB交于点C、D,连接OD,若AC:CD=2:3,S△OBD=,则k的值为( )A.4 B.5 C.6 D.721、如图,正方形ABCD的顶点C、D在函数y=(k≠0)的图象上,已知点A的坐标为(﹣,3),点C的横坐标为4,则k的值为( B )A.5 B.6 C.7 D.823、如图,平行四边形ABCO的顶点B在双曲线y=上,顶点C在双曲线y=上,BC中点P恰好落在y轴上,已知S OABC=10,则k的值为( )A.﹣8 B.﹣6 C.﹣4 D.﹣224、如图,菱形ABCD的顶点A在反比例函数y=(k≠0)的图象上,B(0,﹣5)、D在y轴上,点E (﹣4,0)是AB与x轴的交点,若S菱形ABCD=160,则k值为( )A.﹣36 B.﹣16 C.﹣40 D.﹣2425、如图,点A在x轴正半轴上,∠OAE=60°,∠OAE的角平分线交y轴正半轴于点C,CB⊥AC交AE于点B,点D在边AB上,若AD=2,反比例函数y=(k≠0)的图象恰好经过B,D两点,则k的值为 .26、(2019•南岸区自主招生)如图,点A和点B都是反比例函数在第一象限内图象上的点,点A的横坐标为1,点B的纵坐标为1,连接AB,以线段AB为边的矩形ABCD的顶点D,C恰好分别落在x 轴,y轴的负半轴上,连接AC,BD交于点E,若△ABC的面积为6,则k的值为( )A.2 B.3 C.6 D.1227、如图,点A、B为反比例函数y=(k≠0)在第一象限的图象上的两点,A(m,2),B(n,),过点B的直线BC与y轴交于点C,与x轴交于点D,BC∥OA,点P为直线BC上一动点,已知S△AOP=,则k的值为( )A.1 B.C.2 D.3如图,矩形ABCD的顶点A,B的坐标分别是A(﹣1,0),B(0,﹣2),反比例函数y=的图象经过顶点C,AD边交y轴于点E,若四边形BCDE的面积等于△ABE面积的5倍,则k的值等于 .(2019春•南岸区校级月考)如图所示,菱形AOBC的顶点B在y轴上,顶点A在反比例函数y=的图象上,边AC,OA分别交反比例函数y=的图象于点D,点E,边AC交x轴于点F,连接CE.已知四边形OBCE的面积为12,sin∠AOF=,则k的值为( )A.B.C.D.(2020•沙坪坝区自主招生)如图,矩形OABC的顶点A、C分别在x轴、y轴的正半轴上,点D在边OC 上,且BD=OC,以BD为边向下作矩形BDEF,使得点E在边OA上,反比例函数y=(k≠0)的图象经过边EF与AB的交点G.若AG=,DE=2,则k的值为 .如图,反比例函数y=(k≠0,x<0)经过△ABO边AO的中点D,与边AB交于点E,且BE:EA=1:7,连接DE,若△AOE的面积为,则k的值为( )A.﹣3 B.C.D.3(2016春•重庆校级月考)如图,在平面直角坐标系中,直角梯形AOBC的边OB在x轴的负半轴上,AC ∥OB,∠OBC=90°,过A点的双曲线y=的一支在第二象限交梯形的对角线OC于点D,交边BC 于点E,且=2,S△AOC=15,则图中阴影部分(S△EBO+S△ACD)的面积为( )A.18 B.17 C.16 D.15(2019秋•南岸区期末)如图,在平面直角坐标系内,正方形OABC的顶点A,B在第一象限内,且点A,B在反比例函数y=(k≠0)的图象上,点C在第四象限内.其中,点A的纵坐标为2,则k的值为( )A.2﹣2 B.2﹣2 C.4﹣4 D.4﹣4(2020•九龙坡区自主招生)如图,四边形OABC为平行四边形,A在x轴上,且∠AOC=60°,反比例函数y=(k>0)在第一象限内过点C,且与AB交于点E.若E为AB的中点,且S△OCE=8,则OC的长为( )A.8 B.4 C.D.如图,在平面直角坐标系中,矩形OABC的顶点0在原点,顶点C在y轴上,已知点(1,2)A ,反比例函数y= (k≠0)的图象经过点B、C,则k的值为()89A、43B、49C、23D、。
重庆全国中考数学反比例函数的综合中考模拟和真题分类汇总
