最新交联聚酰亚胺膜

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

交联聚酰亚胺膜

[54]发明名称

交联聚酰亚胺膜

[57]摘要

本发明提供了改进耐溶剂纳滤中所用的聚酰亚胺膜的性能的方法。本发明的方法更特别使得能够改进该聚酰亚胺胰对在过滤过程中所应用的条件下会溶解聚酰亚胺的溶剂或溶剂混合物的溶剂稳定性,所述溶剂例如二甲基甲酰胺

( DMF)、N-甲基吡咯烷酮( NMP)、二甲基乙酰胺(DMAC)、四氢呋喃( THF)、Y-丁内酯(GBL)、二甲亚砜(DMSO)和氯化溶剂。

权利要求书

1.包含聚酰亚胺的超滤或纳滤膜的改性方法,以在保持该膜渗透性的同时提高该膜对有机溶剂的耐受性,所述方法包括使用氨基化合物交联该聚酰亚胺。 2.根据权利要求1的方法,该方法进一步包括对经交联的膜进行溶剂交换程序的步骤。

3.根据权利要求2的方法,其中溶剂交换程序包括将该膜浸渍在异丙醇浴中,然后浸渍在异丙醇一甘油浴中。

4.根据权利要求2或3的方法,该方法进一步包括干燥该膜的步骤。

5.根据权利要求1至4的方法,其中该膜包含具有理解性通用结构的聚酰亚

胺:

6.根据权利要求1至4的方法,其中该膜包含具有理解性通用结构的聚酰亚胺:

7.根据权利要求1至6的方法,其中交联操作包括将聚酰亚胺膜浸渍在包含选自以下的氨基化合物的溶液中:环己胺、对二甲苯二胺、l,2-二氨基乙烷、1,6-己二胺、3-氨基丙基甲基二乙氧基硅烷、三(2-氨基乙基)胺、三亚乙基四胺、五亚乙基六胺、聚乙烯亚胺、分子量为5 0至2 0,0 0 0的主要基于聚环氧乙烷骨架的聚醚二胺、分子量为2 0 0至2 0 0,0 0 0的三甲氧基甲硅烷基丙基取代的聚乙烯胺、分子量为1,0 0 0至2 0 0,0 0 0的聚乙烯胺、含水氢氧化铵和异丁基胺。

8.根据权利要求7的方法,其中该交联包括将该膜浸渍在对二甲苯二胺在甲醇中的1-25%w/v溶液中。

9.根据权利要求8的方法,其中该交联包括将该膜浸渍在对二甲苯二胺在甲醇中的10%w/v溶液中。

1 0.可通过权利要求1至9的方法获得的膜,其耐受有机溶剂及其混合物。

1 1.根据权利要求1 0的膜,其尤其耐受非质子溶剂。

1 2.根据权利要求1 0或1 1的膜,其中所述膜具有200-2000Da的截留分子量和至少1 l/m2巴h的渗透率。

1 3.根据权利要求10至12的膜在涉及有机溶剂的压力驱动液体分离法中的用途。

14.从分子量为200至2000 Da的化合物在有机溶剂或溶剂混合物中的溶液中分离所述化合物的方法,所述方法包括使该溶液在压力下与根据权利要求1-9的方法改性的聚酰亚胺膜接触。

1 5.权利要求9的方法,其中所述有机溶剂是非质子溶剂,或所述有机溶剂混合物包含非质子溶剂。

交联聚酰亚胺膜

技术领域

本发明涉及改进耐溶剂纳滤中所用的聚酰亚胺膜的性能,更特别涉及延伸该聚酰亚胺膜对在过滤过程中所用的条件下会溶解聚酰亚胺的溶剂或溶剂混合物的溶剂稳定性。

背景技术

纳滤是压力驱动的分离法。其涉及借助通过对该膜进料侧施加压力(气体压力或机械压力)而产生的压力梯度而在膜上分离两种或更多种组分的方法。该压力驱动的膜法可以根据施加的压力分成4类,其典型值列在表1中( Mulder,1996)。当具体涉及溶剂应用时,术

