中考复习专题圆切线证明

合集下载

中考专题复习[33]ZZzzl圆的切线的证明

中考专题复习[33]ZZzzl圆的切线的证明

证明:作CE⊥AB于E,
连接AC、OC、BC, ∵ AB是⊙O的直径,
D
C
1 3 2
A E
O
B
∴ ∠ACB = 90°,∴ ∠2 + ∠ACO = 90°,
又∵ CD是⊙O的切线,∴ OC⊥DC, ∴ ∠1 + ∠ACO = ∠DCO = 90°, ∴ ∠1 = ∠2, 又∵ OC = OB,∴ ∠2 = ∠B,∴ ∠1 = ∠B,
A O C E B D
∵ ∠B = ∠D, ∠CAE = ∠B,
∴ ∠D = ∠CAE,
∴ ∠CAE + ∠DAC = ∠D + ∠DAC = 90°, 即∠DAE = 90°, ∴ OA⊥AE, ∴ AE是⊙O的切线.
3
二、例题讲解 2. 如图,AB是半圆⊙O的直径,C为半圆上的一点,CD切⊙O 于点C,AD⊥CD于D,以C为圆心CD为半径作圆C, 求证:AB是⊙C的切线.
又AC = AC, ∠CDA = ∠CEA = 90°,
∴ △ACD≌△ACE,
∴ CE = CD, ∴ AB是⊙C的切线.
5
三、巩固练习 1. 如图,已知∠AOB = 30°,M是OA边上任意一点,以M为 圆心,2 cm为半径作⊙M,当OM = ____ 4 cm时,⊙M与OB
相切.
分析:作MC⊥OB于C, 当MC = 2 cm时,⊙M与OB相切, ∵ ∠O = 30°, ∴ OM = 2MC = 2×2 = 4(cm)
O M
)30°
A
C
B
6
三、巩固练习 2. 如图AB是⊙O的直径,OD⊥BC与弦BC于点F,交⊙O于E, ∠AEC = ∠ODB, (1)判断直线BD与⊙O的位置关系,并给出证明;

中考复习证明圆的切线的两种方法

中考复习证明圆的切线的两种方法

中考复习证明圆的切线的两种方法证明圆的切线有两种方法,其中一种是通过切线与半径的关系来证明,另一种是通过圆的切线与半径的垂直关系来证明。

首先,我们来看第一种方法。

1.通过切线与半径的关系证明:设圆的圆心为O,半径为r,切线与圆的切点为A。

由圆的性质可知,半径与切线在切点处垂直,因此OA⊥TA。

又因为同一条直线上的两个垂直角相等,所以∠OTA=90°。

设切线与半径的交点为B,连接OB。

由于切线只有一个触点,所以TA=TB=r,且AB为直径。

在△OAB中,∠OAB=90°,所以角OAB也是直角,即AB垂直于OA。

综上所述,切线与半径在切点处垂直,即切线是与半径垂直的直线。

接下来,我们来看第二种方法。

2.通过圆的切线与半径的垂直关系证明:设圆的圆心为O,半径为r,切线与圆的切点为A。

由圆的性质可知,切线与半径在切点处垂直,即OA⊥AT。

在△OAT中,角AOT是圆心角,它对应的弧AT是它所对的弧,所以∠AOT=1/2arc(AT)。

而角AOT是直角,所以∠AOT=90°。

所以1/2arc(AT)=90°,即arc(AT)=180°,即AT是整个圆的弧。

同理可知切线与半径相交于切点处的弧也是整个圆的弧。

所以切点处的弧为整个圆的弧,即切线与半径相交于切点处的弧都是整个圆的弧。

综上所述,切线与半径在切点处相交的弧都是整个圆的弧,即切线与半径在切点处垂直。

综合两种方法的证明,我们可以得出圆的切线与半径在切点处垂直,并且切线与半径相交于切点处的弧都是整个圆的弧。

这就是证明圆的切线的两种方法的过程。

注:以上只是两种常用的证明方法,实际上还有其他一些方法来证明圆的切线的性质。

中考复习圆与切线

中考复习圆与切线

1.如图,AB 是0 的的直径,BC ⊥AB 于点B ,连接OC 交0 于点E ,弦AD//OC,弦DF ⊥AB 于点G 。

(1)求证:点E 是 BD的中点; (2)求证:CD 是0 的切线; (3)若4sin 5B A D ∠=,0 的半径为5,求DF 的长。

2.(本题满分10分)如图11,在△ABC 中,AB=BC ,以AB 为直径的⊙O 与AC 交于点D ,过D 作D F ⊥BC ,交AB 的延长线于E ,垂足为F . (1)求证:直线DE 是⊙O 的切线; (2)当AB=5,AC=8时,求cosE 的值.3、(2011•淮安)如图,AD 是⊙O 的弦,AB 经过圆心O ,交⊙O 于点C .∠DAB=∠B=30°. (1)直线BD 是否与⊙O 相切?为什么? (2)连接CD ,若CD=5,求AB 的长.考点:切线的判定;含30度角的直角三角形;圆周角定理。

专题:计算题;证明题。

分析:(1)连接OD ,通过计算得到∠ODB=90°,证明BD 与⊙O 相切.(2)△OCD 是边长为5的等边三角形,得到圆的半径的长,然后求出AB 的长. 解答:解:(1)直线BD 与⊙O 相切.图11如图连接OD,CD,∵∠DAB=∠B=30°,∴∠ADB=120°,∵OA=OD,∴∠ODA=∠OAD=30°,∴∠ODB=∠ADB﹣∠ODA=120°﹣30°=90°.所以直线BD 与⊙O相切.(2)连接CD,∠COD=∠OAD+∠ODA=30°+30°=60°,又OC=OD∴△OCD是等边三角形,即:OC=OD=CD=5=OA,∵∠ODB=90°,∠B=30°,∴OB=10,∴AB=AO+OB=5+10=15.点评:本题考查的是切线的判断,(1)根据切线的判断定理判断BD与圆相切.(2)利用三角形的边角关系求出线段AB的长.4、(2011•随州)如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠PCA=()A、30°B、45°C、60°D、67.5°考点:切线的性质。

中考总复习圆切线专题

中考总复习圆切线专题

题型专项( 八)与切线有关的证明与计算种类 1 与全等三角形相关1.(2016·梧州)如图,过⊙O上的两点连结 CD ,交⊙ O 于点 E ,F,过圆心A ,B 分别作切线,交于O 作 OM ⊥ CD ,垂足为点BO,AO M.的延伸线于点C, D ,求证:(1) △ ACO ≌△ BDO ;(2)CE = DF.证明:(1) ∵ AC , BD 分别是⊙O 的切线,∴∠ A=∠ B = 90° .又∵ AO = BO ,∠ AOC =∠ BOD ,∴△ ACO ≌△ BDO.(2) ∵△ ACO ≌△ BDO ,∴OC = OD.又∵ OM ⊥ CD ,∴ CM = DM.又∵ OM ⊥EF ,点 O 是圆心,∴EM = FM.∴CM - EM = DM - FM.∴CE =DF.2.(2016·玉林模拟)如图,AB是⊙O的直径,∠BAC=60°,P是OB上一点,过P作AB的垂线与 AC 的延伸线交于点 Q,过点 C 的切线 CD 交 PQ 于点 D,连结 OC.(1)求证:△ CDQ 是等腰三角形;(2)假如△ CDQ ≌△ COB ,求 BP∶ PO 的值.解: (1) 证明:由已知得∠ACB = 90°,∠ ABC = 30° .∴∠ Q= 30°,∠ BCO =∠ ABC = 30 ° .∵CD 是⊙ O 的切线, CO 是半径,∴CD ⊥ CO.∴∠ DCQ =∠ BCO = 30° .∴∠ DCQ =∠ Q.故△ CDQ 是等腰三角形.(2)设⊙ O 的半径为 1,则 AB = 2, OC= 1, BC = .∵等腰三角形CDQ 与等腰三角形COB 全等,∴CQ = CB = .∴AQ = AC + CQ= 1+ .∴AP = AQ = .∴B P = AB - AP = .∴PO = AP- AO = .∴B P ∶ PO= .3.(2016·柳州)如图,AB为△ABC外接圆⊙O的直径,点P是线段CA的延伸线上一点,点 E 在弧上且知足 PE2= PA· PC,连结 CE , AE , OE 交 CA 于点 D.(1) 求证:△ PAE ∽△ PEC;(2) 求证: PE 为⊙ O 的切线;(3) 若∠ B= 30°, AP= AC ,求证: DO =DP.证明: (1) ∵ PE2= PA·PC ,∴= .又∵∠ APE =∠ EPC,∴△ PAE ∽△ PEC.(2) ∵△ PAE ∽△ PEC,∴∠ PEA =∠ PCE.∵∠ PCE=∠ AOE ,∴∠ PEA =∠ AOE. ∵ OA = OE,∴∠ OAE =∠ OEA.∵∠ AOE +∠ OEA +∠ OAE = 180°,∴∠ AOE + 2∠ OEA = 180°,即2∠ PEA + 2∠OEA = 180 ° .∴∠ PEA +∠ OEA =90 ° .∴PE 为⊙ O 的切线.(3)设⊙ O 的半径为 r,则 AB = 2r.∵∠ B = 30 °,∠ PCB = 90°,∴ AC = r, BC = r. 过点 O 作 OF ⊥ AC 于点 F,∴O F = r.∵ AP = AC ,∴AP = .∵ PE2= PA·PC,∴ PE= r.在△ ODF 与△ PDE 中,∴△ ODF ≌△ PDE. ∴ DO = DP.种类 2与相像三角形相关4.(2016·泰州)如图,在△ABC中,∠ACB BC 于点 E,连结 AE 交 CD 于点 P,交⊙ O =90°,在 D 为 AB 上一点,以 CD 为直径的⊙ O 交于点 F ,连结 DF,∠ CAE =∠ ADF.(1)判断 AB 与⊙ O 的地点关系,并说明原因;(2)若 PF∶ PC= 1∶ 2, AF = 5,求 CP 的长.解: (1)AB 是⊙ O 切线.原因:∵∠ ACB = 90°,∴∠ CAE +∠ CEA = 90 °.∵∠ CAE =∠ ADF ,∠ CDF =∠ CEA ,∴∠ ADF +∠ CDF = 90° .∴ AB 是⊙ O 切线.(2) 连结 CF.∵∠ ADF +∠ CDF = 90°,∠ PCF+∠ CDF = 90°,∴∠ ADF =∠ PCF.∴∠ PCF=∠ PAC.又∵∠ CPF=∠ APC ,∴△ PCF∽△ PAC. ∴= .∴P C 2= PF·PA. 设 PF= a,则 PC= 2a.∴4a2=a(a+ 5).∴a= .∴P C = 2a= .5.(2015·北海)如图,AB,CD为⊙O的直径,弦AE∥CD,连结BE交CD于点F,过点E作直线 EP 与 CD 的延伸线交于点 P,使∠ PED=∠ C.(1)求证: PE 是⊙ O 的切线;(2)求证: ED 均分∠ BEP;(3)若⊙ O 的半径为 5, CF= 2EF,求 PD 的长.解: (1) 证明:连结OE.∵CD 是圆 O 的直径,∴∠ CED = 90 °.∵OC = OE,∴∠ C=∠ OEC.又∵∠ PED =∠ C,∴∠ PED =∠ OEC.∴∠ PED +∠ OED =∠ OEC +∠ OED = 90°,即∠ OEP = 90 ° .∴OE ⊥ EP.又∵点 E 在圆上,∴PE 是⊙ O 的切线.(2)证明:∵ AB , CD 为⊙ O 的直径,∴∠ AEB =∠ CED = 90 °.∴∠ AEC =∠ DEB( 同角的余角相等).又∵∠ PED =∠ C, AE ∥ CD ,∴∠ PED =∠ DEB ,即ED 均分∠ BEP.(3) 设 EF= x ,则 CF= 2x.∵⊙ O 的半径为5,∴O F =2x - 5.在Rt△ OEF 中, OE 2= EF2+ OF2,即 52= x2+ (2x - 5) 2,解得 x=4,∴EF = 4.∴B E = 2EF= 8, CF= 2EF = 8.∴D F = CD- CF = 10- 8= 2.∵AB 为⊙ O 的直径,∴∠ AEB = 90 °.∵AB = 10, BE =8,∴ AE = 6.∵∠ BEP =∠ A ,∠ EFP=∠ AEB = 90°,∴△ EFP∽△ AEB.∴=,即= .∴P F= .∴P D = PF- DF =- 2= .6.(2014·桂林)如图,△ABC为⊙O的内接三角形,P为BC延伸线上一点,∠PAC=∠B,AD为⊙ O 的直径,过点 C 作 CG⊥ AD 于点 E,交 AB 于点 F,交⊙ O 于点 G.(1)判断直线 PA 与⊙ O 的地点关系,并说明原因;(2)求证: AG 2= AF·AB ;(3)若⊙ O 的直径为 10 , AC = 2, AB = 4,求△ AFG 的面积.解: (1)PA 与⊙ O 相切.原因:连结CD.∵AD 为⊙ O 的直径,∴∠ ACD = 90 ° .∴∠ D +∠ CAD = 90 °.∵∠ B =∠ D ,∠ PAC =∠ B ,∴∠ PAC =∠ D.∴∠ PAC +∠ CAD = 90°,即 DA ⊥ PA.∵点 A 在圆上,∴ PA 与⊙ O 相切.(2)证明:连结 BG.∵AD 为⊙ O 的直径, CG⊥ AD ,∴= .∴∠ AGF =∠ ABG.∵∠ GAF =∠ BAG ,∴△ AGF ∽△ ABG.∴AG ∶ AB = AF ∶ AG. ∴ AG 2= AF·AB.(3) 连结 BD.∵AD 是直径,∴∠ ABD = 90° .∵AG 2= AF·AB , AG = AC = 2, AB = 4,∴AF == .∵CG ⊥ AD ,∴∠ AEF =∠ ABD = 90 ° .∵∠ EAF =∠ BAD ,∴△ AEF ∽△ ABD.∴=,即=,解得 AE = 2.∴E F == 1.∵EG == 4,∴F G =EG - EF= 4-1= 3.∴S△AFG= FG·AE =× 3× 2= 3.种类 3与锐角三角函数相关7.(2014·梧州)如图,已知⊙O是以BC为直径的△ABC的外接圆,OP∥AC,且与BC的垂线交于点 P, OP 交 AB 于点 D , BC , PA 的延伸线交于点 E.(1)求证: PA 是⊙ O 的切线;(2)若 sin∠ E=, PA = 6,求 AC 的长.解: (1) 证明:连结OA.∵AC ∥ OP,∴∠ AOP =∠ OAC ,∠ BOP =∠ OCA.∵OA = OC ,∴∠ OCA =∠ OAC. ∴∠ AOP =∠ BOP.又∵ OA = OB , OP= OP,∴△ AOP ≌△ BOP. ∴∠ OAP =∠ OBP.∵B P ⊥ CB ,∴∠ OAP =∠ OBP = 90° .∴ OA ⊥ PA.∴PA 是⊙ O 的切线.(2)∵ PB⊥ CB ,∴ PB 是⊙ O 的切线.又∵ PA 是⊙ O 的切线,∴PA =PB= 6.又∵ sin E===,∴ AO = 3.在Rt△ OPB 中, OP== 3.∵B C 为⊙ O 直径,∴∠ CAB = 90° .∴∠ CAB =∠ OBP = 90°,∠ OCA =∠ BOP.∴△ ACB ∽△ BOP. ∴= .∴AC === .8.(2015·贵宾)已知⊙O是以AB为直径的△ABC的外接圆,OD∥BC交⊙O于点D,交AC于点E,连结 AD , BD , BD 交 AC 于点 F.(1)求证: BD 均分∠ ABC ;(2)延伸 AC 到点 P,使 PF= PB,求证: PB 是⊙ O 的切线;(3)假如 AB =10 , cos∠ ABC =,求 AD.解: (1) 证明:∵ OD ∥ BC ,∴∠ ODB =∠ CBD.∵OB = OD ,∴∠ OBD =∠ ODB.∴∠ CBD =∠ OBD.∴B D 均分∠ ABC.(2)证明:∵⊙ O 是以 AB 为直径的△ ABC 的外接圆,∴∠ ACB = 90° .∴∠ CFB +∠ CBF = 90° .∵P F= PB,∴∠ PBF=∠ CFB.由(1) 知∠ OBD =∠ CBF ,∴∠ PBF +∠ OBD = 90° .∴∠ OBP = 90° .∴PB 是⊙ O 的切线.(3)∵在 Rt△ ABC 中,∠ ACB = 90°, AB =10,∴cos∠ ABC === .∴B C = 6, AC == 8.∵OD ∥ BC ,∴△ AOE ∽△ ABC ,∠ AED =∠ OEC = 180 °-∠ ACB = 90 °.∴==,== .∴AE = 4, OE= 3.∴D E = OD - OE= 5- 3= 2.∴AD === 2.9.(2016·柳州模拟)如图,已知:AC是⊙O的直径,PA⊥AC,连结OP,弦CB∥OP,直线PB 交直线 AC 于点 D , BD = 2PA.(1)证明:直线 PB 是⊙ O 的切线;(2)研究线段 PO 与线段 BC 之间的数目关系,并加以证明;(3)求 sin∠ OPA 的值.解: (1) 证明:连结OB.∵B C ∥ OP, OB =OC ,∴∠ BCO =∠POA ,∠CBO =∠ POB ,∠ BCO =∠ CBO.∴∠ POA =∠ POB. 又∵ PO = PO, OB = OA ,∴△ POB ≌△ POA. ∴∠ PBO =∠ PAO = 90° .∴PB 是⊙ O 的切线.(2)2PO = 3BC.( 写 PO= BC 亦可 )证明:∵△ POB ≌△ POA ,∴ PB= PA.∵B D = 2PA ,∴ BD = 2PB.∵B C ∥ PO,∴△ DBC ∽△ DPO.∴== .∴ 2PO= 3BC.(3) ∵ CB ∥ OP,∴△ DBC ∽△ DPO.∴==,即 DC = OD.∴OC = OD. ∴ DC= 2OC.设OA = x, PA = y.则 OD= 3x, OB = x , BD = 2y.在Rt△ OBD 中,由勾股定理得 (3x) 2= x2+ (2y) 2,即 2x2= y2.∵x> 0, y> 0,∴ y= x,OP == x.∴s in ∠ OPA ==== .种类 4与特别四边形相关10.(2016·玉林)如图,AB是⊙O的直径,点C,D在圆上,且四边形AOCD是平行四边形,过点D 作⊙ O 的切线,分别交 OA 延伸线与 OC 延伸线于点 E, F,连结 BF.(1)求证: BF 是⊙ O 的切线;(2)已知圆的半径为 1,求 EF 的长.解: (1) 证明:连结OD.∵E F 为⊙ O 的切线,∴∠ ODF = 90 °.∵四边形AOCD 为平行四边形,∴AO = DC , AO ∥ DC.又∵ DO = OC = OA ,∴DO = OC = DC.∴△ DOC 为等边三角形.∴∠ DOC =∠ ODC = 60° .∵DC ∥ AO ,∴∠ AOD =∠ ODC =60 ° .∴∠ BOF = 180°-∠ COD -∠ AOD = 60° .在△ DOF 和△ BCF 中,∴△ DOF ≌△ BOF.∴∠ ODF =∠ OBF = 90° .∴BF 是⊙ O 的切线.(2)∵∠ DOF = 60°,∠ ODF =90°,∴∠ OFD = 30 °.∵∠ BOF = 60°,∠ BOF =∠ CFD +∠ E,∴∠ E =∠ OFD =30 ° .∴O F =OE.又∵ OD ⊥ EF,∴D E = DF.在Rt△ ODF 中,∠ OFD = 30 °.∴O F =2OD.∴D F === .∴E F = 2DF =2.11.(2016·宁波)如图,已知⊙O的直径AB = 10,弦 AC = 6,∠ BAC 的均分线交⊙O 于点 D ,过点D 作 DE ⊥ AC 交 AC 的延伸线于点 E.(1)求证: DE 是⊙ O 的切线;(2)求 DE 的长.解: (1) 证明:连结OD.∵AD 均分∠ BAC ,∴∠ DAE =∠ DAB.∵OA = OD ,∴∠ ODA =∠ DAO.∴∠ ODA =∠ DAE.∴OD ∥ AE.∵DE ⊥ AC ,∴OD ⊥ DE.∴DE 是⊙ O 切线.(2) 过点 O 作 OF ⊥ AC 于点 F.∴AF = CF= 3.∴O F === 4.∵∠ OFE =∠ DEF =∠ ODE = 90°,∴四边形OFED 是矩形.∴D E = OF = 4.12.(2015·桂林)如图,四边形ABCD是⊙O的内接正方形,AB=4,PC,PD是⊙O的两条切线,C, D 为切点.(1)如图 1,求⊙ O 的半径;(2)如图 1,若点 E 是 BC 的中点,连结 PE,求 PE 的长度;(3)如图 2,若点 M 是 BC 边上随意一点 (不含 B ,C),以点 M 为直角极点,在 BC 的上方作∠ AMN=90 °,交直线 CP 于点 N ,求证: AM = MN.解: (1) 连结 OD , OC.∵P C , PD 是⊙ O 的两条切线, C, D 为切点,∴∠ ODP =∠ OCP = 90° .∵四边形ABCD 是⊙ O 的内接正方形,∴∠ DOC = 90°, OD = OC.∴四边形DOCP 是正方形.∵AB = 4,∠ ODC =∠ OCD = 45°,∴DO = CO = DC·sin45°= 4×= 2.(2) 连结 EO, OP.∵点 E 是 BC 的中点,∴OE ⊥ BC ,∠ OCE = 45 °,则∠ EOP = 90° .∴EO = EC = 2, OP= CO= 4.∴P E== 2.(3)证明:在 AB 上截取 BF =BM.∵AB = BC , BF = BM ,∴AF =MC ,∠ BFM =∠ BMF = 45° .∵∠ AMN = 90°,∴∠ AMF +∠ NMC = 45°,∠ FAM +∠ AMF = 45° .∴∠ FAM =∠ NMC.∵由 (1) 得 PD = PC,∠ DPC = 90°,∴∠ DCP = 45° .∴∠ MCN = 135° .∵∠ AFM = 180 °-∠ BFM = 135 °,在△ AFM 和△ MCN 中,∴△ AFM ≌△ MCN( ASA).∴AM = MN.。