一、反比例函数真题与模拟题分类汇编(难题易错题)1.如图,一次函数y1=k1x+b与反比例函数y2= 的图象交于点A(4,m)和B(﹣8,﹣2),与y轴交于点C.(1)m=________,k1=________;(2)当x的取值是________时,k1x+b>;(3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP 与线段AD交于点E,当S四边形ODAC:S△ODE=3:1时,求点P的坐标.【答案】(1)4;(2)﹣8<x<0或x>4(3)解:由(1)知,y1= x+2与反比例函数y2= ,∴点C的坐标是(0,2),点A 的坐标是(4,4).∴CO=2,AD=OD=4.∴S梯形ODAC= •OD= ×4=12,∵S四边形ODAC:S△ODE=3:1,∴S△ODE= S梯形ODAC= ×12=4,即OD•DE=4,∴DE=2.∴点E的坐标为(4,2).又点E在直线OP上,∴直线OP的解析式是y= x,∴直线OP与y2= 的图象在第一象限内的交点P的坐标为(4 ,2 ).【解析】【解答】解:(1)∵反比例函数y2= 的图象过点B(﹣8,﹣2),∴k2=(﹣8)×(﹣2)=16,即反比例函数解析式为y2= ,将点A(4,m)代入y2= ,得:m=4,即点A(4,4),将点A(4,4)、B(﹣8,﹣2)代入y1=k1x+b,得:,解得:,∴一次函数解析式为y1= x+2,故答案为:4,;(2)∵一次函数y1=k1x+2与反比例函数y2= 的图象交于点A(4,4)和B(﹣8,﹣2),∴当y1>y2时,x的取值范围是﹣8<x<0或x>4,故答案为:﹣8<x<0或x>4;【分析】(1)由A与B为一次函数与反比例函数的交点,将B坐标代入反比例函数解析式中,求出k2的值,确定出反比例解析式,再将A的坐标代入反比例解析式中求出m的值,确定出A的坐标,将B坐标代入一次函数解析式中即可求出k1的值;(2)由A与B 横坐标分别为4、﹣8,加上0,将x轴分为四个范围,由图象找出一次函数图象在反比例函数图象上方时x的范围即可;(3)先求出四边形ODAC的面积,由S四边形ODAC:S△ODE=3:1得到△ODE的面积,继而求得点E的坐标,从而得出直线OP的解析式,结合反比例函数解析式即可得.2.已知反比例函数y= 的图象经过点A(﹣,1).(1)试确定此反比例函数的解析式;(2)点O是坐标原点,将线段OA绕O点顺时针旋转30°得到线段OB.判断点B是否在此反比例函数的图象上,并说明理由;(3)已知点P(m, m+6)也在此反比例函数的图象上(其中m<0),过P点作x轴的垂线,交x轴于点M.若线段PM上存在一点Q,使得△OQM的面积是,设Q点的纵坐标为n,求n2﹣2 n+9的值.【答案】(1)解:由题意得1= ,解得k=﹣,∴反比例函数的解析式为y=﹣(2)解:过点A作x轴的垂线交x轴于点C.在Rt△AOC中,OC= ,AC=1,∴OA= =2,∠AOC=30°,∵将线段OA绕O点顺时针旋转30°得到线段OB,∴∠AOB=30°,OB=OA=2,∴∠BOC=60°.过点B作x轴的垂线交x轴于点D.在Rt△BOD中,BD=OB•sin∠BOD= ,OD= OB=1,∴B点坐标为(﹣1,),将x=﹣1代入y=﹣中,得y= ,∴点B(﹣1,)在反比例函数y=﹣的图象上(3)解:由y=﹣得xy=﹣,∵点P(m, m+6)在反比例函数y=﹣的图象上,其中m<0,∴m( m+6)=﹣,∴m2+2 m+1=0,∵PQ⊥x轴,∴Q点的坐标为(m,n).∵△OQM的面积是,∴OM•QM= ,∵m<0,∴mn=﹣1,∴m2n2+2 mn2+n2=0,∴n2﹣2 n=﹣1,∴n2﹣2 n+9=8.