8、矩阵特征值问题计算
矩阵的特征值
![矩阵的特征值](https://img.taocdn.com/s3/m/d5938727b94ae45c3b3567ec102de2bd9605de9d.png)
矩阵的特征值简介在线性代数中,矩阵的特征值是矩阵在特征向量上的投影,是一个重要的概念。
特征值可以帮助我们了解矩阵的性质和变换。
本文将介绍矩阵的特征值的定义、性质以及计算方法。
定义设 A 是一个 n × n 的矩阵,λ 是一个实数,如果存在一个非零向量 x 使得Ax = λx 成立,则称λ 是矩阵 A 的特征值,x 是对应的特征向量。
特征向量 x 满足Ax = λx,其中x ≠ 0,λ 可能是实数也可能是复数。
特征向量 x 的模长不影响特征向量的定义,通常我们会将特征向量标准化为单位向量。
性质1.矩阵 A 和其转置矩阵 A^T 具有相同的特征值。
2.若A 是一个对称矩阵,那么它的特征向量是正交的。
3.矩阵 A 的特征值的和等于它的迹,即λ1 + λ2 + … +λn = tr(A)。
4.矩阵 A 的特征值的积等于它的行列式,即λ1 * λ2* … * λn = |A|。
5.如果λ 是矩阵 A 的特征值,那么λ^k 是矩阵 A^k 的特征值,其中 k 是正整数。
6.矩阵 A 是奇异的(行列式为零)当且仅当它的零空间不为空,即存在非零向量使得 Ax = 0。
计算方法要计算矩阵的特征值,通常使用特征值问题的特征多项式。
设 A 是一个 n × n 的矩阵,特征多项式定义为f(λ) = |A - λI|,其中 I 是 n × n 的单位矩阵,|A - λI| 是矩阵 A - λI 的行列式。
1.求特征多项式的根:将特征多项式f(λ) = 0 的解称为特征值。
通过求解特征多项式的根,可以得到矩阵的特征值。
2.求解特征向量:对于每一个特征值λ,解齐次线性方程组 (A - λI)x = 0,得到相应的特征向量 x。
3.标准化特征向量:对于每一个特征值λ,将对应的特征向量 x 进行标准化处理,得到单位特征向量。
应用矩阵的特征值在很多领域有广泛的应用。
1.特征值可以帮助我们了解矩阵的变换性质。
矩阵特征值问题的数值方法.
![矩阵特征值问题的数值方法.](https://img.taocdn.com/s3/m/588b72284a7302768e9939a4.png)
矩阵特征值问题的数值方法矩阵特征值设A 是n 阶矩阵,x 是非零列向量. 如果有数λ 存在,满足那么,称x 是矩阵A 关于特征值λ的特征向量. 很显然一般地有主特征值的乘幂迭代法设n 阶矩阵A 的n 个特征值按模从大到小排序为:n 其对应的n 个线性无关的特征向量分别为:设是任意一个非零的n 维向量,则:假设,构造一个向量序列:则:或者:当时:如果是矩阵A 的关于特征值的一个特征向量,特征值个特征那么对于任意一个给定的,也是特征值的特征向量。
所以,是对主特征值对应的特征向量的近似。
如果则会变得很大或者如果,则会变得很大,或者如果,则会变得非常小,在实际计算中,为避免这种情况的出现需对做归一化处理况的出现,需对做归一化处理:由:左乘得:所以主特征值的近似值所以主特征值的近似值:残余误差向量定义为:当迭代次数充分大时,残余误差将充分小。
逆乘幂法:类似地,也可以求模最小特征值和对应的特征向量特征向量。
上述问题的主特征值问题就是矩阵A 的模最小特征值问题。
结果,逆乘幂法的迭代公式为:在实际应用中,无需计算逆矩阵,但需求解线性系统实对称矩阵的基本定理:对实对称矩阵A ,一定存在一个正交相似变换使得为对角矩阵且其对角矩阵P ,使得:为对角矩阵,且其对角的特征值元素为矩阵A 的特征值。
相似变换:相似变换保持矩阵特征值(但不是特征向量)不变不变。
(证明略)正交相似变换:中。
正交相似变换的例子—坐标旋转:叫旋转矩阵。
容易验证:。
适当选择旋转角,可消去xy 项—得到对角阵D 。
矩阵特征值问题的数值方法实对称矩阵的基本定理再看下面的例子:令:O 平面的坐标旋转变换适当同样地有:。
则是在x-O-z 平面的坐标旋转变换。
适当x z —D 。
选择旋转角可消去z 项得到对角阵实对称矩阵的Jacobi 方法:全部特征值和特征向量根据实对称矩阵的基本定理,求得矩阵A 的全部特征值的关键是找到正交相似变换矩阵P 使部特征值的关键,是找到正交相似变换矩阵P ,使得为对角阵。
矩阵特征值问题
![矩阵特征值问题](https://img.taocdn.com/s3/m/c4d34f233968011ca30091f6.png)
§1、特征值的估计
由于工程计算中求矩阵尤其是高阶矩阵的 精确特征值通常比较困难,而许多情况下我们 只需要知道特征值在什么范围内变化或者落在 什么区域内,例如判断方阵的幂级数是否收敛 只要看方阵的特征值的模或谱半径是否小于1, 因此特征值的估计就显得尤其必要,这方面的 理论在特征值问题中相当经典。
由于
实际上是 的
一个
维子空间,因此我们希望将
搜索极值的空间放大到任意
维子空
间 。而增大后的集合的极大值不会比原集
合的小,极小值也不会比原集合大。
58
设有 则
,并假定
,即
59
并且当
时等号成立。因此
60
一般地,我们有
定理4 (Courant-Fischer)设
是
Hermite矩阵,其特征值为
,则
存在Hermite矩阵特征值的极值原理
48
一、 Rayleigh商
二次型
,如果存在
,那么
所以如果
,我们自然也希望
49
定义1 设
是Hermite矩阵,称
为矩阵 的Rayleigh商。 注意到
因此我们可以把对 在单位球面
的极性的讨论限定 上。
50
单位球面 是闭集,又因为
是 的连续
函数,因此根据多元函数的最值定理,
在 上存在最大值和最小值。由于特征值与
对于广义特征值问题
,可以通过
适当选择位移(shift)或极点(pole) ,再通过 求逆,将之转化为SEP:
这种方法的优点是特征向量不变,矩阵 奇 异时也可以使用,并且在求解邻近 的特征 值或绝对值很小的特征值时效率较高。缺点仍 然是 一般不是特殊矩阵。
矩阵特征值与特征向量的计算_OK
![矩阵特征值与特征向量的计算_OK](https://img.taocdn.com/s3/m/6472a09b8e9951e79b8927eb.png)
n阶方阵A的特征值是特征方程 PA()=det(A-E)=0
的根.
