高数 第七章 无穷级数 知识点知识讲解

合集下载

高等数学第七章无穷级数.ppt

高等数学第七章无穷级数.ppt

推论 (比较审敛法) 设
是两个正项级数,
且存在
对一切

则有
(1) 若强级数 收敛 , 则弱级数
(常数 k > 0 ), 也收敛 ;
(2) 若弱级数 发散 , 则强级数 也发散 .
例1.
讨论
p
级数1
1 2p
1 3p
1 np
(常数
p
>
0)
的敛散性.
解: 1) 若 p 1, 因为对一切
1 n
而调和级数
知存在 N Z , 当n N 时, un1 1
un
收敛 , 由比较审敛法可知 un 收敛.
(2) 当 1 或 时,必存在 N Z , uN 0,当n N

从而
un1 un un1 uN
因此
lim
n
un
uN
0,
所以级数发散.
说明: 当 lim un1 1 时,级数可能收敛也可能发散.
不存在 , 因此级数发散.
由定义, 讨论 级数敛散性的方法 1. 先求部分和; 2. 求部分和的极限.
综合 1)、2)可知, q 1 时, 等比级数收敛 ;
q 1 时, 等比级数发散 .
利用此结论,可以直接判别某此级数的敛散性。例如:
例如:
公比 q 1 ,
2
q 1,
n1
(1) n1 2n1
3.按基本性质.
第三节 正项级数
第七章
一、正项级数收敛的基本定理 二、比较审敛法 三、比值审敛法 四、根值审敛法
一、正项级数收敛的基本定理
若 un 0, 则称 un 为正项级数 . n1
分析特点:部分和序列 单调递增。

无穷级数知识点

无穷级数知识点

⽆穷级数知识点⽆穷级数知识点⽆穷级数1. 级数收敛充要条件:部分和存在且极值唯⼀,即:1lim n k n k S u ∞→∞==∑存在,称级数收敛。

2.若任意项级数1n n u ∞=∑收敛,1n n u ∞=∑发散,则称1n n u ∞=∑条件收敛,若1n n u ∞=∑收敛,则称级数1nn u ∞=∑绝对收敛,绝对收敛的级数⼀定条件收敛。

. 2. 任何级数收敛的必要条件是lim 0n n u →∞=3.若有两个级数1n n u ∞=∑和1n n v ∞=∑,11,n n n n u s v σ∞∞====∑∑则①1()n n n u v s σ∞=±=±∑,11n n n n u v s σ∞∞===∑∑。

②1n n u ∞=∑收敛,1n n v ∞=∑发散,则1()n n n u v ∞=+∑发散。

③若⼆者都发散,则1()n n n u v ∞=+∑不确定,如()111, 1k k ∞∞==-∑∑发散,⽽()1110k ∞=-=∑收敛。

4.三个必须记住的常⽤于⽐较判敛的参考级数:a) 等⽐级数:0111n n ar ar r ∞=?-=??≥?∑,收敛,r 发散,b) P 级数: 11p n n ∞=>?=?≤?∑收敛,p 1发散,p 1c) 对数级数: 21ln pn n n ∞=>?=?≤?∑收敛,p 1发散,p 15.三个重要结论①11()n n n a a ∞-=-∑收敛lim n n a →∞存在②正项(不变号)级数n a ∑收2n a ?∑收,反之不成⽴,③2n a ∑和2n b ∑都收敛n n a b ?∑收,n na b n n∑∑或收6.常⽤收敛快慢正整数 ln (0)(1)!n n n n a a n n αα→>→>→→由慢到快连续型 ln (0)(1)x x x x a a x αα→>→>→由慢到快7.正项(不变号)级数敛散性的判据与常⽤技巧1.达朗贝尔⽐值法 11,lim 1,lim 0)1,n n n n n n l u l l u l µµ+→∞→+∞=>≠??=??收发(实际上导致了单独讨论(当为连乘时)2. 柯西根值法 1,1,1,n n n n l u l l n l µ=>??=?收发(当为某次⽅时)单独讨论3. ⽐阶法①代数式 1111n n n n n n n n n n u v v u u v ∞∞∞∞====≤∑∑∑∑收敛收敛,发散发散②极限式 lim nn nu A v →∞=,其中:1n n u ∞=∑和1n n v ∞=∑都是正项级数。

高等数学无穷级数知识点总结

高等数学无穷级数知识点总结

高等数学无穷级数知识点总结
无穷级数是高等数学中的一个重要内容,它涉及到很多重要的概念和定理。

以下是一些高等数学无穷级数的知识点总结:
1. 无穷级数的基本概念:无穷级数是指一个数列的项按一定规律相加而成的数列。

其中,无穷级数的定义域可以是实数集或复数集。

2. 无穷级数的分类:无穷级数可以分为数项级数和函数项级数两大类。

数项级数是指以常数项级数的形式表示的无穷级数,而函数项级数则是以函数项的形式表示的无穷级数。

3. 无穷级数的敛散性:无穷级数的敛散性是指级数是否收敛或发散。

如果一个无穷级数收敛,则称其为收敛级数,反之则称为发散级数。

4. 无穷级数的判别法:无穷级数的判别法是指判断一个无穷级数是否收敛的方法。

常用的判别法包括比较判别法、比值判别法、根值判别法和莱布尼兹判别法等。

5. 无穷级数的和应用:无穷级数在数学中有着广泛的应用,例如求和、积分、微积分等。

在实际应用中,无穷级数往往被用来求解各种问题。

6. 无穷级数的和函数:无穷级数的和函数是指级数的每一项相加得到的总和。

无穷级数的和函数具有很多重要的性质,例如连续性、可导性等。

7. 无穷级数的广义性质:无穷级数的广义性质是指关于无穷级数的一些扩展概念和定理。

例如,无穷级数的前 n 项和的广义性质、
无穷级数的广义收敛性等。

以上是高等数学无穷级数的一些重要知识点总结。

希望能对读者有所帮助。

高等数学-无穷级数ppt

高等数学-无穷级数ppt
级数分类
根据级数项的性质,无穷级数可分为正项级数、交错级数和任意 项级数。
收敛与发散性质பைடு நூலகம்
收敛性质
如果无穷级数的部分和数列有极限, 则称该无穷级数收敛,此时极限值称 为级数的和。
发散性质
如果无穷级数的部分和数列没有极限 ,或者极限为无穷大,则称该无穷级 数发散。
绝对收敛与条件收敛
绝对收敛
如果无穷级数的每一项的绝对值所构 成的级数收敛,则称原级数为绝对收 敛。
在量子力学中,波函数通常表示为无穷级数形式,用于 描述微观粒子的状态和行为。
电磁学中的场强计算
通过无穷级数的展开,可以计算电磁场中各点的场强分 布,进而分析电磁现象。
在工程学中的应用,如信号处理、控制系统设计等
信号处理中的滤波
在信号处理领域,利用无穷级数设计的滤波器可以对 信号进行平滑处理、降噪等操作。
要点二
洛朗级数展开
将函数f(z)在圆环域D内展开成双边幂级数形式,即f(z) = ... + a-2/z^2 + a-1/z + a0 + a1z + a2z^2 + ...,其中an是 洛朗系数,可通过计算f(z)在D内的各阶导数求得。
泰勒级数与洛朗级数的比较
适用范围不同
泰勒级数适用于在一点处展开 的情况,而洛朗级数适用于在 圆环域内展开的情况。
控制系统设计中的稳定性分析
在控制系统设计中,通过无穷级数的稳定性分析方法 ,可以判断控制系统的稳定性并进行相应的优化设计 。
THANK YOU
感谢聆听
幂级数展开
幂级数是指形如$sum_{n=0}^{infty} a_n x^n$的级数,其 中$a_n$为常数。幂级数在收敛域内可以逐项求导和逐项积 分,具有连续性和可微性。

无穷级数知识点

无穷级数知识点

无穷级数知识点
嘿,朋友们!今天咱来聊聊无穷级数这个有意思的知识点。

啥是无穷级数呢?简单来说,就是把一堆数按照一定规则加起来,不过这堆数有无穷多个呢!就好像你有无限多的糖果,然后把它们一个一个地加起来。

无穷级数有很多种类型哦。

比如说正项级数,这些数都是正数呢。

那怎么判断一个正项级数收不收敛呢?有好多方法呀!就像我们判断一件事情能不能成功一样,有各种标准。

还有交错级数,这些数一会儿正一会儿负,就像坐过山车一样起起伏伏。

对于交错级数,也有专门的判别法来看看它是不是收敛的。

那无穷级数有啥用呢?哎呀,用处可大啦!比如在数学的很多领域都能看到它的身影。

它就像是一把万能钥匙,可以打开很多知识的大门。

想象一下,如果没有无穷级数,很多数学问题就没办法解决啦,那该多可惜呀!它就像一个神奇的工具,帮助我们更好地理解和探索数学的奥秘。

在物理学中,无穷级数也常常出现呢!比如在研究一些波动现象的时候,无穷级数就能发挥大作用啦。

总之,无穷级数是数学中非常重要的一部分,它充满了魅力和神奇。

它让我们看到了数学的无限可能,让我们对知识的追求永无止境。

所以呀,大家可别小看了无穷级数哦,它真的超级厉害的!。

无穷级数知识点高一

无穷级数知识点高一

无穷级数知识点高一无穷级数是数学中的一个重要概念,也是高一学习数学时必须掌握的知识点之一。

掌握无穷级数的概念及其相关性质,对于以后的数学学习和应用有很大的帮助。

本文将从定义、收敛性和求和公式三个方面介绍高一学生需要了解的无穷级数知识。

一、定义无穷级数是由一列数按照一定规律排列形成的数列的和。

形式上,一个无穷级数可以表示为:S = a₁ + a₂ + a₃ + ...其中,a₁, a₂, a₃, ... 是数列的项。

无穷级数一般用符号"∑"来表示。

二、收敛性对于一个无穷级数,我们关注它是否有确定的和。

如果一个无穷级数的部分和数列{Sₙ}的极限存在,那么我们称这个无穷级数是收敛的,部分和数列的极限就是该无穷级数的和。

有两个常见的收敛判定准则:1. 比值判别法:若极限 lim(aₙ₊₁/aₙ) 存在且小于1,则无穷级数收敛;若大于1,则无穷级数发散;若等于1,则判定不确定。

2. 积分判别法:对于正项级数∑aₙ,若能找到连续、正值的函数f(x)使得 f(n) = aₙ,则∫f(x)dx从1到正无穷收敛,则原级数收敛;若发散,则原级数发散。

三、求和公式对于一些特定的无穷级数,我们可以找到它们的求和公式,从而便于计算。

以下是一些常见的求和公式:1. 等差数列求和公式:S = (n/2)(a₁ + aₙ)2. 等比数列求和公式:S = a₁ / (1 - r),其中|r| < 13. 幂级数求和公式:对于幂级数∑(aₙxₙ),当|x| < 1时,S =a₁ / (1 - x)注意,这里提到的求和公式只是一些常见的情况,实际上,很多无穷级数并不容易求和,需要借助更高级的数学方法来求解。

综上所述,无穷级数是高一数学中的重要内容,学生需要掌握无穷级数的概念、收敛性及求和公式。

理解无穷级数的概念和性质有助于培养学生的数学思维,提高问题解决能力。

同时,也为将来学习数学的更深层次打下了坚实的基础。

无穷级数知识点总结

无穷级数知识点总结

无穷级数知识点总结一、无穷级数的定义无穷级数是指由无限个实数或复数项组成的数列之和。

一般地,我们用数列 {a_n} 来表示无穷级数的各项,那么无穷级数就可以表示为:S = a_1 + a_2 + a_3 + ...其中 S 代表无穷级数的和,而 a_1, a_2, a_3, ... 分别代表无穷级数的各项。

无穷级数通常可以用极限的概念来进行定义,即无穷级数的和就是数列的极限。

如果数列 {S_n} 的部分和数列收敛到某个数 L,那么无穷级数 S 的和便为 L,即:S = lim (n->∞) S_n = L这里的 S_n 代表无穷级数的部分和数列,它可以写成:S_n = a_1 + a_2 + ... + a_n无穷级数的定义是无穷数列极限的推广,它引入了无穷个数的概念,因此无穷级数的性质和收敛性等问题相对于有限级数来说更加复杂和多样。

二、无穷级数的性质无穷级数在数学中有着许多重要的性质,这些性质对于研究无穷级数的收敛性、计算方法以及应用等方面都有着重要的作用。

下面我们将详细介绍无穷级数的一些重要性质。

1. 无穷级数的有限项相加结果相同如果无穷级数的有限项相加的结果相同,那么这个无穷级数的和也相同。

即如果无穷级数S = a_1 + a_2 + a_3 + ... 的前 n 项之和等于 S_n,而无穷级数 T = b_1 + b_2 + b_3 + ... 的前 n 项之和等于 T_n,并且 S_n = T_n,那么这两个无穷级数的和也相等,即 S = T。