2022年中考数学大题圆证明切线的两种常用方法及专项练习题汇总

2022年中考数学大题圆证明切线的两种常用方法及专项练习题汇总

2022中考数学圆综合大题证明切线的两种常用方法类型1直线与圆有交点方法归纳:直线过圆上某一点,证明直线是圆的切线时,只需“连半径,证垂直,得切线”.“证垂直”时通常利用圆中的关系得到90°的角,如直径所对的圆周角等于90°等.【例1】如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M.求证:DM与⊙O相切.1.(朝阳中考)如图,AB是⊙O的弦,OA⊥OD,AB,OD交于点C,且CD=BD.(1)判断BD与⊙O的位置关系,并证明你的结论;(2)当OA=3,OC=1时,求线段BD的长.2.(德州中考)如图,已知⊙O的半径为1,DE是⊙O的直径,过D作⊙O的切线,C是AD的中点,AE交⊙O于B点,四边形BCOE是平行四边形.(1)求AD的长;(2)BC是⊙O的切线吗?若是,给出证明,若不是,说明理由.3.(毕节中考)如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.(1)求证:AC是⊙O的切线;(2)已知圆的半径R=5,EF=3,求DF的长.类型2不确定直线与圆是否有公共点方法归纳:直线与圆没有已知的公共点时,通常“作垂直,证半径,得切线”.证明垂线段的长等于半径常用的方法是利用三角形全等或者利用角平分线上的点到角的两边的距离相等.【例2】如图,AB=AC,D为BC中点,⊙D与AB切于E点.求证:AC与⊙D相切.4.如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙O与BC 相切于点M,与AB,AD分别相交于点E,F.求证:CD与⊙O相切.5.如图,在Rt△ABC中,∠B=90°,∠BAC的平分线交BC于点D,E为AB上的一点,DE=DC,以D为圆心,DB长为半径作⊙D,AB=5,EB=3.(1)求证:AC是⊙D的切线;(2)求线段AC的长.参考答案【例1】 证明:法一:连接OD.∵AB =AC ,∴∠B =∠C.∵OB =OD ,∴∠BDO =∠B.∴∠BDO =∠C.∴OD ∥AC.∵DM ⊥AC ,∴DM ⊥OD.∴DM 与⊙O 相切.法二:连接OD ,AD. ∵AB 是⊙O 的直径,∴AD ⊥BC.∵AB =AC ,∴∠BAD =∠CAD.∵DM ⊥AC ,∴∠CAD +∠ADM =90°.∵OA =OD ,∴∠BAD =∠ODA.∴∠ODA +∠ADM =90°.即OD ⊥DM ,∴DM 是⊙O 的切线.1.(1)连接OB ,∵OA =OB ,∴∠OAC =∠OBC.∵OA ⊥OD ,∴∠AOC =90°.∴∠OAC +∠OCA =90°.∵DC =DB ,∴∠DCB =∠DBC.∵∠DCB =∠ACO ,∴∠ACO =∠DBC.∴∠DBC +∠OBC =90°.∴∠OBD =90°.∵点B 是半径OB 的外端,∴BD 与⊙O 相切.(2)设BD =x ,则CD =x ,OD =x +1,OB =OA =3,由勾股定理得:32+x 2=(x +1)2.解得x =4.∴BD =4.2.(1)连接BD ,则∠DBE =90°.∵四边形BCOE 是平行四边形,∴BC ∥OE ,BC =OE =1.在Rt △ABD 中,C 为AD 的中点,∴BC =12AD =1.∴AD =2.(2)BC 是⊙O 的切线,理由如下:连接OB ,由(1)得BC ∥OD ,且BC =OD.∴四边形BCDO 是平行四边形.又∵AD 是⊙O 的切线,∴OD ⊥AD.∴四边形BCDO 是矩形.∴OB ⊥BC ,∴BC 是⊙O 的切线.3.(1)连接OA ,OD ,∵D 为BE 的下半圆弧的中点,∴∠FOD=90°.∵AC=FC,∴∠CAF=∠AFC.∵∠AFC=∠OFD,∴∠CAF=∠OFD.∵OA=OD,∴∠ODF=∠OAF.∵∠FOD=90°.∴∠OFD+∠ODF=90°.∴∠OAF+∠CAF=90°,即∠OAC=90°.∴AC与⊙O相切.(2)∵半径R=5,EF=3,∴OF=OE-EF=5-3=2.在Rt△ODF中,DF=52+22=29.【例2】法一:连接DE,作DF⊥AC,垂足为F.∵AB是⊙D的切线,∴DE⊥AB.∵DF⊥AC,∴∠DEB=∠DFC=90°.∵AB=AC,∴∠B=∠C.∵BD=CD,∴△BDE≌△CDF.∴DF=DE.∴F在⊙D上.∴AC是⊙D的切线.法二:连接DE,AD,作DF⊥AC,F是垂足.∵AB与⊙D相切,∴DE⊥AB.∵AB=AC,BD=CD,∴∠DAB=∠DAC.∵DE⊥AB,DF⊥AC,∴DE=DF.∴F在⊙D上,∴AC与⊙D相切.4.证明:连接OM,过点O作ON⊥CD,垂足为N,∵⊙O与BC相切于M,∴OM⊥BC.∵正方形ABCD中,AC平分∠BCD,又∵ON⊥CD,OM⊥BC,∴OM=ON.∴N在⊙O上.∴CD与⊙O相切.5.(1)证明:过点D作DF⊥AC于F.∵∠ABC=90°,∴AB⊥BC.∵AD平分∠BAC,DF⊥AC,∴BD=DF.∴点F在⊙D上.∴AC是⊙D的切线.(2)在Rt△BDE和Rt△FDC中,∵BD=DF,DE=DC,∴Rt△BDE≌Rt△FDC(HL),∴EB=FC.∵AB=AF,∴AB+EB=AF+FC,即AB+EB=AC,∴AC=5+3=8.2022年中考数学复习专题---圆中阴影面积计算班级:___________姓名:___________学号:___________1.如图,直线y kx b=+经过点M(1,√3)和点N(1−,3√3),A、B是此直线与坐标轴的交点.以AB为直径作⊙C,求此圆与y轴围成的阴影部分面积.2.如图,AAAA是⊙OO的直径,CC,DD是圆上两点,且有BD�=CCDD�,连结AADD,AACC,作DDDD⊥AACC的延长线于点DD.(1)求证:DDDD是⊙OO的切线;(2)若AADD=2√3,∠AADDDD=60∘,求阴影部分的面积.(结果保留ππ)3.如图,AAAA是圆OO的直径,AACC⊥AAAA,DD为圆OO上的一点,AACC=DDCC,延长CCDD交AAAA的延长线于点DD.(1)求证:CCDD为圆OO的切线.(2)若OOFF⊥AADD,OOFF=1,30∠=o,求圆中阴影部分的面积.(结果保留ππ)OAF4.如图,⊙OO是等边ΔAAAACC的外接圆,连接AAOO并延长至点PP,且AAAA=AAPP.(1)求证:PPAA是⊙OO的切线;(2)若AAAA=2√3,求图中阴影部分的面积.(结果保留ππ和根号)5.如图,OO为等边△AAAACC的外接圆,DD为直径CCDD延长线上的一点,连接AADD,AADD=AACC.(1)求证:AADD是⊙O的切线;(2)若CCDD=6,求阴影部分的面积.6.如图,AC为圆O的直径,弦AD的延长线与过点C的切线交于点B,E为BC中点,AC= 4√3,BC=4.(1)求证:DE为圆O的切线;(2)求阴影部分面积.7.已知AB是⊙O的直径,点C是圆O上一点,点P为⊙O外一点,且OP∥BC,∠P=∠BAC.(1)求证:P A为⊙O的切线;(2)如果OP=AB=6,求图中阴影部分面积.8.如图,AAAA为⊙OO的直径,弦CCDD⊥AAAA,垂足为DD,CCDD=4√5,连接OOCC,OODD=2DDAA,FF为圆上一点,过点FF作圆的切线交AAAA的延长线于点GG,连接AAFF,AAFF=AAGG.(1)求⊙OO的半径;(2)求证:AAFF=FFGG;(3)求阴影部分的面积.9.如图,△ABC中,∠C=90º,∠ABC=2∠A,点O在AC上,OA=OB,以O为圆心,OC为半径作圆.(1)求证:AB是⊙O的切线;(2)若BC=3,求图中阴影部分的面积.10.如图,在△ABC中,∠CC=60∘,⊙OO是△ABC的外接圆,点P在直径BD的延长线上,且AB=AP.(1)求证:PA是⊙OO的切线;(2)若AB=2√3,求图中阴影部分的面积.(结果保留ππ和根号)11.如图,AB为圆O的直径,射线AD交圆O于点F,点C为劣弧BF的中点,过点C作CE⊥AD,垂足为E,连接AC(1)求证:CE是圆O的切线(2)若∠BAC=30°,AB=4,求阴影部分的面积12.如图,CD是⊙O的直径,AB是⊙O的弦,AB⊥CD于G,OG:OC=3:5,AB=8.(1)求⊙O的半径;(2)点E为圆上一点,∠ECD=15º,将弧CE沿弦CE翻折,交CD于点F,求图中阴影部分的面积.13.如图,已知⊙O是△ABC的外接圆,AC是直径,∠A=30°,BC=4,点D是AB的中点,连接DO并延长交⊙O于点P.(1)求劣弧PC的长(结果保留π);(2)过点P作PF⊥AC于点F,求阴影部分的面积(结果保留π).14.如图,四边形ABCD内接于圆O,对角线AC是圆O的直径,DB平分∠ADC,AC长10cm.(1)求点O到AB的距离;(2)求阴影部分的面积.15.如图,在矩形ABCD中,AB=8cm,BC=4cm,以点A为圆心,AD为半径作圆与BA 的延长线交于点E,连接CE,求阴影部分的面积.16.如图,∠APB的平分线过点O,以O点为圆心的圆与PA相切于点C,DE为⊙O的直径.(1)求证:PB是⊙O的切线;(2)若∠CPO=50°,∠E=25°,求∠POD;(3)若⊙O的半径为2,CE=2√3,求阴影部分的面积.17.如图,点P在圆O外,PA与圆O相切于A点,OP与圆周相交于C点,点B与点A 关于直线PO对称,已知OA=4,∠POA=60°求:(1)弦AB的长;(2)阴影部分的面积(结果保留π).18.如图,⊙O是Rt△ABC的外接圆,直径AB=4,直线EF经过点C,AD⊥EF于点D,∠ACD=∠B.(1)求证:EF是⊙O的切线;(2)若AD=1,求BC的长;(3)在(2)的条件下,求图中阴影部分的面积.。