A的特征向量是齐次线性方程组 (A-E)x=0
的非零解.
PA()是的高次的多项式,它的求根是很困难的。设法通
过数值方法是求它的根。
通常对某个特征值,可以用些针对性的方法来求其近似值。
若要求所有的特征值,则可以对A做一系列的相似变换,
“收敛”到对角阵或上(下)三角阵,
可得
n
xk
Ak x0 max(Ak x0 )
11 m ax (11
i
(
i 1
)
k
i
i2
n
i
(
i 1
)
k
i
)
7
i2
所以
8.1.1 幂法
n
xk
Ak x0 max(Ak x0 )
11
i
(
i 1
)
k
i
i2
n
max(11
i
(
i 1
)
k
i
)
lim
k
xk
11 max (11 )
i2 1
max (1 )
y=x/max(x)为向量x例的如规,范设化向向量量x=. (2,1,-5,-1)T,则max(x)=-5,y=(-0.4,-
0.2,1,0.2)T.可见规范化向量y总满足‖y‖=1.
幂法的规范化计算公式为: 任取初始向量x0=y0 0,计算
yk
Axk1
mk max(yk ) xk yk / mk , k 1,2,3,
1 1 1 1
n
n1
n2
1
对应的特征向量为ξn, ξn-1,…, ξ1.
第8章 矩阵特征值计算
![第8章 矩阵特征值计算](https://img.taocdn.com/s3/m/803e8a023169a4517723a38e.png)
第八章 矩阵特征值计算1 特征值性质和估计工程实践中有许多种振动问题,如桥梁或建筑物的振动,机械机件的振动,飞机机翼的颤动等,这些问题的求解常常归纳为求矩阵的特征值问题。
另外,一些稳定分析问题及相关问题也可以转化为求矩阵特征值与特征向量的问题。
1.1 特征值问题及性质设矩阵n n ⨯∈A R (或n n ⨯C ),特征值问题是:求C λ∈和非零向量n R ∈x ,使λ=Ax x (1.1)其中x 是矩阵A 属于特征值λ的特征向量。
A 的全体特征值组成的集合记为sp()A 。
求A 的特征值问题(1.1)等价于求A 的特征方程()det()0p I λλ=-=A (1.2)的根。
因为一般不能通过有限次运算准确求解()0p λ=的根,所以特征值问题的数值方法只能是迭代法。
反之,有时为了求多项式111()n n n n q a a a λλλλ--=++++的零点,可以把()q λ看成矩阵123101010n a a a a ----⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦的特征多项式(除(1)n -因子不计)。
这是一个Hessenberg 矩阵,可用QR 方法求特征值,从而求出代数方程()0q λ=的根。
矩阵特征值和特征向量的计算问题可分为两类:一类是求矩阵A 的全部特征值及其对应的向量;另一类是求部分特征值(一个或几个、按模最大或最小)及其对应的特征向量。
本章介绍部分特征值和特征向量的幂法、内积法;求实对称矩阵全部特征值的雅可比法、Given 方法和Householder 方法;求任意矩阵全部特征值的QR 算法。
在第5章已给出特征值的一些重要性质,下面再补充一些基本性质。
定理1 设n n R ⨯∈A ,则(1) 设λ为A 的特征值,则λμ-为μ-A I 的特征值;(2) 设12,,,n λλλ是A 的特征值,()p x 是一多项式,则矩阵()p A 的特征值是12(),(),,()n p p p λλλ。
矩阵特征值的计算
![矩阵特征值的计算](https://img.taocdn.com/s3/m/343c71fc69dc5022abea0017.png)
物理、力学和工程技术中的许多问题在数学上都归结为求矩 阵的特征值和特征向量问题。
� 计算方阵 A 的特征值,就是求特征多项式方程:
| A − λI |= 0 即 λn + p1λn−1 + ⋅ ⋅ ⋅ + pn−1λ + pn = 0
的根。求出特征值 λ 后,再求相应的齐次线性方程组:
(13)
为了防止溢出,计算公式为
⎧ Ay k = xk −1
⎪ ⎨
m
k
=
max(
yk )
( k = 1, 2, ⋅ ⋅⋅)
⎪ ⎩
x
k
=
yk
/ mk
(14)
相应地取
⎧ ⎪
λ
n
⎨
≈
1 mk
⎪⎩ v n ≈ y k ( 或 x k )
(15)
9
(13)式中方程组有相同的系数矩阵 A ,为了节省工作量,可先对
11
11
≤ ≤ ⋅⋅⋅ ≤
<
λ1 λ2
λn −1
λn
对应的特征向量仍然为 v1, v2 ,⋅⋅⋅, vn 。因此,计算矩阵 A 的按模
最小的特征值,就是计算 A−1 的按模最大的特征值。
� 反幂法的基本思想:把幂法用到 A−1 上。
任取一个非零的初始向量 x0 ,由矩阵 A−1 构造向量序列:
xk = A−1xk−1 , k = 1, 2, ⋅⋅⋅
如果 p 是矩阵 A 的特征值 λi 的一个近似值,且