2. 无穷级数的倒序相加结果相同如果无穷级数的倒序相加的结果与原来的无穷级数相同,那么这个无穷级数的和同样相同,即如果无穷级数 S = a_1 + a_2 + a_3 + ... 的倒序相加的结果也等于 S,那么这个无穷级数的和就等于 S。

3. 无穷级数的部分和数列的有界性如果无穷级数的部分和数列 {S_n} 是有界的,即存在一个正数 M,使得对于所有的正整数n,都有 |S_n| <= M,那么这个无穷级数是收敛的。

大一高数无穷级数知识点

大一高数无穷级数知识点

大一高数无穷级数知识点在大一高等数学课程中,无穷级数是一个重要的内容,具有广泛的应用。

了解无穷级数的概念、性质和收敛条件等知识点对于学好这门课程是至关重要的。

本文将介绍大一高数无穷级数的基本知识点,并对其应用进行简要探讨。

一、无穷级数的概念无穷级数是由一系列数的和构成的数列。

设a₁、a₂、a₃、⋯、aₙ、⋯是一列实数,将它们相加所得的数列称为无穷级数,表示为:S = a₁ + a₂ + a₃ + ⋯ + aₙ + ⋯二、无穷级数的收敛和发散1. 收敛的定义:若一个无穷级数的部分和数列{Sₙ}收敛于某个实数S,即lim(n→∞)Sₙ = S,则称该无穷级数收敛,否则称为发散。

2. 收敛的必要条件:无穷级数收敛的必要条件是它的通项数列趋于零,即lim(n→∞)aₙ = 0。

3. 通项数列趋于零的充分条件:若无穷级数的通项数列满足aₙ≤aₙ₊₁(n≥N,N为某个自然数),则该无穷级数收敛。

三、常见的无穷级数1. 等差数列的无穷级数:若等差数列a₁、a₂、a₃、⋯、aₙ、⋯的公差不为零,即aₙ₊₁ - aₙ = d ≠ 0,则其部分和数列为等差数列,即Sₙ = (n/2)(2a₁ + (n-1)d)。

若d>0并且|a₁|/(|a₁ + d| < 1,则该无穷级数收敛,反之发散。

2. 等比数列的无穷级数:若等比数列a₁、a₂、a₃、⋯、aₙ、⋯的公比不为零,即aₙ₊₁/aₙ = q ≠ 0,则其部分和数列为等比数列,即Sₙ = a₁(1-qⁿ)/(1-q)。

当|q|<1时,该无穷级数收敛,否则发散。

四、收敛级数的运算性质1. 收敛级数的有界性:收敛级数的部分和数列有界。

2. 收敛级数的加法性:有限个收敛级数的和仍然是收敛级数。

3. 收敛级数的乘法性:若级数{aₙ}收敛,级数{bₙ}绝对收敛,则乘积级数{aₙbₙ}收敛。

五、收敛级数的应用无穷级数在数学和实际问题中有广泛的应用,以下介绍两个常见的应用:1. 泰勒级数:泰勒级数是一种无穷级数展开式,用于将函数表示成无穷级数的形式。

无穷级数知识点总结简短

无穷级数知识点总结简短

无穷级数知识点总结简短
1. 无穷级数的定义
无穷级数是指由无限个数相加而成的级数,通常表示为:
S = a1 + a2 + a3 + ...
其中,a1, a2, a3...表示级数的每一项。

2. 无穷级数的收敛与发散
无穷级数可能收敛也可能发散。

如果无穷级数的部分和S_n在n趋向无穷时收敛于某一有
限数,即lim(S_n) = S,则称该无穷级数收敛;如果无穷级数的部分和S_n在n趋向无穷
时发散至无穷大或者发散至负无穷大,即lim(S_n) = ±∞,则称该无穷级数发散。

3. 无穷级数的收敛性判别法
无穷级数的收敛性判别法有很多种,包括比较判别法、比值判别法、根值判别法、积分判
别法等。

这些判别法可以用来判断无穷级数的收敛性,并且在实际问题中有很多应用。

4. 无穷级数的性质
无穷级数有许多重要的性质,包括级数的线性性质、级数的绝对收敛性、级数的收敛域等。

这些性质在研究无穷级数的收敛性和计算级数的和时非常重要。

5. 无穷级数的应用
无穷级数在物理、工程、计算机科学等领域都有重要的应用。

例如,在物理学中,泰勒级
数可用于近似计算非线性函数的值;在工程学中,级数可以用来描述振动、波动等现象;
在计算机科学中,级数在算法复杂性分析和数值计算中也有广泛的应用。

总之,无穷级数是数学中一个重要的概念,它涉及到收敛与发散、收敛性判别法、性质和
应用等方面,对于理解和应用级数有着重要的意义。

无穷极数知识点总结

无穷极数知识点总结

无穷极数知识点总结1. 无穷级数的定义无穷级数是指由无穷多个项组成的级数,通常表示为a1 + a2 + a3 + ... + an + ...,其中每一项an是一个实数或复数。

无穷级数可以是收敛的,即其和是一个有限的值,也可以是发散的,即其和不存在或为无穷大。

2. 无穷级数的收敛无穷级数收敛的概念是指无穷级数的和在某个范围内趋于一个有限的值。

收敛的无穷级数在数学分析和实际应用中有着广泛的应用,例如在泰勒级数展开、微积分中的积分计算等方面。

无穷级数的收敛有多种判别法,如比较判别法、根值判别法、积分判别法等。

3. 无穷级数的发散无穷级数发散的概念是指无穷级数的和无法趋向于一个有限的值,而是趋向于无穷大或者根本无法定义。

无穷级数的发散也有多种判别法,例如奇偶项判别法、柯西收敛准则等。

4. 绝对收敛与条件收敛无穷级数的收敛有两种情况,一种是绝对收敛,即该级数每一项的绝对值级数收敛;另一种是条件收敛,即该级数每一项的绝对值级数发散,但级数本身却收敛。

绝对收敛级数在某种程度上更容易处理和计算,而条件收敛级数的性质相对更为复杂,也更有意思。

5. 级数收敛的充分条件对于实数级数来说,级数部分和序列的收敛性与级数本身的收敛性之间是十分紧密的,因此研究级数部分和序列的收敛性可以得到级数收敛的充分条件。

比如级数收敛的柯西准则、级数收敛的柯西——施瓦茨准则、莱布尼茨级数收敛准则等。

6. 无穷级数的运算无穷级数也可以进行加减乘除等运算,不过进行这些运算时需要满足一定的条件,比如级数收敛、级数部分和序列的收敛性等。

无穷级数的运算规则也有许多特殊的性质,如级数的收敛性与绝对收敛性的性质、级数的乘法运算性质、级数的幂级数展开等。

7. 级数收敛的应用无穷级数的研究在数学中有着广泛的应用,比如在分析学中的泰勒级数展开、微积分中的求和、微分方程的求解、数论中的级数和等方面都有不同程度的应用。

无穷级数也在物理学、工程学、经济学等应用领域中有着很多重要的应用。

无穷级数知识点总结公式

无穷级数知识点总结公式

无穷级数知识点总结公式无穷级数的定义:无穷级数的一般形式可以表示为:\[ \sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \ldots + a_n + \ldots \]其中,\( a_n \) 是级数的第 n 个项。

级数的和通常记为 \( S \),即\[ S = a_1 + a_2 + a_3 + \ldots + a_n + \ldots \]当级数的和存在有限值时,称级数收敛;当级数的和不存在有限值时,称级数发散。

无穷级数的性质:1. 无穷级数的和与项的次序无关级数的项次序可以进行重新排列,其和仍然相同。

2. 收敛级数的任意项的和都趋于零对于收敛级数,其各项的和对应的部分和序列的极限为级数的和。

3. 收敛级数的每一项都可以表示为部分和序列的差对于收敛级数,其每一项都可以表示为相邻两个部分和之差。

无穷级数的收敛性:在讨论无穷级数时,我们关心的一个重要问题是该级数是否收敛。

无穷级数的收敛性可以通过不同的收敛判别法来进行判断。

1. 正项级数收敛判别法对于正项级数 \(\sum_{n=1}^{\infty} a_n\):- 若 \( \lim_{n \to \infty} a_n = 0 \) 且 \( a_n \) 单调递减(即 \( a_{n+1} \leq a_n \)),则级数收敛;- 若 \( a_n \) 单调递减且有界,则级数收敛;- 若 \( \lim_{n \to \infty} a_n \) 不存在或 \( \lim_{n \to \infty} a_n \neq 0 \) ,则级数发散。

2. 比较判别法设 \( \sum_{n=1}^{\infty} a_n \) 和 \( \sum_{n=1}^{\infty} b_n \) 为两个级数,若存在正常数 \( C \),当 \( n \) 充分大时有 \( 0 \leq a_n \leq Cb_n \),则级数\( \sum_{n=1}^{\infty} b_n \) 收敛时级数 \( \sum_{n=1}^{\infty} a_n \) 收敛,级数\( \sum_{n=1}^{\infty} b_n \) 发散时级数 \( \sum_{n=1}^{\infty} a_n \) 发散。

无穷级数重要知识点总结

无穷级数重要知识点总结

无穷级数重要知识点总结一、无穷级数的定义1.1 无穷级数的概念无穷级数是一种特殊的数列求和形式。

它由一个无穷数列的项之和构成,通常表示为a1 + a2 + a3 + ... + an + ...,其中a1, a2, a3, ...是数列的项。

无穷级数的和是用极限的概念来定义的,即当n趋向无穷时,无穷级数的前n项和趋于一个确定的数。

1.2 无穷级数的收敛和发散无穷级数有两种基本的收敛性质:收敛和发散。

当无穷级数的和存在时,我们称这个级数是收敛的;当无穷级数的和不存在时,我们称这个级数是发散的。

1.3 无穷级数的通项无穷级数的通项是指级数中每一项的公式表示。

通项的形式多种多样,可以是一个简单的代数式,也可以是一个复杂的函数表达式。

通项的形式对于判断无穷级数的收敛性有着重要的作用。

二、无穷级数的性质2.1 无穷级数的加法性质如果无穷级数a1 + a2 + a3 + ... + an + ...和无穷级数b1 + b2 + b3 + ... + bn + ...都存在,那么它们的和也存在,并且等于这两个级数的和的和。

即∑(ai + bi) = ∑ai + ∑bi。

2.2 无穷级数的乘法性质如果无穷级数a1 + a2 + a3 + ... + an + ...和无穷级数b1 + b2 + b3 + ... + bn + ...都存在,那么它们的乘积也存在,并且等于这两个级数的乘积的和。

即(∑ai) * (∑bi) = ∑(ai * bi)。

2.3 无穷级数的极限性质当n趋向无穷时,无穷级数的前n项和会趋于一个确定的数。

这个极限的存在性和确定性是无穷级数的一个重要性质。

2.4 无穷级数的收敛性质对于一个给定的无穷级数,我们需要研究它的收敛性质,即它是否收敛、以及收敛到哪个数。

无穷级数的收敛性质对于很多数学问题有着深远的影响。

2.5 无穷级数的发散性质发散是无穷级数的另一个重要性质,它表示无穷级数的和不存在。

大一下高数知识点无穷级数

大一下高数知识点无穷级数

大一下高数知识点无穷级数大一下高数知识点:无穷级数在大一下的高等数学课程中,无穷级数是一个重要的知识点。

无穷级数是由无穷多个数相加(或相减)所得的结果,它在数学和其它科学领域中都有广泛的应用。

本文将着重介绍无穷级数的定义、性质和一些重要的收敛准则。

一、无穷级数的定义无穷级数可以写作以下形式:S = a₁ + a₂ + a₃ + ... + aₙ + ...其中,a₁、a₂、a₃等为级数的各项。

二、常见的无穷级数1. 等差级数等差级数是最常见的一类无穷级数。

它的通项公式一般为:aₙ = a₁ + (n-1)d其中,a₁为首项,d为公差。

例如,等差级数的前5项可以表示为:S₅ = a₁ + (a₁ + d) + (a₁ + 2d) + (a₁ + 3d) + (a₁ + 4d)2. 等比级数等比级数的通项公式一般为:aₙ = a₁ * r^(n-1)其中,a₁为首项,r为公比。

例如,等比级数的前5项可以表示为:S₅ = a₁ + a₁r + a₁r² + a₁r³ + a₁r⁴三、无穷级数的性质1. 部分和在无穷级数中,我们通常用部分和来近似计算级数的和。