【解析】【分析】(1)由于反比例函数y= 的图象经过点A(﹣,1),运用待定系数法即可求出此反比例函数的解析式;(2)首先由点A的坐标,可求出OA的长度,∠AOC的大小,然后根据旋转的性质得出∠AOB=30°,OB=OA,再求出点B的坐标,进而判断点B是否在此反比例函数的图象上;(3)把点P(m, m+6)代入反比例函数的解析式,得到关于m的一元二次方程;根据题意,可得Q点的坐标为(m,n),再由△OQM的面积是,根据三角形的面积公式及m<0,得出mn的值,最后将所求的代数式变形,把mn的值代入,即可求出n2﹣2 n+9的值.3.如图,反比例函数y= 的图象与一次函数y=kx+b的图象交于A、B两点,点A的坐标为(2,3n),点B的坐标为(5n+2,1).(1)求反比例函数与一次函数的表达式;(2)将一次函数y=kx+b的图象沿y轴向下平移a个单位,使平移后的图象与反比例函数y= 的图象有且只有一个交点,求a的值;(3)点E为y轴上一个动点,若S△AEB=5,则点E的坐标为________.【答案】(1)解:∵A、B在反比例函数的图象上,∴2×3n=(5n+2)×1=m,∴n=2,m=12,∴A(2,6),B(12,1),∵一次函数y=kx+b的图象经过A、B两点,∴,解得,∴反比例函数与一次函数的表达式分别为y= ,y=﹣ x+7.(2)解:设平移后的一次函数的解析式为y=﹣ x+7﹣a,由,消去y得到x2+(2a﹣14)x+24=0,由题意,△=0,(21a﹣14)2﹣4×24=0,解得a=7±2 .(3)(0,6)或(0,8)【解析】【解答】(3)设直线AB交y轴于K,则K(0,7),设E(0,m),由题意,PE=|m﹣7|.∵S△AEB=S△BEP﹣S△AEP=5,∴ ×|m﹣7|×(12﹣2)=5.∴|m﹣7|=1.∴m1=6,m2=8.∴点E的坐标为(0,6)或(0,8).故答案为(0,6)或(0,8).【分析】(1)由A、B在反比例函数的图象上,得到n,m的值和A、B的坐标,用待定系数法求出反比例函数与一次函数的表达式;(2)由将一次函数y=kx+b的图象沿y轴向下平移a个单位,得到平移后的一次函数的解析式,由平移后的图象与反比例函数的图象有且只有一个交点,得到方程组求出a的值;(3)由点E为y轴上一个动点和S△AEB=5,求出点E的坐标.4.已知一次函数y=kx+b与反比例函数y= 交于A(﹣1,2),B(2,n),与y轴交于C 点.(1)求反比例函数和一次函数解析式;(2)如图1,若将y=kx+b向下平移,使平移后的直线与y轴交于F点,与双曲线交于D,E两点,若S△ABD=3,求D,E的坐标.(3)如图2,P为直线y=2上的一个动点,过点P作PQ∥y轴交直线AB于Q,交双曲线于R,若QR=2QP,求P点坐标.【答案】(1)解:点A(﹣1,2)在反比例函数y= 的图象上,∴m=(﹣1)×2=﹣2,∴反比例函数的表达式为y=﹣,∵点B(2,n)也在反比例函数的y=﹣图象上,∴n=﹣1,即B(2,﹣1)把点A(﹣1,2),点B(2,﹣1)代入一次函数y=kx+b中,得,解得:k=﹣1,b=1,∴一次函数的表达式为y=﹣x+1,答:反比例函数的表达式是y=﹣,一次函数的表达式是y=﹣x+1;(2)解:如图1,连接AF,BF,∵DE∥AB,∴S△ABF=S△ABD=3(同底等高的两三角形面积相等),∵直线AB的解析式为y=﹣x+1,∴C(0,1),设点F(0,m),∴AF=1﹣m,∴S△ABF=S△ACF+S△BCF= CF×|x A|+ CF×|x B|= (1﹣m)×(1+2)=3,∴m=﹣1,∴F(0,﹣1),∵直线DE的解析式为y=﹣x+1,且DE∥AB,∴直线DE的解析式为y=﹣x﹣1①.∵反比例函数的表达式为y=﹣②,联立①②解得,或∴D(﹣2,1),E(1,﹣2);(3)解:如图2由(1)知,直线AB的解析式为y=﹣x﹣1,双曲线的解析式为y=﹣,设点P(p,2),∴Q(p,﹣p﹣1),R(p,﹣),PQ=|2+p+1|,QR=|﹣p﹣1+ |,∵QR=2QP,∴|﹣p﹣1+ |=2|2+p+1|,解得,p= 或p= ,∴P(,2)或(,2)或(,2)或(,2).