等厚干涉实验报告
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、实验目得:
1、、观察牛顿环与劈尖得干涉现象。
2、了解形成等厚干涉现象得条件极其特点。
3、用干涉法测量透镜得曲率半径以及测量物体得微小直径或厚度。
二、实验原理:
1.牛顿环
牛顿环器件由一块曲率半径很大得平凸透镜叠放在一块光学平板玻璃上构成, 结构如图所示。
当平行单色光垂直照射到牛顿环器件上时,由于平凸透镜与玻璃之间存在一层从中心向外厚度递增得空气膜, 经空气膜与玻璃之间得上下界面反射得两束光存在光程差, 它们在平凸透镜得凸面(底面)相遇后将发生干涉, 干涉图样就是以接触点为中心得一组明暗相间、内疏外密得同心圆, 称为牛顿环(如图所示。由牛顿最早发现)。由于同一干涉圆环各处得空气薄膜厚度相等, 故称为等厚干涉。牛顿环实验装置得光路图如下图所示:
设射入单色光得波长为λ,在距接触点r k处将产生第k级牛顿环, 此处对应得空气膜厚度为d k, 则空气膜上下两界面依次反射得两束光线得光程差为
式中,n为空气得折射率(一般取1), λ/2就是光从光疏介质(空气)射到光密介质(玻璃)得交界面上反射时产生得半波损失。
根据干涉条件,当光程差为波长得整数倍时干涉相长,反之为半波长奇数倍时干涉相消,故薄膜上下界面上得两束反射光得光程差存在两种情况:
由上页图可得干涉环半径r k, 膜得厚度dk与平凸透镜得曲率半径R之间得关系。由于dk远小于R, 故可以将其平方项忽略而得到。结合以上得两种情况公式,得到:
K=1,2,3,…、, 明环
K=0,1,2,…、, 暗环
,
由以上公式课件, r k与d k成二次幂得关系,故牛顿环之间并不就是等距得, 且为了避免背光因素干扰, 一般选取暗环作为观测对象。
而在实际中由于压力形变等原因, 凸透镜与平板玻璃得接触不就是一个理想得点而就是一个圆面; 另外镜面沾染回程会导致环中心成为一个光斑, 这些都致使干涉环得级数与半径无法准确测量。而使用差值法消去附加得光程差,用测量暗环得直径来代替半径,都可以减少以上类型得误差出现。由上可得:
式中,D m、D n分别就是第m级与第n级得暗环直径, 由上式即可计算出曲率半径R。由于式中使用环数差m-n代替了级数k,避免了圆环中心及暗环级数无法确定得问题。
凸透镜得曲率半径也可以由作图法得出。测得多组不同得Dm与m, 根据公式,可知只要作图求出斜率, 代入已知得单色光波长, 即可求出凸透镜得曲率半径R。
2.劈尖
将两块光学平玻璃叠合在一起, 并在其另一端插入待测得薄片或细丝(尽可能使其与玻璃得搭接线平行),则在两块玻璃之间形成以空气劈尖, 如下图所示:
当单色光垂直射入时, 在空气薄膜上下两界面反射得两束光发生干涉; 由于空气劈尖厚度相等之处就是平行于两玻璃交线得平行直线, 因此干涉条纹就是一组明暗相间得等距平行条纹, 属于等厚干涉。干涉条件如下:
可知,第k级暗条纹对应得空气劈尖厚度为
由干涉条件可知,当k=0时d0=0,对应玻璃板得搭接处, 为零级暗条纹。若在待测薄物体出出现得就是第N级暗条纹,可知待测薄片得厚度(或细丝得直径)为
实际操作中由于N值较大且干涉条纹细密, 不利于N值得准确测量。可先测出n条干涉条纹得距离l, 在
k=0, 1, 2,…