电加热炉计算机温度测控系统设计 计算机课程设计

合集下载

电加热炉温度控制系统设计说明

电加热炉温度控制系统设计说明

目录1意义与要求 (1)1.1实际意义 (1)1.2技术要求 (1)2设计容及步骤 (1)2.1方案设计 (1)2.2详细设计 (2)2.2.1 主要硬件介绍 (2)2.2.2 电路设计方法 (3)2.2.3绘制流程图 (6)2.2.4程序设计 (7)2.3调试和仿真 (7)3结果分析 (8)4课程设计心得体会 (9)参考文献 (10)附录 (11)电加热炉温度控制系统设计1意义与要求1.1实际意义在现实生活当中,很多场合需要对温度进行智能控制,日常生活中最常见的要算空调和冰箱了,他们都能根据环境实时情况,结合人为的设定,对温度进行智能控制。

工业生产中的电加热炉温度监控系统和培养基的温度监控系统都是计算机控制系统的典型应用。

通过这次课程设计,我们将自己动手设计一个小型的计算机控制系统,目的在于将理论结合实践以加深我们对课本知识的理解。

1.2技术要求要求利用所学过的知识设计一个温度控制系统,并用软件仿真。

功能要求如下:(1)能够利用温度传感器检测环境中的实时温度;(2)能对所要求的温度进行设定;(3)将传感器检测到得实时温度与设定值相比较,当环境中的温度高于或低于所设定的温度时,系统会自动做出相应的动作来改变这一状况,使系统温度始终保持在设定的温度值。

2设计容及步骤2.1方案设计要想达到技术要求的容,少不了以下几种器件:单片机、温度传感器、LCD 显示屏、直流电动机等。

其中单片机用作主控制器,控制其他器件的工作和处理数据;温度传感器用来检测环境中的实时温度,并将检测值送到单片机中进行数值对比;LCD显示屏用来显示温度、时间的数字值;直流电动机用来表示电加热炉的工作情况,转动表示电加热炉通电加热,停止转动表示电加热炉断电停止加热。

整体思路是这样的:首先我们通过按键设定所需要的温度值,然后利用温度传感器检测电加热炉的实时加热温度,并送至单片机与设定值进行比较。

若检测值小于设定值,则无任何动作,电加热炉继续导通加热;若检测值大于设定值,则单片机控制光电耦合器导通,继电器动作,电加热炉断电停止加热。

电加热炉控制系统的设计

电加热炉控制系统的设计
......................................................................................................................................... I Abstract ............................................................................................................................................II 目录 ................................................................................................................................................ III 第一章 绪论 .................................................................................................................................... 4 1.1 选题的背景及意义 ...................................................................................................... 4 1.2 加热炉控制研究现状 ............................................................................................

计算机控制技术课程设计-电阻炉温度控制系统设计

计算机控制技术课程设计-电阻炉温度控制系统设计

合肥工业大学《计算机控制技术》课程设计——电阻炉温度控制系统设计学院专业姓名学号_______ ________ _完成时间摘要:电阻炉的类型根据其热量产生的方式不同,可分为间接加热式和直接加热式两大类。

间接加热式电阻炉,就是在炉子内部有专用的电阻材料制作的加热元件,电流通过加热元件时产生热量,再通过热的传导、对流、辐射而使放置在炉中的炉料被加热。

直接加热式电阻炉,是将电源直接接在所需加热的材料上,让强大的电流直接流过所需加热的材料,使材料本身发热从而达到加热的效果。

工业电阻炉,大部分采用间接加热式,只有一小部分采用直接加热式。

由于电阻炉具有热效率高、热量损失小、加热方式简单、温度场分布均匀、环保等优点,应用十分广泛.关键词:炉温控制;高效率;加热一、总体方案设计本次课程设计主要就是使用计算机以及相应的部件组成电阻炉炉温的自动控制系统,从而使系统达到工艺要求的性能指标。

1、设计内容及要求电阻加热炉用于合金钢产品热力特性实验,电加热炉用电炉丝提供功率,使其在预定的时间内将炉内温度稳定到给定的温度值。

在本控制对象电阻加热炉功率为8KW,有220V交流电源供电,采用双向可控硅进行控制。

2、工艺要求及要求实现的基本功能本系统中所选用的加热炉为间接加热式电阻炉,控制要求为采用一台主机控制8个同样规格的电阻炉温度;电炉额定功率为20 kW;)恒温正常工作温度为1000℃,控温精度为±1%;电阻炉温度按预定的规律变化,超调量应尽可能小,且具有良好的稳定性;具有温度、曲线自动显示和打印功能,显示精度为±1℃;具有报警、参数设定、温度曲线修改设置等功能。

3、控制系统整体设计电阻炉温度计算机控制系统主要由主机、温度检测装置、A/D转换器、执行机构及辅助电路组成.系统中主机可以选用工业控制计算机、单片微型计算机或可编程序控制器中的一种作为控制器,再根据系统控制要求,选择一种合理的控制算法对电阻炉温度进行控制。

计算机控制课程设计温度控制系统的设计与实现

计算机控制课程设计温度控制系统的设计与实现

课程设计说明书题目:温度控制系统的设计与实现学生姓名:学院:电力学院系别:自动化专业:自动化班级:指导教师:二〇一年一月十四日内蒙古工业大学课程设计(论文)任务书课程名称:计算机控制系统课程设计学院:电力学院班级:自动化07-3班学生姓名:石鑫学号:指导教师:刘磊李志明摘要温度控制系统是一种典型的过程控制系统,在工业生产中具有极其广泛的应用。

温度控制系统的对象存在滞后,它对阶跃信号的响应会推迟一些时间,对自动控制产生不利的影响,因此对温度准确的测量和有效的控制是此类工业控制系统中的重要指标。

温度是一个重要的物理量,也是工业生产过程中的主要工艺参数之一,物体的许多性质和特性都与温度有关,很多重要的过程只有在一定温度范围内才能有效的进行,因此,对温度的精确测量和可靠控制,在工业生产和科学研究中就具有很重要的意义。