部分和Sn定义为:Sₙ = a₁ + a₂ + a₃ + ... + aₙ其中,n为正整数。

2. 收敛和发散对于无穷级数,如果其部分和Sn在n趋向于无穷大时有极限S,则称该级数收敛,否则称该级数发散。

如果收敛,其收敛值S即为无穷级数的和。

3. 收敛性质无穷级数有以下重要的收敛性质:(1)若级数Sn收敛,则其任意子级数也收敛。

(2)若级数Sn发散,则其任意超级数也发散。

(3)若级数Sn和级数Tn都是收敛的,则它们的和级数Sn + Tn也是收敛的。

4. 绝对收敛和条件收敛若级数的所有项的绝对值构成的级数收敛,则称原级数绝对收敛。

否则,若级数本身收敛但其对应的绝对值级数发散,则称原级数条件收敛。

四、无穷级数的收敛准则在判断无穷级数的收敛性时,有一些常用的收敛准则:1. 正项级数判别法如果级数的所有项都是非负数,并且后一项总是比前一项大或相等,则该级数收敛。

高数第七章无穷级数知识点

高数第七章无穷级数知识点

第七章 无穷级数一、敛散性判断(单调有界,必有极限;从上往下,具有优先顺序性):1、形如∑∞=-11n n aq的几何级数(等比级数):当1<q 时收敛,当1≥q 时发散。

2、形如∑∞=11n pn的P 级数:当1>p 时收敛,当1≤p 时发散。

3、⇒≠∞→0lim n n U 级数发散; 级数收敛lim =⇒∞→n n U4、比值判别法(适用于多个因式相乘除):若正项级数∑∞=1n nU,满足条件lU U n n n =+∞→1lim:当1<l 时,级数收敛;当1>l 时,级数发散(或+∞=l );当1=l 时,无法判断。

5、根值判别法(适用于含有因式的n 次幂):若正项级数∑∞=1n nU,满足条件λ=∞→n n n U lim :当1<λ时,级数收敛;当1>λ时,级数发散(或+∞=λ);当1=λ时,无法判断。

注:当1,1==λl 时,方法失灵。

6、比较判别法:大的收敛,小的收敛;小的发散,大的发散。

(通过不等式的放缩)推论:若∑∞=1n nU与∑∞=1n nV均为正项级数,且lV U nnn =∞→lim(n V 是已知敛散性的级数) 若+∞<<l 0,则级数∑∞=1n nU与∑∞=1n nV有相同的敛散性;若0=l 且级数∑∞=1n nV收敛,则级数∑∞=1n nU收敛;若+∞=l 且级数∑∞=1n nV发散,则级数∑∞=1n nU发散。

7、定义判断:若⇒=∞→C S n n lim 收敛,若nn S ∞→lim 无极限⇒发散。

8、判断交错级数的敛散性(莱布尼茨定理):满足1+≥n n U U ,⇒=∞→0lim n n U 收敛,其和1u S ≤。

9、绝对收敛:级数加上绝对值后才收敛。

条件收敛:级数本身收敛,加上绝对值后发散。

二、无穷级数的基本性质:1、两个都收敛的无穷级数,其和可加减。

2、收敛的无穷级数∑∞=1n nU,其和为S ,则∑∞=1n naU,其和为aS (0≠a )(级数的每一项乘以不为0的常数后,敛散性不变) 3、级数收敛,加括号后同样收敛,和不变。

考研数学导图-高数第7讲无穷级数[数一数三]-打印版

考研数学导图-高数第7讲无穷级数[数一数三]-打印版

大的收敛⇒小的收敛 小的发散⇒大的发散
lim[u(n)/v(n)]
比较判别法的极限形式
四个重要尺度
等比级数 p级数 广义p级数
正项级数,un>=0
交错p级数 <1收敛
lim[u(n+1)/u(n)]
>1发散
比值法(达朗贝尔)
a^n 常见
n!
=1失效
<1收敛
lim [u(n)]^(1/n)
>1发散
根值法(柯西)
=1失效
常见
a^n
交错级数,un>0
莱布尼兹判别法
lim u(n)=0 u(n)>=u(n+1)
任意项级数,un符号无限制
绝对收敛 条件收敛
Σ|u(n)|收敛 Σ|u(n)|发散,Σu(n)收敛
⇒ Σ[u(n)]^2收敛
Σu(n)收敛,u(n)>=0
⇒ Σ[u(n)*u(n+1)]收敛
⇒ Σu(2n-1),Σu(2n)收敛
端点单独讨论
Σ[an*(x-x0)^n]在x1处收敛
⇒R>=|x1-x0|
阿贝尔定理
Σ[an*(x-x0)^n]在x1处发散
⇒R<=|x1-x0|
Σ[an*(x-x0)^n]在x1处条件收敛
⇒R=|x1-x0|
抽象型问题
已知Σ[an*(x-x1)^n]的敛散性, 求Σ[bn*(x-x2)^m]的敛散性

验证微分方程,求通解,求和函数
建立微分方程,求通解,求和函数
结合方程组
综合题
结合导数(斜率)
结合积分(面积)
傅里叶级数[数一]
迪利克雷收敛定理 傅里叶级数展开的系数公式

无穷级数知识点汇总

无穷级数知识点汇总

无穷级数知识点汇总一、数项级数(一)数项级数的基本性质1.收敛的必要条件:收敛级数的一般项必趋于0.2.收敛的充要条件(柯西收敛原理):对任意给定的正数ε,总存在N 使得对于任何两个N 大于的正整数m 和n ,总有ε<-n m S S .(即部分和数列收敛)3.收敛级数具有线性性(即收敛级数进行线性运算得到的级数仍然收敛),而一个收敛级数和一个发散级数的和与差必发散.4.对收敛级数的项任意加括号所成级数仍然收敛,且其和不变.5.在一个数项级数内去掉或添上有限项不会影响敛散性. (二)数项级数的性质及敛散性判断 1.正项级数的敛散性判断方法(1)正项级数基本定理:如果正项级数的部分和数列有上界,则正项级数收敛. (2)比较判别法(放缩法):若两个正项级数∑∞=1n nu和∑∞=1n nv之间自某项以后成立着关系:存在常数0>c ,使),2,1( =≤n cv u n n ,那么 (i )当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;(ii )当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.推论:设两个正项级数∑∞=1n n u 和∑∞=1n n v ,且自某项以后有nn n n v v u u 11++≤,那么 (i )当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;(ii )当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.(3)比较判别法的极限形式(比阶法):给定两个正项级数∑∞=1n n u 和∑∞=1n n v ,若0lim >=∞→l v u nnn ,那么这两个级数敛散性相同.(注:可以利用无穷小阶的理论和等价无穷小的内容) 另外,若0=l ,则当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;若∞=l ,则当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.常用度量: ①等比级数:∑∞=0n nq,当1<q 时收敛,当1≥q 时发散;②p -级数:∑∞=11n p n ,当1>p 时收敛,当1≤p 时发散(1=p 时称调和级数); ③广义p -级数:()∑∞=2ln 1n pn n ,当1>p 时收敛,当1≤p 时发散.④交错p -级数:∑∞=--111)1(n pn n ,当1>p 时绝对收敛,当10≤<p 时条件收敛. (4)达朗贝尔判别法的极限形式(商值法):对于正项级数∑∞=1n n u ,当1lim1<=+∞→r u u nn n 时级数∑∞=1n n u 收敛;当1lim1>=+∞→r u u nn n 时级数∑∞=1n n u 发散;当1=r 或1=r 时需进一步判断. (5)柯西判别法的极限形式(根值法):对于正项级数∑∞=1n nu,设n n n u r ∞→=lim ,那么1<r 时此级数必为收敛,1>r 时发散,而当1=r 时需进一步判断. (6)柯西积分判别法:设∑∞=1n nu为正项级数,非负的连续函数)(x f 在区间),[+∞a 上单调下降,且自某项以后成立着关系:n n u u f =)(,则级数∑∞=1n n u 与积分⎰+∞)(dx x f 同敛散.2.任意项级数的理论与性质(1)绝对收敛与条件收敛:①绝对收敛级数必为收敛级数,反之不然; ②对于级数∑∞=1n nu,将它的所有正项保留而将负项换为0,组成一个正项级数∑∞=1n nv,其中2nn n u u v +=;将它的所有负项变号而将正项换为0,也组成一个正项级数∑∞=1n nw,其中2nn n u u w -=,那么若级数∑∞=1n nu绝对收敛,则级数∑∞=1n nv和∑∞=1n nw都收敛;若级数∑∞=1n nu条件收敛,则级数∑∞=1n nv和∑∞=1n nw都发散.③绝对收敛级数的更序级数(将其项重新排列后得到的级数)仍绝对收敛,且其和相同. ④若级数∑∞=1n nu和∑∞=1n nv都绝对收敛,它们的和分别为U 和V ,则它们各项之积按照任何方式排列所构成的级数也绝对收敛,且和为UV .特别地,在上述条件下,它们的柯西乘积⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=11n n n n v u 也绝对收敛,且和也为UV . 注:⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛=∑∑∑∞=∞=∞=111n n n n n n v u c ,这里121121v u v u v u v u c n n n n n ++++=-- .(2)交错级数的敛散性判断(莱布尼兹判别法):若交错级数∑∞=--11)1(n n n u 满足0lim =∞→n n u ,且{}n u 单调减少(即1+≥n n u u ),则∑∞=--11)1(n n n u 收敛,其和不超过第一项,且余和的符号与第一项符号相同,余和的值不超过余和第一项的绝对值.二、函数项级数(一)幂级数1.幂级数的收敛半径、收敛区间和收敛域 (1)柯西-阿达马定理:幂级数∑∞=-00)(n n nx x a在R x x <-0内绝对收敛,在Rx x >-0内发散,其中R 为幂级数的收敛半径. (2)阿贝尔第一定理:若幂级数∑∞=-00)(n n nx x a在ξ=x 处收敛,则它必在00x x x -<-ξ内绝对收敛;又若∑∞=-00)(n n nx x a在ξ=x 处发散,则它必在00x x x ->-ξ也发散.推论1:若幂级数∑∞=0n n nx a在)0(≠=ξξx 处收敛,则它必在ξ<x 内绝对收敛;又若幂级数∑∞=0n n nx a在)0(≠=ξξx 处发散,则它必在ξ>x 时发散.推论2:若幂级数∑∞=-00)(n n nx x a在ξ=x 处条件收敛,则其收敛半径0x R -=ξ,若又有0>n a ,则可以确定此幂级数的收敛域.(3)收敛域的求法:令1)()(lim1<+∞→x a x a nn n 解出收敛区间再单独讨论端点处的敛散性,取并集.2.幂级数的运算性质(1)幂级数进行加减运算时,收敛域取交集,满足各项相加;进行乘法运算时,有:∑∑∑∑∞==-∞=∞=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛0000n n n i i n i n n n n n n x b a x b x a ,收敛域仍取交集. (2)幂级数的和函数)(x S 在收敛域内处处连续,且若幂级数∑∞=-00)(n nn x x a在R x x -=0处收敛,则)(x S 在[)R x R x +-00,内连续;又若幂级数∑∞=-00)(n n nx x a在R x x +=0处收敛,则)(x S 在(]R x R x +-00,内连续.(3)幂级数的和函数)(x S 在收敛域内可以逐项微分和逐项积分,收敛半径不变. 3.函数的幂级数展开以及幂级数的求和 (1)常用的幂级数展开:① +++++=nxx n x x e !1!2112∑∞==0!n n n x ,x ∈(-∞, +∞).②=11x -1+x +x 2+···+x n +··· =∑∞=0n n x ,x ∈(-1, 1). 从而,∑∞=-=+0)(11n nx x ,∑∞=-=+022)1(11n n n x x . ③∑∞=+++-=++-+-+-=0121253)!12()1()!12()1(!51!31sin n n nn n n x n x x x x x ,x ∈(-∞, +∞).④∑∞=-=+-+-+-=02242)!2()1()!2()1(!41!211cos n n n n n n x n x x x x ,x ∈(-∞, +∞). ⑤∑∞=-+-=++-+-+-=+11132)1(11)1(3121)1ln(n n n n n n x x n x x x x ,x ∈(-1, 1]. ⑥ ++--++-++=+n x n n x x x !)1()1(!2)1(1)1(2ααααααα,x ∈(-1, 1).⑦1202123)12()!(4)!2(12!)!2(!)!12(321arcsin +∞=+∑+=++-+++=n n n n x n n n n x n n x x x ,x ∈[-1, 1]. ⑧120123121)1(121)1(31arctan +∞=++-=++-++-=∑n n n n n x n x n x x x ,x ∈[-1, 1].(2)常用的求和经验规律:①级数符号里的部分x 可以提到级数外;②系数中常数的幂中若含有n ,可以与x 的幂合并,如将n c 和n x 合并为ncx )(; ③对∑∞=0n nnx a求导可消去n a 分母因式里的n ,对∑∞=0n n n x a 积分可消去n a 分子因式里的1+n ;④系数分母含!n 可考虑x e 的展开,含)!2(n 或)!12(+n 等可考虑正余弦函数的展开; ⑤有些和函数满足特定的微分方程,可以考虑通过求导发现这个微分方程并求解. (二)傅里叶级数1.狄利克雷收敛定理(本定理为套话,不需真正验证,条件在命题人手下必然成立) 若)(x f 以l 2为周期,且在[-l , l ]上满足: ①连续或只有有限个第一类间断点; ②只有有限个极值点;则)(x f 诱导出的傅里叶级数在[-l , l ]上处处收敛. 2. 傅里叶级数)(x S 与)(x f 的关系:⎪⎪⎪⎩⎪⎪⎪⎨⎧-++--++=.2)0()0(2)0()0()()(为边界点,为间断点;,为连续点;,x l f l f x x f x f x x f x S3.以l 2为周期的函数的傅里叶展开展开:∑∞=⎪⎪⎭⎫⎝⎛++=10sin cos 2)(~)(n n n l x n b l x n a a x S x f ππ(1)在[-l , l ]上展开:⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎰⎰⎰---l ln l l n l l dx l x n x f l b dx l x n x f l a dx x f l a ππsin )(1cos )(1)(10;(2)正弦级数与余弦级数:①奇函数(或在非对称区间上作奇延拓)展开成正弦级数:⎪⎪⎩⎪⎪⎨⎧===⎰l n n dxl x n x f l b a a 00sin )(200π;②偶函数(或在非对称区间上作偶延拓)展开成余弦级数:⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎰⎰0cos )(2)(2000n l n l b dx l x n x f l a dx x f l a π;4.一些在展开时常用的积分: (1);0cos ;1)1(sin 010=+-=⎰⎰+ππnxdx nnxdx n(2)2sin 1cos ;1sin 2020πππn n nxdx n nxdx ==⎰⎰;(3)2022010)1(2cos 1)1(cos ;)1(sin n nxdx x n nxdx x n nxdx x n n n -=--=-=⎰⎰⎰+πππππ;; (4)C nx n nx a e n a nxdx e axax +-+=⎰)cos sin (1sin 22; C nx a nx n e na nxdx e ax ax +++=⎰)cos sin (1cos 22; (5)C x n a n a x n a n a nxdx ax +--+++-=⎰)sin()(21)sin()(21sin sin ;C x n a n a x n a n a nxdx ax +--+++-=⎰)sin()(21)sin()(21cos cos .注:①求多项式与三角函数乘积的积分时可采用列表法,注意代入端点后可能有些项为0; ②展开时求积分要特别注意函数的奇偶性及区间端点和间断点的特殊性; ③对于π≠l 的情形,事先令x lt π=对求积分通常是有帮助的.。