人教版数学中考专题复习:圆的切线证明题专项训练

人教版数学中考专题复习:圆的切线证明题专项训练

人教版数学中考专题复习:圆的切线证明题专项训练1.如图,在Rt△ABC中,∠B=90°,AD平分∠BAC交BC于点D,点E在AC上,以AE为直径的∠O经过点D.(1)求证:BC是∠O的切线;(2)若∠C=30°,且CD=2.如图,在Rt∠ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A.D的∠O分别交AB,AC于点E,F.(1)求证:BC是∠O的切线;(2)若BE=8,sin B≈513,求∠O的半径;(3)求证:AD2=AB•AF.3.如图,AB 是O 的直径,D 为O 上一点,点E 为BD 的中点,点C 在BA 的延长线上,且CDA B ∠=∠.(1)求证:CD 是O 的切线;(2)若2DE =,30BDE ∠=︒,求OC 的长.4.如图,∠O 的弦AB 、CD 交于点E ,点A 是CD 的中点,连接AC 、BC ,延长DC 到点P ,连接PB .(1)若PB =PE ,判断PB 与∠O 的位置关系,并说明理由.(2)若AC 2=2AE 2,求证:点E 是AB 的中点.5.如图,在Rt ABC 中,∠BAC =90°,以AD 为直径的∠O 与边BC 有公共点E ,且AB =BE .(1)求证:BC是∠O的切线;(2)若BE=3,BC=7,求∠O的半径.⊥于点C,交O于点E,CD与BA的延长线交于点6.如图,AB为O直径,D为O上一点,BC CDF,BD平分ABC∠.(1)求证:CD是O的切线;BC=,求BD的长.(2)若3AB=,27.如图,四边形ABCD内接于∠O,AB是∠O的直径,点P为CA的延长线上一点,∠CAD=45°.(1)若AB=8,求图中阴影部分的面积;(2)若BC=AD,AD=AP,求证:PD是∠O的切线.8.如图,在∠ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE∠AC,垂足为E,∠O经过A,B,D三点.(1)证明:AB是∠O的直径(2)试判断DE与∠O的位置关系,并说明理由;(3)若DE的长为3,∠BAC=60°,求∠O的半径.9.如图,在Rt∠ABC中,∠ACB=90°,E是BC的中点,以AC为直径的∠O与AB边交于点D,连接DE.(1)求证:DE是∠O的切线;(2)若CD=3cm,5cm2DE ,求∠O直径的长.10.如图,点D在∠O的直径AB的延长线上,点C在∠O上,且AC=CD,∠ACD=120°.(1)求证:CD是∠O的切线;(2)若∠O的半径为2,求图中阴影部分的面积.11.如图,在∠ABC中,AB=AC,以AB为直径的∠O与BC相交于点D,DE∠AC于E.(1)求证:DE是∠O的切线;(2)若∠O的半径为5,BC=16,求DE的长.12.如图,AB是∠O的直径,C、D是∠O上的点,BD平分∠ABC,DE∠BE,DE交BC的延长线于点E.(1)求证:DE是∠O的切线;(2)如果CE=1,AC=∠O的半径r.13.如图,AB是O的直径,点C、G为圆上的两点,当点C是弧BG的中点时,CD垂直直线AG,垂足为D ,直线DC 与AB 的延长线相交于点P ,弦CE 平分ACB ∠,交AB 于点F ,连接BE .(1)求证:DC 与O 相切;(2)求证:PC PF =;(3)若1tan 3E =,BE =PF 的长.14.如图,∠O 是四边形ABCD 的外接圆,AC 是∠O 的直径,BE ∠DC ,交DC 的延长线于点E ,CB 平分∠ACE .(1)求证:BE 是∠O 的切线.(2)若AC =4,CE =1,求tan∠BAD .15.如图,AB 为∠O 的直径,射线AD 交∠O 于点F ,C 为BF 的中点,过点C 作CE ∠AD ,连接AC .(1)求证:CE是∠O的切线;(2)若∠BAC=30°,AB=4,求阴影部分的面积.16.如图,∠O是△ABC的外接圆,且AB=AC,四边形ABCD是平行四边形,边CD与∠O交于点E,连接AE.(1)求证△ABC∠∠ADE;(2)求证:AD是∠O的切线..以AB为直径的O交BC于点D,过点D作DE∠AC于点17.已知:如图,在∠ABC中,AB ACE.(1)求证:DE与O相切;AB ,sin B,求线段AF的长.(2)延长DE交BA的延长线于点F,若618.如图,Rt∠ABC中,∠ABC=90°,点E为BC的中点,连接DE.(1)求证:DE是半圆∠O的切线;(2)若∠BAC=30°,DE=2,求AD的长.19.如图,AB是∠O的直径,点E是劣弧AD上一点,∠PBD=∠BED,且DEBE平分∠ABD,BE与AD交于点F.(1)求证:BP是∠O的切线;(2)若tan∠DBE EF的长;(3)延长DE,BA交于点C,若CA=AO,求∠O的半径.20.如图,在Rt△OAB中,∠AOB=90°,OA=OB=4,以点O为圆心、2为半径画圆,过点A作∠O的切线,切点为P,连接OP.将OP绕点O按逆时针方向旋转到OH时,连接AH,BH.设旋转角为α(0°<α<360°).(1)当α=90°时,求证:BH是∠O的切线;(2)当BH与∠O相切时,求旋转角α和点H运动路径的长;(3)当△AHB面积最小时,请直接写出此时点H到AB的距离.参考答案:1.(1)连接OD,∠AD是∠BAC的平分线,∠∠DAB=∠DAO,∠OD=OA,∠∠DAO=∠ODA,则∠DAB=∠ODA,∠DO∠AB,而∠B=90°,∠∠ODB=90°,∠BC是∠O的切线;(2)连接DE、OD、DF、OF,设圆的半径为R,∠∠C=30°,CD=∠OD=CD•tan30°=3,∠∠DAB=∠DAE=30°,∠DE=DF,∠∠DOE=60°,∠∠DOF=60°,∠∠FOA=60°,∠∠OFD、△OF A是等边三角形,∠DF∠AC,∠S阴影=S扇形DFO=2603360π⨯⨯=32π.2.(1)证明: 如图,连接OD ,∠OA =OD ,∠∠ODA =∠OAD ,∠AD 平分∠BAC ,∠∠OAD =∠CAD ,∠∠ODA =∠CAD∠OD AC ∥,∠∠C =90°,∠ ∠ODB =∠C =90°,又∠OD 是∠O 的半径,∠BC 是∠O 的切线;(2)解:90BDO ∠=︒,∴在Rt∠BDO 中,5sin 813OD OD OD B BO BE OD OD ====++, 解得5OD =,故∠O 的半径为5;(3)证明:如图:连接EF ,∠AE 是直径,∠90AFE ACB ∠=︒=∠,∠EF BC ∥,∠AEF B ∠=∠,又∠AEF ADF ∠=∠,∠B ADF ∠=∠,又∠OAD CAD ∠=∠,∠∠DAB ∠∠F AD , ∠AD AF AB AD=, ∠2AD AB AF =⋅.3.(1)解:连接OD ,∠OD OB =,∠B ODB ∠=∠,又∠B CDA ∠=∠,∠ODB CDA ∠=∠,∠AB 是圆O 的直径,∠∠ADB =90°,∠90ODB ODA ∠+∠=︒,∠90CDA ODA ∠+∠=︒即90ODC ∠=︒, ∠CD 是O 的切线;(2)解:连接BE 、OE∠E 是BD 的中点,∠2BE DE ==,OE BD ⊥,260BOE BDE ∠=∠=︒, ∠OBE △是等边三角形,∠2OB BE ==,60BOE ∠=︒∠OB OD =,OE BD ⊥,∠60BOE DOE ∠=∠=︒,∠60DOC ∠=︒在Rt ODC ,60DOC ∠=︒,∠∠C =30°,∠24OC OD ==.4.(1)PB 与∠O 相切,理由是:连接OA 、OB ,OA 交CD 于F ,∠点A 是CD 的中点,∠OA ∠CD ,∠∠AFE =90°,∠∠OAE +∠AED =90°,∠OA=OB,PB=PE,∠∠OAE=∠OBA,∠PEB=∠PBE,∠∠AED=∠PEB,∠∠OBA+∠PBE=90°,即∠OBP=90°,∠OB∠PB,∠PB与∠O相切;(2)∠AC=AD,∠∠ACE=∠ABC,∠∠CAE=∠BAC,∠∠ACE∠∠ABC,∠ACAE=ABAC,∠AC2=AE•AB,∠AC2=2AE2,∠AE•AB=2AE2,∠AB=2AE,∠E为AB的中点.5.(1)证明:连接OB,OE,如图所示,在ABO和EBO△中,AB BE OA OE OB OB =⎧⎪=⎨⎪=⎩,∠()SSS ABO EBO △△≌, ∠90BEO BAO ∠=∠=︒,即OE BC ⊥,∠BC 是O 的切线;(2)解:∠3BE =,7BC =,∠3AB BE ==,4CE =,∠AC == ∠OE BC ⊥,∠222OE EC OC +=,即()2224OE OE +=,解得:OE = ∠O6.(1)连接OD ,如图,∠BD 平分ABC ∠,∠ABD DBC ∠=∠,∠OB OD =,∠OBD ODB ∠=∠∠DBC ODB ∠=∠,∠∥OD BC ,∠ODF C ∠=∠∠BC CD ⊥,∠90C ∠=︒,∠90ODF C ∠=∠=︒,即OD DC ⊥,∠CD 是O 的切线(2)连接AD ,如图,∠AB 为O 直径,∠90ADB ∠=︒∠90C ∠=︒,∠90ADB C ∠=∠=︒∠ABD DBC ∠=∠,∠ABD DBC △△∽ ∠BC BD BD AB =,即23BD BD =, ∠BD =∠BD .7.(1)解:如图,连接OC ,OD ,∠∠COD=2∠CAD,∠CAD=45°,∠∠COD=90°,∠AB=8,∠OC=12AB=4,∠S扇形COD=2904360π⨯⨯=4π,S△OCD=12×OC×OD=12×4×4=8,∠S阴影= S扇形COD- S△OCD =4π﹣8.(2)证明:∠BC=AD,∠BC AD=,∠∠BOC=∠AOD,∠∠COD=90°,∠∠AOD=45°,∠OA=OD,∠∠ODA=∠OAD,∠∠AOD+∠ODA+∠OAD=180°,∠∠ODA=67.5°,∠AD=AP,∠∠ADP=∠APD,∠∠CAD=∠ADP+∠APD,∠CAD=45°,∠∠ADP=12∠CAD=22.5°,∠∠ODP=∠ODA+∠ADP=90°,∠PD是∠O的切线.8.(1)解:如图所示,连接AD∠AB=AC,BD=DC,∠AD∠BC即∠ADB=90°,∠AB是∠O的直径.(2)解:DE与∠O相切,理由如下:如图所示,连接OD,∠OB=OA,BD=DC,∠OD是∠ABC的中位线,∥.∠OD AC∠DE∠AC,∠DE∠OD即∠ODE=90°,∠DE与∠O相切.(3)解:∠AB=AC,AD∠BC,∠BAC=60°,∠∠BAD=∠DAE=30°.∠DE∠AC,AD∠BD,∠AD=2DE=6,AB=2BD.在∠ABD 中,222BD AD AB +=, ∠()22262BD BD +=,解得BD =∠2AB BD ==,∠∠O 的半径为9.(1)连接OD∠AC 为圆O 的直径 ∠∠ADC =90°∠OD =OC∠∠ODC =∠OCD在Rt ∠BCD 中,∠E 为BC 中点 ∠12DE BC CE == ∠∠EDC =∠ECD∠∠ODC +∠EDC =∠OCD +ECD =90° 即∠ODE =90°∠OD ∠DE∠DE 是圆O 的切线(2)在Rt∠BCD中,∠E为BC中点∠BC=2DE=5∠CD=3∠BD=4∠AC为直径,∠∠ADC=∠ACB=∠BDC=90°,又∠∠B=∠B∠∠ABC∠∠CBD,∠AC BC CD BD=∠5 34 AC=∠154=AC cm10.(1)证明:如图,连接OC,∠CD=AC,∠∠CAD=∠D,又∠∠ACD=120°,∠∠CAD=∠D=12(180°﹣∠ACD)=30°,∠OC=OA,∠∠A=∠2=30°,∠∠COD=60°,又∠∠D=30°,∠∠OCD=180°﹣∠COD﹣∠D=90°,∠OC∠CD∠OC是∠ O的半径∠CD是∠ O的切线;(2)解:∠∠A =30°,∠∠1=2∠A =60°. ∠260223603OBC S ππ⨯==扇形 ,在Rt ∠OCD 中,tan 60CD OC ==•︒=∠11222Rt OCD S OC CD =⨯=⨯⨯=△.∠图中阴影部分的面积为23π.11.(1)证明:如图:连接OD .∠AB =AC ,∠∠B =∠C ,又∠OD =OB ,∠∠ODB =∠OBD .∠∠ODB =∠ACB .∠OD AC ∥,∠DE ∠AC .∠OD ∠DE .∠OD 是圆的半径,∠DE 是∠O 的切线;(2)解:如图:连接AD ,∠AB为∠O的直径,∠∠ADB=90°,即AD∠BC,又∠AB=AC,BC=16,∠BD=CD=8,∠∠O的半径为5,∠AC=AB=10,∠6 AD=,∠S△ADC11••22AC DE CD AD ==,∠10DE=8×6,∠DE=4.8.12.(1)解:连接OD,如下图所示:∠OB=OD,∠∠OBD=∠ODB,∠BD平分∠ABC,∠∠OBD=∠DBE,∠∠ODB=∠DBE,∠OD∥BE,∠DE∠BE于点E,∠∠E=90°,∠∠ODE=180°-∠E=180°-90°=90°,∠OD∠DE;∠DE是∠O的切线.(2)解:设OD交AC于点M,如下图:∠AB为∠O的直径,∠∠ACB=∠ACE=90°,由(1)知,∠ODE=90°,∠∠ACE=∠E=∠ODE=90°,∠四边形DECM为矩形,∠EC=DM=1,∠MO∥CB,O为AC的中点,∠MO为∠ABC的中位线,且∠AMO=∠ACB=90°,AC∠AM=MC=12设圆的半径为r,则MO=DO-DM=r-1,在Rt∠AMO中,由勾股定理可知:AO²=AM²+MO²,代入数据:222=+-,r r(1)解出:4r=,故圆∠O的半径为4.13.(1)解:(1)CD AD ⊥,90D ∴∠=︒,∠∠DAC +∠DCA =90°,点c 是弧BG 的中点,∠CG BC =DAC BAC ∴∠=∠,OA OC =,OCA BAC ∴∠=∠,OCA DAC ∠=∠∴,//∴AD OC ,∠∠D =∠OCP =90°, OC 是圆O 的半径,DC ∴与O 相切,(2) AB 是O 的直径,90ACB ∴∠=︒,90PCB ACD ∴∠+∠=︒,由(1)得:90DAC DCA ∠+∠=︒,PCB DAC ∴∠=∠,DAC BAC ∠=∠,PCB BAC ∴∠=∠, CE 平分ACB ∠,ACF BCF ∴∠=∠,∠∠PFC =∠BAC +∠ACF ,∠PCF =∠PCB +∠BCF ,PFC PCF ∴∠=∠,PC PF ∴=;(3)连接AE ,CE 平分ACB ∠,∴AE BE =,AE BE ∴=, AB 是O 的直径,90AEB ∴∠=︒,AEB ∴∆为等腰直角三角形,∠AB ,∠OB =OC ∠1tan 3E = ∠1tan 3BC CAB AC ==∠, ∠∠PCB =∠BAC ,∠P =∠P ,∠△PCB ∠△P AC , ∠13BC PB AC PC ==, ∴设PB x =,3=PC x ,在Rt OCP ∆中,222OC PC OP +=,∠222(3))x x +=,∠x =x =0(舍去),∠PC∠PF 14.(1)证明:如图,连接OB,∠CB平分∠ACE.∠∠ACB=∠ECB,∠OB=OC,∠∠BCO=∠CBO,∠∠BCE=∠CBO,∠OB∠ED.∠BE∠ED,∠EB∠BO.∠BE是∠O的切线;(2)解:∠AC是∠O的直径,∠∠ABC=90°,∠BE∠ED,∠∠E=90°,∠∠E=∠ABC,∠∠BCE=∠ACB,∠∠BCE∠∠ACB,∠BC CE AC BC=,∠AC=4,CE=1,∠2BC==,∠BE,∠∠BCD+∠BAD=∠BCD+∠BCE=180°,∠∠BCE=∠BAD,∠tan tan BE BAD BCE CE∠=∠== 15.(1) 解:(1)连接BF ,OC ,∠AB 是∠O 的直径,∠∠AFB =90°,即BF ∠AD ,∠CE ∠AD ,∠BF ∠CE ,∠点C 为劣弧BF 的中点,∠OC ∠BF ,又BF ∠CE ,∠OC ∠CE ,∠OC 是∠O 的半径,∠CE 是∠O 的切线;(2)解:连接OF ,CF ,∠OA =OC ,∴∠OCA =∠BAC =30°,∠∠BOC =60°,∠点C 为劣弧BF 的中点,∠FC BC =,∠∠FOC =∠BOC =60°,∠OF =OC ,∴△FOC为等边三角形,∠∠OCF=∠COB=60°,∠CF∠AB,∠S△ACF=S△OCF,∠阴影部分的面积等于S扇形COF,∠AB=4,∠FO=OC=OB=2,∠S扇形FOC=260223603ππ⋅⨯=,即阴影部分的面积为23π.16.(1)解:∠四边形ABCD是平行四边形,∠∠B=∠D.∠四边形ABCE为∠O的内接四边形,∠∠B+∠AEC=180°.∠∠AED+∠AEC=180°.∠∠B=∠AED.∠AB=AC,∠AB=∠ACB∠∠ACB=∠AED.∠∠ABC∠∠ADE.(2)解:如图,连接AO并延长,交BC于点M,连接OB、OC.∠AB=AC,OB=OC,∠AM垂直平分BC.∠∠AMC=90°.∠四边形ABCD是平行四边形,∠AD∠BC.∠∠DAO=90°.∠点A在∠O上,∠AD是∠O的切线.17.(1)证明:连接OD,∠AB=AC,∠=∠,∠B C=,又∠OB OD∠1∠=∠,B∠C1∠=∠,∥,∠OD AC∠DE∠AC于E,∠DE∠OD,∠OD是O的半径,∠DE与O相切;(2)解:如图:连接AD,∠AB为O的直径,∠∠ADB=90°,∠AB =6,sin B∠sin AD AB B =⋅ ∠123290∠+∠=∠+∠=︒, ∠13∠=∠,∠3B ∠=∠,在∠AED 中,∠AED =90°,∠sin 3AE AD ∠==∠65AE AD ===. 又∠OD AE ∥, ∠∠FAE ∠∠FOD , ∠FA AE FO OD=, ∠6AB =,∠3OD AO ==, ∠235FA FA =+, ∠2AF =.18.(1)连接OD ,BD ,如图,AB 是直径,90ADB ∴∠=︒, 90BDC ∴∠=︒,E 是BC 的中点,12DE BE EC BC ∴=== EBD EDB ∠∠∴=,OB OD =OBD ODB ∠∠∴=OBD EBD ODB EDB ∠∠∠∠∴+=+即90ODE ABC ∠=∠=︒OD DE ∴⊥ OD 是半径,∴DE 是半圆∠O 的切线.(2)2DE =24BC ED ∴==30BAC ∠=︒28AC BC ∴==AB ∴==12BD AB ∴==6AD ∴=.19.(1) 证明:∠AB 是∠O 的直径,∠∠ADB =90︒,∠∠DAB +∠ABD =90︒,∠∠BED =∠DAB ,∠PBD =∠BED ,∠∠DAB =∠PBD ,∠∠PBD +∠ABD =90︒,∠∠ABP =90︒,∠AB ∠PB ,∠BP 是∠O 的切线;(2)解:连接AE ,∠AB 是直径∠∠AEB =90︒,∠BE 平分∠ABD ,∠∠ABE =∠DBE ,∠AE DE =,∠AE =DE∠∠ABE =∠DBE =∠DAE ,∠tan tan tan EF DBE ABE DAE EA ∠∠∠====,∠EF (3)解:连接OE ,∠OE =OB ,∠∠ABE =∠OEB ,∠∠ABE =∠DBE ,∠∠DBE =∠OEB ,∠//OE BD ∠CE OC DE OB=, ∠CA =AO ,设CA =AO =BO =R , ∠22CE R DE R==,2=, ∠CE∠DC = CE +DE∠∠ADC =∠ABE ,∠C =∠C ,∠CAD CEB △∽△, ∠CD AC CB CE=,= ∠R,∠∠O20.(1)证明:∠α=90°,∠AOB =90°,∠∠AOP =∠BOH ,在∠AOP 和∠BOH 中,OA OB AOP BOH OP OH =⎧⎪∠=∠⎨⎪=⎩∠∠AOP ∠∠BOH (SAS ),∠∠OP A=∠OHB,∠AP是∠O的切线,∠∠OP A=90°,∠OHB=90°,即OH∠BH于点H,∠BH是∠O的切线;(2)如图,过点B作∠O的切线BC,BD,切点分别为C,D,连接OC,OD,则有OC∠BC,OD∠BD,∠OC=2,OB=4,∠cos2142OCBOCOB===∠∠∠BOC=60°,同理∠BOD=60°,当点H与点C重合时,由(1)知:α=90°,∠∠OHB=90°.∠圆弧PH的长为902180ππ⨯=;当点H与点D重合时,α=∠POC+∠BOC+∠BOD=90°+2×60°=210°,∠圆弧PH的长为21027 1803ππ⨯=,∠当BH与∠O相切时,旋转角α=90°或210°,点H运动路径的长为π或73π;(3)设h表示点H到直线AB的距离,作ON∠AB于点N,H在圆O上,在Rt∠ONB中,∠OBN=45°,OB=4,∠ON=4cos45°=∠h的最小值为=ON﹣r=2∠当∠AHB面积最小时,点H到AB的距离为2。

圆的切线证明 中考数学专项训练(含答案解析)

圆的切线证明 中考数学专项训练(含答案解析)