本文阐述了过程控制系统的概念,介绍了一种温度控制系统建模与控制,以电热水壶为被控对象,通过实验的方法建立温度控制系统的数学模型,采用了PID算法进行系统的设计,达到了比较好的控制目的。

关键词:温度控制;建模;自动控制;过程控制;PIDAbstractIn industrial production with extremely extensive application, temperature control system is a typical process control system.Temperature control system has the larger inertia. It is the response signal to step off some of time.And it produces the adverse effect to the temperature measurement. The control system is the important industrial control index. Temperature is an important parameters in the process of industrial production. Also it is one of the main parameters of objects, many properties and characteristics of temperature, many important process only under certain temperature range can efficiently work. Therefore, the precise measurement of temperature control, reliable industrial production and scientific research has very important significance.This paper discusses the concept of process control system and introduces a kind of temperature control system .The electric kettle is the controlled object, PID algorithm is used for system design,through experience method to get the model of temperature control system and we can get the controlied response well.Keywords:Temperature control; Mathematical modeling; Automatic control;Process control; PID目录第一章概述..........................................................................................................................................1.1 题目背景及应用意义...........................................................................................................1.2 本文内容及工作安排 (1)第二章系统组成及被控对象分析(被控对象数学建模) (3)2.1 系统组成 (3)2.1 被控对象分析(被控对象数学建模) (5)第三章控制策略设计及仿真研究 (11)3.1 控制策略设计 (11)3.2 仿真研究 (15)第四章控制策略实现 (18)4.1 组态环境下控制策略编程实现 (18)4.2 力控软件 (18)4.3 运行结果分析 (20)第五章总结 (22)参考文献 (23)第一章概述1.1 题目背景及应用意义在近四十年的时间里,电子计算机的发展经历了从电子管、晶体管、中小规模集成电路到大规模集成电路这样四个阶段,尤其是随着半导体集成技术的飞跃发展,七十年代初诞生了一代新型的电子计算机——微型计算机,使得计算机应用日益广泛;目前,计算机应用已渗透到各行各业,达到了前所未有的普及程度。

计算机课程设计报告--基于数字PID的电加热炉温度控制系统设计

计算机课程设计报告--基于数字PID的电加热炉温度控制系统设计

计算机控制技术课程设计任务书题目:基于数字 PID 的电加热炉温度控制系统设计设计内容电阻加热炉用于合金钢产品热力特性实验,电加热炉用电炉丝提供功率,使其在预定的时问内将炉内温度稳定到给定的温度值。

在木控制对象电阻加热炉功率为 8Kw ,由 220V 交流电源供电,采用双向可控硅进行控制。

本设计针对一个温区进行温度控制,要求控制温度范困 50-350 ℃ ,保温阶段温度控制精度为土 l ℃ .选择和合适的传感器,计算机输出信号经转换后通过双向可控硅控制器控制加热电阻两端的电压。

其对象温控数学模型为:1)(+=-s T e K s G d sd τ 其中:时间常数T d = 350 秒放大系数 K d = 50滞后时间T d = 10 秒控制算法选用PID 控制。

设计步骤一、总体方案设计二、控制系统的建模和数字控制器设计三、硬件的设计和实现1、选择计算机机型(采用51内核的单片机);2、 设计支持计算机工作的外围电路( EPROM , RAM 、I/O 端口 、键盘、显示接口电路等)3、设计输入信号接口电路;4、设计D/A 转换和电流驱动接口电路;5、其它相关电路的设计或方案(电源、通信等)四、软件设计1、分配系统资源,编写系统初始化和主程序模块框图;2编写A/D 转换和温度检测子程序枢图;3、编写控制程序和 D/A 转换控制子程序模块粗图;4、其它程序模块(显示与键盘等处理程序)枢图。

五、编写课程设计说明书,绘制完整的系统电路图( A3 幅面)。

课程设计说明书要求1 .课程设计说明书应书写认真.字迹工稚,论文格式参考国家正式出版的书籍和论文编排。

2 .论理正确、逻辑性强、文理通顾、层次分明、表达确切,并提出自己的见解和观点。

3 .课程设计说明书应有目录、摘要、序言、主干内容(按章节编写)、主要结论和参考书,附录应有系统方枢图和电路原理图。

4 .课程设计说明书应包括按上述设计步骤进行设计的分析和思考内容和引用的相关知识.摘要单片机的应用正在不断地走向深入,同时带动传统控制检测日新月益更新。

计算机控制课程设计-基于PID算法电加热炉温度控制系统设计

计算机控制课程设计-基于PID算法电加热炉温度控制系统设计

成绩《计算机控制技术》课程设计题目:基于数字PID的电加热炉温度控制系统设计班级:自动化09-1姓名:学号:2013 年 1 月 1 日基于数字PID的电加热炉温度控制系统设计摘要:电加热炉控制系统属于一阶纯滞后环节,具有大惯性、纯滞后、非线性等特点,导致传统控制方式超调大、调节时间长、控制精度低。

本设计采用PID算法进行温度控制,使整个闭环系统所期望的传递函数相当于一个延迟环节和一个惯性环节相串联来实现温度的较为精确的控制.电加热炉加热温度的改变是由上、下两组炉丝的供电功率来调节的,它们分别由两套晶闸管调功器供电.调功器的输出功率由改变过零触发器的给定电压来调节,本设计以AT89C51单片机为控制核心,输入通道使用AD590传感器检测温度,测量变送传给ADC0809进行A/D转换,输出通道驱动执行结构过零触发器,从而加热电炉丝。

本系统PID算法,将温度控制在50~350℃范围内,并能够实时显示当前温度值。

关键词:电加热炉;PID ; 功率;温度控制;1.课程设计方案1.1 系统组成中体结构电加热炉温度控制系统原理图如下,主要由温度检测电路、A/D转换电路、驱动执行电路、显示电路及按键电路等组成。