【解析】【分析】(1)把A的坐标代入反比例函数的解析式可求得m的值,从而可得到反比例函数的解析式;把点A和点B的坐标代入一次函数的解析式可求得一次函数的解析式;(2)依据同底等高的两个三角形的面积相等可得到S△ABF=S△ABD=3,再利用三角形的面积公式可求得点F的坐标,即可得出直线DE的解析式,即可求出交点坐标;(3)设点P(p,2),则Q(p,﹣p﹣1),R(p,﹣),然后可表示出PQ与QR的长度,最后依据QR=2QP,可得到关于p的方程,从而可求得p的值,从而可得到点P的坐标.5.平面直角坐标系xOy中,点A、B分别在函数y1= (x>0)与y2=﹣(x<0)的图象上,A、B的横坐标分别为a、b.(1)若AB∥x轴,求△OAB的面积;(2)若△OAB是以AB为底边的等腰三角形,且a+b≠0,求ab的值;(3)作边长为2的正方形ACDE,使AC∥x轴,点D在点A的左上方,那么,对大于或等于3的任意实数a,CD边与函数y1= (x>0)的图象都有交点,请说明理由.【答案】(1)解:由题意知,点A(a,),B(b,﹣),∵AB∥x轴,∴,∴a=﹣b;∴AB=a﹣b=2a,∴S△OAB= •2a• =3(2)解:由(1)知,点A(a,),B(b,﹣),∴OA2=a2+()2, OB2=b2+(﹣)2,∵△OAB是以AB为底边的等腰三角形,∴OA=OB,∴OA2=OB2,∴a2+()2=b2+(﹣)2,∴a2﹣b2=()2﹣()2,∴(a+b)(a﹣b)=( + )(﹣)= ,∵a>0,b<0,∴ab<0,a﹣b≠0,∵a+b≠0,∴1= ,∴ab=3(舍)或ab=﹣3,即:ab的值为﹣3;(3)解:对大于或等于3的任意实数a,CD边与函数y1= (x>0)的图象都有交点.理由:如图,∵a≥3,AC=2,∴直线CD在y轴右侧且平行于y轴,∴直线CD一定与函数y1= (x>0)的图象有交点,∵四边形ACDE是边长为2的正方形,且点D在点A(a,)的左上方,∴C(a﹣2,),∴D(a﹣2, +2),设直线CD与函数y1= (x>0)相交于点F,∴F(a﹣2,),∴FC= ﹣ = ,∴2﹣FC=2﹣ = ,∵a≥3,∴a﹣2>0,a﹣3≥0,∴≥0,∴2﹣FC≥0,∴FC≤2,∴点F在线段CD上,即:对大于或等于3的任意实数a,CD边与函数y1= (x>0)的图象都有交点.【解析】【分析】(1)先判断出a=﹣b,即可得出AB=2a,再利用三角形的面积公式即可得出结论;(2)利用等腰三角形的两腰相等建立方程求解即可得出结论;(3)先判断出直线CD和函数y1= (x>0)必有交点,根据点A的坐标确定出点C,F的坐标,进而得出FC,再判断FC与2的大小即可.6.函数学习中,自变量取值范围及相应的函数值范围问题是大家关注的重点之一,请解决下面的问题.(1)分别求出当2≤x≤4时,三个函数:y=2x+1,y= ,y=2(x﹣1)2+1的最大值和最小值;(2)若y= 的值不大于2,求符合条件的x的范围;(3)若y= ,当a≤x≤2时既无最大值,又无最小值,求a的取值范围;(4)y=2(x﹣m)2+m﹣2,当2≤x≤4时有最小值为1,求m的值.【答案】(1)解:y=2x+1中k=2>0,∴y随x的增大而增大,∴当x=2时,y最小=5;当x=4时,y最大=9.∵y= 中k=2>0,∴在2≤x≤4中,y随x的增大而减小,∴当x=2时,y最大=1;当x=4时,y最小= .∵y=2(x﹣1)2+1中a=2>0,且抛物线的对称轴为x=1,∴当x=1时,y最小=1;当x=4时,y最大=19(2)解:令y= ≤2,解得:x<0或x≥1.∴符合条件的x的范围为x<0或x≥1(3)解:①当k>0时,如图得当0<x≤2时,y= 无最大值,有最小值,同理当a<0时,且a≤x<0时,y≤ 有最大值,无最小值,②当k<0时,如图得当0<x≤2时,y= 无最小值,有最大值,同理当a<0时,且a≤x<0时,y≤ 有最小值,无最大值,∴当k<0,a<0时,此时,y= 既无最大值,又无最小值,综上所述,a的取值范围是a<0(4)解:①当m<2时,有2(2﹣m)2+m﹣2=1,解得:m1=1,m2= (舍去);②当2≤m≤4时,有m﹣2=1,解得:m3=3;③当m>4时,有2(4﹣m)2+m﹣2=1,整理得:2m2﹣15m+29=0.