圆的切线证明(1)求证:CD 为O 切线;(2)若1CD =,5AC =,求PB (1)求证:CD 是O 的切线;(2)若16ABCD S =正方形,求CE3.如图,在Rt ABC △中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,O 为AB 上一点,经过点A ,D 的O 分别交AB ,AC 于点E ,F 连接OF 交AD 于点G .(1)求证:BC 是O 的切线;(2)若60OFA ∠=︒,半径为4,在圆O 上取点P ,使15PDE ∠=︒,求点P 到直线DE 的距离.4.如图,AB 是O 的直径,CD 是O 的弦,AB CD ⊥,垂足是点H ,过点C 作直线分别与AB ,AD 的延长线交于点E ,F ,且2ECD BAD ∠=∠.(1)求证:CF 是O 的切线;(2)如果20AB =,12CD =,求AE 的长.5.如图,O 是ABC 的外接圆,O 点在BC 边上,BAC ∠的平分线交O 于点D ,连接BD 、CD ,过点D 作BC 的平行线,与AB 的延长线相交于点P .(1)求证:PD 是O 的切线;(2)若3AB =,4AC =,求线段BD 的长.6.如图,已知以Rt ABC △的直角边AB 为直径作O ,与斜边AC 交于点D ,E 为BC 边上的中点,连接DE .(1)求证:DE 是O 的切线;(2)若AD ,AB 的长是方程210240x x -+=的两个根,求直角边BC 的长.(1)求证:DE 是O 的切线;(2)若30C ∠=︒,23CD =,求图中阴影部分的面积.(1)求证:DE 是O 的切线;(2)若2AB =,30C ∠=︒,求9.如图,AB 为O 的直径,C ,D 为O 上的两点,BAC DAC ∠=∠,过点C 作直线EF AD ⊥,交AD 的延长线于点E ,连接BC .(1)求证:EF 是O 的切线;(2)若30CAO ∠=︒,2BC =,求CE 的长.10.如图,AB 是O 的直径,点C 是O 上一点(与点A ,B 不重合),过点C 作直线PQ ,使得ACQ ABC ∠=∠.(1)求证:直线PQ 是O 的切线.(2)过点A 作AD PQ ⊥于点D ,交O 于点E ,若O 的半径为2,30DAC ∠=︒,求图中阴影部分的面积.11.如图,等腰ABC 的顶点A ,C 在O 上, BC 边经过圆心0且与O 交于D 点,30B ∠=︒.(1)求证:AB 是O 的切线;(2)若6AB =,求阴影部分的面积12.如图,AB 是ABC 外接圆O 的直径,PA 是O 的切线,BD OP ∥,点D 在O 上.(1)求证:PD 是O 的切线.(2)若ABC 的边6cm AC =,8cm BC =,I 是ABC 的内心,求IO 的长度.13.如图,AB 是O 的直径,AC 是弦,点D 是O 上一点,OD AB ⊥,连接CD 交AB 于点E ,F 是AB 延长线上的一点,且CF EF =.(1)求证:CF 是O 的切线;(2)若8CF =,4BF =,求弧BD 的长度.14.如图所示,在Rt ABC △中,点O 在斜边AB 上,以O 为圆心,OB 为半径作圆O ,分别与BC 、AB 相交于点D 、E ,连接AD ,已知CAD B ∠=∠.(1)求证:AD 是O 的切线;(2)若23AD CD ==时,求阴影部分的面积.(1)求证:PA是O(2)若tan CAD∠=(3)延长CD,AB交于点(1)求证:DE BG=;(2)求证:BF是O的切线;(3)若23DEEG=时,AE(1)当60A ∠=︒,2AD =时,求(2)求证:DF 是O 的切线.(1)求证:DF 是O (2)若 BE DE =,tan(1)求证:直线AB 为O 的切线;(2)若4tan 3A =,O 的半径为2,求AB (1)求证:BF 是O 的切线;(2)若6EF =,cos ABC ∠①求BF 的长;②求O 的半径.参考答案:∵CD AE ⊥,∴90ADC ∠=︒,∵OC OA =,∴OCA OAC ∠=∠,∵的平分线AC 交O 于∵AB 为O 直径,∴90ACB ∠=︒,∴90ADC ACB ∠=∠=︒,∵DAC OAC ∠=∠,∴,【点睛】此题重点考查正方形的性质、等腰三角形的性质、切线的判定、平行线分线段成比例定理、锐角三角函数与解直角三角形等知识,正确地作出所需要的辅助线是解题的关键.3.(1)见解析(2)232-或423-【分析】(1)连接OD ,可得(2)①过点P 作PN DE ⊥交交于H ,可求60EOD ∠=︒,即可求解;②连接OD ,OP 60EOD ∠=︒,30POE ∠=︒,可证求解.【详解】(1)解:如图,连接∴OA OD =,∴ODA OAD ∠=∠,AD 是BAC ∠的平分线,, ∠=︒PDE15=,PE PE ∴∠=︒POE30,OA OF∠=︒60OFA=,∴∠=︒,OAF60∠的平分线, AD是BAC同理可求60EOD ∠=︒,30POE ∠=︒,1302DOL EOD ∴∠=∠=︒,30DOP EOD POE ∠=∠-∠=︒,DOP DOL ∴∠=∠,AB 是O 的直径,90ACB ∴∠=︒,AO OB =,AB CD ⊥ ,AB ∴平分弦CD ,AB 平分 CD,CH HD ∴=, CBDB =,90CHA CHE ∠=︒=∠,BAD BAC DCB ∴∠=∠=∠,∵AB 是O 的直径,∴90ADB ∠=︒,∴BDC 为直角三角形,∵E 为BC 边上的中点,∴ED EB =,∴12∠=∠,∵OB OD =,3=4∠∠∵AB AC =,∴A ABC CB =∠∠,设OB OD r ==,∴ABC ODB ∠=∠,∵AB AC =,23CD =,C ∠=∴23BD CD ==,30B C ∠=∠=∴1803030120BOD ∠=︒-︒-︒=︒OF BD ⊥==OB OD AB AC,∴∠=∠,B CB ODB∠=∠∴∠=∠.ODB C∴∥.OD AC,=OA OC∴∠=∠,OAC OCAQ,∠=∠DAC BAC∴∠=∠,DAC OCA∥,∴AD OC,EF AD⊥∴⊥,而OC为半径,EF OC的切线;∴是OEF的直径,(2)解:AB为O(1)根据题意连接OC ,可知90ACB ∠=︒,可知AOC 是等腰三角形,OAC OCA ∠=∠,继而可证90OCD ∠=︒;(2)连接OE ,过点E 作EF AB ⊥,根据题意可知60EAO ∠=︒即可得知AEO △为等边三角形,再求出扇形AOE 面积减去AEO △的面积即为阴影面积.【详解】(1)解:连接OC ,,∵OA OC =,AB 是O 的直径,∴90ACB ∠=︒,∴90CAB CBA ∠+∠=︒,∴AOC 是等腰三角形,∴OAC OCA ∠=∠,∵ACQ ABC ∠=∠,∴90ACQ OCA ∠+∠=︒,∴OC PQ ⊥,∴直线PQ 是O 的切线;(2)解:连接OE ,过点E 作EF AB ⊥,,∵AD PQ ⊥,ACQ ABC ∠=∠,∴30DAC CAB ∠=∠=︒,∴60EAO ∠=︒,∵AB 为O 的直径,∴90ADB ∠=︒,∵BD OP ∥,∴OP AD ⊥,OP 是AD 的垂直平分线,∴PD PA =,则IU IV IQ ==,∵AB 为O 的直径,∴90ACB ∠=︒,∵6cm AC =,8cm BC =,∴226810AB =+=,5OB OA ==(2)3π.【分析】本题考查了切线的判定,求弧长;(1)如图,连接OC ,OD .证明90OCF ∠=︒即可;(2)设O 的半径为r ,在Rt COF △中,勾股定理可得6r =,再根据弧长公式可解决问题.【详解】(1)证明:连接OCCF EF= CEF ECF∴∠=∠OD AB⊥ 90DOE ∴∠=︒,90ODE OED ∴∠+∠=︒,OD OC = ,ODE OCD ∴∠=∠,CEF OED ∠=∠ ,OED ECF ∴∠=∠,90OCD ECF ∴∠+∠=︒,即90OCF ∠=︒,OC CF ∴⊥,CF ∴是O 的切线.(2)设O 的半径为r ,∵4BF =,∴4OF r =+,在Rt OCF 中,90,∠=︒ACB∴∠+∠CAD ADC=,OB OD∴∠=∠,B ODB则sin 30OH OD =⋅ODB S S S ∴=-阴影扇形∴CAD BAD ∠=∠,∴5CD BD ==,∵AB 为直径,点∴90ADB ∠=︒,∵2DOB DAB ∠=∠=∠又∵DFO CFA ∠=∠,∴DOF CAF ∽,又∵OB BF OA ==,∴23DF FO FC FA ==,∴90EHB BGF ∠=∠=︒,∵点C 为劣弧BD 中点,∴ CDBC =,∴DAC BAC DBC ∠=∠=∠∵AD 是O 的直径,∴90AED ∠=︒,∵60A ∠=︒,2AD =∴30ADE ∠=︒,则12AE =∴2222DE AD AE =-=∵AD 是直径,∴90AED ∠=︒,∴1809090DEB ∠=︒-︒=︒∵四边形ABCD 为菱形,∴DBE DBF ∠=∠,AD ∥∵BE BF =,DB DB =,∴()SAS DBE DBF ≌,∴90DFB DEB ∠=∠=︒,∵AD BC ∥,∴90ADF DFB ∠=∠=︒,∴AD DF ⊥,∵AD 为直径,∴DF 是O 的切线.【点睛】本题主要考查了直径所对的圆周角为直角,含30度角的直角三角形的性质,勾股定理,切线的判定,解题的关键是作出辅助线,熟练掌握切线的判定方法.18.(1)见解析(2)52AB 是O 的直径,90ADB ∴∠=︒,90BDC ∴∠=︒,90BDF CDF ∠∠∴+=︒,OB OD = ,OBD ODB ∴∠=∠,CDF ABD ∠∠= ,ODB CDF ∠∠∴=,90ODB BDF ∴∠+∠=︒,90ODF ∴∠=︒,DF OD ∴⊥,OD 是O 的半径,DF ∴是O 的切线;(2)如图,连接AE ,∵ BEDE =,BAE CAE ∴∠=∠,AB 是O 的直径,90AEB ∴∠=︒,90AEC ∴∠=︒,AEB AEC ∴∠=∠,∵OC OD =,∴OCD ODC ∠=∠.设OCD ODC α∠=∠=,∴22A BCD α∠=∠=.∵90ACB ∠=︒,。

中考圆综合6种证明切线的模型

中考圆综合6种证明切线的模型

中考圆综合6种证明切线的模型【模型l:双切线】例1.如图,Rt△ABC中,∠A=90°,以AB为直径的⊙O交BC于点D,点E在⊙O上,CE=CA,AB,CE的延长线交于点F.(1)求证:CE与⊙O相切;(2)若⊙O的半径为3,EF=4,求BD的长.练习1.已知:如图,AB是⊙O的直径,C是⊙O上一点,OD BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连结BE.(1)求证:BE与⊙O相切;.OE DCB A【模型2角平分线模型】例2.如图,已知AB 是⊙O 的直径,C 是⊙O 上一点,∠BAC 的平分线交⊙O 于点D ,交⊙O 的切线BE 于点E ,过点D 作DF ⊥AC ,交AC 的延长线于点F .(1)求证:DF 是⊙O 的切线;练习2.如图,AB 是O ⊙的直径,点C 在O ⊙上,CAB ∠的平分线交O ⊙于点D ,过点D 作AC 的垂线交AC的延长线于点E ,连接BC 交AD 于点F .(1)求证:ED 是O ⊙的切线;【模型3:弦切角】例3.如图,△ABC中,AB=AC,点D为BC上一点,且AD=DC,过A,B,D三点作⊙O,AE是⊙O的直径,连结DE.(1)求证:AC是⊙O的切线;.练习3.如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CB D.(1)求证:CD是⊙O的切线;【模型4:等腰三角形】例4.如图,在Rt△ABC中,∠ACB=90°,点D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,连接DE并延长DE交BC的延长线于点F.(1)求证:BD=BF;练习4:已知:如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作⊙O 的切线交AB于点E,交AC的延长线于点F.(1)求证:DE⊥AB;【模型5:二倍角的使用】例5.如图,AB为⊙O直径,C、D为⊙O上不同于A、B的两点,∠ABD=2∠BAC,连接CD.过点C作CE⊥DB,垂足为E,直线AB与CE相交于F点.(1)求证:CF为⊙O的切线;.练习5:如图,AB为⊙O的直径,C,D为⊙O上不同于A,B的两点,过点C作⊙O的切线CF交直线AB于点F,直线DB⊥CF于点E.(1)求证:∠ABD=2∠CAB;.【模型6:垂直导角】.例6.如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE⊥PO交PO 延长线于点E,连接PB,∠EDB=∠EPB.(1)求证:PB是⊙O的切线.,弦CF与OB交于点E,过点F,A分别练习6.如图,在⊙O中,AB为直径,OC AB作⊙O的切线交于点H,且HF与AB的延长线交于点D.(1)求证:DF=DE;.。

中考复习专题——圆切线证明

中考复习专题——圆切线证明

中考复习专题——圆切线证明中考复习专题--------圆的切线的判定与性质知识考点:1、掌握切线的判定及其性质的综合运用,在涉及切线问题时,常连结过切点的半径,切线的判定常用以下两种方法:一是连半径证垂直,二是作垂线证半径。

2、掌握切线长定理的灵活运用,掌握三角形和多边形的内切圆,三角形的内心。

精典例题:一、若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直.例1如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F.求证:EF与⊙O相切.例2 如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD.求证:PA与⊙O相切.例3 如图,AB=AC,AB是⊙O的直径,⊙O交BC 于D,DM⊥AC于M求证:DM与⊙O相切.例4 如图,已知:AB是⊙O的直径,点C在⊙O上,且∠CAB=300,BD=OB,D在AB的延长线上.求证:DC是⊙O的切线例 5 如图,AB是⊙O的直径,CD⊥AB,且OA2=OD·OP.求证:PC是⊙O的切线.例6 如图,ABCD是正方形,G是BC延长线上一点,AG交BD于E,交CD于F.求证:CE与△CFG的外接圆相切.二、若直线l与⊙O没有已知的公共点,又要证明l是⊙O的切线,只需作OA⊥l,A为垂足,证明OA是⊙O 的半径就行了,简称:“作垂直;证半径”例7 如图,AB=AC,D为BC中点,⊙D与AB切于E点.求证:AC与⊙D相切.例8 已知:如图,AC,BD与⊙O切于A、B,且AC ∥BD,若∠COD=900.求证:CD是⊙O的切线.[习题练习]例1如图,AB是⊙O的弦(非直径),C、D是AB上两点,并且OC=OD,求证:AC=BD.例2已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC交于点D,与AC•交于点E,求证:△DEC为等腰三角形.例3如图,AB是⊙O的直径,弦AC与AB成30°角,CD 与⊙O切于C,交AB•的延长线于D,求证:AC=CD.例4如图20-12,BC为⊙O的直径,AD⊥BC,垂足为D,AB AF,BF和AD交于E,求证:AE=BE.例5如图,AB是⊙O的直径,以OA为直径的⊙O1与⊙O2的弦相交于D,DE⊥OC,垂足为E.(1)求证:AD=DC.(2)求证:DE是⊙O1的切线.AB CDE F G O例6如图,已知直线MN 与以AB 为直径的半圆相切于点C ,∠A=28°.(1)求∠ACM 的度数.(2)在MN 上是否存在一点D ,使AB ·CD=AC ·BC ,说明理由.例7如图,在Rt △ABC 中,∠C=90°,AC=5,BC=12,⊙O 的半径为3.(1)若圆心O 与C 重合时,⊙O 与AB 有怎样的位置关系?(2)若点O 沿CA 移动,当OC 等于多少时,⊙O 与AB 相切?19.如图,Rt△ABC 内接于⊙O,AC=BC ,∠BAC 的平分线AD 与⊙0交于点D ,与BC 交于点E ,延长BD ,与AC 的延长线交于点F ,连结CD ,G 是CD 的中点,连结0G .(1)判断0G 与CD 的位置关系,写出你的结论并证明;(2)求证:AE=BF ;(3)若3(2OG DE ⋅=-,求⊙O 的面积。

中考数学 考点系统复习 第六章 圆 微专题(七) 与切线有关的常考五大模型

中考数学 考点系统复习 第六章 圆 微专题(七) 与切线有关的常考五大模型

1 ∴CD=3,∠DAC=2∠BAC, ∴AD= AC2-CD2=4,∠DAO=90°, ∵∠ADC=90°, ∴四边形 ADEO 是矩形, ∴OE=AD=4, ∴⊙O 的半径是 4.
类型三: 与锐角三角函数结合
【类型归纳】
模型展示
常见辅助线
连接圆心与切点
若问题中涉及到直角(或构造出直角)时,可以利用锐角三角函数来
半圆与 AB,AC 相切,切点分别为 D,E.过半圆上一点 F 作半圆的切线,
BM·CN 分别交 AB,AC 于点 M,N,那么 BC2 的值为 A.18 B.14 C.12 D.1
(B )
7.★如图,AB 为⊙O 的直径, C 为⊙O 上一点, AD 和过 C 点的切线互
25 相垂直,垂足为 D.若 AD=4,AC=5,则 AB 的长为 4 .
AD⊥DC,若⊙O 的半径为 3,AD=4,则 AC=2 6.连接 BC,OC,由
常见结论 与方法
AD⊥DC 和直径所对的圆周角为直角,可得∠ACB=∠ADC=90°, ∵DC 是⊙O 的切线,∴∠DCA=∠ABC,∴△ADC∽△ACB,得出AADC=
AACB,进而求出 AC=2 6.
对应练习
6.★如图,在等腰三角形 ABC 中,O 为底边 BC 的中点,以点 O 为圆心作
OB=3,PB=2.连接 OC,由切线的性质可得 OC⊥PC,易得 PO=BO
+PB=5,再利用勾股定理,可得 PC= PO2-OC2=4.
对应练习 1.★(2022·深圳)如图,三角形 ABE 为直角三角形,∠ABE=90°,BC 为⊙O 的切线,C 为切点,CA=CD,则△ABC 和△CDE 的面积之比为( B ) A.1∶3 B.1∶2 C. 2∶2 D.( 2-1)∶1

中考数学总复习《圆的切线的证明》专项提升练习题-附答案

中考数学总复习《圆的切线的证明》专项提升练习题-附答案

中考数学总复习《圆的切线的证明》专项提升练习题-附答案学校:___________班级:___________姓名:___________考号:___________1.如图,O为菱形 ABCD对角线上一点,⊙O与BC相切于点M.求证:CD与⊙O相切.2.如图,在梯形ABCD中,AD∥BC,∠C=90°,AD+BC=AB,以AB为直径作⊙O,求证:CD是⊙O的切线.3.在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC 于点F.(1)求证:AC是⊙O的切线;(2)若BF=6,⊙O的半径为5,求CE的长.4.如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,DE=3,连接DB,过点E作EM∥BD,交BA 的延长线于点M.(1)求⊙O的半径;(2)求证:EM是⊙O的切线;(3)若弦DF与直径AB相交于点P,当∠APD=45º时,求图中阴影部分的面积.5.如图,在Rt△ABC中∠C=90°,BD平分∠ABC,交AC于点D,点O是AB边上的点,以BD为弦的⊙O 交AB于点E.(1)求证:AC是⊙O的切线;(2)若∠A=30°,OB=1求阴影部分的面积.6.如图,在Rt△ABC中,∠ACB=90°,E是BC的中点,以AC为直径的⊙O与AB边交于点D,连接DE.(1)求证:DE是⊙O的切线;(2)若CD=3cm,DE=2.5cm,求⊙O直径的长.7.如图,AB是⊙O的直径,点C、E在⊙O上,AC平分∠BAE,CM⊥AE于点D.求证:CM是⊙O的切线.8.如图,△ABC是⊙O的内接三角形,D是圆外一点,连接DA,∠DAC=∠ABC连接DC交⊙O于点E.(1)求证:AD是⊙O的切线;(2)若AD=4,E是CD的中点,求CE的长度.9.如图所示,AB是⊙O的直径,AD是弦,∠DAB=20°,延长AB到点C,使得∠ACD=50°,求证:CD是⊙O的切线.10.如图,在⊙O中,直径AB垂直于弦CD,垂足为E,连接AC,将△ACE沿AC翻折得到△ACF,直线FC与直线AB相交于点G.(1)直线FC与⊙O有何位置关系?并说明理由;(2)若OB=BG=2,求CD的长.二、综合题11.如图,AB是⊙O的弦,过AB的中点E作EC⊥OA,垂足为C,过点B作直线BD交CE的延长线于点D,使得DB=DE.(1)求证:BD是⊙O的切线;(2)若AB=12,DB=5,求△AOB的面积.⌢的中点,EF∥12.如图,AB是⊙O的直径,AB=6,OC⊥AB,OC=5,BC与⊙O交于点D,点E是BDBC,交OC的延长线于点F.(1)求证:EF是⊙O的切线;(2)CG∥OD,交AB于点G,求CG的长.13.如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)过点B作⊙O的切线交CD的延长线于点E,若BC=12,OBBE = 23,求BE的长.14.如图,△BEF内接于⊙O,BE=BF,BO的延长线交EF于点D.C是⊙O外一点,连接OC,BC,OC⊥BE 于点A.已知OA=2,AB=4,AC=8.(1)求证:BC是⊙O的切线.(2)求EF的长.15.如图,△ABC内接于⊙O,AD平分∠BAC交BC边于点E,交⊙O于点D,过点A作AF⊥BC于点F,设⊙O的直径为d,AF=h.(1)过点D作直线MN∥BC,求证:MN是⊙O的切线;(2)若AB=4,AC=3,求dh的值.16.如图,AB是⊙O的直径,点C、D在⊙O上,且AC平分∠BAD,点E为AB的延长线上一点,且∠ECB=∠CAD.(1)填空:∠ACB= ,理由是(2)求证:CE与⊙O相切(3)若AB=6,CE=4,求AD的长17.如图,AB为⊙O的直径,点C在⊙O上,AD⊥CD于点D,且AC平分∠DAB,求证:(1)直线DC是⊙O的切线;(2)AC2=2AD•AO.18.如图,在Rt△ABC中,∠B=90°,∠BAC的平分线交BC于点D,E为AB上的一点,DE=DC,以D为圆心,DB长为半径作⊙D,AB=5,EB=3.(1)求证:AC是⊙D的切线;(2)求线段AC的长.19.如图,已知ΔABC内接于⊙O,AB为⊙O的直径,BD⊥AB,交AC的延长线于点D.(1)若E是BD的中点,连结CE,试判断CE与⊙O的位置关系.(2)若AC=3CD,求∠A的大小.20.如图,四边形ABCD内接于⊙O,点E在CB的延长线上,连接AC,AE,∠ACB=∠BAE=45°(1)求证:AE是⊙O的切线;(2)若 AB=AD,AC=2 √2,tan∠ADC=3,求CD的长.21.如图,AB是⊙O的直径,BM切⊙O于点B,点P是⊙O上的一个动点(点P不与A,B两点重合),连接AP,过点O作OQ∥AP交BM于点Q,过点P作PE⊥AB于点C,交QO的延长线于点E,连接PQ,OP,AE.(1)判断直线PQ与⊙O的关系;(2)若直径AB的长为4.当四边形AEOP为菱形时,求PE的长.答案1.证明:连接OM,过点O作ON⊥CD于垂足为N∵⊙O与BC相切于点M∴OM⊥BC,OM为半径∴∠OMC=∠ONC=90°∵AC是菱形ABCD的对角线∴∠ACB=∠ACD∵OC=OC∴△OMC≌△ONC(AAS)∴ON=OM=半径,∠ONC=90°∴CD与⊙O相切.2.证明:过点O作OE⊥CD于点E∵在梯形ABCD中,AD∥BC,∠C=90°∴AD⊥CD,BC⊥CD∴AD∥OE∥BC∵OA=OB∴OE是梯形ABCD的中位线(AD+BC)∴OE= 12∵AD+BC=AB∴OE= 1AB2∵以AB为直径作⊙O.∴直线CD是⊙O的切线.3.解:(1)连接OE.∵OE=OB∴∠OBE=∠OEB∵BE平分∠ABC∴∠OBE=∠EBC∴∠EBC=∠OEB∴OE∥BC∴∠OEA=∠C∵∠ACB=90°∴∠OEA=90°∴AC是⊙O的切线;(2)连接OE、OF,过点O作OH⊥BF交BF于H由题意可知四边形OECH为矩形∴OH=CE∵BF=6∴BH=3在Rt△BHO中,OB=5∴OH=4∴CE=4.4.(1)连结OE,如图:∵DE垂直平分半径OA∴OC=∴∠OEC=30°∴(2)由(1)知:∠AOE=60°∴∴∠BDE=60°∵BD∥ME∴∠MED=∠BDE=60°∴∠MEO=90°∴EM是⊙O的切线。