系统采用可控硅交流调压器,输出不同的电压控制电阻炉温度的大小,温度通过热电偶检测,再经过变送器变成0 - 5 V 的电压信号送入A/D 转换器使之变成数字量,此数字量通过接口送到微机,这是模拟量输入通道。

2.控制系统的建模和数字控制器设计2.1 数字PID控制算法在电子数字计算机直接数字控制系统中,PID控制器是通过计算机PID控制算法程序实现的.计算机直接数字控制系统大多数是采样—数据控制系统。

进入计算机的连续-时间信号,必须经过采样和整量化后,变成数字量,方能进入计算机的存贮器和寄存器,而在数字计算机中的计算和处理,不论是积分还是微分,只能用数值计算去逼近.在数字计算机中,PID 控制规律的实现,也必须用数值逼近的方法.当采样周期相当短时,用求和代替积分,用差商代替微商,使PID 算法离散化,将描述连续时间PID 算法的微分方程,变为描述离散—时间PID 算法的差分方程。

030251008-测控系统综合课程设计-陈亮

030251008-测控系统综合课程设计-陈亮

测控系统综合课程设计教学大纲课程编码:30251008 周/学分:4周/8学分一、大纲使用说明本大纲根据测控技术与仪器专业2010版教学计划制订(一)适用专业测控技术与仪器专业(二)课程设计性质必修课(三)主要先修课程和后续课程1.先修课程:计算机过程控制技术;网络化测控;微机原理及应用2.后续课程:毕业设计二、课程设计目的及基本要求本课程设计是测控技术与仪器专业的重要实践性课程。

是本科学习中最后一个也是总结性的综合练习。

通过课程设计,一方面可以结合课程的教学内容循序渐进地进行设计方面的实践训练,另一方面,在参与一系列子项目的实践过程中,还能提高如何综合运用所学知识解决实际问题的能力,以及获得相关项目管理和团队合作等众多方面的具体经验。

为后续毕业设计的实施做铺垫。

设计目的如下:1.进一步培养学生网络化设计的思想,加深对网络化测控系统要素和控制结构的理解。

2.针对网络化测控系统的重点和难点内容进行训练,独立完成有一定工作量的程序设计任务和系统设计任务。

3.掌握Vb或组态的编程技巧和上机调试程序的方法。

4.掌握控制系统中的PID算法。

为了使学生从课程设计中尽可能取得比较大的收获,对课程设计题目分成二类,一类为基础组态王的系统设计,相对来讲比较简单。

另一类为基于VB的测控系统设计,学生从这两类型题目中各选择部分完成。

基本要求:要求学生做好预习,掌握测控网络的组成及编程、检测与控制电路设计上位机(Vb或组态)程序设计、系统调试,验证结果并进行分析、完成论文。

三、课程设计内容及安排测控系统综合课程设计不仅是对程序设计能力的综合锻炼,更是对团队合作,软件开发与项目管理过程的训练。

因此,课程设计综合题目可以根据题目的难度不同由小组合作完成,每个小组4人。

整个课程设计分为以下几个阶段进行:开题,系统设计,系统编码实现,系统测试,系统评价与验收。

1.开题:题目可来自教师指定的参考题目,也可自由选题,特别是鼓励有创新性的题目或是在已知题目的基础上进行创新。

计算机控制技术课程设计之电阻炉温度控制系统

计算机控制技术课程设计之电阻炉温度控制系统

摘要随着科学技术的迅猛发展,各个领域对温度控制系统的精度、稳定性等要求越来越高,控制系统也千变万化。

电阻炉广泛应用于各行各业,其温度控制通常采用模拟或数字调节仪表进行调节,但存在着某些固有的缺点。

而采用单片机进行炉温控制,可大大地提高控制质量和自动化水平,具有良好的经济效益和推广价值。

本设计以89C51单片机为核心控制器件,以ADC0809作为A/D转换器件,采用闭环直接数字控制算法,通过控制可控硅来控制热电阻,进而控制电炉温度,最终设计了一个满足要求的电阻炉微型计算机温度控制系统。

关键字:电阻炉89C51单片机温度控制A/D转换电阻炉温度控制系统1系统的描述与分析1.1系统的介绍该系统的被控对象为电炉,采用热阻丝加热,利用大功率可控硅控制器控制热阻丝两端所加的电压大小,来改变流经热阻丝的电流,从而改变电炉炉内的温度。

可控硅控制器输入为0~5伏时对应电炉温度0~500℃,温度传感器测量值对应也为0~5伏,对象的特性为带有纯滞后环节的一阶惯性系统,这里惯性时间常数取T1=30秒,滞后时间常数取τ=10秒。

该系统利用单片机可以方便地实现对PID参数的选择与设定,实现工业过程中PID控制。

它采用温度传感器热电偶将检测到的实际炉温进行A/D转换,再送入计算机中,与设定值进行比较,得出偏差。

对此偏差按PID规律进行调整,得出对应的控制量来控制驱动电路,调节电炉的加热功率,从而实现对炉温的控制。

利用单片机实现温度智能控制,能自动完成数据采集、处理、转换、并进行PID控制和键盘终端处理(各参数数值的修正)与显示。

在设计中应该注意,采样周期不能太短,否则会使调节过程过于频繁,这样,不但执行机构不能反应,而且计算机的利用率也大为降低;采样周期不能太长,否则会使干扰无法与时消除,使调节品质下降。

1.2技术指标设计一个基于闭环直接数字控制算法的电阻炉温度控制系统具体化技术指标如下:1.电阻炉温度控制在0~500℃;2. 加热过程中恒温控制,误差为±2℃;3. LED实时显示系统温度,用键盘输入温度,精度为1℃;4. 采用直接数字控制算法,要求误差小,平稳性好;2方案的比较和确定方案一系统采用8031作为系统的微处理器。