| λi − p |<| λ j − p | , i ≠ j
1 则 λ i − p 是矩阵 ( A − pI )−1 的按模最大的特征值。因此,当给
特征值问题的计算方法
![特征值问题的计算方法](https://img.taocdn.com/s3/m/72cf40030740be1e650e9aca.png)
Gi ( A) = { z ∈ C : z − aii ≤ ∑ aij }; i = 1,L , n
j≠i
则 λ ( A) ⊂ G1 ( A) ∪ G2 ( A) ∪ L ∪ Gn ( A)
( 分解定理) Th8.1.4 谱分解定理)/*Spectral Decomposition*/ n× n n× n 对称矩阵 则存在正交 矩阵, 正交矩阵 设 A ∈ R 为对称矩阵,则存在正交矩阵Q ∈ R T 使得 Q AQ = Λ = diag ( λ1 ,L , λn ) 个特征值。 其中 λ1 ,L , λn 是 A 的n个特征值。 个特征值 定理) (极大极小定理 Th8.1.5 极大极小定理) 对称矩阵 矩阵, 设 A ∈ R n× n 为对称矩阵,且 A的特征值为 λ1 ≥ λ2 ≥ L ≥ λn
∀u0 , u0
∞
=1
设
yk = Auk −1 µk = yk ∞ yk uk =
For k=1,2,3,…
uk 和 µk均收敛,由算法知 收敛, 算法知 Auk −1 = µk uk
lim Auk −1 = lim µk lim uk
k →∞ k →∞ k →∞
Ax = λ1 x
uk
∞
µk → λ1
其中J (λi ) = diag( J1 (λi ), ,L , J k (λi )) ∈ C ni ×ni ;1 ≤ i ≤ r i
λi J j ( λi ) =
1
λi
且除了 J j (λi ) 的排列 O 次序外 J 唯一的 次序外, 是唯一的。 O 1 λi J 称作 A 的Jordan标准型 标准型
n× n
是可对角化的 存在如下分解: 是可对角化的,即 A 存在如下分解: 对角化
矩阵特征值计算
![矩阵特征值计算](https://img.taocdn.com/s3/m/c968c08d8762caaedd33d4e9.png)
其 中 每个 对角 块 ������������������ 均 为方阵 , 则矩 阵 ������ 的 特征 值为各 对 角块 矩阵 特征 值的合 并 ,即 ������(������) = ⋃������ ������=1 ������(������������������ ). 定理 5.5: 矩阵的相似变换(similarity transformation)不改变特征值. 设矩阵������和������为相似矩阵, 即存在非奇异矩阵������使得������ = ������−1 ������������,则 (1) 矩阵������和������的特征值相等,即 ������(������) = ������(������) ; (2) 若������为������的特征向量,则相应地,������������为������的特征向量. 通过相似变换并不总能把矩阵转化为对角阵,或者说矩阵 ������ 并不总是 可对角化 的 (diagonalizable). 下面给出特征值的代数重数、几何重数,和亏损矩阵的概念,以及几个定 理.. ̃1 , ⋯ , ������ ̃������ ,若������ ̃������ 是特征方程的������������ 重 定义 5.2: 设矩阵������ ∈ ℝ������×������ 有 m 个(mn)不同的特征值������ ̃������ 的代数重数(algebraic multiplicity),并称������ ̃������ 的特征子空间(ℂ������ 的子空间)的维数 根,则称������������ 为������ ̃������ 的几何重数(geometric multiplicity). 为������ ̃1 , ⋯ , ������ ̃������ ,特征值������ ̃������ , (������ = 1, ⋯ , ������)的代数 定理 5.6:设矩阵������ ∈ ℝ������×������ 的 m 个不同的特征值为������ 重数为������������ ,几何重数为������������ ,则 (1) ∑������ ������=1 ������������ = ������,且任一个特征值的几何重数不大于代数重数,即∀������,������������ ≥ ������������ . (2) 不同特征值的特征向量线性无关,并且将所有特征子空间的∑������ ������=1 ������������ 个基(特征向量)放在 一起,它们构成一组线性无关向量. (3) 若每个特征值的代数重数等于几何重数,则总共可得������个线性无关的特征向量,它们是 全空间ℂ������ 的基. 