中考数学总复习《圆的切线证明》专题训练(附带答案)

中考数学总复习《圆的切线证明》专题训练(附带答案)

中考数学总复习《圆的切线证明》专题训练(附带答案)学校:___________班级:___________姓名:___________考号:___________⊥于点D,E是AC上一点,以BE为直径的O交1.如图,在ABC中,AB=AC,AD BC∠=︒.BC于点F,连接DE,DO,且90DOB(1)求证:AC是O的切线;(2)若1DF=,DC=3,求BE的长.、2.如图,在O中,BC为非直径弦,点D是BC的中点,CD是ABC的角平分线.∠=∠;(1)求证:ACD ABC(2)求证:AC是O的切线;(3)若1BD=,3BC=时,求弦BD与BD围城的弓形面积.是O的切线;=,且AC BD已知等腰ABC,AB=AC为直径作O交BC于点延长线于点F.是O的切线;CD=2,求O的半径.与O相离,,交O于点A是O上一点,连于点C,且PB(1)求证:PB是O的切线;(2)若25AC=,OP=5,求O的半径.6.如图,点O是ABC的边AC上一点,以点O为圆心,OA为半径作O,与BC相切于点E,连接OB,OE,O交OB于点D,连接AD并延长交CB的延长线于点F,且AOD EOD.∠=∠(1)求证:AB是O的切线;BC=,AC=8,求O的半径.(2)若107.如图,AB 是O 的直径,AC 是O 的弦.(1)尺规作图:过点C 作O 的切线,交AB 的延长线于点D (保留作图痕迹,不写作法);(2)若2BD OB ==,求AC 的长.8.如图,ABCD 的顶点,,A B C 在O 上,AC 为对角线,DC 的延长线交O 于点E ,连接,,OC OE AE .(1)求证:AE BC =;(2)若AD 是O 的切线6,40OC D =∠=︒,求CE 的长.9.如图,Rt ABC △中90C ∠=︒,点E 为AB 上一点,以AE 为直径的O 上一点D 在BC 上,且AD 平分BAC ∠.(1)证明:BC 是O 的切线;(2)若42BD BE ==,,求AB 的长.10.如图,已知O 的弦AB 等于半径,连接OA 、OB ,并延长OB 到点C ,使得BC OB =,连接AC ,过点A 作AE OB ⊥于点E ,延长AE 交O 于点D .(1)求证:AC 是O 的切线;(2)若6BC =,求AD 的长.11.如图,线段AB 经过O 的圆心.O 交O 于A ,C 两点,AD 为O 的弦,连接BD ,30A ABD ∠=∠=︒连接DO 并延长交O 于点E ,连接BE 交O 于点F .(1)求证:BD 是O 的切线;(2)若1BC =,求BF 的长.12.如图,AB 为O 的直径,C 为O 上一点,CD BD ABC CBD ⊥∠=∠.(1)求证:CD 为O 的切线.(2)当1,4BD AB ==时,求CD 的长.13.如图 已知AB 是O 的直径 BC AB ⊥于B E 是OA 上的一点ED BC ∥交O 于D OC AD ∥ 连接AC 交ED 于F .(1)求证:CD 是O 的切线;(2)若8AB = 1AE = 求ED EF 的长.14.如图 AB 是O 的直径 AC BC ,是弦 点D 在AB 的延长线上 且DCB DAC ∠=∠ O 的切线AE 与DC 的延长线交于点E .(1)求证:CD 是O 的切线;(2)若O 的半径为2 30D ∠=︒ 求AE 的长.15.如图 已知AB 是O 的直径 点P 在BA 的延长线上 弦BC 平分PBD ∠且BD PD ⊥于点D .(1)求证:PD 是O 的切线.(2)若8cm 6cm AB BD , 求弧AC 的长.为O的直径在O上连接的延长线交于E.是O的切线;∠tan BDF为O的直径的平分线交O于点E BC的延长线于点(1)求证:DE 为O 切线;(2)若10AB = 6BC = 求DE 的长.18.如图 O 是ABC 的外接圆 点D 在BC 延长线上 且满足CAD B ∠=∠.(1)求证:AD 是O 的切线;(2)若AC 是BAD ∠的平分线 3sin 5B =4BC = 求O 的半径.参考答案:1.【分析】此题重点考查圆周角定理 切线的判定定理 勾股定理 三角形的中位线定理 等腰三角形的“三线合一” 线段的垂直平分线的性质等知识 正确地作出辅助线是解题的关键.是O的切线;+=314是O的直径90︒则22BE=+4(22)⊥AD BC是O的半径是O的切线.)连接EFDC=DF33+=+BD DF∠OE DOBDE=.3是O的直径90︒.中EF=中BE=(3)23312π- 【分析】此题考查了解直角三角形 切线的判定以及扇形的面积.注意掌握辅助线的作法 .(1)点D 是BC 的中点 可以得到BD CD = 即可得到DBC DCB ∠∠= 再根据角平分线的定义得到ACD BCD ∠∠= 进而得到结论;(2)连接OC OD OB 则可得到OD BC ⊥ 然后根据等边对等角可以得到90OCD ACD ∠∠+=︒ 即可得到结论(3)先求出60ODB ∠=︒ 继而利用OBD OBD S S S=-阴影部分扇形求得答案.【详解】(1)解:如图 ∵点D 是BC 的中点∵BD CD =∵DBC DCB ∠∠=又∵CD 是ABC 的角平分线∵ACD BCD ∠∠=∵ACD ABC ∠∠=;(2)证明:如图 连接OC OD OB∵点D 是BC 的中点∵OD BC ⊥∵90ODC BCD ∠∠+=︒∵OD OC =∵ODC OCD ∠∠=又∵ACD BCD ∠∠=∵90OCD ACD ∠∠+=︒即OC AC ⊥∵OC 是O 的半径∵AC 是O 的切线;Rt BDE 中 ODB ∠=60ODB =︒OB OD =∵OBD 是等边三角形BOD ∠=OBD S S==阴影部分.(1)见解析(2)23进而得出BFG 是等边三角形 是O 的切线;)解:如图所示∵OD AC ⊥∵AD CD =∵BD AC =∵BD AC =∵AD BC =∵AD CD BC ==;∵AB 为半圆O 的直径∵90CAB CBA ∠+∠=︒∵30DAC CAB ABD ∠=∠=∠=︒∵60GBF G ∠=∠=︒ 12GB AG =∵BFG 是等边三角形 223AB AG BG BG =-=∵3233BF BG AB ===. 【点睛】本题考查了切线的判定 弧与弦的关系 直径所对的圆周角是直角 勾股定理 等边三角形的性质与判定 垂径定理 熟练掌握以上知识是解题的关键.4.(1)证明(2)233【分析】本题主要考查切线的性质和判定及特殊角的三角函数的应用 掌握切线问题中的辅助线的作法是解题的关键.(1)连接OD 证明ODB C ∠=∠ 推出AC OD ∥ 即可证明结论成立;(2)连接AD 在Rt CED 中 求得利用三角形函数的定义求得30C ∠=︒ 60AOD ∠=︒ 在Rt ADB 中 利用勾股定理列式计算求得圆的半径即可.【详解】(1)证明:连接OD又OB OD=B ODB∴∠=∠ODB∴∠=∠AC OD∥DF AC⊥OD DF∴⊥DF∴是O的切线;(2)连接AD设O半径为Rt CED中3,CE CD=22ED CD∴=-又cosCE CCD ∠=30C∴∠=︒30B∴∠=︒60AOD=∠AB是O的直径.90ADB∴∠=︒12AD AB r ∴== ∵AB AC =∵2CD BD ==又222AD BD AB +=2222(2)r r ∴+=233r ∴=(负值已舍). 5.(1)证明见解析(2)3【分析】本题考查的是勾股定理的应用 等腰三角形的性质 切线的判定 熟练的证明圆的切线是解本题的关键;(1)连接OB 证明PCB PBC ∠=∠ OAB OBA ∠=∠ 再证明90PBC OBA ∠+∠=︒即可;(2)设O 的半径为r 表示()()22222255PC AC AP r =-=-- 222225PB OP OB r =-=- 再利用PB PC =建立方程求解即可.【详解】(1)解:连接OB∵PB PC = OA OB =∵PCB PBC ∠=∠ OAB OBA ∠=∠∵OP l ⊥ OAB PAC ∠=∠∵90BCP CAP BCP OAB ∠+∠=︒=∠+∠∵90PBC OBA ∠+∠=︒∵90OBP ∠=︒∵OB PB ⊥是O 的切线;)设O 的半径为l 2AC =2AC AP =-PB BP 2OP OB =-∵O 的半径为【点睛】.(1)见解析(2)3【分析】本题主要考查切线的判定和性质证AOB EOB ≌ 得出的半径为r 则OE OA =根据AOB EOB ≌得求得4CE = 在Rt OCE 中运用勾股定理列式求出r 的值即可. )证明:在AOB 和EOB 中∵()SAS AOB EOB ≌OAF OEF ∠=∠BC 与O 相切OE BC ⊥90OAB OEB ∠=∠=︒AF是O 的半径是O 的切线;(2)解:在Rt CAB △中 90108CAB BC AC ∠=︒==,,∵22221086AB BC AC =-=-=设圆O 的半径为r 则,OE OA r ==∵8OC r =-∵,AOB EOB ≌∵6BE AB ==∵10,BC =∵1064,CE BC BE =-=-=在Rt OCE 中 222OE CE OC +=∵()22248r r +=-解得3r =.∵O 的半径为3.7.(1)作图见解析(2)4π3【分析】本题考查了作图 复杂作图 切线的性质 等边三角形的判定与性质 弧长的计算 熟练掌握切线的性质 弧长公式是解答本题的关键.(1)根据题意 连接OC 作OC CD ⊥ 交AB 的延长线于点D 由此得到答案. (2)根据题意 得到OBC △是等边三角形 求出120AOC ∠=︒ 再利用弧长公式 得到答案.【详解】(1)解:如图所示 CD 即为所求.(2)如图所示 连接BCBD)证明:在ABCD中AE AD ∴=∵AE BC =.(2)解:连接OA 过点O 作OF CE ⊥于点F 如图所示:AD 是O 的切线OA AD ∴⊥OA BC ∴⊥AB AC ∴=40AEC B D ︒∠=∠=∠=40ACB B ∴∠=∠=︒在ABCD 中 AD BC ∥40DAC ACB ∴∠=∠=︒又180100DAE D AEC ∠=︒-∠-∠=︒60CAE DAE CAD ∴∠=∠-∠=︒2120COE CAE ∴∠=∠=︒OC OE =30OCE ∴∠=︒OF CE ⊥22cos3063CE CF OC ∴==⋅︒=.【点睛】本题主要考查了切线的性质 解直角三角形 圆周角定理 平行四边形的性质垂径定理 等腰三角形的判定 解题的关键是作出辅助线 熟练掌握相关的判定和性质.9.(1)证明详见解析;(2)8.【分析】本题考查了切线的判定 勾股定理等知识 熟练掌握切线的判定定理 勾股定理是解题的关键.(1)连接OD 根据平行线判定推出OD AC ∥ 推出OD BC ⊥ 根据切线的判定推出即可;(2)根据勾股定理求出3OD OA OE === 再根据线段的和差求解即可.【详解】(1)证明:连接OD∵OA OD =∵OAD ODA ∠=∠∵AD 平分BAC ∠∵BAD CAD ∠=∠∵ODA CAD ∠=∠∵OD AC ∥∵180C ODC ∠+∠=︒∵90C ∠=︒∵90ODC ∠=︒∵OD BC ⊥∵OD 为半径∵BC 是O 的切线;(2)解:设OD OE r ==在Rt ODB △中 42BD BE ==,∵2OB r =+由勾股定理 得:()22242r r +=+ 解得:3r =∵3OD OA OE ===∵628AB =+=.10.(1)证明见解析;(2)63.【分析】(1)先证明OAB 是等边三角形 再由性质得出60AOB OAB OBA ∠=∠=∠=︒ 再由BC AB =和角度和差即可求解;(2)先根据等边三角形性质求出132OE OA == 再根据勾股定理求得33AE = 最后由垂径定理即可求解;此题考查了等边三角形的判定与性质 勾股定理和垂径定理 解题的关键是熟练掌握以上知识点的应用.【详解】(1)证明:∵AB OA OB ==∵OAB 是等边三角形∵60AOB OAB OBA ∠=∠=∠=︒∵BC OB =∵BC AB =∵1302BAC BCA OBA ∠=∠=∠=︒ ∵90OAC OAB BAC ∠=∠+∠=︒又∵OA 为O 的半径∵AC 是O 的切线;(2)解:∵6BC =∵6AB OA OB ===∵AD OB ⊥于点E∵30OAE ∠=︒∵132OE OA == ∵2233AE OA OE =-=∵AE OB ⊥∵263AD AE ==.11.(1)见解析∠=)证明:BAD60︒6090︒-︒=OD是O的半径∴直线BD是O的切线;==(2)解:设OD OC△中sin30在Rt BDO解得:1r==+OB OCDE是O的直径∴∠=︒DFE90∠=∠即DFB BDE∠=∠DBF DBE∴△∵BDEBFD△BF BD∴=BD BE337BF ∴= 解得:377BF =. 【点睛】本题考查了切线的判定和性质 相似三角形的性质和判定 圆周角定理 勾股定理等知识点 作出辅助线构造出相似三角形是解题关键.12.(1)见详解(2)3【分析】(1)连接OC 由∠=∠OCB ABC ABC CBD ∠=∠ 得OCB CBD ∠=∠ 则OC BD ∥ 所以18090OCD D ∠=︒-∠=︒ 即可证明CD 为O 的切线;(2)由AB 为的直径 得90ACB ∠=︒ 则ACB D ∠=∠ 而ABC CBD ∠=∠ 所以C ABC BD ∽△△ 则AB CB CB BD = 可求得CB BD AB =⋅ 由勾股定理得22CD CB BD =-.【详解】(1)证明:连接OC 则OC OB =OCB ABC ∴∠=∠ABC CBD ∠=∠OCB CBD ∴∠=∠OC BD ∴∥CD BD ⊥90D ∴∠=︒18090OCD D ∴∠=︒-∠=︒OC 是O 的半径 且CD OC ⊥CD ∴为O 的切线.(2)解:AB 为的直径ABC∠=ABC CBD ∴∽∴AB CBCB BD=1,4BD AB==1 CB BD AB∴=⋅=22CD CB BD∴=-=CD∴的长是【点睛】此题重点考查等腰三角形的性质AD OC∥ADO∴∠OA OD=ADO DAO ∴∠=∠DOC BOC ∴∠=∠OD OB OC OC ==,ODC OBC ∴≌△△∴OBC ODC ∠=∠BC AB ⊥∴90OBC ODC ∠=∠=︒OD 为经过圆心的半径∴CD 是O 的切线;(2)如图所示:作DM BC ⊥交BC 于点M8AB = 1AE =1432OA OB OD AB OE OA AE ∴=====-=, 227DE BM OD OE ==-=令=7CM x CB CD x ==+, 7BE DM ==∴在222Rt DMC CM DM CD +=△,222(7)7x x ∴+=+解得:37x =47BC ∴=DE BC ∥ADE ABC ∴△△∽是O的切线.2)在Rt△是O的切线得出Rt EAD中【详解】(1)证明:连接.是O的直径+∠OCA OCBDCB OCB+∠OCD=︒.90是半径经过O的半径外端∵CD 是O 的切线.(2)解:在Rt OCD △中∵90OCD ∠=︒ 30D ∠=︒ 2OC =∵4OD =.∵6AD AO OD =+=.∵AE 是O 的切线 切点为A∵OA AE ⊥.在Rt EAD 中∵90EAD ∠=︒ 30D ∠=︒ 6AD =∵3tan 306233AE AD =⋅︒=⨯=. 15.(1)见解析(2)4π3【分析】本题考查圆与三角形的综合问题 掌握与圆有关的性质 正确作出辅助线是关键.(1)连接OC 根据条件证明OC BD ∥ 即可证明;(2)根据PCO PDB ∽可得PA 利用余弦值可求出COP ∠ 通过弧长公式求解即可.【详解】(1)证明:连接OC 如图∵OC OB =∵OCB OBC ∠=∠∵弦BC 平分PBD ∠∵DBC OBC ∠=∠∵OCB DBC ∠=∠.∵OC BD ∥∵BD PD ⊥∵OC PD ⊥.为O 的半径是O 的切线;)解:连接OC∵PCO PDB ∽OC PO BD PB= 8cm AB = BD =14cm 2OC AB ==4468PA PA +=+ Rt OCP 中cos COP ∠=60COP =︒AC 的长=(1)证明见解析; 是O 的切线;证明FBD FDA ∽ 得到1tan tan 4BD A BDF AD ∠=∠== 进而得到164DF = 即可求解; 本题考查了切线的判定 相似三角形的判定与性质 等腰三角形的性质 余角性质 根据题意 正确作出辅助线是解题的关键.【详解】(1)证明:连结OD∵CO AB ⊥∵90E C ∠+∠=︒∵FE FD = OD OC =∵E FDE ∠=∠ ∠=∠C ODC∵90FDE ODC ∠+∠=︒∵90ODF ∠=︒∵OD DF ⊥∵FD 是O 的切线;(2)解:连结AD ,OD BD 如图∵AB 为O 的直径∵90ADB ∠=︒∵90∠+∠=︒A ABD∵OB OD =∵OBD ODB ∠=∠∵90A ODB ∠+∠=︒∵FBD FDA ∽DF BD AF AD= 在Rt △ABD 中 tan ∠164DF = 3DF =的平分线交O 于点E∵ED OE ⊥∵DE 为O 切线.(2)过点O 作OM BC ⊥于点M 10AB = 6BC =则132MC MB BC ===,152OB OE AB === 四边形OEDM 时矩形∵DE OM =根据勾股定理 得224DE OM OB BM ==-=.18.(1)见解析(2)103【分析】(1)连接OA OC 与AB 相交于点E 如图 由OA OC = 可得OAC OCA ∠=∠ 根据圆周角定理可得12B AOC ∠=∠ 由已知CAD B ∠=∠ 可得2AOC CAD ∠=∠ 根据三角形内角和定理可得180OCA CAO AOC ∠+∠+∠=︒ 等量代换可得90CAO CAD ∠+∠=︒ 即可得出答案;(2)根据角平分线的定义可得BAC DAC ∠=∠ 由已知可得BAC B =∠∠ 根据垂径定理可得 OC AB ⊥ BE AE = 在Rt BEC △中 根据正弦定理可得3sin 45CE CE B BC === 即可算出CE 的长度 根据勾股定理可算出22BE BC CE =-的长度 设O 的半径为r 则125OE OC CE r =-=- 在Rt AOE △中 222OA OE AE =+ 代入计算即可得出答案. 【详解】(1)证明:连接OA OC 与AB 相交于点E 如图OA OC =OAC ∴∠AC AC =∴12B ∠=CAD ∠=AOC ∴∠=OCA ∠+2CAO ∴∠+CAO ∴∠+OAD ∴∠OA 是O 的半径AD ∴是O 的切线;(2)解:AC 是∠BAC DAC ∴∠=∠CAD B ∠=∠BAC B ∴∠=∠OC AB ∴⊥ BE =在Rt BEC △中4BC =sin CE B BC ∴=125CE ∴=BE BC ∴=设O 的半径为r ,则125OE OC CE r =-=-在Rt AOE △中222OA OE AE =+ 222121655r r ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭ 解得:103r =. 【点睛】本题主要考查了切线的性质与判定,垂径定理,勾股定理及解直角三角形, 熟练掌握切线的性质与判定,垂径定理及解直角三角形的方法进行求解是解决本题的关键.。