【精品】计算机控制技术课程设计温度控制系统设计

【精品】计算机控制技术课程设计温度控制系统设计

课程设计题目温度控制系统设计学院自动化学院专业自动化专业班级姓名指导教师2014年6月24日课程设计任务书题目:温度控制系统设计要求完成的主要任务:被控对象为电炉,采用热阻丝加热,利用大功率可控硅控制器控制热阻丝两端所加的电压大小,来改变流经热阻丝的电流,从而改变电炉炉内的温度。

可控硅控制器输入为0-5伏时对应电炉温度0-300℃,温度传感器测量值对应也为0-5伏,对象的特性为二阶惯性系统,惯性时间常数为T1=20秒,滞后时间常数为τ=10秒。

1)设计温度控制系统的计算机硬件系统,画出框图;2)编写积分分离PID算法程序,从键盘接受K p、T i、T d、T及β的值;3)通过数据分析T i改变时对系统超调量的影响.4)撰写设计说明书。

时间安排:6月9日查阅和准备相关技术资料,完成整体方案设计6月10日—6月12日完成硬件设计6月13日-6月15日编写调试程序6月16日-6月17日撰写课程设计说明书6月18日提交课程设计说明书、图纸、电子文档指导教师签名:年月日系主任(或责任教师)签名:年月日本次课程设计我设计的题目是温度控制系统。

通过专业课程的学习,我将引入计算机,单片机,传感器,以及PID算法来实现电炉温度的自动控制,完成课程设计的任务.计算机的自动控制是机器和仪表的发展趋势,它不仅解放了劳动力,也比以往的人为监控更准确,更及时。

一旦温度发生变化,计算机监控系统可以立即检测到并通过模拟量数字通道传送到计算机。

计算机接收到信号后通过与给定值进行比较后,计算出偏差,再通过PID控制算法给出下一步将要执行的指令。

最后通过模拟量输出通道将指令传送到生产过程,实现机器仪表的智能控制.本次课程设计用到了MATLAB这一软件,通过编写程序,将被控系统离散化。

再通过MATLAB中的simulink 仿真功能,可以看到随着Ki,Kp,Kd改变波形发生的改变,从而可以通过波形直观地看出PID参数对系统动态性能的影响。

电热炉温控系统课程设计

电热炉温控系统课程设计

电热炉温控系统课程设计一、课程目标知识目标:1. 学生能理解电热炉温控系统的工作原理,掌握温度传感器、控制器和执行器的功能及其相互关系。

2. 学生能描述电热炉在不同工作状态下的能量转换过程,并运用相关公式进行简单计算。

3. 学生能掌握温度控制的基本概念,如反馈、PID控制等,并了解其在电热炉温控系统中的应用。

技能目标:1. 学生能运用所学知识,设计简单的电热炉温控系统,并进行模拟调试。

2. 学生能通过实验操作,收集和分析数据,优化电热炉温控系统的性能。

3. 学生能运用图表、报告等形式,清晰表达电热炉温控系统的设计思路和实验结果。

情感态度价值观目标:1. 学生在学习过程中,培养对物理学科的兴趣和探究精神,提高实践操作的自信心。

2. 学生通过团队协作,培养沟通、合作能力,增强集体荣誉感。

3. 学生认识到电热炉温控系统在生活中的应用,理解科技与生活的紧密联系,提高社会责任感。

课程性质:本课程为高二物理选修课程,结合电学、热学等内容,注重理论联系实际,提高学生的实践操作能力。

学生特点:高二学生已具备一定的物理知识和实验技能,具有较强的学习能力和探究欲望。

教学要求:教师应注重启发式教学,引导学生自主探究,提高学生的动手能力和问题解决能力。

同时,关注学生的情感态度,激发学生的学习兴趣和积极性。

通过课程学习,使学生能够将所学知识应用于实际生活,提高课程的学习价值。

二、教学内容本课程教学内容主要包括以下几部分:1. 电热炉温控系统基础知识- 温度传感器原理与种类- 控制器工作原理及性能参数- 执行器的类型及工作原理2. 电热炉温控系统设计原理- 电热炉的能量转换过程- 温度控制策略(反馈、PID控制)- 系统稳定性分析3. 电热炉温控系统实践操作- 实验器材准备与连接- 实验步骤与操作要点- 数据采集、处理与分析4. 电热炉温控系统优化与调试- 系统性能评价指标- 参数调整方法与技巧- 故障排查与解决策略教学内容安排与进度:1. 基础知识学习(2课时)2. 设计原理讲解(2课时)3. 实践操作指导(3课时)4. 系统优化与调试(2课时)教材章节及内容:- 第二章 电学原理与应用:电热炉的能量转换过程、温度传感器原理与种类- 第三章 控制系统:控制器工作原理、PID控制策略- 第四章 实验操作:温度控制实验、系统调试与优化教学内容确保科学性和系统性,结合课程目标,注重理论与实践相结合,提高学生的实际操作能力和问题解决能力。

基于8086的多路温度测控系统---微机原理课程设计

基于8086的多路温度测控系统---微机原理课程设计

基于8086微处理器的温度测控系统设计摘要本文介绍了一种基于8086微处理器的温度测控系统,采用温度传感器AD590采集温度数据,用CPU控制温度值稳定在预设温度。

当温度低于预设温度值时系统启动电加热器,当这个温度高于预设温度值时断开电加热器。

第一章设计主要工作思路方案一:设计一种可控制的温度加热系统,实现温度的上升或下降。

其中,温度的传感和放大部分通过AD590温度传感器集成芯片和运算放大器来实现温度的上升或下降,通过给加热系统通断电来实现。

当需要加热时,8255的PC6输出高电平;当需要降温时,8255的PC6输出低电平,关闭加热系统,让加热器自然冷却而起到降温效果。

加热或降温的控制信号通过8255的PA0读取拨动开关的状态来实现。

系统流程图如图1-1所示:图 1-1分析和讨论:该方案达到了温度的上升或下降控制,但温度上升到多少或下降到多少都得由人来控制,为了让微机来自动控制,引入了方案二。