∵△=(﹣15)2﹣4×2×29=﹣7,无解.∴m的值为1或3.①当k>0时,如图得当0<x≤2时,y= 无最大值,有最小值,同理当a<0时,且a≤x<0时,y≤ 有最大值,无最小值,②当k<0时,如图得当0<x≤2时,y= 无最小值,有最大值,同理当a<0时,且a≤x<0时,y≤ 有最小值,无最大值,∴当k<0,a<0时,此时,y= 既无最大值,又无最小值,综上所述,a的取值范围是a<0;【解析】【分析】(1)根据k=2>0结合一次函数的性质即可得出:当2≤x≤4时,y=2x+1的最大值和最小值;根据二次函数的解析式结合二次函数的性质即可得出:当2≤x≤4时,y=2(x﹣1)2+1的最大值和最小值;(2)令y= ≤2,解之即可得出x的取值范围;(3)①当k>0时,如图得当0<x≤2时,得到y= 无最大值,有最小值,同理当a<0时,且a≤x<0时,得到y≤ 有最大值,无最小值,②当k<0时,如图得当0<x≤2时,y=无最小值,有最大值,同理当a<0时,且a≤x<0时,y≤ 有最小值,无最大值,于是得到结论;(4)分m<2、2≤m≤4和m>4三种情况考虑,根据二次函数的性质结合当2≤x≤4时有最小值为1即可得出关于m的一元二次方程(一元一次方程),解之即可得出结论.7.如图,在平面直角坐标系中,矩形OADB的顶点A,B的坐标分别为A(﹣6,0),B (0,4).过点C(﹣6,1)的双曲线y= (k≠0)与矩形OADB的边BD交于点E.(1)填空:OA=________,k=________,点E的坐标为________;(2)当1≤t≤6时,经过点M(t﹣1,﹣ t2+5t﹣)与点N(﹣t﹣3,﹣ t2+3t﹣)的直线交y轴于点F,点P是过M,N两点的抛物线y=﹣ x2+bx+c的顶点.①当点P在双曲线y= 上时,求证:直线MN与双曲线y= 没有公共点;②当抛物线y=﹣ x2+bx+c与矩形OADB有且只有三个公共点,求t的值;③当点F和点P随着t的变化同时向上运动时,求t的取值范围,并求在运动过程中直线MN在四边形OAEB中扫过的面积.【答案】(1)6;-6;(﹣,4)(2)解:①设直线MN解析式为:y1=k1x+b1由题意得:解得∵抛物线y=﹣过点M、N∴解得∴抛物线解析式为:y=﹣ x2﹣x+5t﹣2∴顶点P坐标为(﹣1,5t﹣)∵P在双曲线y=﹣上∴(5t﹣)×(﹣1)=﹣6∴t=此时直线MN解析式为:联立∴8x2+35x+49=0∵△=352﹣4×8×48=1225﹣1536<0∴直线MN与双曲线y=﹣没有公共点.②当抛物线过点B,此时抛物线y=﹣ x2+bx+c与矩形OADB有且只有三个公共点∴4=5t﹣2,得t=当抛物线在线段DB上,此时抛物线与矩形OADB有且只有三个公共点∴,得t=∴t= 或t=③∵点P的坐标为(﹣1,5t﹣)∴y P=5t﹣当1≤t≤6时,y P随t的增大而增大此时,点P在直线x=﹣1上向上运动∵点F的坐标为(0,﹣)∴y F=﹣∴当1≤t≤4时,随者y F随t的增大而增大此时,随着t的增大,点F在y轴上向上运动∴1≤t≤4当t=1时,直线MN:y=x+3与x轴交于点G(﹣3,0),与y轴交于点H(0,3)当t=4﹣时,直线MN过点A.