中考压轴题圆的切线证明和计算附详解(中考真题汇编)

中考压轴题圆的切线证明和计算附详解(中考真题汇编)

圆的切线证明和圆中计算附详解(2024年中考数学真题汇编)1.(24年江西中考)如图,AB 是半圆O 的直径,点D 是弦AC 延长线上一点,连接BD BC ,,60D ABC ∠=∠=︒.(1)求证:BD 是半圆O 的切线.(2)当3BC =时,求 AC 的长.2.(24年山东枣庄中考)如图,在四边形ABCD中,AD BC ∥,60DAB ∠=︒,22AB BC AD ===.以点A 为圆心,以AD 为半径作 DE交AB 于点E ,以点B 为圆心,以BE 为半径作 EF所交BC 于点F ,连接FD 交 EF 于另一点G ,连接CG .(1)求证:CG 为 EF所在圆的切线(2)求图中阴影部分面积.(结果保留π)3.(24年安徽中考)如图,O 是ABC ∆的外接圆,D 是直径AB 上一点,ACD ∠的平分线交AB 于点E ,交O 于另一点,.F FA FE =(1)求证:;CD AB ⊥(2)设FM AB ⊥,垂足为M ,若1OM OE ==,求AC 的长.4.(24年扬州中考)在综合实践活动中,“特殊到一般”是一种常用方法,我们可以先研究特殊情况,猜想结论,然后再研究一般情况,证明结论.如图,已知ABC ,CA CB =,O 是ABC 的外接圆,点D 在 O 上(AD BD >),连接AD ,BD ,CD .【特殊化感知】(1)如图1,若60ACB ∠=︒,点D 在AO 延长线上,则AD BD -与CD 的数量关系为________【一般化探究】(2)如图2,若60ACB ∠=︒,点C ,D 在AB 同侧,判断AD BD -与CD 的数量关系并说明理由【拓展性延伸】(3)若ACB α∠=,直接写出AD ,BD ,CD 满足的数量关系.(用含α的式子表示)5.(24年苏州中考)如图,ABC 中,AB =,D 为AB 中点,BAC BCD ∠=∠cos4ADC ∠=.O 是ACD 的外接圆.(1)求BC 的长(2)求O 的半径.6.(24年湖北中考)Rt ABC 中,90ACB ︒∠=,点O 在AC 上,以OC 为半径的圆交AB 于点D ,交AC 于点E .(1)求证:AB 是O 的切线。

中考数学考点《圆的切线的证明》专项练习题-附答案

中考数学考点《圆的切线的证明》专项练习题-附答案

中考数学考点《圆的切线的证明》专项练习题-附答案学校:班级:姓名:考号:1.如图,在Rt△ABC中,∠ABC=90°,∠BAC的平分线交BC于D,以D为圆心,DB长为半径作⊙D.求证:AC与⊙D相切.2.已知AB是⊙O的直径,CD是⊙O的弦,AB与CD交于E,CE=DE,过B作BF∥CD,交AC的延长线于点F,求证:BF是⊙O的切线.3.如图,点C在以AB为直径的⊙O上,弧AC=1弧BC,经过点C与⊙O相切的直线CE交BA的延长线2于点D,连接BC,过点D作DF∥BC.求证:DF是⊙O的切线.4.如图,Rt△ABC中∠C=90°,点O是AB边上一点,以OA为半径作⊙O,与边AC交于点D,连接BD,若∠DBC=∠A,求证:BD是⊙O的切线.5.如图,在△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,DE⊥BC,垂足为E.(1)求证:DE是⊙O的切线;(2)若DG⊥AB,垂足为点F,交⊙O于点G,∠A=35°,⊙O半径为5,求劣弧DG的长.(结果保留π)6.如图,AB是⊙O的直径,弦CD⊥AB于点H,点G在弧BD上,连接AG,交CD于点K,过点G的直线交CD延长线于点E,交AB延长线于点F,且EG=EK.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为13,CH=12,AC∥EF,求OH和FG的长.7.如图,已知△ABC内接于⊙O,点D在OC的延长线上,∠B=∠CAD=30°.(1)AD是⊙O的切线吗?为什么?(2)若OD⊥AB,BC=5,求⊙O的半径.8.如图在Rt△ABC中,∠C=90°,点D是AC的中点,且∠A+∠CDB=90°,过点A、D作⊙O,使圆心O 在AB上,⊙O与AB交于点E.(1)求证:直线BD与⊙O相切;(2)若AD:AE=4:5,BC=6,求⊙O的直径.9.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)若∠DBC=30°,DE=1cm,求BD的长.10.如图,AB为⊙O的直径,AD平分∠BAC交⊙O于点D,DE⊥AC交AC的延长线于点E,FB是⊙O的切线交AD的延长线于点F.(1)求证:DE是⊙O的切线(2)若DE=3,⊙O的半径为5,求BF的长11.如图,△ABC内接于⊙O,点D在半径OB的延长线上,∠BCD=∠A=30°.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径长为1,求由弧BC、线段CD和BD所围成的阴影部分面积.(结果保留π和根号)12.如图,AB是⊙O的弦,OP⊥OA交AB于点P,过点B的直线交OP的延长线于点C,且CP=CB.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为√5,OP=1,求BC的长.13.如图,点B、C、D都在半径为4的⊙O上,过点C作AC∥BD交OB的延长线于点A,连接CD,已知∠CDB=∠OBD=30°.(1)求证:AC是⊙O的切线;(2)求弦BD的长.14.如图,⊙O的直径为AB,点C在圆周上(异于A,B),AD⊥CD.(1)若BC=3,AB=5,求AC的值;(2)若AC是∠DAB的平分线,求证:直线CD是⊙O的切线.15.如图,△ABC的边AB为⊙O的直径,BC与⊙O交于点D,D为BC的中点,过点D作DE⊥AC于E.(1)求证:DE是⊙O的切线;(2)若AB=13,BC=10,求CE的长.16.如图,AB是⊙O的直径,点C,D在⊙O上,且AD平分∠CAB,过点D作AC的垂线,与AC的延长线相交于点E,与AB的延长线相交于点F.(1)求证:EF与⊙O相切;(2)若AB=6,AD=4 √2,求EF的长.17.如图,AB是⊙O直径,D为⊙O上一点,AT平分∠BAD交⊙O于点T,过T作AD的垂线交AD的延长线于点C.(1)求证:CT为⊙O的切线;(2)连接BT,若⊙O半径为1,AT= √3,求BT的长.18.如图,点A是⊙O直径BD延长线上的一点,C在⊙O上,AC=BC,AD=CD(1)求证:AC是⊙O的切线;(2)若⊙O的半径为2,求△ABC的面积.19.如图,已知⊙O是以AB为直径的△ABC的外接圆,OD∥BC,交⊙O于点D,交AC于点E,连接BD,BD 交AC于点F,延长AC到点P,连接PB.(1)若PF=PB,求证:PB是⊙O的切线;(2)如果AB=10,BC=6,求CE的长度.答案解析1.证明:过点D作DF⊥AC于F,如图所示:∵AB为⊙D的切线∴∠B=90°∴AB⊥BC∵AD平分∠BAC,DF⊥AC∴BD=DF∴AC与⊙D相切.2.【解答】证明:∵AB是⊙O的直径,CD是⊙O的弦,AB与CD交于E,CE=DE ∴AB⊥CD∵BF∥CD∴BF⊥AB∴BF是⊙O的切线.3.解:连接OC,过点O作OG⊥DF,垂足为G弧BC∵弧AC =12∴∠AOC=13∠AOB=60°∴∠ABC=12∠AOC=30°∵CE切⊙O于点C∴OC⊥CE,即∠DCO=90°∴在ΔDOC中∵DF//CB∴∠ABC=∠GDO=30°∴∠CDO=∠GDO,即DO平分∠CDG∵OC⊥CE,OG⊥DF ∴OC=OG(角平分线性质)∴OG是⊙O的半径∴DF是⊙O的切线(垂径定理).4.证明:如图,连接OD.∵OA=OD∴∠A=∠ADO.∵∠C=90°∴∠CBD+∠CDB=90°又∵∠CBD=∠A∴∠ADO+∠CDB=90°∴∠ODB=180°﹣(∠ADO+∠CDB)=90°.∴直线BD与⊙O相切.5.(1)证明:如图1,连接BD、OD∵AB是⊙O直径∴BD ⊥AC∵AB=BC∴AD=DC∵AO=OB∴OD 是△ABC 的中位线∴DO ∥BC∵DE ⊥BC∴DE ⊥OD∵OD 为半径∴DE 是⊙O 切线;(2)解:如图2所示,连接OG ,OD∵DG ⊥AB ,OB 过圆心O∴弧BG=弧BD∵∠A=35°∴∠BOD=2∠A=70°∴∠BOG=∠BOD=70°∴∠GOD=140°∴劣弧DG 的长是140π×5180=359π.6.解:(1)证明:连接OG∵弦CD ⊥AB 于点H∴∠HKA+∠KAH=90°∵EG=EK∴∠EGK=∠EKG∵∠HKA=∠GKE∴∠HAK+∠KGE=90°∵AO=GO∴∠OAG=∠OGA∴∠OGA+∠KGE=90°∴GO⊥EF∴EF是⊙O的切线;(2)解:连接CO,在Rt△OHC中∵CO=13,CH=12∴HO=5∴AH=8∵AC∥EF∴∠CAH=∠F∴tan∠CAH=tan∠F=128=32在Rt△OGF中,∵GO=13∴FG=13tan∠E =263.7.解:(1)AD是⊙O的切线,理由如下:连接OA∵∠B=30°∴∠O=60°∵OA=OC∴∠OAC=60°∵∠CAD=30°∴∠OAD=90°又∴点A在⊙O 上∴AD是⊙O的切线;(2)∵∠OAC=∠O=60°∴∠OCA=60°∴△AOC是等边三角形∵OD⊥AB∴OD垂直平分AB∴AC=BC=5∴OA=5即⊙O的半径为5.8.(1)证明:连接OD,在△AOD中,OA=OD∴∠A=∠ODA又∵∠A+∠CDB=90°∴∠ODA+∠CDB=90°∴∠BDO=180°-90°=90°,即OD⊥BD ∴BD与⊙O相切.(2)解:连接DE,∵AE是⊙O的直径∴∠ADE=90°∴DE∥BC.又∵D是AC的中点,∴AE=BE.∴△AED∽△ABC.∴AC∶AB=AD∶AE.∵AC∶AB=4∶5令AC=4x,AB=5x,则BC=3x.∵BC=6,∴AB=10∴AE=5,∴⊙O的直径为5.9.(1)连接OA∵DA平分∠BDE∴∠BDA=∠EDA.∵OA=OD∴∠ODA=∠OAD∴∠OAD=∠EDA∴OA∥CE.∵AE⊥DE∴∠AED=90°.∴∠OAE=∠DEA=90°.∴AE⊥OA.∴AE是⊙O的切线;(2)∵BD是直径∴∠BCD=∠BAD=90°.∵∠DBC=30°,∠BDC=60°∴∠BDE=120°.∵DA平分∠BDE∴∠BDA=∠EDA=60°.∴∠ABD=∠EAD=30°.∵在Rt△AED中,∠AED=90°,∠EAD=30°∴AD=2DE.∵在Rt△ABD中,∠BAD=90°,∠ABD=30°∴BD=2AD=4DE.∵DE的长是1cm∴BD的长是4cm.10.(1)证明:如图(1)连接OD.∵AD平分∠BAC,∴∠1=∠2.又∵OA="OD" ,∴∠1=∠3.∴∠2="∠3."∴OD∥AE.∵DE⊥AE∴DE⊥OD.而D在⊙O上∴DE是⊙O的切线.(2)过D作DG⊥AB 于G.∵DE⊥AE ,∠1=∠2.∴DG="DE=3" ,半径OD=5.在Rt△ODG中,根据勾股定理: OG===4 ∴AG=AO+OG=5+4=9.∵FB是⊙O的切线, AB是直径∴FB⊥AB.而DG⊥AB∴DG∥FB. △ADG∽△AFB∴∴.∴BF=.11.(1)解:直线CD与⊙O相切∵在⊙O中,∠COB=2∠CAB=2×30°=60°又∵OB=OC∴△OBC是正三角形∴∠OCB=60°又∵∠BCD=30°∴∠OCD=60°+30°=90°∴OC ⊥CD又∵OC 是半径∴直线CD 与⊙O 相切.(2)解:由(1)得△OCD 是Rt △,∠COB=60° ∵OC=1∴CD= √3∴S △COD = 12 OC •CD= √32又∵S 扇形OCB = π6∴S 阴影=S △COD ﹣S 扇形OCB = √32−π6=3√3−π6 .12.(1)证明:连接OB ,如图∵OP ⊥OA∴∠AOP=90°∴∠A+∠APO=90°∵CP=CB∴∠CBP=∠CPB而∠CPB=∠APO∴∠APO=∠CBP∵OA=OB∴∠A=∠OBA∴∠OBC=∠CBP+∠OBA=∠APO+∠A=90° ∴OB ⊥BC∴BC 是⊙O 的切线;(2)解:设BC=x ,则PC=x在Rt △OBC 中,OB= √5 ,OC=CP+OP=x+1 ∵OB 2+BC 2=OC 2∴( √5 )2+x 2=(x+1)2解得x=2即BC 的长为2.13.(1)证明:连接OC,OC交BD于E∵∠CDB=30°∴∠COB=2∠CDB=60°∵∠CDB=∠OBD∴CD∥AB又∵AC∥BD∴四边形ABDC为平行四边形∴∠A=∠D=30°∴∠OCA=180°﹣∠A﹣∠COB=90°,即OC⊥AC 又∵OC是⊙O的半径∴AC是⊙O的切线(2)解:由(1)知,OC⊥AC.∵AC∥BD∴OC⊥BD∴BE=DE∵在直角△BEO中,∠OBD=30°,OB=4∴BE=OBcos30°=2 √3∴BD=2BE=4 √314.(1)解:∵AB是⊙O直径,C在⊙O上∴∠ACB=90°又∵BC=3,AB=5∴由勾股定理得AC=4(2)解:证明:连接OC∵AC是∠DAB的角平分线∴∠DAC=∠BAC又∵AD⊥DC∴∠ADC=∠ACB=90°∴△ADC∽△ACB∴∠DCA=∠CBA又∵OA=OC∴∠OAC=∠OCA∵∠OAC+∠OBC=90°∴∠OCA+∠ACD=∠OCD=90°∴DC是⊙O的切线.15.(1)证明:连接OD∵D为BC的中点,O为AB的中点∴OD∥AC;∵DE⊥AC∴DE⊥OD∴DE是圆O的切线(2)解:连接 AD∵AB是直径∴AD⊥BC;∵D为BC的中点∴AD 是BC 的垂直平分线∴AC=AB=13;∵∠C=∠C ,∠DEC=∠ADC=90°∴△CDE ∽△CAD∴EC CD = DC AD ,而AC=AB=13,CD= 12 BC=5 ∴CE= 2513 .16.(1)证明:连接OD∵AD 平分∠CAB∴∠OAD=∠EAD .∵OD=OA∴∠ODA=∠OAD .∴∠ODA=∠EAD .∴OD ∥AE .∵∠ODF=∠AEF=90°且D 在⊙O 上 ∴EF 与⊙O 相切.(2)证明:连接BD ,作DG ⊥AB 于G∵AB 是⊙O 的直径∴∠ADB=90°∵AB=6,AD=4 √2∴BD= √AB 2−AD 2 =2∵OD=OB=3设OG=x ,则BG=3﹣x∵OD 2﹣OG 2=BD 2﹣BG 2,即32﹣x 2=22﹣(3﹣x )2 解得x= 73∴OG= 73∴DG= √OD2−OG2 = 43√2∵AD平分∠CAB,AE⊥DE,DG⊥AB∴DE=DG= 43√2∴AE= √AD2−DE2 = 163∵OD∥AE∴△ODF∽△AEF∴DFEF =ODAE,即EF−EDEF=ODAE∴EF−43√2EF=3163∴EF= 6421√2.17.(1)证明:连接OT,如图1所示:∵OA=OT∴∠OAT=∠OTA又∵AT平分∠BAD∴∠DAT=∠OAT∴∠DAT=∠OTA∴OT∥AC又∵CT⊥AC∴CT⊥OT∴CT为⊙O的切线(2)解:连接BT,如图2所示:∵AB是⊙O直径∴AB=2,∠ATB=90°∴BT= √AB2−AT2 = √22+(√3)2 =1.18.(1)解:连接OC .∵AC=BC ,AD=CD ,OB=OC∴∠A=∠B=∠1=∠2.∵∠ACO=∠DCO+∠2∴∠ACO=∠DCO+∠1=∠BCD又∵BD 是直径∴∠BCD=90°∴∠ACO=90°又C 在⊙O 上∴AC 是⊙O 的切线(2)解:由题意可得△DCO 是等腰三角形 ∵∠CDO=∠A+∠2,∠DOC=∠B+∠1∴∠CDO=∠DOC ,即△DCO 是等边三角形. ∴∠A=∠B=∠1=∠2=30°,CD=AD=2 在直角△BCD 中BC= √BD 2−CD 2 = √42−22 =2 √3 . 又AC=BC∴AC=2 √3 .作CE ⊥AB 于点E .在直角△BEC 中,∠B=30°∴CE= 12 BC= √3∴S △ABC = 12 AB •CE= 12 ×6× √3 =3 √3 .19.(1)证明:∵PF=PB∴∠PFB=∠PBF又∵∠DFE=∠PFB∴∠DFE=∠PBF∵AB 是圆的直径∴∠ACB=90°,即AC ⊥BC . 又∵OD ∥BC∴OD ⊥AC .∴在直角△DEF 中,∠D+∠DFE=90° 又∵OD=OB∴∠D=∠DBO∴∠DBO+∠PBE=90°,即PB ⊥AB ∴PB 是⊙O 的切线;(2)解:∵OD ∥BC ,OA=OB ∴OE= 12 BC= 12 ×6=3.∵OD ⊥AB∴EC=AE .∵在直角△OAE 中,OA= 12 AB= 12 ×10=5∴AE= √OA 2−OE 2 = √52−32 =4. ∴EC=4。