方案二:设计一种温度控制方法将温度控制在某一设定值。

其硬件与方案一差不多,只是它的加热控制信号是直接通过软件来控制,而不是通过PA0拨动开关来实现。

在该实验利用PC机键盘输入设定温度值。

当系统采集的温度值低于设定值时,开通加热系统,反之,当温度高于设定值时,关闭加热系统。

仍然利用8255的PC6口控制加热系统。

其流程图如图1-2所示:图 1-2分析和讨论:该系统实现了将温度控制到一设定值,并保持稳定,但温度值只能设定一次。

当在控制过程中,如果有时想将温度再调高点就办不到了,为此引入了第三方案。

方案三:设计一种温度控制方法将温度控制到某一设定值,并保持稳定。

同时还可以根据实际需要重新设置温度并进行重新控制调节,使温度达到一新的设定值,并保持稳定。

这里的重新设置和控制可以进行无限多次,当然这个设置值得在某一最大值范围之内,这里把最大值设为76℃。

当设置温度大于76℃时,系统就会报错并退出系统。

其流程图见第五章图 5-1。

电阻加热炉温度控制

电阻加热炉温度控制

微型计算机控制技术课程设计----电阻加热炉温度控制学院:信息工程学院专业班级:自动化0703班姓名:唐凯学号:07001139目录一、摘要二、总体方案设计1、设计内容及要求2、工艺要求3、要求实现的系统基本功能4、对象分析5、系统功能设计三、硬件的设计和实现四、数字控制器的设计)五、软件设计)1、系统程序流程图2、程序清单六、完整的系统电路图七、系统调试八、设计总结九、参考文献一、摘要温度是工业对象中主要的被控参数之一。

特别是在冶金、化工、机械各类工业中,广泛使用各种加热炉、热处理炉、反应炉等。

由于炉子的种类不同,所采用的加热方法及燃料也不相同,如煤气、天然气等。

但就控制系统本身的动态特性而言,均属于一阶纯滞后环节,在控制算法上基本相同,可采用PID控制或其他纯滞后补偿算法。

为了保证生产过程正常安全地进行,提高产品的质量和数量,以及减轻工人的劳动强度,节约能源,对加热用的各种电炉要求在一定条件下保持恒温,不能随电源电压波动或炉内物体而变化,或者有的电炉的炉温根据工艺要求按照某个指定的升温或保温规律而变化,等等。

因此,在工农业生产或科学实验中常常对温度不仅要不断地测量,而且要进行控制。

二、总体方案设计设计任务用一台计算机及相应的部件组成电阻炉炉温的自动控制系统,并使系统达到工艺要求的性能指标。

1、设计内容及要求电阻加热炉用于合金钢产品热力特性实验,电加热炉用电炉丝提供功率,使其在预定的时间内将炉内温度稳定到给定的温度值。

在本控制对象电阻加热炉功率为8KW,有220V交流电源供电,采用双向可控硅进行控制。

系统模型:2、工艺要求按照规定的曲线进行升温和降温,温度控制范围为50—350℃,升温和降温阶段的温度控制精度为+5℃,保温阶段温度控制精度为+2℃。

3、要求实现的系统基本功能微机自动调节:正常工况下,系统投入自动。

模拟手动操作:当系统发生异常,投入手动控制。

微机监控功能:显示当前被控量的设定值、实际值,控制量的输出值,参数报警时有灯光报警。

电加热炉计算机温度测控系统设计 计算机课程设计

电加热炉计算机温度测控系统设计 计算机课程设计

计算机控制技术课程设计报告For personal use only in study and research; not for commercial use题目电加热炉计算机温度测控系统设计For personal use only in study and research; not for commercial use学院(部)电子信息工程学院专业自动化学生姓名For personal use only in study and research; not for commercial use学号年级指导教师职称2011年 7月1日目录第一章引言 (2)第二章系统工作原理 (3)第三章硬件设计部分 (4)3.1电源部分 (4)3.2 A/D转换电路 (4)3.3 温度采样测量部分 (6)3.4 LED显示电路 (6)3.5 功能键 (7)3.6 信号输出电路 (8)第四章软件设计部分 (9)4.1 系统总程序设计 (9)4.2 A/D 转换器程序流程图 (11)4.3 LED显示模块程序流程图 (12)4.4报警模块程序设计 (12)4.5 键盘模块程序设计 (13)4.6 控制对象数学模型 (13)心得体会 (15)参考文献 (16)第一章引言温度是工业对象中的很重要参数的之一。

广泛应用在冶金、化工、机械各类加热炉热、处理炉和反应炉等工业中。

电加热炉随着科学技术的发展和工业生产水平的提高,已经在冶金、化工、机械等各类工业控制中得到了广泛应用,并且在国民经济中占有举足轻重的地位。

对于这样一个具有非线性、大滞后、大惯性、时变性、升温单向性等特点的控制对象,很难用数学方法建立精确的数学模型,因此用传统的控制理论和方法很难达到好的控制效果。

单片机以其高可靠性、高性能价格比、控制方便简单和灵活性大等优点,在工业控制系统、智能化仪器仪表等诸多领域得到广泛应用。

采用单片机进行炉温控制,可以提高控制质量和自动化水平。

炉温控制系统设计

炉温控制系统设计

过程控制系统课程设计作者姓名:作者学号:指导教师:学院名称:专业名称:温度是工业控制中主要的被控参数之一,特别是在冶金、化工、建材、食品、机械、石油等工业中,具有举足重轻的作用。

温度控制是控制系统中最为常见的控制类型之一。

最为常见的就是工业上使用电阻炉(本课程设计中的电烤箱即为电阻炉)处理和生产工业产品,最基本的要求是要保持炉内温度的恒定,并且在一定的扰动下,炉内的温度经过一定的调节时间能自动恢复正常值,从而保证所生产的产品质量.本设计基于单回路控制系统和PID控制器,使用计算机、铂电阻Pt100、控制箱、加热炉体和“组态王"软件设计电烤箱的炉温控制系统,使炉内温度基本保持在80℃不变,完成了系统所用到的设备的选型和组装接线,利用“组态王”软件编制上位机监控软件对炉内温度的采集和显示。