定义 5.3:若矩阵������ ∈ ℝ������×������ 的某个代数重数为 k 的特征值对应的线性无关特征向量数目少于 k(即几何重数小于代数重数) ,则称 ������为亏损阵(defective matrix) ,否则称其为非亏损阵 (nondefective matrix). 定理 5.7:设矩阵������ ∈ ℝ������×������ 可对角化,即存在非奇异矩阵������ ∈ ℂ������×������ 使得 ������−1������������ = ������, 其中������ ∈ ℂ������×������ 为对角阵, 的充要条件是������为非亏损矩阵. 此时,������的对角线元素为矩阵������的特 征值,而矩阵������的列向量为 n 个线性无关的特征向量. 定理 5.7 中方程的等价形式为������ = ������������������−1, 它被称为特征值分解,也叫谱分解(spectrum decomposition). 特征值分解存在的充要条件是������为非亏损矩阵. 但现实中还有很多矩阵是亏 损矩阵,例如例 5.2 中的矩阵,它的特征值 2 的代数重数为 2,而几何重数仅为 1. 这种矩阵
矩阵的特征值和特征向量的计算
![矩阵的特征值和特征向量的计算](https://img.taocdn.com/s3/m/606227e2d05abe23482fb4daa58da0116d171f4c.png)
矩阵的特征值和特征向量的计算在线性代数中,矩阵的特征值和特征向量是一对重要的概念。
它们可以帮助我们了解矩阵的性质和特点,对于很多问题的求解具有重要的意义。
本文将详细介绍矩阵特征值和特征向量的计算方法。
一、特征值和特征向量的定义对于 n 阶方阵 A,如果存在非零向量 v 使得Av = λv,其中λ 是一个常数,则称λ 为矩阵 A 的特征值,v 称为对应于特征值λ 的特征向量。
特征值和特征向量的计算可以帮助我们理解矩阵的线性变换效果,以及在某些问题中起到重要的作用。
二、特征值和特征向量的计算方法要计算一个矩阵的特征值和特征向量,我们可以按照以下步骤进行:1. 首先,我们需要求解特征方程 det(A - λI) = 0,其中 A 是待求矩阵,λ 是一个待定常数,I 是单位矩阵。
这个方程是由特征向量的定义出发得到的。
2. 解特征方程可以得到一组特征值λ1, λ2, ... , λn。
这些特征值就是矩阵的特征值,它们可以是实数或复数。
3. 对于每一个特征值λi,我们需要求解方程组 (A - λiI)v = 0,其中 v 是待求特征向量。
这个方程组的解空间就是对应于特征值λi 的特征向量的集合。
4. 对于每一个特征值λi,我们需要求解出它对应的特征向量 vi。
特征向量的计算需要利用高斯消元法或其他适用的方法。
这样,我们就可以计算出矩阵的所有特征值和对应的特征向量。
三、特征值和特征向量的应用矩阵的特征值和特征向量在很多领域有着广泛的应用,以下是其中一些常见的应用:1. 特征值和特征向量可以帮助我们理解矩阵的性质。
例如,特征值的数量可以告诉我们矩阵的维度,而特征向量可以描述矩阵的线性变换效果。
2. 特征值和特征向量在图像处理和模式识别领域有着重要的应用。
通过矩阵的特征向量,我们可以提取图像的特征,进而进行分类和识别。
3. 特征值和特征向量在物理学中也有着广泛的应用。
它们可以用于描述量子力学中的粒子运动,电路中的振动模式等。
矩阵的特征值与特征向量的计算
![矩阵的特征值与特征向量的计算](https://img.taocdn.com/s3/m/b9a0e493250c844769eae009581b6bd97e19bc57.png)
矩阵的特征值与特征向量的计算矩阵特征值与特征向量是线性代数中一个重要的概念,应用广泛于数学、物理、计算机科学等领域。
本文将介绍矩阵的特征值与特征向量的定义、计算方法,以及其在实际问题中的应用。
一、矩阵特征值与特征向量的定义对于一个n阶矩阵A,若存在一个非零向量X使得AX=kX,其中k 为一个标量,则称k为矩阵A的一个特征值,X为对应于特征值k的特征向量。
特征值与特征向量的计算是一个求解矩阵特征值问题的过程,这在实际中具有很大的意义。
接下来,我们将介绍矩阵特征值与特征向量的计算方法。
二、矩阵特征值与特征向量的计算方法计算矩阵的特征值与特征向量有多种方法,其中比较常用的方法是特征值分解和特征方程。
1. 特征值分解特征值分解是将一个矩阵表示为特征向量矩阵和特征值矩阵相乘的形式,即A=VΛV^-1。
其中,V是由特征向量构成的矩阵,Λ是由特征值构成的对角矩阵。
特征值分解的计算步骤如下:(1)求解矩阵A的特征方程det(A-λI)=0,其中I为单位矩阵。
(2)解特征方程,得到矩阵A的特征值λ1、λ2、...、λn。