往年中考关于圆的证明汇总(有答案)

往年中考关于圆的证明汇总(有答案)
①求出点 C 的坐标; ②直线 BC 是否为⊙O 的切线?请作出判断,并说明理由.
23 图
24 图
24、如图,⊙M 与 x 轴相切于点 C,与 y 轴的一个交点为 A。
(1)求证:AC 平分∠OAM;(2)如果⊙M 的半径等于 4,∠ACO=300,求 AM 所在直线的解析式.
25、如图,在直角三角形 ABC 中,∠ABC=90°.
1、如图,在⊙O 中,AB,CD 是直径,BE 是切线,B 为切点,连接 AD,BC,BD.
(1)求证:△ABD≌△CDB;
(2)若∠DBE=37°,求∠ADC 的度数.
1图
2图
2、如图,△ABC 中,∠ACB=90°,D 是边 AB 上的一点,E 是 BC 上的一点,以 EC 为直径的⊙O 经过点 D,OA⊥CD 于点
连接 AF. (1)证明:∠F=∠CAD;(2)试判断直线 AF 与⊙O 的位置关系,并给出证明.
11 图
12 图
12、如图,AB 是半圆 O 的直径,点 C 是⊙O 上一点(不与 A,B 重合) ,连接 AC,BC,过点 O 作 OD∥AC 交 BC 于点 D,
在 OD 的延长线上取一点 E,连接 EB,使∠OEB=∠ABC.
那么图中两个扇形(即阴影部分)的面积之和
两等圆⊙A,⊙B外切, 为.
35 图
36 图
36、如图所示,AB 是⊙O 的直径,AE 是弦,C 是劣弧 AE 的中点,过 C 作 CD⊥AB 于点 D,CD 交 AE 于点 F,过 C 作 CG
∥AE 交 BA 的延长线于点 G.
(1)求证:CG 是⊙O 的切线. (2)求证:AF=CF. (3)若∠EAB=30°,CF=2,求 GA 的长.
33 图

2023九年级数学下册中考专题训练——圆的切线的证明【含答案】

2023九年级数学下册中考专题训练——圆的切线的证明【含答案】

2023九年级数学下册中考专题训练——圆的切线的证明A AM⊙O B⊙O BD⊥AM D BD1. 如图,点是直线与的交点,点在上,垂足为,与⊙O C OC∠AOB∠B=60∘交于点,平分,.AM⊙O(1) 求证:是的切线;DC=2π(2) 若,求图中阴影部分的面积(结果保留和根号).AB⊙O AC BD⊙O OE∥AC BC E B 2. 如图,已知是的直径,,是的弦,交于,过点⊙O OE D DC BA F作的切线交的延长线于点,连接并延长交的延长线于点.DC⊙O(1) 求证:是的切线;∠ABC=30∘AB=8CF(2) 若,,求线段的长.△ABC∠B=∠C=30∘O BC O OB3. 如图,中,,点是边上一点,以点为圆心、为半径的圆A BC D经过点,与交于点.AC⊙O(1) 试说明与相切;AC=23(2) 若,求图中阴影部分的面积.ABC⊙O B C D⊙O E BC OE 4. 如图,割线与相交于,两点,为上一点,为弧的中点,BC F DE AC G∠ADG=∠AGD交于,交于,.AD⊙D(1) 求证明:是的切线;∠A=60∘⊙O4ED(2) 若,的半径为,求的长.5. 如图,, 分别是半 的直径和弦, 于点 ,过点 作半 的切线 AB AC ⊙O OD ⊥AC D A ⊙O , 与 的延长线交于点 .连接 并延长与 的延长线交于点 .AP AP OD P PC AB F(1) 求证: 是半 的切线;PC ⊙O (2) 若 ,,求线段 的长.∠CAB =30∘AB =10BF 6. 如图, 是 的直径, 是 上一点, 是 的中点, 为 延长线上一点,AB ⊙O C ⊙O D AC E OD 且 , 与 交于点 ,与 交于点 .∠CAE =2∠C AC BD H OE F(1) 求证: 是 的切线.AE ⊙O (2) 若 ,,求直径 的长.DH =9tanC =34AB 7. 如图, 是 的直径, 是 的弦,, 与 的延长线交于点 ,点 AB ⊙O AC ⊙O OD ⊥AB OD AC D 在 上,且 .E OD CE =DE(1) 求证:直线 是 的切线.CE ⊙O (2) 若 ,,.OA =23AC =3CD =8. 如图, 是的直径,弦 于点 ,点 在直径 的延长线上,AB ⊙O CD ⊥AB E G DF .∠D =∠G =30∘(1) 求证: 是 的切线.CG ⊙OCD=6GF(2) 若,求的长.AB⊙O AC D BC D EF AC9. 如图,是的直径,是弦,是的中点,过点作垂直于直线,垂E AB F足为,交的延长线于点.EF⊙O(1) 求证:是的切线.B OF⊙O3(2) 若点是的中点,的半径为,求阴影部分面积.PB⊙O B PO⊙O E F B PO BA 10. 如图,切于点,直线交于点,,过点作的垂线,垂D⊙O A AO⊙O C BC AF足为点,交于点,延长交于点,连接,.PA⊙O(1) 求证:直线为的切线;BC=6AD:FD=1:2⊙O(2) 若,,求的半径的长.AC⊙O B⊙O∠ACB=30∘CB D11. 如图,为的直径,为上一点,,延长至点,使得CB=BD D DE⊥AC E CA BE,过点作,垂足在的延长线上,连接.BE⊙O(1) 求证:是的切线;BE=3(2) 当时,求图中阴影部分的面积.AB⊙O AP⊙O A BP⊙O C12. 已知是的直径,是的切线,是切点,与交于点.∠P=35∘∠ABP(1) 如图①,若,求的度数;D AP CD⊙O(2) 如图②,若为的中点,求证:直线是的切线.Rt△ABC∠C=90∘D AB AD⊙O BC13. 如图,在中,,点在上,以为直径的与相交于点E AE∠BAC,且平分.BC⊙O(1) 求证:是的切线;∠EAB=30∘OD=3(2) 若,,求图中阴影部分的面积.⊙O PA PC PH∠APB⊙O H H 14. 如图,在中,是直径,是弦,平分且与交于点,过作HB⊥PC PC B交的延长线于点.HB⊙O(1) 求证:是的切线;HB=6BC=4⊙O(2) 若,,求的直径.AB⊙O BD⊙O BD C AB=AC AC15. 已知:是的直径,是的弦,延长到点,使,连接,过D DE⊥AC E点作,垂足为.DC=BD(1) 求证:;DE⊙O(2) 求证:为的切线.AB⊙O C⊙O D AB∠BCD=∠A16. 如图,是的直径,是上一点,在的延长线上,且.CD⊙O(1) 求证:是的切线;⊙O3CD=4BD(2) 若的半径为,,求的长.△ABC AC⊙O△ABC∠ABC⊙O17. 如图,以的边为直径的恰为的外接圆,的平分线交D D DE∥AC BC E于点,过点作交的延长线于点.DE⊙O(1) 求证:是的切线.AB=45BC=25DE(2) 若,,求的长.AB O AD∠DBC=∠A18. 如图,是半圆的直径,为弦,.BC O(1) 求证:是半圆的切线;OC∥AD OC BD E BD=6CE=4AD(2) 若,交于,,,求的长.△ABC AO⊥BC O⊙O AC D BE⊥AB 19. 如图,是等边三角形,,垂足为点,与相切于点,交AC E⊙O G F的延长线于点,与相交于,两点.AB⊙O(1) 求证:与相切;ABC8BF(2) 若等边三角形的边长是,求线段的长.AC⊙O BC⊙O P⊙O PB AB 20. 如图,是的直径,是的弦,点是外一点,连接,,∠PBA=∠C.PB⊙O(1) 求证:是的切线;OP OP∥BC OP=8⊙O22BC(2) 连接,若,且,的半径为,求的长.答案1. 【答案】(1) ,,∵∠B=60∘OB=OC是等边三角形,∴△BOC,∴∠1=∠2=60∘平分,∵OC∠AOB,∴∠1=∠3,∴∠2=∠3,∴OA∥BD,∴∠BDM=90∘,∴∠OAM=90∘是的切线.∴AM⊙O(2) ,,∵∠3=60∘OA=OC是等边三角形,∴△AOC,∴∠OAC=60∘,∵∠OAM=90∘,∴∠CAD=30∘,∵CD=2,∴AC=2CD=4,∴AD=23∴S阴影=S梯形OADC−S扇形OAC =12(4+2)×23−60⋅π×16360=63−8π3.2. 【答案】(1) 连接,OC,∵OE∥AC,∴∠1=∠ACB是的直径,∵AB⊙O,∴∠1=∠ACB=90∘,由垂径定理得垂直平分,∴OD⊥BC OD BC,∴DB=DC,∴∠DBE=∠DCE又,∵OC=OB,∴∠OBE=∠OCE即,∠DBO=∠OCD为的切线,是半径,∵DB⊙O OB,∴∠DBO=90∘,∴∠OCD =∠DBO =90∘即 ,OC ⊥DC 是 的半径,∵OC ⊙O 是 的切线.∴DC ⊙O (2) 在 中,,Rt △ABC ∠ABC =30∘ ,又 ,∴∠3=60∘OA =OC 是等边三角形,∴△AOC∴∠COF =60∘在 中,,Rt △COF tan∠COF =CF OC .∴CF =433. 【答案】(1) 连接 .OA ,∵OA =OB .∴∠OAB =∠B ,∵∠B =30∘ .∴∠OAB =30∘ 中:,△ABC ∠B =∠C =30∘ .∴∠BAC =180∘−∠B−∠C =120∘ .∴∠OAC =∠BAC−∠OAB =120∘−30∘=90∘ ,∴OA ⊥AC 是 的切线,即 与 相切.∴AC ⊙O AC ⊙O (2) 连接 .AD ,∵∠C =30∘∠OAC =90∘ .∴OC =2OA 设 的长度为 ,则 .OA x OC =2x 在 中,,.△OAC ∠OAC =90∘AC =23根据勾股定理可得:,x 2+(23)2=(2x )2解得:,(不合题意,舍去).x 1=2x 2=−2 ,∴S △OAC =12×2×23=23,S 扇形OAD =60360×π×22=23π .∴S 阴影=23−23π答:图中阴影部分的面积为 .23−23π4. 【答案】(1) 连接 .OD 为 的中点,∵E BC ,∴OE ⊥BC ,∵OD =OE ,∴∠ODE =∠OED ,∴∠AGD +∠OED =∠EGF +∠OED =90∘ ,∵∠AGD =∠ADG ,即 ,∴∠ADG +∠ODE =90∘OD ⊥AD 是 的切线.∴AD ⊙O (2) 作 于 .OH ⊥ED H ,∴DE =2DH ,∵∠ADG =∠AGD ,∴AG =AD ,∵∠A =60∘ ,∴∠ADG =60∘,∴∠ODE =30∘ ,∵OD =4 ,∴DH =32OD =23 .∴DE =2DH =435. 【答案】(1) 连接 ,OC , 经过圆心 ,∵OD ⊥AC OD O ,∴AD =CD ,∴PA =PC 在 和 中,△OAP △OCP {OA =OC,PA =PC,OP =OP,,∴△OAP ≌△OCP (SSS ) ,∴∠OCP =∠OAP 是 的切线,∵PA ⊙O .∴∠OAP =90∘,即 ,∴∠OCP =90∘OC ⊥PC 是 的切线.∴PC ⊙O (2) 是直径,∵AB ,∴∠ACB =90∘,∵∠CAB =30∘,∴∠COF =60∘ 是 的切线,,∵PC ⊙O AB =10 ,,∴OC ⊥PF OC =OB =12AB =5 ,∴OF =OC cos∠COF =10 .∴BF =OF−OB =56. 【答案】(1) 是 的中点,∵D AC ,∴OE ⊥AC ,∴∠AFE =90∘ ,∴∠E +∠EAF =90∘ ,,∵∠AOE =2∠C ∠CAE =2∠C ,∴CAE =∠AOE ,∴∠E +∠AOE =90∘ ,∴∠EAO =90∘ 是 的切线.∴AE ⊙O (2) ,∵∠C =∠B ,∵OD =OB ,∴∠B =∠ODB ,∴ODB =∠C ,∴tanC =tan∠ODB =HF DF =34 设 ,,∴HF =3x DF =4x ,∴DH =5x =9,∴x =95 ,,∴DE =365HF =275 ,,∵∠C =∠FDH ∠DFH =∠CFD ,∴△DFH ∼△CFD ,∴DF CF =FH DF,∴CF =365×365275=485 ,∴AF =CF =485设 ,OA =OD =x,∴OF =x−365 ,∵AF 2+OF 2=OA 2 ,∴(485)2+(x−365)2=x 2解得:,x =10 ,∴OA =10 直径 为 .∴AB 207. 【答案】(1) 连接 ,OC ,∵OD ⊥AB ,∴∠AOD =90∘ ,∴∠D +∠A =90∘ ,∵OA =OC ,∴∠A =∠ACO ,∵CE =DE ,∴∠ECD =∠D ,∵∠ACO +∠DCE =90∘ ,∴∠OCE =90∘ ,∴OC ⊥CE 直线 是 的切线.∴CE ⊙O (2)5【解析】(2) 连接 ,BC 是 的直径,∵AB ⊙O ,∴∠ACB =90∘ ,∴∠AOD =∠ACB ,∵∠A =∠A ,∴△ABC ∽△ADO,∴AO AC =AD AB ,∴233=AD43 ,∴AD =8 .∴CD =AD−AC =58. 【答案】(1) 连接 .OC ,,∵OC =OD ∠D =30∘ .∴∠OCD =∠D =30∘ ,∵∠G =30∘ .∴∠DCG =180∘−∠D−∠G =120∘ .∴∠GCO =∠DCG−∠OCD =90∘ .∴OC ⊥CG 又 是 的半径.∵OC ⊙O 是 的切线.∴CG ⊙O (2) 是 的直径,,∵AB ⊙O CD ⊥AB .∴CE =12CD =3 在 中,,,∵Rt △OCE ∠CEO =90∘∠OCE =30∘ ,.∴EO =12CO CO 2=EO 2+CE 2设 ,则 .EO =x CO =2x .∴(2x )2=x 2+32解得 (舍负值).x =±3 .∴CO =23 .∴FO =23在 中,△OCG ,,∵∠OCG =90∘∠G =30∘ .∴GO =2CO =43 .∴GF =GO−FO =239. 【答案】(1) 连接 ,连接 ,OD AD 点 是 的中点,∵D BC ,∴∠1=∠2 ,∵OA =OD ,∴∠2=∠3即 ,∠1=∠2=∠3 ,∴∠1=∠3 ,∴AE ∥OD ,∵AE ⊥EF ,∴OD ⊥EF 即 是 的切线.EF ⊙O(2) 点是 的中点, 半径为 ,∵B OF ⊙O 3 ,∴BF =OB =3由()可知 ,1OD ⊥EF 在 中,Rt △ODF ,∵sinF =OD OF =36=12 ,,∴∠F =30∘∠DOF =60∘故S 阴影=S △ODF −S 扇ODB=12OD ⋅DF−60∘360∘π×32=3×332−32π=32(33−π).故阴影面积为:.32(33−π)10. 【答案】(1) 如图,连接 .OB 是 的切线,∵PB ⊙O .∴∠PBO =90∘ , 于 ,∵OA =OB BA ⊥PO D ,.∴AD =BD ∠POA =∠POB 又 ,∵PO =PO .∴△PAO ≌△PBO .∴∠PAO =∠PBO =90∘ 直线 为 的切线.∴PA ⊙O (2) ,,,∵OA =OC AD =BD BC =6 .∴OD =12BC =3设 .AD =x ,∵AD:FD =1:2 ,.∴FD =2x OA =OF =2x−3在 中,由勾股定理,得 .Rt △AOD (2x−3)2=x 2+32解之得,,(不合题意,舍去).x 1=4x 2=0 ,.∴AD =4OA =2x−3=5即 的半径的长 .⊙O 511. 【答案】(1) 如图所示,连接 ,BO ,∵∠ACB =30∘ ,∴∠OBC =∠OCB =30∘,,∵DE ⊥AC CB =BD 中,,∴Rt △DCE BE =12CD =BC ,∴∠BEC =∠BCE =30∘ 中,,∴△BCE ∠EBC =180∘−∠BEC−∠BCE =120∘ ,∴∠EBO =∠EBC−∠OBC =120∘−30∘=90∘ 是 的切线.∴BE ⊙O (2) 当 时,,BE =3BC =3 为 的直径,∵AC ⊙O ,∴∠ABC =90∘又 ,∵∠ACB =30∘ ,∴AB =tan 30∘×BC =3 ,,∴AC =2AB =23AO =3 ∴S 阴影部分=S 半圆−S Rt △ABC =12π×AO 2−12AB ×BC=12π×3−12×3×3=32π−32 3.12. 【答案】(1) 是 的直径, 是 的切线,∵AB ⊙O AP ⊙O ,∴AB ⊥AP ;∴∠BAP =90∘又 ,∵∠P =35∘ ∴∠ABP =90∘−35∘=55∘(2) 如图,连接 ,,.OC OD AC 是 的直径,∵AB ⊙O (直径所对的圆周角是直角),∴∠ACB =90∘ ;∴∠ACP =90∘又 为 的中点,∵D AP (直角三角形斜边上的中线等于斜边的一半);∴AD =CD 在 和 中,△OAD △OCD {OA =OC,OD =OD,AD =CD, ,△OAD ≌△OCD (SSS ) (全等三角形的对应角相等);∴∠OAD =∠OCD 又 是 的切线, 是切点,∵AP ⊙O A ,∴AB ⊥AP ,∴∠OAD =90∘ ,即直线 是 的切线.∴∠OCD =90∘CD ⊙O13. 【答案】(1) 平分 ,∵AE ∠BAC ,∴∠CAE =∠EAD ,∵OA =OE ,∴∠EAD =∠OEA ,∴∠OEA =∠CAE ,∴OE ∥AC ,∴∠OEB =∠C =90∘ ,∴OE ⊥BC 是 的切线.∴BC ⊙O (2) ,∵∠EAB =30∘ ,∴∠EOD =60∘ ,∴∠OEB =90∘ ,∴∠B =30∘ ,∴OB =2OE =2OD =6 ,∴BE =OB 2−OE 2=33,,∴S △OEB =932S 扇形=3π2 .∴S 阴影=932−3π214. 【答案】(1) 如图,连接 .OH 平分 ,∵PH ∠APB .∴∠HPA =∠HPB ,∵OP =OH .∴∠OHP =∠HPA .∴∠HPB =∠OHP .∴OH ∥BP ,∵BP ⊥BH .∴OH ⊥BH 是 的切线.∴HB ⊙O (2) 如图,过点 作 ,垂足为 .O OE ⊥PC E ,,,∵OE ⊥PC OH ⊥BH BP ⊥BH 四边形 是矩形.∴EOHB ,.∴OE =BH =6OH =BE .∴CE =OH−4 ,∵OE ⊥PC.∴PE =EC =OH−4=OP−4在 中,,.Rt △POE OP 2=PE 2+OE 2 .∴OP 2=(OP−4)2+36 .∴OP =132 .∴AP =2OP =13 的直径是 .∴⊙O 1315. 【答案】(1) 连接 ,AD 是 的直径,∵AB ⊙O ,∴∠ADB =90∘又 ,∵AB =AC .∴DC =BD (2) 连接半径 ,OD ,,∵OA =OB CD =BD ,∴OD ∥AC ,∴∠ODE =∠CED 又 ,∵DE ⊥AC ,∴∠CED =90∘ ,即 ,∴∠ODE =90∘OD ⊥DE 是 的切线.∴DE ⊙O 16. 【答案】(1) 连接 .OC 是 的直径, 是 上一点,∵AB ⊙O C ⊙O ,即 .∴∠ACB =90∘∠ACO +∠OCB =90∘ ,,∵OA =OC ∠BCD =∠A ,∴∠ACO =∠A =∠BCD ,即 ,∴∠BCD +∠OCB =90∘∠OCD =90∘ 是 的切线.∴CD ⊙O (2) 在 中,,,,Rt △OCD ∠OCD =90∘OC =3CD =4 ,∴OD =OC 2+CD 2=5 .∴BD =OD−OB =5−3=217. 【答案】(1) 连接 ,OD 是 的直径,∵AC ⊙O,∴∠ABC =90∘ 平分 ,∵BD ∠ABC ,∴∠ABD =45∘ ,∴∠ODE =90∘ ,∵DE ∥AC ,∴∠ODE =∠AOD =90∘ 是 的切线.∴DE ⊙O (2) 在 中,,,Rt △ABC AB =45BC =25 ,∴AC =AB 2+BC 2=10 ,∴OD =5过点 作 ,垂足为 ,C CG ⊥DE G 则四边形 为正方形,ODGC ,∴DG =CG =OD =5 ,∵DE ∥AC ,∴∠CEG =∠ACB ,∴tan∠CEG =tan∠ACB ,即 ,∴CG GE =AB BC 5GE =4525解得:,GE =52 .∴DE =DG +GE =15218. 【答案】(1) 是半圆 的直径,∵AB O ,∴BD ⊥AD ,∴∠DBA +∠A =90∘ ,∵∠DBC =∠A ,即 ,∴∠DBA +∠DBC =90∘AB ⊥BC 是半圆 的切线.∴BC O (2) ,∵OC ∥AD ,∴∠BEC =∠D =90∘ ,,∵BD ⊥AD BD =6 ,∴BE =DE =3 ,∵∠DBC =∠A ,∴△BCE ∽△BAD ,即 ,∴CE BD =BE AD 46=3AD .∴AD =4.519. 【答案】(1) 过点 作 ,垂足是 .O OM ⊥AB M 与 相切于点 ,∵⊙O AC D ,∴OD ⊥AC ,∠ADO =∠AMO =90∘ 是等边三角形,,∵△ABC AO ⊥BC 是 的角平分线,∴OA ∠MAD ,,∵OD ⊥AC OM ⊥AB .∴OM =OD 与 相切.∴AB ⊙O (2) 过点 作 ,垂足是 ,连接 .O ON ⊥BE N OF ,,∵AB =AC AO ⊥BC ∴ 是 的中点,O BC ,∴OB =12BC =12×8=4 在直角 中,,,△ABC ∠ABE =90∘∠MBO =60∘ ,∴∠OBN =30∘ ,,,∵ON ⊥BE ∠OBN =30∘OB =4 ,,∴ON =12OB =2BN =42−22=23 ,∵AB ⊥BE ∴四边形 是矩形,OMBN .∴BN =OM =23 .∵OF =OM =23由勾股定理得 .NF =(23)2−22=22 .∴BF =BN +NF =23+2220. 【答案】(1) 连接 ,如图所示:OB 是 的直径,∵AC ⊙O ,∴∠ABC =90∘ ,∴∠C +∠BAC =90∘ ,∵OA =OB ,∴∠BAC =∠OBA ,∵∠PBA =∠C ,即 ,∴∠PBA +∠OBA =90∘PB ⊥OB 是 的切线.∴PB ⊙O (2) 的半径为 ,∵⊙O 22,,∴OB =22AC =42 ,∵OP ∥BC ,∴∠CBO =∠BOP ,∵OC =OB ,∴∠C =∠CBO ,∴∠C =∠BOP 又 ,∵∠ABC =∠PBO =90∘ ,∴△ABC ∽△PBO ,即 ,∴BC OB =AC OP BC 22=428 .∴BC =2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考复习专题圆切线证明集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#中考复习专题 --------圆的切线的判定与性质知识考点:1、掌握切线的判定及其性质的综合运用,在涉及切线问题时,常连结过切点的半径,切线的判定常用以下两种方法:一是连半径证垂直,二是作垂线证半径。