无穷级数知识点汇总

无穷级数知识点汇总

无穷级数知识点汇总一、数项级数(一)数项级数的基本性质1.收敛的必要条件:收敛级数的一般项必趋于0.2.收敛的充要条件(柯西收敛原理):对任意给定的正数ε,总存在N 使得对于任何两个N 大于的正整数m 和n ,总有ε<-n m S S .(即部分和数列收敛)3.收敛级数具有线性性(即收敛级数进行线性运算得到的级数仍然收敛),而一个收敛级数和一个发散级数的和与差必发散.4.对收敛级数的项任意加括号所成级数仍然收敛,且其和不变.5.在一个数项级数内去掉或添上有限项不会影响敛散性. (二)数项级数的性质及敛散性判断 1.正项级数的敛散性判断方法(1)正项级数基本定理:如果正项级数的部分和数列有上界,则正项级数收敛. (2)比较判别法(放缩法):若两个正项级数∑∞=1n nu和∑∞=1n nv之间自某项以后成立着关系:存在常数0>c ,使),2,1( =≤n cv u n n ,那么 (i )当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;(ii )当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.推论:设两个正项级数∑∞=1n n u 和∑∞=1n n v ,且自某项以后有nn n n v v u u 11++≤,那么 (i )当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;(ii )当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.(3)比较判别法的极限形式(比阶法):给定两个正项级数∑∞=1n n u 和∑∞=1n n v ,若0lim >=∞→l v u nnn ,那么这两个级数敛散性相同.(注:可以利用无穷小阶的理论和等价无穷小的内容) 另外,若0=l ,则当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;若∞=l ,则当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.常用度量: ①等比级数:∑∞=0n nq,当1<q 时收敛,当1≥q 时发散;②p -级数:∑∞=11n p n ,当1>p 时收敛,当1≤p 时发散(1=p 时称调和级数); ③广义p -级数:()∑∞=2ln 1n pn n ,当1>p 时收敛,当1≤p 时发散.④交错p -级数:∑∞=--111)1(n pn n ,当1>p 时绝对收敛,当10≤<p 时条件收敛. (4)达朗贝尔判别法的极限形式(商值法):对于正项级数∑∞=1n n u ,当1lim1<=+∞→r u u nn n 时级数∑∞=1n n u 收敛;当1lim1>=+∞→r u u nn n 时级数∑∞=1n n u 发散;当1=r 或1=r 时需进一步判断. (5)柯西判别法的极限形式(根值法):对于正项级数∑∞=1n nu,设n n n u r ∞→=lim ,那么1<r 时此级数必为收敛,1>r 时发散,而当1=r 时需进一步判断. (6)柯西积分判别法:设∑∞=1n nu为正项级数,非负的连续函数)(x f 在区间),[+∞a 上单调下降,且自某项以后成立着关系:n n u u f =)(,则级数∑∞=1n n u 与积分⎰+∞)(dx x f 同敛散.2.任意项级数的理论与性质(1)绝对收敛与条件收敛:①绝对收敛级数必为收敛级数,反之不然; ②对于级数∑∞=1n nu,将它的所有正项保留而将负项换为0,组成一个正项级数∑∞=1n nv,其中2nn n u u v +=;将它的所有负项变号而将正项换为0,也组成一个正项级数∑∞=1n nw,其中2nn n u u w -=,那么若级数∑∞=1n nu绝对收敛,则级数∑∞=1n nv和∑∞=1n nw都收敛;若级数∑∞=1n nu条件收敛,则级数∑∞=1n nv和∑∞=1n nw都发散.③绝对收敛级数的更序级数(将其项重新排列后得到的级数)仍绝对收敛,且其和相同. ④若级数∑∞=1n nu和∑∞=1n nv都绝对收敛,它们的和分别为U 和V ,则它们各项之积按照任何方式排列所构成的级数也绝对收敛,且和为UV .特别地,在上述条件下,它们的柯西乘积⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=11n n n n v u 也绝对收敛,且和也为UV . 注:⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛=∑∑∑∞=∞=∞=111n n n n n n v u c ,这里121121v u v u v u v u c n n n n n ++++=-- .(2)交错级数的敛散性判断(莱布尼兹判别法):若交错级数∑∞=--11)1(n n n u 满足0lim =∞→n n u ,且{}n u 单调减少(即1+≥n n u u ),则∑∞=--11)1(n n n u 收敛,其和不超过第一项,且余和的符号与第一项符号相同,余和的值不超过余和第一项的绝对值.二、函数项级数(一)幂级数1.幂级数的收敛半径、收敛区间和收敛域 (1)柯西-阿达马定理:幂级数∑∞=-00)(n n nx x a在R x x <-0内绝对收敛,在Rx x >-0内发散,其中R 为幂级数的收敛半径. (2)阿贝尔第一定理:若幂级数∑∞=-00)(n n nx x a在ξ=x 处收敛,则它必在00x x x -<-ξ内绝对收敛;又若∑∞=-00)(n n nx x a在ξ=x 处发散,则它必在00x x x ->-ξ也发散.推论1:若幂级数∑∞=0n n nx a在)0(≠=ξξx 处收敛,则它必在ξ<x 内绝对收敛;又若幂级数∑∞=0n n nx a在)0(≠=ξξx 处发散,则它必在ξ>x 时发散.推论2:若幂级数∑∞=-00)(n n nx x a在ξ=x 处条件收敛,则其收敛半径0x R -=ξ,若又有0>n a ,则可以确定此幂级数的收敛域.(3)收敛域的求法:令1)()(lim1<+∞→x a x a nn n 解出收敛区间再单独讨论端点处的敛散性,取并集.2.幂级数的运算性质(1)幂级数进行加减运算时,收敛域取交集,满足各项相加;进行乘法运算时,有:∑∑∑∑∞==-∞=∞=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛0000n n n i i n i n n n n n n x b a x b x a ,收敛域仍取交集. (2)幂级数的和函数)(x S 在收敛域内处处连续,且若幂级数∑∞=-00)(n nn x x a在R x x -=0处收敛,则)(x S 在[)R x R x +-00,内连续;又若幂级数∑∞=-00)(n n nx x a在R x x +=0处收敛,则)(x S 在(]R x R x +-00,内连续.(3)幂级数的和函数)(x S 在收敛域内可以逐项微分和逐项积分,收敛半径不变. 3.函数的幂级数展开以及幂级数的求和 (1)常用的幂级数展开:① +++++=nxx n x x e !1!2112∑∞==0!n n n x ,x ∈(-∞, +∞).②=11x -1+x +x 2+···+x n +··· =∑∞=0n n x ,x ∈(-1, 1). 从而,∑∞=-=+0)(11n nx x ,∑∞=-=+022)1(11n n n x x . ③∑∞=+++-=++-+-+-=0121253)!12()1()!12()1(!51!31sin n n nn n n x n x x x x x ,x ∈(-∞, +∞).④∑∞=-=+-+-+-=02242)!2()1()!2()1(!41!211cos n n n n n n x n x x x x ,x ∈(-∞, +∞). ⑤∑∞=-+-=++-+-+-=+11132)1(11)1(3121)1ln(n n n n n n x x n x x x x ,x ∈(-1, 1]. ⑥ ++--++-++=+n x n n x x x !)1()1(!2)1(1)1(2ααααααα,x ∈(-1, 1).⑦1202123)12()!(4)!2(12!)!2(!)!12(321arcsin +∞=+∑+=++-+++=n n n n x n n n n x n n x x x ,x ∈[-1, 1]. ⑧120123121)1(121)1(31arctan +∞=++-=++-++-=∑n n n n n x n x n x x x ,x ∈[-1, 1].(2)常用的求和经验规律:①级数符号里的部分x 可以提到级数外;②系数中常数的幂中若含有n ,可以与x 的幂合并,如将n c 和n x 合并为ncx )(; ③对∑∞=0n nnx a求导可消去n a 分母因式里的n ,对∑∞=0n n n x a 积分可消去n a 分子因式里的1+n ;④系数分母含!n 可考虑x e 的展开,含)!2(n 或)!12(+n 等可考虑正余弦函数的展开; ⑤有些和函数满足特定的微分方程,可以考虑通过求导发现这个微分方程并求解. (二)傅里叶级数1.狄利克雷收敛定理(本定理为套话,不需真正验证,条件在命题人手下必然成立) 若)(x f 以l 2为周期,且在[-l , l ]上满足: ①连续或只有有限个第一类间断点; ②只有有限个极值点;则)(x f 诱导出的傅里叶级数在[-l , l ]上处处收敛. 2. 傅里叶级数)(x S 与)(x f 的关系:⎪⎪⎪⎩⎪⎪⎪⎨⎧-++--++=.2)0()0(2)0()0()()(为边界点,为间断点;,为连续点;,x l f l f x x f x f x x f x S3.以l 2为周期的函数的傅里叶展开展开:∑∞=⎪⎪⎭⎫⎝⎛++=10sin cos 2)(~)(n n n l x n b l x n a a x S x f ππ(1)在[-l , l ]上展开:⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎰⎰⎰---l ln l l n l l dx l x n x f l b dx l x n x f l a dx x f l a ππsin )(1cos )(1)(10;(2)正弦级数与余弦级数:①奇函数(或在非对称区间上作奇延拓)展开成正弦级数:⎪⎪⎩⎪⎪⎨⎧===⎰l n n dxl x n x f l b a a 00sin )(200π;②偶函数(或在非对称区间上作偶延拓)展开成余弦级数:⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎰⎰0cos )(2)(2000n l n l b dx l x n x f l a dx x f l a π;4.一些在展开时常用的积分: (1);0cos ;1)1(sin 010=+-=⎰⎰+ππnxdx nnxdx n(2)2sin 1cos ;1sin 2020πππn n nxdx n nxdx ==⎰⎰;(3)2022010)1(2cos 1)1(cos ;)1(sin n nxdx x n nxdx x n nxdx x n n n -=--=-=⎰⎰⎰+πππππ;; (4)C nx n nx a e n a nxdx e axax +-+=⎰)cos sin (1sin 22; C nx a nx n e na nxdx e ax ax +++=⎰)cos sin (1cos 22; (5)C x n a n a x n a n a nxdx ax +--+++-=⎰)sin()(21)sin()(21sin sin ;C x n a n a x n a n a nxdx ax +--+++-=⎰)sin()(21)sin()(21cos cos .注:①求多项式与三角函数乘积的积分时可采用列表法,注意代入端点后可能有些项为0; ②展开时求积分要特别注意函数的奇偶性及区间端点和间断点的特殊性; ③对于π≠l 的情形,事先令x lt π=对求积分通常是有帮助的.。