(3)代入特征值,求解方程组(A-λI)X=0,其中X为特征向量。
(4)将得到的特征向量按行组成矩阵V,特征值按对角线组成矩阵Λ。
2. 特征方程法特征方程法是直接求解矩阵A的特征值的方法。
计算步骤如下:(1)求解矩阵A的特征方程det(A-λI)=0。
(2)解特征方程,得到矩阵A的特征值λ1、λ2、...、λn。
(3)代入特征值,求解方程组(A-λI)X=0,其中X为特征向量。
在实际计算中,可以利用计算机软件或在线计算器进行特征值与特征向量的计算,提高计算的效率。
三、矩阵特征值与特征向量的应用矩阵的特征值与特征向量在实际问题中具有广泛的应用,下面将介绍两个常见的应用场景。
1. 矩阵对角化对于一个n阶矩阵A,若能找到一个可逆矩阵P,使得P^-1AP=Λ,其中Λ为对角矩阵,则称矩阵A可对角化。
此时,Λ的对角线上的元素为矩阵A的特征值。
8矩阵特征值与迭代法
![8矩阵特征值与迭代法](https://img.taocdn.com/s3/m/49682040e518964bcf847c92.png)
xk k 0,计算其长度序列 || xk ||k 0,即范数 (3)对(2)中产生的向量序列
序列,看看有什么规律 ? (4)任意选取整数 0, 若记变换矩阵A的谱半径为 ( A),则选取新的变 换矩阵为 0.7018 0.8772 0.8772 0.4386 重复(2)和( 3)的过程,观察变换后 向量的分布规律和长度 变化规律。 ~ A 1 ( A) (5)分析上面的实验结果 ,并尝试作出解释。
基础知识
2. 向量序列的收敛性
对于非零矩阵 T , 任意选取一个非零初始 向量x0 R n , 做迭代序列 xn 1 Txk , k 0,1,2, 如果存在向量 x* , 使得 lim || xk x* || 0成立,则称该向量序列 xk 收
k
敛于x*,即lim xk x* .
k
基础知识
3.迭代法 迭代法也称辗转法,是一种不断用变量的旧值 递推新值的过程,跟迭代法相对应的是直接法 (或者称为一次解法),即一次性解决问题。 迭代算法是用计算机解决问题的一种基本方法。 它利用计算机运算速度快、适合做重复性操作 的特点,让计算机对一组指令(或一定步骤) 进行重复执行,在每次执行这组指令(或这些 步骤)时,都从变量的原值推出它的一个新值。
基础知识
利用迭代算法解决问题,需要做好以下三个方面的工作: 一、确定迭代变量。在可以用迭代算法解决的问题中,至 少存在一个直接或间接地不断由旧值递推出新值的变量,这 个变量就是迭代变量。 二、建立迭代关系式。所谓迭代关系式,指如何从变量的 前一个值推出其下一个值的公式(或关系)。迭代关系式的 建立是解决迭代问题的关键,通常可以使用递推或倒推的方 法来完成。 三、对迭代过程进行控制。在什么时候结束迭代过程?这 是编写迭代程序必须考虑的问题。不能让迭代过程无休止地 重复执行下去。迭代过程的控制通常可分为两种情况:一种 是所需的迭代次数是个确定的值,可以计算出来;另一种是 所需的迭代次数无法确定。对于前一种情况,可以构建一个 固定次数的循环来实现对迭代过程的控制;对于后一种情况, 需要进一步分析出用来结束迭代过程的条件。
矩阵特征值计算
![矩阵特征值计算](https://img.taocdn.com/s3/m/8604f6f8f9c75fbfc77da26925c52cc58bd6907e.png)
第五章矩阵特征值计算与线性方程组的求解问题一样,矩阵特征值与特征向量的计算也是数值线性代数的重要内容. 在理论上,矩阵的特征值是特征多项式方程的根,因此特征值的计算可转化为单个多项式方程的求解. 然而对于高阶矩阵,这种转化并不能使问题得到简化,而且在实际应用中还会引入严重的数值误差. 因此,正如第二章指出的,我们一般将多项式方程求解转化为矩阵特征值计算问题,而不是反过来.本章介绍有关矩阵特征值计算问题的基本理论和算法. 与非线性方程求根问题类似,计算矩阵特征值的算法也是迭代方法①.5.1基本概念与特征值分布本节先介绍矩阵特征值、特征向量的基本概念和性质,然后讨论对特征值分布范围的简单估计方法.5.1.1基本概念与性质定义5.1:矩阵A=(a kj)∈ℂn×n,(1) 称φ(λ)=det(λI−A)=λn+c1λn−1+⋯+c n−1λ+c n为A的特征多项式(characteristic polynomial);n次代数方程φ(λ)=0为A的特征方程(characteristic equation),它的n个根:λ1,⋯,λn,被称为A的特征值(eigenvalue). 此外,常用λ(A)表示A的全体特征值的集合,也称为特征值谱(spectrum of eigenvalue).(2) 对于矩阵A的一个给定特征值λ,相应的齐次线性方程组(λI−A)x=0 , (5.1)有非零解(因为系数矩阵奇异),其解向量x称为矩阵A对应于λ的特征向量(eigenvector).