2、掌握切线长定理的灵活运用,掌握三角形和多边形的内切圆,三角形的内心。

精典例题:一、若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直.例1如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F.求证:EF与⊙O相切.例2 如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD.求证:PA与⊙O相切.例3 如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M求证:DM与⊙O相切.例4 如图,已知:AB是⊙O的直径,点C在⊙O上,且∠CAB=300,BD=OB,D 在AB的延长线上.求证:DC是⊙O的切线例5 如图,AB是⊙O的直径,CD⊥AB,且OA2=OD·OP.求证:PC是⊙O的切线.例6 如图,ABCD是正方形,G是BC延长线上一点,AG交BD于E,交CD于F.求证:CE与△CFG的外接圆相切.二、若直线l与⊙O没有已知的公共点,又要证明l是⊙O的切线,只需作OA⊥l,A为垂足,证明OA是⊙O的半径就行了,简称:“作垂直;证半径”例7 如图,AB=AC,D为BC中点,⊙D与AB切于E点.求证:AC与⊙D相切.例8 已知:如图,AC,BD与⊙O切于A、B,且AC∥BD,若∠COD=900.求证:CD是⊙O的切线.[习题练习]例1如图,AB是⊙O的弦(非直径),C、D是AB上两点,并且OC=OD,求证:AC=BD.例2已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC交于点D,与AC•交于点E,求证:△DEC为等腰三角形.例3如图,AB是⊙O的直径,弦AC与AB成30°角,CD与⊙O切于C,交AB•的延长线于D,求证:AC=CD.,BF和AD交于E,例4如图20-12,BC为⊙O的直径,AD⊥BC,垂足为D,AB AF求证:AE=BE.例5如图,AB是⊙O的直径,以OA为直径的⊙O1与⊙O2的弦相交于D,DE⊥OC,垂足为E.的切线.(1)求证:AD=DC.(2)求证:DE是⊙O1例6如图,已知直线MN与以AB为直径的半圆相切于点C,∠A=28°.(1)求∠ACM的度数.(2)在MN上是否存在一点D,使AB·CD=AC·BC,说明理由.例7如图,在Rt△ABC中,∠C=90°,AC=5,BC=12,⊙O的半径为3.(1)若圆心O与C重合时,⊙O与AB有怎样的位置关系B(2)若点O 沿CA 移动,当OC 等于多少时,⊙O 与AB 相切19.如图,Rt△ABC 内接于⊙O ,AC=BC ,∠BAC 的平分线AD 与⊙0交于点D ,与BC 交于点E ,延长BD ,与AC 的延长线交于点F ,连结CD ,G 是CD 的中点,连结0G .(1)判断0G与CD 的位置关系,写出你的结论并证明;(2)求证:AE=BF ;3)若3(2OG DE ⋅=-,求⊙O 的面积。

12、如图,割线ABC 与⊙O 相交于B 、C 两点,D 为⊙O 上一点,E 为⋂BC 的中点,OE 交BC 于F ,DE 交AC 于G ,∠ADG =∠AGD 。

(1)求证:AD 是⊙O 的切线;(2)如果AB =2,AD =4,EG =2,求⊙O 的半径。

13、如图,在△ABC 中,∠ABC =900,O 是AB 上一点,以O 为圆心,OB 为半径的圆与AB 交于点E ,与AC 切于点D ,AD =2,AE =1,求BCD S ∆。

1如图,等腰三角形ABC 中,AC =BC =10,AB =12。

以BC 为直径作⊙O 交AB 于点D ,交AC 于点G ,DF ⊥AC ,垂足为F ,交CB 的延长线于点E 。

(1)求证:直线EF 是⊙O 的切线; (2)求CF :CE 的值。

2如图,AB 是⊙O 的直径,AC 是弦,∠BAC 的平分线AD 交⊙O延长线于点E ,OE 交AD 于点F .⑴求证:DE 是⊙O 值。

3如图,Rt ABC △中,90ABC ∠=°,以AB 为直径作O ⊙的中点,连接DE .(1)求证:直线DE 是O ⊙的切线;B(第22题图)(2)连接OC 交DE 于点F ,若OF CF =,求tan ACO ∠的值. 4.如图,点O 在∠APB 的平分线上,⊙O 与PA 相切于点C . (1) 求证:直线PB 与⊙O 相切;(2) PO 的延长线与⊙O 交于点E .若⊙O 的半径为3,PC=4.求弦CE 的长. 已知:如图,在Rt ABC △中,90C ∠=,点O 在AB 上,以O 为圆心,OA 长为半径的圆与AC AB ,分别交于点D E ,,且CBD A ∠=∠. (1)判断直线BD 与O(2)若:8:5AD AO =,2BC =,求BD 的长. 解:(1)(2)如图18,四边形ABCD 内接于O ,BD 是O 的直径,AE CD ⊥,垂足为E ,DA 平分BDE ∠.(1)求证:AE 是O 的切线;(2)若301cm DBC DE ∠==,,求BD 的长.如图所示,ABC △是直角三角形,90ABC ∠=于点E ,点D 是BC 边的中点,连结DE .(1)求证:DE 与O 相切;(2)若O ,3DE =,求AE . 24、如图,AB 是⊙O 的直径,∠BAC=30°,M 是OA 上一点,过M 作AB 的垂线交AC 于点N ,交BC 的延长线于点E ,直线CF 交EN 于点F ,且∠ECF=∠E. (1)证明CF 是⊙O 的切线;(第24A(2)设⊙O 的半径为1,且AC=CE ,求MO 的长.【例1】如图,AC 为⊙O 的直径,B 是⊙O 外一点,AB 交⊙O 于E 点,过E 点作⊙O 的切线,交BC 于D 点,DE =DC ,作EF ⊥AC 于F 点,交AD 于M 点。

(1)求证:BC 是⊙O 的切线; (2)EM =FM 。

证明:【例2】如图,△ABC 中,AB =AC ,O 是BC 的中点,以O 为圆心的圆与AB 相切于点D 。

求证:AC 是⊙O 的切线。

【例3】如图,已知AB 是⊙O 的直径,BC 为⊙O 的切线,切点为B ,OC 平行于弦AD ,OA =r 。

(1)求证:CD 是⊙O 的切线; (2)求OC AD ⋅的值;(3)若AD +OC =r 29,求CD 的长。

探索与创新:【问题一】如图,以正方形ABCD 的边AB 为直径,在正方形内部作半圆,圆心为O ,CG 切半圆于E ,交AD 于F ,交BA 的延长线于G ,GA =8。

(1)求∠G 的余弦值;(2)求AE 的长。

【问题二】如图,已知△ABC 中,AC =BC ,∠CAB =α(定值),⊙O 的圆心O 在AB 上,并分别与AC 、BC 相切于点P 、Q 。

(1)求∠POQ ;•例1图321M FOEDCB A例2图EO DCBA •例3图321OD CBA •问题一图GFEO DCBA(2)设D 是CA 延长线上的一个动点,DE 与⊙O 相切于点M ,点E 在CB 的延长线上,试判断∠DOE 的大小是否保持不变,并说明理由。

圆的切线证明及线段长求解在在中考中的常见题型 1、已知:如图,在矩形ABCD 中,点O 在对角线BD 上,以OD 的长为半径的⊙O 与AD ,BD 分别交于点E 、点F ,且∠ABE =∠DBC .(1)判断直线BE 与⊙O 的位置关系,并证明你的结论;(2)若33sin =∠ABE ,2=CD ,求⊙O 的半径. 2、已知:如图,⊙O 的半径OC 垂直弦AB 于点H ,连接BC ,过点A 作弦AE ∥BC ,过点C 作CD ∥BA 交EA 延长线于点D ,延长CO 交AE 于点F . (1)求证:CD 为⊙O 的切线; (2)若BC =5,AB =8,求OF 的长.3、如图,ABC ∆是等腰三角形,AC AB =,以AC为直径的⊙O 与BC 交于点D ,AB DE ⊥,垂足为E ,ED 的延长线与AC 的延长线交于点F .(1)求证:DE 是⊙O 的切线;(2)若⊙O 的半径为2,1=BE ,求A cos 的值.4、已知:如图,AB 是O ⊙的直径,BC 切O 于B ,AC 交O ⊙于P ,D 为BC 边的中点,连结DP . (1) DP 是O ⊙的切线; (2) 若3cos 5A =, O ⊙的半径为5, 求DP 的长. 问题二图NQPEODCBAO FEDCBAE O BHC A DFABFCDE O第3题图OPNM OFECBAA CFFOED C A(9题5、如图,在ABC △中,AB AC =,AE BM 平分ABC ∠交AE 于点M ,经过B M ,两点的O ⊙交BC 于 点G ,交AB 于点F ,FB 恰为O ⊙的直径. (1)求证:AE 与O ⊙相切;(2)当14cos 3BC C ==,时,求O ⊙的半径.6、如图,AB 是O ⊙的直径,30BAC ∠=︒,M 是OA 上一点,过M 作AB 的垂线交AC 于点N,交BC 的延长线于点E,直线CF 交EN 于点F,且.ECF E ∠=∠ (1)证明CF 是O ⊙的切线(2) 设⊙O 的半径为1.且AC=CE,求MO 的长. 7、如图,已知AB 为⊙O 的直径,DC 切⊙O 于点C ,过D 点作DE ⊥AB ,垂足为E ,DE 交AC 于点F . 求证:△DFC 是等腰三角形.8、在Rt △AFD 中,∠F =90°,点B 、C 分别在AD 、FD上,以AB 为直径的半圆O 过点C ,联结AC ,将△AFC 沿AC翻折得△AEC ,且点E 恰好落在直径AB 上.(1)判断:直线FC 与半圆O 的位置关系是_______________;并证明你的结论. (2)若OB =BD =2,求CE 的长.9、已知:如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 分别交BC 、AC 于点D 、E , 联结EB 交OD 于点F . (1)求证:OD ⊥BE ;(2)若5AB=5,求AE 的长.10、如图所示,AB 是⊙O 的直径,OD ⊥弦BC 于点F ,且交⊙O 于点E ,若∠AEC =∠ODB .OBG E MF(1)判断直线BD 和⊙O 的位置关系,并给出证明;(2)当AB =10,BC =8时,求BD 的长.11、已知:AB 是⊙O 的弦,OD ⊥AB 于M 交⊙O 于点D ,CB ⊥AB交AD 的延长线于C . (1)求证:AD =DC ;(2)过D 作⊙O 的切线交BC 于E ,若DE =2,CE=1,求⊙O 的半径.12、如图,AB 为⊙O 的直径,AD 平分BAC ∠交⊙O于点D ,AC 交AC DE ⊥的延长线于点E ,B B F A ⊥交AD 的延长线于点F ,(1)求证:DE 是⊙O 的切线;(2)若,3=DE ⊙O 的半径为5,求BF 的长.13、如图,等腰三角形ABC 中,AC =BC =6,AB =8.以BC 为直径作⊙O 交AB 于点D ,交AC 于点G ,DF ⊥AC ,垂足为F ,交CB 的延长线于点E . (1)求证:直线EF 是⊙O 的切线; (2)求sin ∠E 的值.14、如图,AB 为半圆O 的直径,点C 在半圆O 上,过点O 作BC 的平行线交AC 于点E ,交过点A的直线于点D ,且BAC D ∠=∠.(1)求证:AD 是半圆O 的切线;(2)若2=BC ,2=CE ,求AD 的长.15、已知:如图,在△ABC 中,AB=BC ,D 是AC 中点,BE 平分∠ABD 交AC 于点E ,点O 是AB 上一点,⊙O 过B 、E 两点, 交BD 于点G ,交AB 于点F . (1)求证:AC 与⊙O 相切; (2)当BD=2,sinC=12时,求⊙O 的半径. 16、如图,AB 是⊙O 的直径,点C 在⊙O 上,M 是 BC ⌒ 的中点,OM 交⊙O 的DE G C切线BP 于点P .(1)判断直线PC 和⊙O 的位置关系,并证明你的结论.(2)若sin ∠BAC =,⊙O 的半径为2, 求线段PC 的长.17、如图,在⊙O 中,AB 是直径,AD 是弦,∠ADE = 60°,∠C = 30°. (1)判断直线CD 是否为⊙O 的切线,并说明理由; (2)若CD = 33 ,求BC 的长.18、已知,如图,直线MN 交⊙O 于A,B 两点,AC 是直径,AD 平分∠CAM 交⊙O 于D ,过D 作DE ⊥MN 于E .(1)求证:DE 是⊙O 的切线;(2)若6DE =cm ,3AE =cm ,求⊙O 的半径.19、已知:如图,AB 为⊙O 的直径,弦OD AC //,BD 切⊙O 于B ,联结CD .(1)判断CD 是否为⊙O 的切线,若是请证明;若不是请说明理由. (2)若2=AC ,6=OD ,求⊙O 的半径.20、如图,⊙O 的直径AB=4,C 、D 为圆周上两点,且四边形OBCD 是菱形,过点D 的直线EF ∥AC ,交BA 、BC 的延长线于点E 、F . (1)求证:EF 是⊙O 的切线; (2)求DE 的长.21、已知:在⊙O 中,AB 是直径,AC 是OE ⊥AC于点E ,过点C 作直线FC ,使∠FCA =∠AOE ,交 AB 的延长线于点D.(1)求证:FD 是⊙O 的切线;(2)设OC 与BE 相交于点G ,若OG =2,求⊙OOBCEAOFEDCBA FB DEO ACA半径的长;(3)在(2)的条件下,当OE =3时,求图中阴影部分的面积.22、已知:如图,点A 是⊙O 上一点,半径OC 的延长线与过点A 的直线交于点B ,BC OC =,OB AC 21=.(1)求证:AB 是⊙O 的切线; (2)若︒=∠45ACD ,2=OC ,求弦CD 的长. 23、如图,点D 是⊙O 直径CA 的延长线上一点,点B 在⊙O 上,且AB =AD =AO .(1)求证:BD 是⊙O 的切线;(2)若点E 是劣弧BC 上一点,弦AE 与BC 相交 于点F ,且CF =9,cos ∠BFA =32,求EF 的长. 24、如图,已知AB 为⊙O 的弦,C 为⊙O 上一点,∠于B .(1)求证:AD 是⊙O 的切线;(2)若⊙O 的半径为3,AB =4,求AD 的长.25、已知:如图,AB 是⊙O 的直径,E 是AB AD 平分∠FAE ,ED ⊥AF 交AF 的延长线于点C . (1)判断直线CE 与⊙O 的位置关系,并证明你的结论;(2)若AF ∶FC =5∶3,AE =16,求⊙O 的直径AB的长.26、已知:如图,在△ABC 中,AB = AC ,点D 是边BC 的中点.以BD 为直径作圆O ,交边AB 于点P ,联结PC ,交AD 于点E . (1)求证:AD 是圆O 的切线;(2)若PC 是圆O 的切线,BC = 8,求DE 的长.A PEA27、已知:如图,在△ABC 中,90ACB ∠=,∠ABC 的平分线BD 交AC 于点D ,DE ⊥DB 交AB 于点E ,过B 、D 、E 三点作⊙O . (1)求证:AC 是⊙O 的切线;(2)设⊙O 交BC 于点F ,连结EF ,若BC =9, CA =12.求EFAC的值.28、在Rt △ABC 中,∠C=90 , BC =9, CA =12,∠ABC 的平分线BD 交AC 于点D ,DE ⊥DB 交AB 于点E ,⊙O 是△BDE 的外接圆,交BC 于点F (1)求证:AC 是⊙O 的切线; (2)联结EF ,求EFAC的值 14、如图,AB 是半圆(圆心为O )的直径,OD 是半径,BM 切半圆于B ,OC 与弦AD 平行且交BM 于C 。

相关文档
最新文档