无穷级数 知识点总复习

无穷级数 知识点总复习

无穷级数 知识点总复习本章重点是判断数项级数的敛散性,幂级数与傅里叶级数的展开与求和. §7.1 数项级数本节重点是级数的性质,正项级数的几个判别法,交错级数的莱布尼兹判别法,任意项级数绝对收敛与条件收敛.● 常考知识点精讲一、数项级数的概念1.数项级数定义定义:设{}n u 是一个数列,则称表达式121nn n uu u u ∞==++++∑L L为一个数项级数,简称级数,其中第n 项n u 称为级数的通项或一般项,1nn kk S u==∑称为级数的前n 项部分和. 2.级数收敛的定义 定义:若数项级数1nn u∞=∑的部分和数列{}n S 有极限,则称级数1nn u∞=∑收敛,极限值lim n n S →∞称为此级数的和.当lim n n S →∞不存在时,则称级数1nn u∞=∑发散.利用级数收敛的定义,易知当1q <时,几何级数1nn q∞=∑收敛,和为11q-;当1q ≥,几何级数发散.[例1.1] 判断下列级数的敛散性⑴11(1)n n n ∞=+∑ ⑵1(1)n n n ∞=+-∑解:⑴由于 1111223(1)n S n n =+++⋅⋅+L 111111(1)()()122311n n n =-+-++-=-++L 所以 1lim lim(1)11n n n S n →∞→∞=-=+,故级数11(1)n n n ∞=+∑收敛.⑵ 由于(21)(32)(1)11n S n n n =-+-+++-=+-L所以lim n n S →∞=+∞,故级数1(1)n n n ∞=+-∑发散.二、级数的基本性质及收敛的必要条件1.设11,n nn n u v∞∞==∑∑都收敛,和分别为,a b ,则1()nn n uv ∞=±∑必收敛,且1()n n n u v a b ∞=±=±∑;评注:若1nn u∞=∑收敛,1nn v∞=∑发散,则1()nn n uv ∞=±∑必发散;若11,n n n n u v ∞∞==∑∑都发散,则1()nn n uv ∞=±∑可能发散也可能收敛.2.设k 为非零常数,则级数1nn u∞=∑与1nn ku∞=∑有相同的敛散性;3.改变级数的前有限项,不影响级数的敛散性; 4.级数收敛的必要条件:如果1nn u∞=∑收敛,则lim 0n n u →∞=;5.收敛的级数在不改变各项次序前提下任意加括号得到的新级数仍然收敛且和不变.评注:若某级数添加括号后所成的级数发散,则原级数亦发散. [例1.2] 判断下列级数的敛散性⑴111111210420210n n +++++++L L ⑵ 1(21)(1)(2)n n n n n ∞=+++∑解:⑴由于112n n ∞=∑收敛,1110n n ∞=∑发散,所以 111()210n n n ∞=+∑发散, 由性质5的“注”可知级数111111210420210n n+++++++L L 发散; ⑵ 由于(21)lim20(1)(2)n n n n n →∞+=≠++,不满足级数收敛的必要条件,所以级数1(21)(1)(2)n n n n n ∞=+++∑发散. 三、正项级数及其敛散性判别法各项为非负(0n u ≥)的级数1nn u∞=∑称为正项级数.1.正项级数收敛的基本定理 定理:设{}n S 是正项级数1nn u∞=∑的部分和数列,则正项级数1nn u∞=∑收敛的充要条件是数列{}n S 有界.当1p >时,p 级数11pn n∞=∑收敛;当1p ≤时,p 级数发散.(1p =时的p 级数也叫调和级数)2.正项级数的比较判别法 定理:(正项级数比较判别法的非极限形式) 设11,n nn n u v∞∞==∑∑都是正项级数,并设0,()n n u v n N ≤≥,则⑴ 若1nn v∞=∑收敛,则1nn u∞=∑收敛;⑵ 若1nn u∞=∑发散,则1nn v∞=∑发散.定理:(正项级数比较判别法的极限形式) 设11,n nn n u v∞∞==∑∑都是正项级数,并设limnn nu v ρ→∞=或为+∞,则⑴ 当ρ为非零常数时,级数11,n nn n u v∞∞==∑∑有相同的敛散性;⑵ 当0ρ=时,若1nn v∞=∑收敛,则必有1nn u∞=∑收敛;⑶ 当ρ=+∞时,若1nn v∞=∑发散,则必有1nn u∞=∑发散.评注:用比较判别法的比较对象常取p -级数与等比级数及211ln 1pn p n n p ∞=>⎧⎨≤⎩∑时,收敛时,发散. 3.正项级数的比值判别法定理:设1n n u ∞=∑是正项级数,若1limn n nu u ρ+→∞=或为+∞,则级数1n n u ∞=∑有 ⑴ 当1ρ<时,收敛; ⑵ 当1ρ>或∞时,发散; ⑶ 当1ρ=时,敛散性不确定.评注:⑴ 若11n n u u +≥(1,2,)n =L ,则级数1n n u ∞=∑必发散; ⑵ 如果正项级数通项中含有阶乘,一般用比值判别法判定该级数的敛散性; ⑶ 当1limn n nu u +→∞=1或不存在(但不为∞),则比值判别法失效.4.正项级数的根值判别法将比值判别法中的1n nu u +改成n n u ,其它文字叙述、结论均不改动,即为根值判别法. 5.利用通项关于无穷小1n的阶判定正项级数的敛散性 定理:设1n n u ∞=∑是正项级数,n u 为1()n n →∞的k 阶无穷小,则当1k >时,正项级数1nn u ∞=∑收敛;当1k ≤时,正项级数1nn u∞=∑发散.[例1.3] 判断下列级数的敛散性 ⑴1111n nn∞+=∑⑵213n n n ∞=∑ ⑶11(ln(1))n n n ∞=+∑ ⑷21(1)n n n n ∞=+∑ 解:⑴ 由于1111lim lim 11nn n n nn n+→∞→∞==,而级数11n n ∞=∑发散,故原级数发散; ⑵ 由于2112(1)31lim lim 133n n n n n nu n u n ++→∞→∞+=⨯=<,所以由比值判别法可得,原级数收敛;⑶ 由于11lim lim 01(ln(1))ln(1)nn n n n n →∞→∞==<++,所以由根值判别法可知,原级数收敛;⑷ 由于2(1)n n n +为1()n n→∞的32阶无穷小,所以原级数收敛. 四、交错级数及其敛散性判别法1.交错级数定义定义:若级数的各项是正项与负项交错出现,即形如112341(1),(0)n n n n u u u u u u ∞-=-=-+-+>∑L的级数,称为交错级数.2.交错级数的莱布尼兹判别法 定理:若交错级数11(1),(0)n n n n u u ∞-=->∑满足条件⑴ 1(1,2,)n n u u n +≥=L ; ⑵ lim 0n n u →∞=,则交错级数11(1),(0)n n n n u u ∞-=->∑收敛,其和1S u ≤其余项n S S -满足1n n S S u +-≤.五、任意项级数及其绝对收敛若级数1nn u∞=∑的各项为任意实数,则称它为任意项级数.1.条件收敛、绝对收敛 若1nn u∞=∑收敛,则称1nn u∞=∑绝对收敛;若1nn u∞=∑发散但1nn u∞=∑收敛,则称1nn u∞=∑条件收敛.评注:绝对收敛的级数不因改变各项的位置而改变其敛散性与其和. 2.任意项级数的判别法 定理:若级数1nn u∞=∑收敛,则级数1nn u∞=∑收敛.即绝对收敛的级数一定收敛.[例1.4] 判断下列级数是否收敛?若收敛,指明是绝对收敛还是条件收敛 ⑴111(1)3n n n n ∞--=-∑ ⑵111(1)ln(1)n n n ∞-=-+∑ 解:⑴ 记11(1)3n n n nu --=- 因为 11131lim lim 133n n n n n nu n u n -+→∞→∞+=⨯=<所以级数1nn u∞=∑收敛,故原级数收敛且为绝对收敛;⑵ 记11(1)ln(1)n n u n -=-+由于1n u n >,而11n n ∞=∑发散,所以级数1n n u ∞=∑发散又1nn u∞=∑是一交错级数,10()ln(1)n u n n =→→∞+,且1n n u u +>,由莱布尼兹定理知,原级数收敛,故原级数条件收敛.●● 常考题型及其解法与技巧一、概念、性质的理解[例7.1.1] 已知11(1)2n n n a ∞-=-=∑,2115n n a ∞-==∑,则级数1n n a ∞=∑的和等于__________.解:由于11(1)2n n n a ∞-=-=∑,所以根据级数的性质可得 21212()n n n a a ∞-==-∑从而21212211352[()]n n n n n n aa a a ∞∞--===-=--=∑∑因此21211()538n n n n n a aa ∞∞-===+=+=∑∑.[例7.1.2] 设10n u n≤≤,则下列级数中肯定收敛的是 (A )1nn u∞=∑; (B )1(1)nnn u∞=-∑; (C )1n n u ∞=∑; (D )21(1)nnn u∞=-∑解:取11n u n =+,则10n u n ≤≤,此时(A )1n n u ∞=∑与(C )1n n u ∞=∑都发散;若取1(1)2n n u n +-=,则10n u n ≤≤,此时(B )111(1)2nn n n u n∞∞==-=∑∑发散;由排除法可得应选(D ).事实上,若10n u n ≤≤,则2210n u n≤≤,根据“比较判别法”得21nn u∞=∑收敛.从而21(1)nnn u∞=-∑收敛,故应选(D ).[例7.1.3] 已知级数2121()n n n uu ∞-=+∑发散,则(A )1nn u∞=∑一定收敛, (B )1nn u∞=∑一定发散(C )1nn u=∑不一定收敛 (D )lim 0n n u →∞≠解:假设1nn u∞=∑收敛,则根据级数敛散的性质,不改变各项的次序加括号后得到的新级数仍然收敛,即2121()n n n uu ∞-=+∑也收敛.这与已知矛盾,故1n n u ∞=∑一定发散.应选(B ).[例7.1.4] 设正项级数1n n u ∞=∑的部分和为n S ,又1n nv S =,已知级数1n n v ∞=∑收敛,则级数1nn u ∞=∑必(A )收敛 (B )发散 (C )敛散性不定 (D )可能收敛也可能发散 解:由于级数1n n v ∞=∑收敛,所以根据收敛的必要条件可得lim 0n n v →∞=,又1n nv S =,所以lim n n S →∞=∞,故级数1n n u ∞=∑发散,故应选(B ). [例7.1.5] 设有命题 (1) 若1nn a∞=∑收敛,则21nn a∞=∑收敛;(2)若1n n a ∞=∑为正项级数,且11(1,2,)n n a n a +<=L ,则1n n a ∞=∑收敛; (3)若存在极限lim 0nn nu l v →∞=≠,且1n n v ∞=∑收敛,则1n n u ∞=∑收敛; (4)若(1,2,3,)n n n w u v n <<=L ,又1nn v∞=∑与1nn w∞=∑都收敛,则1nn u∞=∑收敛.则上述命题中正确的个数为(A )1 (B )2 (C )3 (D )4解:关于命题(1),令(1)n n a n -=,则1n n a ∞=∑收敛,但21112n n n a n ∞∞===∑∑发散,所以不正确;关于命题(2),令1n a n =,则1n n a ∞=∑为正项级数,且11(1,2,)n n a n a +<=L ,但1n n a ∞=∑发散,所以不正确;关于命题(3),令1(1)(1),nnn n u v n nn --=+=,则在极限lim0n n n u l v →∞=≠,且1n n v ∞=∑收敛,但1nn u=∑发散,所以不正确;关于命题(4),因为(1,2,3,)n n n w u v n <<=L ,所以0n n n n u w v w <-<-,因为1nn v∞=∑与1nn w∞=∑都收敛,所以由“比较判别法”知1()nn n uw ∞=-∑收敛,故1n n u ∞=∑收敛.故应选(A ).二、正项级数敛散性的判定正项级数1nn u∞=∑判别敛散的思路:①首先考察lim n n u →∞(若不为零,则级数发散;若等于零,需进一步判定);②根据一般项的特点选择相应的判别法判定.评注:⑴ 若一般项中含有阶乘或者n 的乘积形式,通常选用比值判别法: ⑵ 若一般项中含有以n 为指数幂的因式,通常采用根值判别法:⑶ 若一般项中含有形如n α(α为实数)的因式,通常采用比较判别法.⑷ 如果以上方法还行不通时,则可考虑用敛散的定义判定. [例7.1.6] 判断下列级数的敛散性(1)21sin 2n n n π∞=∑ (2)1!2n n n n n∞=∑ (3)221(1)2n n n n n n ∞=+∑ (4)312ln n n n∞=∑(5)2111n n n∞=++∑(6)321(1)n nn n∞=+∑ 解:(1)用比值法.221122(1)sin(1)122limlim12sin22n n n n nn n n n n ππππ++→∞→∞++⋅==<⋅,所以原级数收敛. (2)用比值法.11(1)!22(1)lim2lim 1!2(1)n n n n n n n nn n n n n en ++→∞→∞++==<+, 所以原级数收敛. (3)用根值法.22(1)1(1)lim lim 1222n n nn nn n n n n e n n→∞→∞++==>,所以原级数发散. (4)用比较法.取541n v n =,因为14ln lim lim 0n n n nu n v n →∞→∞==,而5141n n ∞=∑收敛,所以原级数收敛.(5)用比较法.取1n v n =,因为2lim lim 11n n n nu n v n n →∞→∞==++,而11n n ∞=∑发散, 所以原级数发散. (6)由于32lim10(1)n nn n→∞=≠+,故由级数收敛的必要条件知原级数发散.评注:在考研题中遇到该类问题应①先看当n →∞时,级数的通项n u 是否趋向于零(如果不易看出,可跳过这一步),若不趋于零,则级数发散;若趋于零,则②再看级数是否为几何级数或p 级数,因为这两种级数的敛散性已知.如果不是几何级数或p 级数,则③用比值判别法进行判定,如果比值判别法失效,则④再用比较判别法进行判定.常用来做比较的级数主要有几何级数、p 级数等. [例7.1.7] 判断下列级数的敛散性(1)1(sin )n nn ππ∞=-∑ (2)111(ln(1))n n n ∞=-+∑ 分析:用比值判别法失效,用比较判别法不易找到用来作比较的级数,此时一般利用通项关于无穷小1n的阶判定正项级数的敛散性. 解:(1)考查 sin lim 1()n k nn nππ→∞-换成连续变量x ,再用罗必达法则,2110001()sin()cos()2lim lim lim k k k x x x x x x x x kx kx πππππππ+++--→→→--== 取3k =,上述极限值为316π.所以原级数与311n n ∞=∑同敛散,故原级数收敛.(2)考查 11ln(1)lim 1()n k nn n→∞-+ 换成连续变量x ,再用罗必达法则,1200011ln(1)11lim lim lim (1)k k k x x x x x x x kx kx x +++--→→→--++==+ 取2k =,上述极限值为12. 所以原级数与211n n ∞=∑同敛散,故原级数收敛. [例7.1.8] 研究下列级数的敛散性(1)1!n n n a n n∞=∑(0a >是常数); (2)1nn n αβ∞=∑,这里α为任意实数,β为非负实数.分析:此例中两个级数的通项都含有参数.一般说来,级数的敛散性与这些参数的取值有关.对这种情况通常由比值判别法进行讨论.解:(1)记!n n n a n u n=,由比值判别法可得111(1)!lim lim lim 1(1)!(1)n n n n n n n n n n u a n n a au n a n e n+++→∞→∞→∞+=⋅==++ 显然,当a e <时,级数收敛;当a e >时,级数发散;当a e =时,由于111(1)!11(1)!(1)n n n n n nn u e n n eu n e n n++++=⋅=>++,所以lim 0n n u →∞≠,故级数发散. (2)记nn u n αβ=,由比值判别法可得11(1)1lim lim lim()n n n n n n nu n n u n n αααββββ++→∞→∞→∞++==⋅= 显然,当01β≤<,α为任意实数时,级数收敛;当1β>时,α为任意实数时,级数发散;当1β=时,比值判别法失效.