文中首先介绍了设计的背景和要求,接着对单回路控制系统做了简单的介绍,大致描述了通过组态王编制采集并绘制温度与时间曲线的步骤,并且介绍了整定PID控制器参数的步骤和结果,最终完成了利用单回路控制系统设计基于电烤箱的炉温控制系统,使其炉内温度经过一定的过渡过程始终维持在80℃。

关键词:电烤箱,单回路控制系统,PID控制,“组态王”软件,Pt100热电阻,CD901智能控制仪表,交流固态继电器摘要 (I)目录 (1)第一章引言 (3)1.1设计目的 (3)1。

2 设计背景及意义 (3)1。

3 设计任务及要求 (4)第二章单回路控制系统 (5)2.1 单回路控制系统简介 (5)2。

2 单回路控制系统的设计 (5)2。

2。

1 被控变量的选择 (6)2.2.2 操纵变量(控制参数)的选择 (6)2.2。

3测量变送问题和执行器的选择 (7)第三章硬件电路设计及原理 (8)3.1 系统设计 (8)3。

1。

1 方案论述 (8)3.1.2 系统原理图及工作原理 (9)3。

2 智能控制仪表设计 (10)3。

2.1 规格型号说明 (10)3。

电加热炉温度控制系统设计

电加热炉温度控制系统设计

武汉华夏理工学院信息工程课程设计报告书课程名称计算机控制技术课程设计课程设计总评成绩学生姓名、学号学生专业班级自动化1142指导教师姓名李文彦课程设计起止日期2017.06.12-2016-6.23课程设计基本要求课程设计是工科学生十分重要的实践教学环节,通过课程设计,培养学生综合运用先修课程的理论知识和专业技能,解决工程领域某一方面实际问题的能力。

课程设计报告是科学论文写作的基础,不仅可以培养和训练学生的逻辑归纳能力、综合分析能力和文字表达能力,也是规范课程设计教学要求、反映课程设计教学水平的重要依据。

为了加强课程设计教学管理,提高课程设计教学质量,特拟定如下基本要求。

1.课程设计教学一般可分为设计项目的选题、项目设计方案论证、项目设计结果分析、答辩等4个环节,每个环节都应有一定的考核要求和考核成绩。

2.课程设计项目的选题要符合本课程设计教学大纲的要求,该项目应能突出学生实践能力、设计能力和创新能力的培养;该项目有一定的实用性,且学生通过努力在规定的时间内是可以完成的。

课程设计项目名称、目的及技术要求记录于课程设计报告书一、二项中,课程设计项目的选题考核成绩占10%左右。

3.项目设计方案论证主要包括可行性设计方案论证、从可行性方案中确定最佳方案,实施最佳方案的软件程序、硬件电路原理图和PCB图。

项目设计方案论证内容记录于课程设计报告书第三项中,项目设计方案论证主要考核设计方案的正确性、可行性和创新性,考核成绩占30%左右。

4.项目设计结果分析主要包括项目设计与制作结果的工艺水平,项目测试性能指标的正确性和完整性,项目测试中出现故障或错误原因的分析和处理方法。

项目设计结果分析记录于课程设计报告书第四项中,考核成绩占25%左右。

5.学生在课程设计过程中应认真阅读与本课程设计项目相关的文献,培养自己的阅读兴趣和习惯,借以启发自己的思维,提高综合分和理解能力。

文献阅读摘要记录于课程设计报告书第五项中,考核成绩占10%左右。

计算机控制技术课程设计-炉温控制系统

计算机控制技术课程设计-炉温控制系统

图 3 单片机的最小系统
3) 模拟量给定输入 在本系统中,被控温度要求在 0~100℃任意调节,在这里采用模拟量给定。 0~5V 则对应 0~100 的温度预设置。通过电位器来实现电位在 0~5V 的调节。通过 STC12C2052 单片机的 AD 模块将模拟信号转换成数字信号送到单片机内部处理。
8 e 20 s ,设采样周期为 T=10s,期望的闭 15s 1
6
计算机控制与接口技术课程设计 环传递函数的一阶惯性环节的时间常数为 10s。即 N=2,可以求出系统的期望的 闭环脉冲传递函数
(z ) 0.6321z-3 1 - 0.3679z 1
被控对象为纯滞后的一阶惯性环节
G(z )
3.8928z-3 1 - 0.5134z 1
因此系统的数字控制器的传递函数为
D(z )

0.1624 - 0.0834z-1 1 - 0.3679z 1 0.6321z 3
U (z ) 0.1624 - 0.7743z -1 - 0.2848z -2 - 0.0021z -3 - 0.4902z -4 ......
二○一三 ~二○一四 学年第 一 学期
信息科学与工程学院
课程设计报告书
课程名称: 计算机控制与接口技术课程设计 班 级: 自动化0902 班 学 号: 200904134064 姓 名: 指导教师: 二○一二 年 十二 月
三、课题分析
在这里要求使用单片机系统实现对单相交流电炉温度闭环控制。温度控制带 有显著的滞后性,传统的控制系统不能理想地满足控制性能指标,所以采用计算 机控制技术来实现较好的控制效果。由于控制任务单一,并且需要在控制电路中 用到 A/D 转换模块,所以这里采用 STC12C2052AD 系列的增加型 51 单片机来完 成控制目标。首先需要设计硬件电路,包括 51 单片机的最小系统、温度采集电 路、模拟的输入给定电路,实时温度数值显示电路和电炉的调温电路。还需要考 虑的是单片机系统的电源供应,这里由于涉及到了交流强电系统,所以直接用 220V 的交流电实现直流稳压电源。接着实现软件部分,考虑到温度的大滞后环 节,程序中采用大林算法。为了方便程序对算法的实现,直接采用 C 语言编程而
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算机控制技术课程设计报告题目电加热炉计算机温度测控系统设计学院(部)电子信息工程学院专业自动化学生姓名学号年级指导教师职称2011年 7月1日目录第一章引言 (2)第二章系统工作原理 (3)第三章硬件设计部分 (4)3.1电源部分 (4)3.2 A/D转换电路 (4)3.3 温度采样测量部分 (6)3.4 LED显示电路 (6)3.5 功能键 (7)3.6 信号输出电路 (8)第四章软件设计部分 (9)4.1 系统总程序设计 (9)4.2 A/D 转换器程序流程图 (11)4.3 LED显示模块程序流程图 (12)4.4报警模块程序设计 (12)4.5 键盘模块程序设计 (13)4.6 控制对象数学模型 (13)心得体会 (15)参考文献 (16)第一章引言温度是工业对象中的很重要参数的之一。