根据方程(5.1),我们得出矩阵特征值与特征向量的关系,即Ax=λx .(5.2)第三章的定义3.5就利用公式(5.2)对矩阵特征值和特征向量进行了定义,它与定义5.1是等价的. 另外,同一个特征值对应的特征向量一定不唯一,它们构成线性子空间,称为特征子空间(eigenspace).我们一般讨论实矩阵的特征值问题. 应注意,实矩阵的特征值和特征向量不一定是实数和实向量,但实特征值一定对应于实特征向量(方程(5.1)的解),而一般的复特征值对应的特征向量一定不是实向量. 此外,若特征值不是实数, 则其复共轭也一定是特征值(由于特征方程为实系数方程). 定理3.3表明,实对称矩阵A∈ℝn×n的特征值均为实数,存在n个线性无关、且正交的实特征向量,即存在由特征值组成的对角阵Λ和特征向量组成的正交阵Q,使得:A=QΛQ T.(5.3)例5.1(弹簧-质点系统):考虑图5-1的弹簧-质点系统,其中包括三个质量分别为m1、m2、m3的物体,由三个弹性系数分别为k1,k2,k3的弹簧相连,三个物体的位置均为时间的函数,①如果用有限次运算能求得一般矩阵的特征值,则多项式方程求根问题也可用有限次运算解决,这与阿贝尔证明的“高于4次的多项式并不都有用初等运算表示的求根公式”的理论矛盾.这里考查三个物体偏离平衡位置的位移,分别记为y 1(t), y 2(t), y 3(t). 因为物体在平衡状态所受的重力已经和弹簧伸长的弹力平衡,所以物体的加速度只和偏离平衡位置引起的弹簧伸长相关. 根据牛顿第二定律以及胡克定律(即弹簧的弹力与拉伸长度成正比)可列出如下微分方程组②: My ′′(t)+Ky(t)=0 ,其中y (t )=[y 1(t)y 2(t)y 3(t)]T ,M =[m 1000m 2000m 3],K =[k 1+k 2−k 20−k 2k 2+k 3−k 30−k 3k 3] . 在一般情况下,这个系统会以自然频率ω做谐波振动,而y 的通解包含如下的分量: y j (t )=x j e iωt ,(j =1,2,3)其中i =√−1,根据它可求解出振动的频率ω及振幅x j . 由这个式子可得出:y j ′′(t )=−ω2x j e iωt ,(j =1,2,3)代入微分方程,可得代数方程:−ω2Mx +Kx =0,或Ax =λx ,其中A =M −1K ,λ=ω2. 通过求解矩阵A 的特征值便可求出这个弹簧-质点系统的自然频率(有多个). 再结合初始条件可确定这三个位移函数,它们可能按某个自然频率振动(简正振动),也可能是若干个简正振动的线性叠加.例5.2(根据定义计算特征值、特征向量):求矩阵A =[5−1−131−14−21]的特征值和特征向量.[解]: 矩阵A 的特征方程为:det (λI −A )=|λ−511−3λ−11−42λ−1|=(λ−3)(λ−2)2=0故A 的特征值为λ1=3,λ2=2(二重特征值).当λ=λ1=3时,由(λI −A)x =0,得到方程[−211−321−422][x 1x 2x 3]=[000]它有无穷多个解,若假设x 1=1, 则求出解为x =[1,1,1]T ,记为x 1,则x 1是λ1对应的一个特征向量.当λ=λ2=2时,由(λI −A)x =0,得到方程[−311−311−421][x 1x 2x 3]=[000]它有无穷多个解,若假设x 1=1, 则求出解为x =[1,1,2]T ,记为x 2,则x 2是λ2对应的一个特② 本书第八章将介绍这种常微分方程组的数值求解方法.图5-1 弹簧-质点系统.征向量.下面概括地介绍有关矩阵特征值、特征向量的一些性质,它们可根据定义5.1,以及公式(5.2)加以证明.定理5.1:设λj (j =1,2,…,n)为n 阶矩阵A 的特征值,则(1) ∑λj n j=1=∑a jj n j=1=tr(A) ;(2) ∏λj n j=1=det(A) .这里tr(A)表示矩阵对角线上元素之和,称为矩阵的迹(trace ).从上述结论(2)也可以看出,非奇异矩阵特征值均不为0, 而0一定是奇异矩阵的特征值. 定理5.2:矩阵转置不改变特征值,即λ(A )=λ(A T ).定理5.3:若矩阵A 为对角阵或上(下)三角阵,则其对角线元素即为矩阵的特征值.定理5.4:若矩阵A 为分块对角阵,或分块上(下)三角阵,例如A =[A 11A 12⋯A 1m A 22⋯A 2m ⋱⋮A mm] , 其中每个对角块A jj 均为方阵,则矩阵A 的特征值为各对角块矩阵特征值的合并,即λ(A )=⋃λ(A jj )m j=1.定理5.5:矩阵的相似变换(similarity transformation)不改变特征值. 设矩阵A 和B 为相似矩阵,即存在非奇异矩阵X 使得B =X −1AX ,则(1) 矩阵A 和B 的特征值相等,即 λ(A )=λ(B ) ;(2) 若y 为B 的特征向量,则相应地,Xy 为A 的特征向量.通过相似变换并不总能把矩阵转化为对角阵,或者说矩阵A 并不总是可对角化的(diagonalizable). 