这时n u n α=,由p 级数的敛散性知,当1α<-时,级数收敛;当1α≥-时,级数发散. [例7.1.9] 判别下列级数的敛散性(1)14011n n xdx x ∞=+∑⎰(2)11n x n n e dx ∞+-=∑⎰ 分析:此例两个级数的通项都是由积分给出的正项级数.如果能把积分求出来,再判定其敛散性,这样做固然可以,但一般工作量较大.常用的方法是利用积分的性质对积分进行估值.估值要适当:若放大则不等式右端应是某收敛的正项级数的通项;若缩小,则不等式左端应是某发散的正项级数的通项. 解:(1)因为10x n <<时,411x x x n<<+,所以 132410()1n x dx x n<<+⎰由于级数3211()n n∞=∑收敛,所以原级数收敛.(2)因为函数xe-在区间[,1]n n +上单减,所以110n n x n n nne dx e dx e ++---<<=⎰⎰由于22limlim 01n n n n e n e n-→∞→∞==,又因为级数211n n∞=∑收敛,所以原级数收敛. 三、交错级数判定敛散判别交错级数1(1),(0)nnnn u u∞=->∑敛散性的方法:法一:利用莱布尼兹定理;法二:判定通项取绝对值所成的正项级数的敛散性,若收敛则原级数绝对收敛;法三:将通项拆成两项,若以此两项分别作通项的级数都收敛则原级数收敛;若一收敛另一发散,则原级数发散;法四:将级数并项,若并项后的级数发散,则原级数发散.评注:法二、法三和法四适应于{}n u 不单调减少或判定单调很困难的交错级数. [例7.1.10] 判定下列级数的敛散性 (1)111(1)ln n n n n ∞-=--∑ (2)2(1)(1)nnn n ∞=-+-∑ (3)11111112223334-+-+-+⨯⨯⨯L (4)2011sin 46(1)2n n n n n ∞-=-∑ 解:(1)该级数是交错级数,显然1lim0ln n n n→∞=-.令1()ln f x x x =-,则211()0,(1)(ln )x f x x x x -+'=<≥-,所以1ln n n ⎧⎫⎨⎬-⎩⎭单调减少. 由莱布尼兹判别法可知,原级数收敛.(2)不难得到数列1(1)n n ⎧⎫⎨⎬+-⎩⎭不单调.而(1)(1)((1))1(1)111(1)n n n nnn n n n n n --+-==-+---+-, 显然,级数211n n ∞=-∑发散; 又级数2(1)1nn nn ∞=--∑是交错级数,显然满足lim01n n n →∞=-, 令2(),(2)1x f x x x =≥-,则2221()0(1)x f x x --'=<-,所以1n n ⎧⎫⎪⎪⎨⎬-⎪⎪⎩⎭单调减少,由莱布尼兹判别法可得,级数2(1)1nn nn ∞=--∑收敛. 故由级数敛散的性质可得,原级数发散. (3)不难得到{}n u 不单调,但有1111111(1)()()122233341n n ∞=-+-+-+=⨯⨯⨯+∑L即加括号后得到的新级数发散,利用级数的性质可知,原级数发散.(4)显然判定数列20sin 462n nn ⎧⎫⎨⎬⎩⎭的单调性很麻烦. 但 20sin 4622n nn n n ≤,而由比值判别法易得到级数12n n n ∞=∑收敛,所以级数201sin 462n n n n ∞=∑收敛.从而原级数收敛,且绝对收敛.四、判定任意项级数的敛散性对任意项级数1nn u∞=∑,主要研究它绝对收敛性和条件收敛性.解题的一般思路:①先看当n →∞时,级数的通项n u 是否趋向于零,若不趋于零,则级数发散;若趋于零,则②按正项级数敛散性的判别法,判定1nn u∞=∑是否收敛,若收敛,则级数1nn u∞=∑绝对收敛;若发散,则③若上述发散是由正项级数的比值判别法或根值判别法得到,则原级数发散;若是由比较判别法判定的,此时应利用交错级数莱布尼兹判别法或级数敛散的性质判定1nn u∞=∑是否收敛(若收敛则为条件收敛).[例7.1.11] 讨论下列级数的敛散性,若收敛,指出是条件收敛还是绝对收敛,说明理由(1)21sin,,n n n n αβπαβ∞=++∑为常数; (2)(1)1sin n n n x dx x ππ∞+=∑⎰; (3)111111111(0)12345678a a a a a a a a a a +-++-++-+≠++++++++L . 解:(1)2sinsin[()](1)sin()n n n n u n n n nαβββππαπαπ++==++=-+,由于当n 充分大时,sin()nβαπ+保持定号,所以级数从某项起以后为一交错级数.当α不是整数时,不论β取何值,总有lim lim sin()sin 0n n n u nβαπαπ→∞→∞=+=≠,故级数发散;当α是整数时,有(1)sin nn u nαβπ+=-,因而sin n u n βπ=,由于lim1nn u nβπ→∞= 所以利用比较判别法的极限形式可得,当0β≠时级数1nn u∞=∑发散,又因为sinn u nβπ=总是非增的趋于零,故由交错级数的“莱布尼兹判别法”知,级数1nn u∞=∑收敛,且为条件收敛;当0β=时,级数显然收敛,且绝对收敛.(2)由于(1)00sin (1)sin sin (1)n x n t n nnx t t dx dt dt x n tn t πππππππ=++-==-++⎰⎰⎰所以原级数为交错级数. 先判定级数(1)011sin sin n nn n xt dx dt x n t ππππ∞∞+===+∑∑⎰⎰的敛散性由于当0x π<<时,sin sin sin t t t n n t n ππππ≤≤++,所以 02sin 2t dt n n t n πππππ≤≤++⎰由于级数12n n ππ∞=+∑发散,所以级数(1)011sin sin n nn n xt dx dt x n t ππππ∞∞+===+∑∑⎰⎰发散.因为原级数为交错级数,且满足莱布尼兹判别法的条件,因此级数为条件收敛.(3)这是任意项级数.考虑每三项加一括号所成的级数1111()333231n a n a n a n ∞=+-+-+-+-∑22196(1)21(33)(32)(31)n n n a a a a n a n a n ∞=+-+--=+-+-+-∑此级数的通项是n 的有理式,且分子的次数仅比分母的次数低一次,用比较判别法知它是发散的,由级数的基本性质可得,原级数发散.五、关于数项级数敛散性的证明题证明某个未给出通项具体表达式的级数收敛或发散这类题,一般用级数收敛的定义、比较判别法或级数的基本性质. [例7.1.12] 证明:如果级数1nn a∞=∑与1nn b∞=∑收敛,且(1,2,)n n n a c b n ≤≤=L ,则级数1nn c∞=∑也收敛.证明:由n n n a c b ≤≤可得,0n n n n c a b a ≤-≤-; 由级数收敛的基本性质可得1()nn n ba ∞=-∑收敛,故由正项级数的比较判别法可得1()n n n c a ∞=-∑收敛.又由于11[()]n nn n n n c ca a ∞∞===-+∑∑,所以级数1n n c ∞=∑收敛.[例7.1.13] 设11112,()2n n na a a a +==+(1,2,)n =L ,证明 (Ⅰ)lim n n a →∞存在 ;(Ⅱ)级数11(1)nn n a a ∞=+-∑收敛. 证明:(Ⅰ)由于111()2n n n a a a +=+,所以根据均值不等式可得111()12n n na a a +=+≥ 故数列{}n a 有下界.又因为21111()()22n n n n n n na a a a a a a +=+≤+=,所以{}n a 单调不增,从而由单调有界准则可知,lim n n a →∞存在.(Ⅱ)由(Ⅰ)可知,101n n a a +≤-,所以级数11(1)n n n aa ∞=+-∑是正项级数. 又因为11111n n n n n n n a a a a a a a ++++--=≤-, 而正项级数11()nn n aa ∞+=-∑的前n 项和11111()lim nn kk n n n k S aa a a a a ++→∞==-=-→-∑所以正项级数11()nn n aa ∞+=-∑是收敛的,由比较判别法知,原级数收敛.[例7.1.14] 设()f x 在点0x =的某一邻域内有连续二阶导数,且0()lim0x f x x→=,证明级数 11()n f n∞=∑绝对收敛. 分析:已知条件中出现高阶导数,可考虑使用泰勒公式完成. 证明:由于()f x 在点0x =连续,且0()lim0x f x x→=,所以可得(0)0,(0)0f f '==. 将()f x 在点0x =展开成一阶泰勒公式,有 2211()(0)(0)()()2!2f x f f x f x f x ξξ'''''=++=. 由于()f x ''在点0x =的某一邻域内连续,故存在0M >,使得在0x =的某小邻域内()f x M ''≤,从而211()2M f n n≤⋅(当n 充分大时) 由比较判别法可知,级数11()n f n∞=∑绝对收敛. [例7.1.15] 若()f x 满足:⑴在区间[0,)+∞上单增;⑵lim ()x f x A →+∞=;⑶()f x ''存在,且()0f x ''≤.证明(Ⅰ)1[(1)()]n f n f n ∞=+-∑收敛 ;(Ⅱ)1()n f n ∞='∑收敛.证明:(Ⅰ)由于1[(1)()](1)(1)nn k S f k f k f n f ==+-=+-∑,所以lim lim (1)11n n n S f n A →∞→∞=+-=-,从而级数1[(1)()]n f n f n ∞=+-∑收敛.(Ⅱ)由于()f x ''存在,且()0f x ''≤,所以函数()f x '单调不增.又因为()f x 在区间[0,)+∞上单增,所以必有()0f x '≥,即级数1()n f n ∞='∑是正项级数.根据拉格朗日中值定理可得(1)()(),1n n f n f n f n n ξξ'+-=<<+,所以 (1)()()n f n f f n ξ'''+≤≤. 由(Ⅰ)可知1()nn f ξ∞='∑收敛,所以根据正项级数的比较判别法知,级数1(1)n f n ∞='+∑收敛,再根据级数收敛的性质可得级数1()n f n ∞='∑收敛.六、其它[例7.1.16] 设正项数列{}n a 单调减少,且1(1)nn n a ∞=-∑发散,判定级数11()1nn na ∞=+∑的敛散性. 解:正项数列{}n a 单调减少,由单调有界准则可得,lim n n a →∞存在,记为a (0a ≥).因为级数1(1)nn n a ∞=-∑是交错级数,若lim 0n n a →∞=,由莱布尼兹判别法可知,该级数收敛.但题设该级数发散,所以必定有0a >,于是 111lim ()lim 1111n n n n n na a a →∞→∞==<+++.由根值判别法知,级数11()1nn na ∞=+∑收敛.[例7.1.17] 讨论级数11111123421(2)x x x n n -+-++-+-L L 在哪些x 处收敛?在哪些x 处发散?解:⑴ 当1x =时,原级数为11111123456-+-+-+L ,这是交错级数,且满足“莱布尼兹判别法”的条件,故收敛;⑵ 当1x >时,2111111(1)(1)321223n x x x x S n n=+++-++++-L L 当n →∞时,111321n +++→+∞-L , 当n →∞时,1111(1)223x x x x n++++L 趋向定常数,故2lim n n S →∞发散,从而原级数发散;⑶ 当1x <时,211111111()()()2345(2)21n x x x S n n +=-------+L 由于1x <,所以上式中第一项以后的各项都为负的. 考察级数111[](2)21x n n n ∞=-+∑,由于 111lim[]/1(2)21(2)x xn n n n →∞-=+, 所以根据正项级数的“比较判别法”的极限形式知,级数111[](2)21x n n n ∞=-+∑发散. 从而21lim n n S +→∞=-∞,即原级数发散.综上所述,当1x =时,级数收敛;当1x ≠时,级数发散. [例7.1.18] 已知111,cos n n a a a +==,判定级数1n n a ∞=∑的敛散性.分析:该级数的通项以递推公式给出,这给级数类型的判定以及通项n a 是否收敛于零带来困难.不妨先假设级数通项0()n a n →→∞,再看由递推公式两端取极限时能否导出矛盾.一旦产生矛盾,便可确定级数发散.解:若lim 0n n a →∞=,则1lim limcos 1n n n n a a +→∞→∞==.这与假设矛盾.因此lim 0n n a →∞≠,原级数发散.[例7.1.19] 设a 为常数,1a ≠-,讨论级数111nn a∞=+∑的敛散性.解:由于存在na ,因此想到分1,1,1a a a <=>讨论.当1a <时,由于lim 0nn a →∞=,所以1lim101n n a →∞=≠+,级数发散;当1a =时,11n a +=12,所以11lim 012n n a →∞=≠+,级数发散; 当1a >时,由于111111111limlim lim 11111n n n n n n n n na a a a a a aa---++--→∞→∞→∞+++===<+++,所以级数111n n a ∞=+∑收敛,故级数111nn a ∞=+∑收敛且绝对收敛. [例7.1.20] 已知11a =,对于1,2,n =L ,设曲线21y x=上点21(,)n n a a 处的切线与x 轴交点的横坐标是1n a +(Ⅰ)求,2,3,n a n =L ;(Ⅱ)设n S 是以(,0)n a ,21(,)n n a a 和1(,0)n a +为顶点的三角形的面积,求级数1n n S ∞=∑的和解:(Ⅰ)曲线21y x =上点21(,)n n a a 处的切线方程为 2312()n n nY X a a a -=-- 从而13(1,2,)2n n a a n +==L ,从而11133()()22n n n a a --== (Ⅱ)由题意11221111112()()222443n n n n n n n n a S a a a a a -+=⨯⨯-=⨯⨯== 所以11112113()2434413n n n n S ∞∞-====⨯=-∑∑.§7.2 幂级数本节重点是求幂级数的收敛域、求幂级数的和函数、将函数展开成幂级数.● 常考知识点精讲一、函数项级数的概念1.函数项级数的定义定义:设函数()(1,2,3)n u x n =L 都在D 上有定义,则称表达式121()()()nn u x u x u x ∞==++∑L为定义在D 上的一个函数项级数,()n u x 称为通项,1()()n k k S x u x ∞==∑称为部分和函数.2.收敛域 定义:设1()nn ux ∞=∑是定义在D 上的一个函数项级数,0x D ∈,若数项级数01()n n u x ∞=∑收敛,则称0x 是1()nn ux ∞=∑的一个收敛点.所有收敛点构成的集合称为级数的收敛域.3.和函数 定义:设函数项级数1()nn ux ∞=∑的收敛域为I ,则任给x I ∈,存在唯一的实数()S x ,使得1()()n n S x u x ∞==∑成立.定义域为I 的函数()S x 称为级数1()n n u x ∞=∑的和函数.评注:求函数项级数收敛域时,主要利用收敛域的定义及有关的数项级数的判别法.二、幂级数1.幂级数的定义定义:设{}(0,1,2,)n a n =L 是一实数列,则称形如0()nnn a x x ∞=-∑的函数项级数为0x 处的幂级数.00x =时的幂级数为0n n n a x ∞=∑.2.阿贝尔定理 定理:对幂级数()nnn a x x ∞=-∑有如下的结论:⑴ 如果该幂级数在点1x 收敛,则对满足010x x x x -<-的一切的x 对应的级数()nnn a x x ∞=-∑都绝对收敛;⑵ 如果该幂级数在点2x 发散,则对满足020x x x x ->-的一切的x 对应的级数()nnn a x x ∞=-∑都发散.