当1≤t≤4时,直线MN在四边形AEBO中扫过的面积为S=【解析】【解答】解:(1)∵A点坐标为(﹣6,0)∴OA=6∵过点C(﹣6,1)的双曲线y=∴k=﹣6y=4时,x=﹣∴点E的坐标为(﹣,4)故答案为:6,﹣6,(﹣,4)【分析】(1)根据A点的坐标即可得出OA的长,将C点的坐标代入双曲线y=,即可求出k的值,得出双曲线的解析式,根据平行于x轴的直线上的点的坐标特点得出点E的纵坐标为4,将y=4代入双曲线的解析式即可算出对应的自变量的值,从而得出E点的坐标;(2)①用待定系数法求出直线MN解析式,将M,N两点的坐标代入抛物线y=﹣x2+bx+c,得出关于b,c的方程组,求解得出b,c的值,根据顶点坐标公式表示出P点的坐标,再将P点的坐标代入双曲线即可求出t的值,从而得出直线MN解析式,解联立直线MN解析式与双曲线的解析式组成的方程组,根据根的判别式的值小于0,得出直线MN与双曲线没有公共点;②当抛物线过点B,此时抛物线y=﹣x2+bx+c与矩形OADB有且只有三个公共点,故4=5t﹣2,求解得出t的值,当抛物线在线段DB上,此时抛物线与矩形OADB有且只有三个公共点,故,求解得出t的值,综上所述得出答案;③根据P点的坐标判断出当1≤t≤6时,y P随t的增大而增大,此时,点P在直线x=﹣1上向上运动进而表示出F点的坐标,将F点的纵坐标配成顶点式,得出当1≤t≤4时,随者y F随t的增大而增大,此时,随着t的增大,点F在y轴上向上运动,故1≤t≤4,当t=1时,直线MN:y=x+3与x轴交于点G(﹣3,0),与y轴交于点H(0,3),当t=4﹣时,直线MN过点A.根据割补法算出当1≤t≤4时,直线MN在四边形AEBO中扫过的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考名校模拟分类汇编——函数综合
题目方法解析南
开
九
上
期
末
南开阶段1 如图,直线l与反比例函数
x
k
y=在第一象限的图象交于A、B 两点,且与x轴的正半轴交于C点,若AB=2BC,OAB
∆的面积为8,则k的值为(▲)
A.6 B.9 C.12 D.18
南开九下半期如图,一次函数b
x
y+
=的图象与x轴交于点A,与y轴交于
点B,与反比例函数
x
y
2
=交于点(2,)
C m,则点B到OC的距离是( ▲ )
A.2 B.5 C.5
2 D.5
5
2
南开阶段2 如图,在ABC
Rt∆中,︒
=
∠90
ABC,点B在x轴上,且()01,
-
B,A点的横坐标是2,AB=3BC,双曲线()0
4
>
m
x
m
y=经过A点,
双曲线
x
m
y-
=经过C点,则m的值为(▲)
A.12 B.9 C.6 D.3
南开阶段3 如图,Rt OAB
∆的直角边OA在x轴正半轴上,︒
=
∠60
AOB,反比例函数()0
3
>
x
x
y=的图象与Rt OAB
∆两边OB,AB分
别交于点C,D.若点C是OB边的中点,则点D的坐标是(▲)
A.()3,1 B.()1,3 C.⎪⎪
⎭
⎫
⎝
⎛
2
3
,2 D.⎪⎪
⎭
⎫
⎝
⎛
4
3
,4
巴蜀九上半期如图,
1
1
5
y x
=--与x轴、y轴分别相交于A、B两点,点M为双曲线()0
k
y x
x
=<上一点,若ABM
∆是以AB为底的等腰直角三角形,则k的值为()
A、52
-B、5
- C、4
-D、6
-
巴蜀4月如图,在矩形OABC中,AB=2BC,点A、点C分别在y轴和x轴的
正半轴上,连接OB,反比例函数y=
x
k
(k≠0,x>0)的图象经
过OB的中点D,与BC边交于点E,点E的横坐标是4,则K的
值是()A.1 B.2 C.3 D.4
E
D
O
B
A
C
巴蜀一模
巴蜀二模如图,已知双曲线
x
k
y=(0
<
k)经过直角三角形OAB斜边OB 的中点D,且与直角边AB相交于点C.若点A的坐标为(-6,4),则△BOC的面积为()
A.4 B.3 C.2 D.1
一中九上期末如图,∆ABC是等腰直角三角形,∠ACB=90°,点A在反比例函数
x
y
4
-
=的图像上,点B、C都在反比例函数x
y
2
-
=的图像上,AB//x轴,则点A的坐标为() A.(3
2,
3
3
2
-) B.(3
,
3
3
4
-)
C.(
3
3
4
,3
-) D.(
3
3
2
,3
2
-)
一中九下开学如图,菱形OABC在直角坐标系中,点A的坐标为(5,0),对角
线OB=45,反比例函数
x
k