下面给出特征值的代数重数、几何重数,和亏损矩阵的概念,以及几个定理..定义5.2: 设矩阵A ∈ℝn×n 有m 个(m n )不同的特征值λ̃1,⋯,λ̃m ,若λ̃j 是特征方程的n j 重根,则称n j 为λ̃j 的代数重数(algebraic multiplicity),并称λ̃j 的特征子空间(ℂn 的子空间)的维数为λ̃j 的几何重数(geometric multiplicity). 定理5.6:设矩阵A ∈ℝn×n 的m 个不同的特征值为λ̃1,⋯,λ̃m ,特征值λ̃j ,(j =1,⋯,m)的代数重数为n j ,几何重数为k j ,则(1) ∑n j m j=1=n ,且任一个特征值的几何重数不大于代数重数,即∀j ,n j ≥k j .(2) 不同特征值的特征向量线性无关,并且将所有特征子空间的∑k j m j=1个基(特征向量)放在一起,它们构成一组线性无关向量.(3) 若每个特征值的代数重数等于几何重数,则总共可得n 个线性无关的特征向量,它们是全空间ℂn 的基.定义5.3:若矩阵A ∈ℝn×n 的某个代数重数为k 的特征值对应的线性无关特征向量数目少于k (即几何重数小于代数重数),则称A 为亏损阵(defective matrix ),否则称其为非亏损阵(nondefective matrix ).定理5.7:设矩阵A ∈ℝn×n 可对角化,即存在非奇异矩阵X ∈ℂn×n 使得X −1AX =Λ,其中Λ∈ℂn×n 为对角阵, 的充要条件是A 为非亏损矩阵. 此时,Λ的对角线元素为矩阵A 的特征值,而矩阵X 的列向量为n 个线性无关的特征向量.定理5.7中方程的等价形式为A =XΛX −1, 它被称为特征值分解,也叫谱分解(spectrum decomposition). 特征值分解存在的充要条件是A 为非亏损矩阵. 但现实中还有很多矩阵是亏损矩阵,例如例5.2中的矩阵,它的特征值2的代数重数为2,而几何重数仅为1. 这种矩阵不能相似变换为对角阵,但存在下面的若当分解(Jordan decomposition).定理5.8:设矩阵A ∈ℝn×n , 存在非奇异矩阵X ∈ℂn×n 使得A =XJX −1,矩阵J 为形如[J 1⋱J p ]的分块对角阵(称为若当标准型),其中J k =[ λk 1λk ⋱⋱1λk ] 称为若当块,其对角线元素为矩阵A 的特征值. 设矩阵A 有m 个不同的特征值为λ̃1,⋯,λ̃m ,特征值λ̃j ,(j =1,⋯,m)的代数重数为n j ,几何重数为k j ,则p =∑k j m j=1, λ̃j 对应于k j 个若当块, 其阶数之和等于n j .在若当分解中,如果所有若当块都是1阶的,则J 为对角阵,这种分解就是特征值分解,相应的矩阵为非亏损阵. 若当分解是很有用的理论工具,利用它还可证明下面关于矩阵运算结果的特征值的定理.定理5.9:设λj (j =1,2,…,n)为n 阶矩阵A 的特征值,则(1) 矩阵cA, c 为常数, 的特征值为cλ1,cλ2,⋯,cλn .(2) 矩阵A +pI, p 为常数, 的特征值为λ1+p,λ2+p,⋯,λn +p.(3) 矩阵A k , k 为正整数, 的特征值为λ1k ,λ2k ,⋯,λn k .(4) 设p (t )为一多项式函数,则矩阵p (A )的特征值为p (λ1),p (λ2),⋯ ,p (λn ) .(5) 若A 为非奇异矩阵,则λj ≠0,(j =1,2,…,n), 且矩阵A −1的特征值为λ1−1,λ2−1,⋯,λn −1.5.1.2特征值分布范围的估计估计特征值的分布范围或它们的界,无论在理论上或实际应用上,都有重要意义. 比如,本书前面的内容曾涉及两个问题:(1). 计算矩阵的2-条件数:cond (A )2=√λmax (A T A)λmin (A T A) ;(2). 考察一阶定常迭代法x (k+1)=Bx (k)+f 的收敛性、收敛速度:收敛的判据是谱半径ρ(B)=max 1≤j≤n |λj (B)|<1 ; 收敛速度为R =−log 10ρ(B) .其中都需要对矩阵特征值分布范围的了解.上一章的定理4.4说明谱半径的大小不超过任何一种算子范数,即ρ(A )≤‖A ‖ ,这是关于特征值的上界的一个重要结论.下面先给出定义5.4,再介绍有关特征值的界的另一个重要结论.定义5.4:设A =(a kj )∈ℂn×n ,记r k =∑|a kj |n j=1j≠k ,(k =1,⋯,n),则集合D k ={z||z −a kk |≤r k ,z ∈ℂ},(k =1,⋯,n)在复平面为以a kk 为圆心、r k 为半径的圆盘,称为A 的Gerschgorin (格什戈林)圆盘.图5-2显示了一个3⨯3复矩阵的格什戈林圆盘.定理5.10 (圆盘定理):设A =(a kj )∈ℂn×n ,则:(1) A 的每一个特征值必属于A 的格什戈林圆盘之中,即对任一特征值λ必定存在k,1≤k ≤n ,使得:|λ−a kk |≤∑|a kj |nj=1j≠k .