[例2.1] 若幂级数(2)nn n a x ∞=-∑在1x =-处收敛,问此级数在4x =处是否收敛,若收敛,是绝对收敛还是条件收敛? 解:由阿贝尔定理知,幂级数(2)nn n a x ∞=-∑在1x =-处收敛,则对一切适合不等式2123x -<--=(即15x -<<)的x 该级数都绝对收敛.故所给级数在4x =处收敛且绝对收敛.三、幂级数收敛半径、收敛区间如果幂级数()nnn a x x ∞=-∑不是仅在0x x =处收敛,也不是在整个数轴上收敛,则必定存在一个正数R ,它具有下述性质: ⑴ 当0x x R -<时,0()nnn a x x ∞=-∑绝对收敛;⑵ 当0x x R ->时,()nnn a x x ∞=-∑发散.如果幂级数()n n n a x x ∞=-∑仅在0x x =处收敛,定义0R =;如果幂级数()nnn a x x ∞=-∑在(,)-∞+∞内收敛,则定义R =+∞.则称上述R 为幂级数()nnn a x x ∞=-∑的收敛半径.称开区间00(,)x R x R -+为幂级数()nnn a x x ∞=-∑的收敛区间.四、幂级数收敛半径的求法求幂级数()nnn a x x ∞=-∑的收敛半径R法一:⑴ 求极限11000()()lim ()n n nn n a x x x x a x x ρ++→∞--=-⑵ 令00()1x x x x m ρ-<⇒-<则收敛半径为R m =;法二:若n a 满足0n a ≠,则1limnn n a R a →∞+=; 法三;⑴ 求极限00()lim ()nn n n x x a x x ρ→∞-=-⑵ 令00()1x x x x m ρ-<⇒-< 则收敛半径为R m =.[例2.2] 求下列幂级数的收敛域⑴12!nn n x n ∞=∑ ⑵1(5)n n x n ∞=-∑ ⑶221212n n n n x ∞-=-∑ 解:⑴ 收敛半径1112(1)!lim lim 2!1n n n n n n a n R a n +→∞→∞++==⨯=+∞,所以收敛域为(,)-∞+∞;⑵ 收敛半径11limlim 11n n n n a R n a n→∞→∞+==⨯+= 当51x -=-时,对应级数为1(1)nn n ∞=-∑这是收敛的交错级数,当51x -=时,对应级数为11n n∞=∑这是发散的P -级数, 于是该幂级数收敛域为[4,6);⑶ 由于22122212()lim 2(21)2nn n n n x n x x n x ρ+-→∞+=⨯=- 令()1x ρ<,可得2x <,所以收敛半径为2R =当2x =±时,对应的级数为1212n n ∞=-∑,此级数发散, 于是原幂级数的收敛域为(2,2)-.五、幂级数的性质设幂级数()nnn a x x ∞=-∑收敛半径为1R ;()nnn b x x ∞=-∑收敛半径为2R ,则1.000()()()()nnnnnn n n n n a x x b x x ab x x ∞∞∞===-±-=±-∑∑∑,收敛半径12min(,)R R R ≥; 2.00001[()][()]()()nnnn nn i n i n n n i a x x b x x a b x x ∞∞∞-====-⋅-=-∑∑∑∑,收敛半径12min(,)R R R ≥;3.幂级数()nnn a x x ∞=-∑的和函数()S x 在其收敛域I 上连续;4.幂级数在其收敛区间内可以逐项求导,且求导后所得到的幂级数的收敛半径仍为R .即有11()[()][()]()nnn nnnn n n S x a x x a x x na x x ∞∞∞-==='''=-=-=-∑∑∑.5.幂级数在其收敛区间内可以逐项积分,且积分后所得到的幂级数的收敛半径仍为R .即有1000001()[()][()]()1xxxnnn n n n x x x n n n S x dx a x x dx a x x dx a x x n ∞∞∞+====-=-=-+∑∑∑⎰⎰⎰[例2.3] 用逐项求导或逐项积分求下列幂级数在收敛区间内的和函数 ⑴11(11)n n nxx ∞-=-<<∑ ⑵411(11)41n n x x n +∞=-<<+∑解:⑴ 令11()(11)n n S x nxx ∞-==-<<∑,则111()()1xxn n n n x S x dx nxdx x x∞∞-=====-∑∑⎰⎰ 所以2211(),(11)(1)(1)x x S x x x x -+==-<<--;⑵ 令411()(11)41n n x S x x n +∞==-<<+∑,则 4144411()()411n nn n x x S x x n x +∞∞==''===+-∑∑ 所以4422001111()(1)12121xx x S x dx dx x x x==-+⋅+⋅-+-⎰⎰ 111ln arctan 412x x x x +=+--,(11)x -<<. 六、函数展开成幂级数1.函数展开成幂级数的定义定义:设函数()f x 在区间I 上有定义,0x I ∈,若存在幂级数()nnn a x x ∞=-∑,使得()(),nnn f x a x x x I ∞==-∀∈∑则称()f x 在区间I 上能展开成0x 处的幂级数. 2.展开形式的唯一性定理:若函数()f x 在区间I 上能展开成0x 处的幂级数 0()(),nnn f x a x x x I ∞==-∀∈∑则其展开式是唯一的,且()0()(0,1,2,)!n n f x a n n ==L .七、泰勒级数与麦克劳林级数1.泰勒级数与麦克劳林级数的定义定义:如果()f x 在0x 的某一邻域内具有任意阶导数,则称幂级数()()00000000()()()()()()()!1!!n n nn n f x f x f x x x f x x x x x n n ∞='-=+-++-+∑L L 为函数()f x 在0x 点的泰勒级数.当00x =时,称幂级数()()0(0)(0)(0)(0)!1!!n n n nn f f f x f x x n n ∞='=++++∑L L 为函数()f x 的麦克劳林级数. 2.函数展开成泰勒级数的充要条件定理:函数()f x 在0x I ∈处的泰勒级数在I 上收敛到()f x 的充分必要条件是:()f x 在0x 处的泰勒公式()000()()()()!k nk n k f x f x x x R x k ==-+∑的余项()n R x 在I 上收敛到零,即对任意的x I ∈,都有lim ()0n n R x →∞=.八、函数展开成幂级数的方法1.直接法利用泰勒级数的定义及泰勒级数收敛的充要条件,将函数在某个区间上直接展开成指定点的泰勒级数的方法. 2.间接法通过一定的运算将函数转化为其它函数,进而利用新函数的幂级数展开将原来的函数展开成幂级数的方法.所用的运算主要是四则运算、(逐项)积分、(逐项)求导、变量代换.利用的幂级数展开式是下列一些常用函数的麦克劳林展开公式.幂级数常用的七个展开式0,(,)!nxn x e x n ∞==∈-∞+∞∑210sin (1),(,)(21)!n nn x x x n +∞==-∈-∞+∞+∑20cos (1),(,)(2)!nnn x x x n ∞==-∈-∞+∞∑1ln(1)(1),111n nn x x x n +∞=+=--<≤+∑2(1)(1)(2)(1)(1)1,(1,1)2!!n n x x x x x n αααααααα----++=+++++∈-L L L1,(1,1)1n n x x x ∞==∈--∑1(1),(1,1)1n n n x x x ∞==-∈-+∑.●● 常考题型及其解法与技巧一、阿贝尔定理的应用[例7.2.1] 设幂级数nn n a x∞=∑的收敛半径为2,则幂级数1(3)nn n a x ∞=-∑在下列点处必收敛(A ){}2,3,4,e (B )12,1,0,e ⎧⎫--⎨⎬⎩⎭(C ){}1,5 (D ){}1,2,3,4,5,e解:由于nn n a x∞=∑与1(3)nn n a x ∞=-∑有相同的收敛半径,所以当32x -<的时候对应的级数1(3)nn n a x ∞=-∑都绝对收敛,显然集合{}2,3,4,e 中的点都满足不等式32x -<,故选(A )[例7.2.2] 如级数nn n a x∞=∑在2x =处收敛,问级数1()2nn n a x ∞=-∑在2x =-处敛散性怎样?解:由阿贝尔定理,对一切2x <的x 值,级数0nn n a x ∞=∑绝对收敛,从而级数01()2nnn a x ∞=-∑满足:对一切122x -<的x 值,级数01()2nn n a x ∞=-∑绝对收敛.现2x =-显然不满足122x -<,故级数01()2n n n a x ∞=-∑在2x =-处敛散性不确定.[例7.2.3] 设1(1)2nnn n a ∞=-∑收敛,则1n n a ∞=∑(A )条件收敛 (B )绝对收敛 (C )发散 (D )不定 解:考查幂级数1nn n a x∞=∑,由于1(1)2nnn n a ∞=-∑收敛,所以幂级数1n n n a x ∞=∑在2x =-点收敛,根据阿贝尔定理当2x <-时,对应的幂级数都绝对收敛,所以当1x =时,对应的幂级数绝对收敛,而此时对应级数为1nn a∞=∑.所以应选(B )[例7.2.4] 设幂级数1(1)nn n a x ∞=+∑在3x =处条件收敛,则该幂级数的收敛半径为_______.解:由于1(1)nn n a x ∞=+∑在3x =处条件收敛,由阿贝尔定理得,当14x +<时级数1(1)nn n a x ∞=+∑绝对收敛.所以收敛半径4R ≥;假设4R >.由收敛半径的定义知1x R +<时,对应的级数都绝对收敛,所以级数在3x =处应绝对收敛,矛盾.所以4R ≤. 因此收敛半径4R =.二、收敛半径、收敛区间、收敛域求幂级数收敛半径的方法我们在常考知识点中介绍过,如果幂级数中的幂次是按自然数顺序依次递增的,这时幂级数()nnn a x x ∞=-∑的收敛半径的计算公式1limnn n a R a →∞+=如果幂级数中的幂次不是按自然数顺序依次递增的(如缺少奇数次幂或缺偶次幂等),这时不能用上面的公式计算收敛半径,而必须使用正项级数的比值判别法或根值判别法(即常考知识点中介绍的法一与法三)求出幂级数的收敛半径. 设幂级数()nnn a x x ∞=-∑的收敛半径为R .为了求幂级数的收敛域还需判别在x =0x R -与0x x R =+处级数00()n n n a x x ∞=-∑的敛散性.[例7.2.5] 求下列幂级数的收敛半径和收敛域(1)1!()n n x e n n ∞=-∑ (2)2311n n n x n ∞=+∑ (3)2111(1)3(21)n n n n x n +∞-=-+∑ (4)21(21)n n x n n ∞=-∑ (5)14(1)1(1)[4(1)]!n n n xn -∞-=--∑ 解:(1)此级数x e -的幂次是按自然数顺序依次递增的,其收敛半径可直接按公式计算:11!(1)1lim lim lim(1)(1)!n n n n n n n n a n n R e a n n n +→∞→∞→∞++==⨯=+=+在2x e e e =+=处,级数成为1!()nn en n ∞=∑,由[例7.1.8]中的(1)可知该级数发散;在0x e e =-=处,级数成为1!()nn e n n∞=-∑,可判定发散. 故原级数的收敛域为(0,2)e .(2)此级数的收敛半径也可按公式计算:23321(1)1lim lim 11(1)n n n n a n n R a n n →∞→∞+++==⋅=++ 在1x =-处,级数成为231(1)1nn n n ∞=-+∑,这是交错级数,满足莱布尼兹定理的条件,故收敛;在1x =处,级数成为2311n n n ∞=+∑,由于23lim 111n n n n →∞⨯=+,而级数11n n ∞=∑发散,故级数2311n n n ∞=+∑发散.因此所给级数的收敛域为[1,1)-.(3)此级数缺少x 的偶次幂.故需利用比值判别法求收敛半径.2321121(1)3(21)1()lim 3(23)(1)3n n n n n n n x n x x n x ρ++-+→∞-+=⨯=+-令()1x ρ<可得,3x <,故收敛半径为3R =.在3x =-处,级数成为13(1)21nn n ∞=-+∑,这是交错级数,满足莱布尼兹定理的条件,故收敛; 在3x =处,级数成为113(1)21n n n ∞-=-+∑,这是交错级数,满足莱布尼兹定理的条件,故收敛.因此所给级数的收敛域为[3,3]-.(4)此级数缺少x 的奇次幂.故需利用比值判别法求收敛半径.2222(21)()lim (1)(21)n n n x n n x x n n xρ+→∞-=⋅=++ 令()1x ρ<可得,1x <,故收敛半径为1R =.在1x =-处,级数成为11(21)n n n ∞=-∑,该级数显然收敛; 在1x =处,级数成为11(21)n n n ∞=-∑,该级数收敛. 因此所给级数的收敛域为[1,1]-.(5)此级数中的x 的幂次不是按自然顺依次递增的.故需用比值判别法求收敛半径.4414(1)(1)[4(1)]!()lim 0(4)!(1)n n n n n x n x x n xρ--→∞--=⋅=⋅- 令()1x ρ<可得,(,)x ∈-∞+∞,故收敛半径为R =+∞. 于是幂级数的收敛域为(,)-∞+∞.[例7.2.6] 求幂级数21()(,0)n n nn a b x a b nn ∞=+>∑的收敛域.解:设幂级数1n n n a x n ∞=∑,21n nn b x n∞=∑的收敛半径分别为12,R R ,则11R a =,21R b =.因此幂级数的收敛半径为1211min(,)min(,)R R R a b==. (1) 若a b ≥,则1R a =.在1x a =-,级数为21111(1)(1)()n n n n n b n n a ∞∞==-+-∑∑收敛; 在1x a =,级数为21111()n n n b n na ∞∞==+∑∑发散,从而收敛域为11[,)a a -.(2)若a b <,则1R b=. 在1x b =-,级数为21111(1)()(1)n nn n n a n b n ∞∞==-+-∑∑收敛; 在1x b =,级数为21111()n n n a n b n∞∞==+∑∑收敛;,从而收敛域为11[,]b b -.[例7.2.7] 已知幂级数(3)nn n a x ∞=-∑在0x =处收敛,在6x =处发散,求其收敛域.解:由于幂级数级数(3)nnn a x ∞=-∑在0x =处收敛,由阿贝尔定理可得,当3033x -<-=时,对应的幂级数绝对收敛,所以收敛半径3R ≥;假设收敛半径3R >,由收敛半径的定义可知,3x R -<时,对应的级数都绝对收敛,而633R -=<,所以级数(3)nn n a x ∞=-∑在6x =处绝对收敛,与已知矛盾.故3R ≤.综上可得,收敛半径3R =. 又因为级数(3)nn n a x ∞=-∑在0x =处收敛,在6x =处发散,故收敛域为[0,6).三、函数项级数求收敛域函数项级数1()nn ux ∞=∑求收敛域的基本方法:⑴ 用正项级数比值判别法(或根值判别法)求1()()lim ()n n nu x x u x ρ+→∞=(或()lim ()n n n x u x ρ→∞=);⑵解不等式()1x ρ<,求出1()n n u x ∞=∑的收敛区间(,)αβ;⑶ 判定级数1()nn u α∞=∑与1()nn u β∞=∑的敛散性.评注:函数项级数1()nn ux ∞=∑求收敛域有时也利用变量代换化为幂级数,利用幂级数求收敛域的方法来完成,或者利用数项级数其它判别法、及性质完成.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高数第七章无穷级
数知识点
第七章 无穷级数
一、敛散性判断(单调有界,必有极限;从上往下,具有优先顺序性):
1、形如∑∞
=-11n n aq 的几何级数(等比级数):当1<q 时收敛,当1
≥q 时发散。