广泛应用在冶金、化工、机械各类加热炉热、处理炉和反应炉等工业中。

电加热炉随着科学技术的发展和工业生产水平的提高,已经在冶金、化工、机械等各类工业控制中得到了广泛应用,并且在国民经济中占有举足轻重的地位。

对于这样一个具有非线性、大滞后、大惯性、时变性、升温单向性等特点的控制对象,很难用数学方法建立精确的数学模型,因此用传统的控制理论和方法很难达到好的控制效果。

单片机以其高可靠性、高性能价格比、控制方便简单和灵活性大等优点,在工业控制系统、智能化仪器仪表等诸多领域得到广泛应用。

采用单片机进行炉温控制,可以提高控制质量和自动化水平。

第二章系统工作原理本系统的单片机炉温控制系统结构主要由单片机控制器、可控硅输出部分、传感器、温度变送器以及被控对象组成。

系统硬件结构框图如图2.1所示。

其工作原理:炉温控制程序及温度与热电偶电势之间的对于关系表存放在EPROM2746中,双向可控硅采用过零触发方式。

触发脉冲由过零同步脉冲形成电路提供。

在每个工作周期T内的工作占空比与单片机输出的门控脉冲信号决定。

键盘与显示器用于各种参数的设置和显示。

热电偶与放大器将被测温度转换成热电势信号并放大,再由A/D转换器换成相应的数字量供单片机识别处理。

单片机每隔一定时间要启动一次A/D转换、采样一次现场温度,将温度数据与给定温度W进行比较,得到温差,再根据偏差的大小和正负,通过PID 控制算法送出1个相应脉冲,让一定数量的触发脉冲在高电平上通过控制门去触发可控硅,送入8031,通过键盘显示来去控制温度。

同时反应炉温的热电偶的电势,经冷端补偿后送运算放大器放大,其电压范围为0~10V,将此电压经多路开关送入12位A/D转换器后,计算机通过数据口获得相应的表征炉温的数字量。

该数字量经数字滤波、线性化处理以及标度变换后,一方面通过LED显示炉温,另一方面当采样周期到达时,与设定温度进行比较,再做PD/PID运算;根据运算结果。

计算机通过I/O口改变控制脉冲宽度,从而改变双向可控硅在一个固定的控制周期T内导通的时间(或交流电的周波数),即改变电加热炉的平均输入功率,以此达到控温的目的。

图2.1 系统硬件结构框图第三章硬件设计部分3.1电源部分本系统所需电源有220V交流市电、直流5V电压和低压交流电,故需要变压器、整流装置和稳压芯片等组成电源电路。

电源变压器是将交流电网220V的电压变为所需要的电压值,然后通过整流电路将交流电压变为脉动的直流电压。

由于此脉动的直流电压还含有较大的纹波,必须通过滤波电路加以滤除,从而得到平滑的直流电压。

但这样的电压还随电网电压波动(一般有+-10%左右的波动)、负载和温度的变化而变化。

因而在整流、滤波电路之后,还需要接稳压电路。

稳压电路的作用是当电网电压波动、负载和温度变化时,维持输出直流电压稳定。

整流装置采用二极管桥式整流,稳压芯片采用78L05,配合电容将电压稳定在5V,供控制电路、测量电路和驱动执行电路中弱电部分使用。

除此之外,220V交流市电还是加热电阻两端的电压,通过控制双向可控硅的导通与截止来控制加热电阻的功率。

低压交流电即变压器二次侧的电压,通过过零检测电路检测交流电的过零点,送入单片机后,由控制程序决定双向可控硅的导通角,以达到控制加热电阻功率的目的。

3.2 A/D转换电路本系统采用的是12位A/D转换器AD574,这是一种高性能的12位逐次逼近式A/D转换器,在此设计中采用AD574转换器对信号进行模/数转换。

工作流程是:当由传感器传过来模拟信号经放大器放大后,送到AD574转换器转换成单片机能够识别的数字信号。

其电路图如图3.1图3.1.1 单片机系统及与A/D转换接口图3.2.2 A/D574电路及与单片机的相关接口3.3 温度采样测量部分温度的采集我们可以选择温度变送器,对于简单的控制可以采用惠更斯电桥做采集电路。

经信号滤波,放大处理后形成标准的工控模拟信号(电流4mv~10mv,电压1v~5v),便于传输和模数转换。

3.4 LED显示电路系统中我们需进行参数设置以及温度的显示,因此需要显示电路,本实验采用七段数码管显示。

采用静态显示的方式,减少程序的执行时间,进而提高系统工作的可靠性。

同时采用蜂鸣器进行声音报警。

其具体显示电路如图3.4所示。

图3.4 数码管静态显示及声音报警电路3.5 功能键此系统需进行参数的设定,因此需要将按键设计在此系统之内。

具体电路如图3.4所示。

其中,具体功能为:K1—加1键(按下时数据自加1)。

K2—减1键,(按下时数据自减1)。

K3—‘F’键,(按下时进入下一个参数的设定)。

K4—‘ok’键,按下时结束参数设定,开始运行主程序。

图3.5 功能键及与单片机的相关接口3.6 信号输出电路3.6.1 PWM 控制原理通过改变电阻丝电压的接通时间与通电周期的比值(即占空比)来控制电阻丝的平均电压,控制其输出功率,进而控制炉内温度. 在此系统中,就只需要控制采样周期和导通时间即可,即将周期T 内导通T1时间(采用定时/计数器T0),定时到了以后,关闭固态继电器。