y=(k≠0,x>0)经过点C.则
k的值等于()
A.12 B.8 C.15 D.9
y
x
A
O
B
C
一中3月月考如图,正方形ABCD的边BC在x轴的负半轴上,其中E是CD的中点函数
x
k
y=的图象经过点A、E,若B点的坐标是()
3,0
-,则k的值为()
A. 5
- B. 4
- C. 6
- D. 9
-
一中九下半期如图ABC
Rt∆在平面坐标系中,顶点A在x轴上,∠ACB=90°,CB∥x轴,双曲线)0
(≠
=k
x
k
y经过C点及AB的三等点D (BD=2AD),6
=
∆BCD
S,则k的值为()
A.3 B.6 C.3
- D.6
-
一中一模
八中九下开学如图,直线
1
2
3
y x
=-与x轴,y轴分别交于A、B两点,ABC
∆
是以AB为底边的等腰直角三角形,点C在双曲线
k
y
x
=上,则k的值为()
A.16 B.2
16 C.16
- D.162
-
八中九下月考一八中九下月考二E
D
C O
y
x
A
B
八中九下一模
育才一诊
育才二诊如图,矩形ABCD中,AB=3,BC=4,动点P从B点出发,在BC上移动至点C停止,记PA=x,点D到直线PA 的距离为y,则y关于x的函数解析式是()
A、12
y x
= B、
12
y
x
= C、
3
4
y x
= D、
4
3
y x
=
110中九下开学如图,已知四边形ABCD是平行四边形,BC=2AB.A,B两点的坐标分别是(﹣1,0),(0,2),C,D两点在反比例函数y=(k <0)的图象上,则k=()
A. -8
B. -10
C. -11
D. -12
巴南九下期中如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,反比例函数
k
y
x
=,在第一象限的图象经过点D,且与AB、BC分别交于E、F两点,若四边形BEDF的面积为6,则k的值为()
A.3 B.4 C.5 D. 6
江津月考1 如图,第一角限的点A在反比例函数
2
=
y
x
的图象上,第四象限的点B 在反比例函数=
k
y
x
图象上,且OA⊥OB,∠OAB=60度,则K值为
渝中二诊
二外一模如图所示,已知:
x
y
6
=(x>0)图象上一点P,PA⊥x轴于点A(a,0),点B坐标为(0,b)(b>0)动点M在y轴上,且在B点上方,动点N在射线AP上,过点B作AB的垂线,交射线AP 于点D,交直线MN于点Q,连接AQ,取AQ的中点为C.若四边形BQNC是菱形,面积为23,此时P点的坐标().
A.(3,2) B.()
3
3,
3
3
2
C.(
2
3
,4)D.()
2
3
5
,
5
3
4
全善3月月考如图,反比例函数y=(x<0)的图象经过点A(﹣1,1),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B′在此反比例函数的图象上,则t的值是()A. B. C.D.
全善4月月考
开县3月如图,反比例函数y=﹣在第二象限的图象上有两点A、B,它
们的横坐标分别为﹣1,﹣3,直线AB与x轴交于点C,则△AOC 的面积为()
A.8 B.10 C.12 D.24
万二中入学
万二中3月
万二中周练1
万二中周练2
万二中周练3
西附月考8 如图,正方形OABC的边OA、OC均在坐标轴上,双曲线
(0)
k
y x
x
=>经过OB的中点D,与AB边交于点E,与CB边交
于点F,直线EF与x轴交于G.若 4.5
OAE
S=,则点G的坐标
是()
A.(7,0) B.(7.5,0) C.(8,0) D.(8.5,0)
D
E
F
C
O x
y
A
B
G
八中二模
八中二模如图,在平面直角坐标系xoy中,Rt△OAB的直角边在x轴的负半轴上,点C为斜边OB的中点,反比例函数()0
≠
=k
x
k
y
的图象经过点C,且与边AB交于点D,则
AB
AD
的值为()
A.
3
1
B.
3
2
C.
5
1
D.
4
1。