2、形如∑∞
=1
1
n p
n
的P 级数:当1>p 时收敛,当1≤p 时发散。

3、⇒
≠∞
→0lim n n U 级数发散; 级数收敛
lim =⇒∞
→n n U
4、比值判别法(适用于多个因式相乘除):若正项级数
∑∞
=1
n n
U
,满
足条件
l
U U n
n n =+∞→1
lim

①当1<l 时,级数收敛;
②当1>l 时,级数发散(或+∞=l ); ③当1=l 时,无法判断。

5、根值判别法(适用于含有因式的n 次幂):若正项级数∑∞
=1n n
U
,满
足条件λ
=∞
→n n n U lim :
①当1<λ时,级数收敛;
②当1>λ时,级数发散(或+∞=λ); ③当1=λ时,无法判断。

注:当1,1==λl 时,方法失灵。

6、比较判别法:大的收敛,小的收敛;小的发散,大的发散。

(通过不等式的放缩) 推论:若∑∞
=1
n n
U

∑∞
=1
n n
V
均为正项级数,且
l
V U n
n
n =∞→lim
(n V 是已知敛散
性的级数)
①若+∞<<l 0,则级数∑∞
=1n n
U

∑∞
=1
n n
V
有相同的敛散性;
②若0=l 且级数∑∞
=1
n n
V
收敛,则级数
∑∞
=1
n n
U
收敛;
③若+∞=l 且级数∑∞
=1n n
V
发散,则级数
∑∞
=1
n n
U
发散。

7、定义判断:若

=∞
→C S n n lim 收敛,若n
n S ∞→lim 无极限⇒发散。

8、判断交错级数的敛散性(莱布尼茨定理):
满足1+≥n n U U ,⇒=∞→0lim n n U 收敛,其和1u S ≤。

9、绝对收敛:级数加上绝对值后才收敛。

条件收敛:级数本身收敛,加上绝对值后发散。

二、无穷级数的基本性质:
1、两个都收敛的无穷级数,其和可加减。

2、收敛的无穷级数
∑∞
=1
n n
U
,其和为S ,则∑∞
=1
n n
aU
,其和为aS (0≠a )
(级数的每一项乘以不为0的常数后,敛散性不变) 3、①级数收敛,加括号后同样收敛,和不变。

(逆否命题:加括号后发散,则原级数发散) ②加括号后级数收敛,原级数未必收敛。

相关文档
最新文档