直到下一个周期需要接通时。

3.6.2 输出电路及接口单片机通过PWM 脉冲调宽功率放大器控制SSR 固态继电器调节电炉丝的功率而达到调节温度的目的。

调功的原理为:设电网连续N 个完整的正弦波为一个控制周期T ,则gN T f =式中 g f ------电网频率,HZ若在设定的周期T 内控制主回路导通n(n ≤N)个完整的正弦波(周波),则负载功率为2U n P R N=式中 U-----电网电压的有效值R-----负载的有效电阻因此,只要控制在设定的周期T 内主回路导通的周波数n 的个数,就可调节负载的功率P 。

固态继电器控温电路如图4所示,采用Z 型交流固态继电器SSR,实现零触发交流调功。

SSR 内设光电隔离电路,可减少与电网间的相互干扰,其电路图如下:图4.1系统主程序控制系统的软件主要包括:采样、标度变换、控制计算、控制输出、中断、显示、报警、调节参数修改、温度设定及修改。

其中控制算法采用数字PID调节,应用增量型控制算法,并对积分项和微分项进行改进,以达到更好的控制效果。

考虑到电加热炉是一个非线性、时变和分布参数系统,所以本文采用一种新型的智能控制算法。

它充分吸取数学和自动控制理论成果,与定性知识相结合,做到取长补短,在实时控制中取得较好的成果。

4.2 A/D 转换器程序流程图图4.2 AD转换程序流程图4.3 LED显示模块程序流程图8段LED显示屏是最常用的显示器件,分为共阳极和共阴极两种形式。

共阳极LED将所有发光二极管的阳极接在一起作为公共端,当公共端接高电平,某一段的发光二极管阴极接低电平时,相应的字段就被点亮。

共阴极LED将所有发光二极管的阴极接在一起作为公共端,当公共端接低电平,某一段的发光二极管阳极接高电平时,相应的字段就被点亮。

LED数码管的显示方法动态显示:动态扫描,分时循环;静态显示:一次输出,结果保持(1)动态显示动态显示,就是微型机定时地对显示器件扫描,在这种方法中,显示器件分时工作,每次只能一个器件显示。

但由于人视觉的暂留现象,所以,仍感觉所有的器件都在显示。

(2)静态显示静态显示,是由微型机一次输出显示后,就能保持该显示结果,直到下次送新的显示模型为止。

这种显示占用机时少,显示可靠。

通过比较及对程序的分析,本设计当中两组数码管均采用了共阴极静态显示。

图4.3 显示子程序4.4报警模块程序设计根据设计要求,在保温阶段,温度控制精度为正负1度,故当温度下降或上升2度时为故障状态,需要报警提醒。

所以在电路设计上应用了蜂鸣器和发光二极管,系统正常运行时绿色发光二极管点亮,当出现故障时红色发光二极管点亮并且蜂鸣器鸣叫,提醒操作人员注意。

报警状态可通过按键复位和系统恢复正常后自动复位。

图4.4 报警子程序4.5 键盘模块程序设计在本次设计当中,输入设备采用4*4矩阵键盘。

当“设定”键按下时触发键盘中断服务程序,由程序程控扫描法确定那个键按下并执行相应的动作。

程控扫描的任务是:(1)首先判断是否有键按下。

方法:使所有的行输出均为低电平,然后从端口A 读入列值。

如果没有键按下,则读人值为FFH .如果有链按下.则不为FFH 。

(2)去除键抖动。

方法:延时10—20 ms ,再一次判断有无键按下,如果此时仍有键按下,则认为键盘上确实有键处于稳定闭合期。

(3)若有键闭合,则求出闭合键的键值。

方法:对键盘逐行扫描。

(4)程序中需等闭合键释放后才对其进行处理。

4.6 控制对象数学模型在本控制对象电阻加热炉功率为800W ,由220V 交流电供电,采用双向可控硅进行控制。

本设计针对一个温度区进行温度控制,要求控制温度范围50~350C ,保温阶段温度控制精度为正负1度。

选择合适的传感器,计算机输出信号经转换后通过双向可控硅控制器控制加热电阻两端的电压。

其对象问温控数学模型为:1)(+=-s T e K s G d sd τ其中:时间常数Td=350秒 放大系数Kd=50滞后时间τ=10秒 控制算法选用改PID 控制。

由于计算机控制是一种采样控制,它只能根据采样时刻的偏差值计算控制量。

因此积分和微分项不能直接计算,只能用数值计算的方法逼近。

在采样时刻t=iT (T 为采样周期),可得PID 调节公式:()100[]idi i j i i j iT Tu K e e e e u T T -==++-+∑如果采样周期T 取得足够小,这种逼近可相当准确,被控过程与连续控制过程十分接近,我们把这种情况称为“准连续控制”。

上式表示的控制算法提供了执行机构的位置ui ,所以称为位置式PID 控制算法。

当执行机构需要的不是控制量的绝对数值,而是其增量时,由上式可导出提供增量的PID 算法。

()100[]idi i j i i j iT Tu K e e e e u T T -==++-+∑()111200[]idi i j i i j iT Tu K e e e e u T T ----==++-+∑只要将上述两个公式相减可得下面的公式:()11122d i i i i i i i i i i T Tu u u K e e e e e e T T ----⎡⎤∆=-=-++-+⎢⎥⎣⎦上式称为增量式PID 控制算法。

相关文档
最新文档