语“耐溶剂纳滤( SRNF)"还包括反渗透和超滤的高压端。

表1:压力驱动的膜法

穿过该膜的体积通量取决于膜上的压力梯度、进料性质以及取决于该膜的液压阻力。后者取决于膜性质,如该膜的选择性层的孔尺寸和结构、孔隙率和厚度。

溶质被该膜的截留率由不同机理决定,例如组分在液体和膜相之间的分布、固体与液体中的其它组分和与孔壁或聚合物链的相互作用。通常,液体一膜相互作用、溶质一膜相互作用和溶质一液体相互作用在分离法中起作用。该膜(在某些溶剂中)的不合意溶胀可能干扰该分离法,这例如可降低选择性并最终导致膜聚合物的溶解。

压力驱动的膜分离法仍主要用在水处理法中,但它们越来越多地用于非水性料流中的分离,例如从溶剂中分离出染料或表面活性剂、聚合物分级、溶解的催化剂与产物和溶剂分离、药物中间体和产物与溶剂分离、甘油三酯和磷脂与油mycella(乳酪)分离、油脱酸、萃

取溶剂的回收、烃和润滑油与溶剂分离、溶剂交换等。

微滤( MF)、超滤(UF)、纳滤(NF)和反渗透(RO)膜经常由在某些条件下在某些溶剂中不稳定的聚合物材料制成。这在可加工性层面是有利的,其中该聚合物的溶解对例如经由相反转法制备无缺陷膜而言经常是必不可少的。在实际过滤过程中,膜稳定性的缺乏经常被观察为过度溶胀,或最终甚至被观察为该聚合物完全溶解在构成要处理的进料的有机溶剂中。因此,膜选择性降低且膜变得不可用。将聚合物膜改性以改进其在有机溶剂中的耐受性对延伸压力驱动的膜法在非水性料流中的应用而言是非常重要的。

原则上,陶瓷膜在一定pH-范围内或甚至在升高的温度下耐受任何有机溶剂,但它们昂贵且一旦孔尺寸降至较低NF-范围(通常从400Da超)就经常表

现出低或甚至无有机物通量。已经描述了陶瓷膜,涉及亲水性无机膜在孔隙中的疏水化。二氧化硅/氧化锆膜和y-氧化

铝膜已被研究用于非水性应用。(Tsuru等人,1 9 9 8;Tsuru等人,2 0 0 0;Tsuru等人,2 0 01;Tsuru等人,2 0 06;Verrecht等人,2 0 0 6)。已经报道了用甲硅烷基化剂将陶瓷介孔膜进行甲硅烷基化。已经制成在有机溶剂,如甲苯、己烷、醇等中具有优异适用性的多种聚合物膜。聚酰亚胺膜已用于芳烃与非芳烃的分离(美国专利6,1 8 0,0 0 8)、用于润滑油与有机溶剂,如甲苯和己烷的分离(美国专利5,2 6 4,1 6 6)、用于回收有机溶剂和有价值的组分( Cuperus,2005)等。已经例如通过使用专门设计的单体单元将聚丙烯腈改性以用在有机溶剂,例如DMF中(Hicke等人,2 0 0 2)。耐溶剂纳滤膜中所用的聚合物的其它实例是聚醚酰亚胺、聚酰胺、聚砜、聚(醚醚酮)乙酸纤维素、聚苯并咪唑、聚二甲基硅氧烷等。

但是,一些溶剂类别导致这些聚合物的严重稳定性问题。特别地,非质子溶剂类,例如二甲基甲酰胺( DMF)、N-甲基吡咯烷酮(NMP)、二甲基乙酰胺

( DMAC)、四氢呋喃(THF)、Y-丁内酯(GBL)、二甲亚砜( DMSO)和氯化溶剂,仍是有问题的溶剂类别。高稳定交联弹性体,例如聚二甲基硅氧烷,太疏水以致不能成功用在这些溶剂中。Linder等人公开了聚合物膜的合成后的处理以使它们不溶于非质子溶剂(例如NMP、DMF等)并在SRNF-范围内可用(Linder,1991)。他们通过在升高的温度下在含水碱( NaOH)溶液中化学交联来将聚丙烯腈膜改性。

相关文档
最新文档