(5.4)图5-2 复坐标平面,以及3⨯3矩阵A 的格什戈林圆盘.用集合的关系来说明,这意味着λ(A)⊆⋃D k n k=1.(2) 若A 的格什戈林圆盘中有m 个组成一连通并集S ,且S 与余下的n −m 个圆盘分离,则S内恰好包含A 的m 个特征值(重特征值按重数计).对图5-2所示的例子,定理5.10的第(2)个结论的含义是:D 1中只包含一个特征值,而另外两个特征值在D 2,D 3的并集中. 下面对定理5.10的结论(1)进行证明,结论(2)的证明超出了本书的范围.[证明]: 设λ为A 的任一特征值,则有Ax =λx ,x 为非零向量. 设x 中第k 个分量最大,即|x k |=max 1≤j≤n|x j |>0 , 考虑方程(5.2)中第k 个方程:∑a kj x j nj=1=λx k , 将其中与x k 有关的项移到等号左边,其余到右边,再两边取模得:|λ−a kk ||x k |=|∑a kj x j n j=1j≠k |≤∑|a kj ||x j |n j=1j≠k ≤|x k |∑|a kj |nj=1j≠k .(5.5)最后一个不等式的推导利用了“x 中第k 个分量最大”的假设. 将不等式(5.5)除以|x k |,即得到(5.4)式,因此证明了定理 5.10的结论(1). 上述证明过程还说明,若某个特征向量的第k 个分量的模最大,则相应的特征值必定属于第k 个圆盘中.根据定理5.2,还可以按照矩阵的每一列元素定义n 个圆盘,对于它们定理5.10仍然成立. 下面的定理是圆盘定理的重要推论,其证明留给感兴趣的读者.定理5.11:设A ∈ℝn×n ,且A 的对角元均大于0,则(1) 若A 严格对角占优,则A 的特征值的实部都大于0.(2) 若A 为对角占优的对称矩阵,则A 一定是对称半正定矩阵,若同时A 非奇异,则A 为对称正定矩阵.例5.3 (圆盘定理的应用):试估计矩阵A =[41010−111−4]的特征值范围.[解]: 直接应用圆盘定理,该矩阵的三个圆盘如下:D 1: |λ−4|≤1, D 2: |λ|≤2, D 3: |λ+4|≤2.D 1与其他圆盘分离,则它仅含一个特征值,且必定为实数(若为虚数则其共轭也是特征值,这与D 1仅含一个特征值矛盾). 所以对矩阵特征值的范围的估计是:3≤λ1≤5,λ2,λ3∈D 2∪D 3 .再对矩阵A T 应用圆盘定理,则可以进一步优化上述结果. 矩阵A T 对应的三个圆盘为: D ’1: |λ−4|≤2, D ’2: |λ|≤2, D ’3: |λ+4|≤1.这说明D ’3中存在一个特征值,且为实数,它属于区间[-5, -3],经过综合分析可知三个特征值均为实数,它们的范围是:λ1∈[3,5],λ2∈[−2,2],λ3∈[−5,−3].事实上,使用Matlab 的eig 命令可求出矩阵A 的特征值为:4.2030, -0.4429, -3.7601.根据定理5.5,还可以对矩阵A 做简单的相似变换,例如取X 为对角阵,然后再应用圆盘定理估计特征值的范围.例5.4 (特征值范围的估计):选取适当的矩阵X ,应用定理5.5和5.10估计例5.3中矩阵的特征值范围.[解]: 取X−1=[100010000.9] , 则A 1=X −1AX =[41010−109⁄0.90.9−4]的特征值与A 的相同. 对A 1应用圆盘定理,得到三个分离的圆盘,它们分别包含一个实特征值,由此得到特征值的范围估计:λ1∈[3,5],λ2∈[−199,199],λ3∈[−5.8,−2.2]. 此外,还可进一步估计ρ(A)的范围,即3≤ρ(A)≤5.8 .上述例子表明,综合运用圆盘定理和矩阵特征值的性质(如定理5.2, 定理5.5),可对特征值的范围进行一定的估计. 对具体例子,可适当设置相似变换矩阵,尽可能让圆盘相互分离,从而提高估计的有效性.5.2幂法与反幂法幂法是一种计算矩阵最大的特征值及其对应特征向量的方法. 本节介绍幂法、反幂法以及加快幂法迭代收敛的技术.5.2.1幂法定义5.5:在矩阵A 的特征值中,模最大的特征值称为主特征值,也叫“第一特征值”,它对应的特征向量称为主特征向量.应注意的是,主特征值有可能不唯一,因为模相同的复数可以有很多. 例如模为5的特征值可能是5,−5,3+4i,3−4i , 等等. 另外,请注意谱半径和主特征值的区别.如果矩阵A 有唯一的主特征值,则一般通过幂法能方便地计算出主特征值及其对应的特征向量. 对于实矩阵,这个唯一的主特征值显然是实数,但不排除它是重特征值的情况. 幂法(power iteration)的计算过程是,首先任取一非零向量v 0∈ℝn ,再进行迭代计算:v k =Av k−1,(k =1,2,⋯)得到向量序列{v k },根据它即可求出主特征与特征向量. 下面用定理来说明.定理5.12: 设A ∈ℝn×n ,其主特征值唯一,记为λ1,且λ1的几何重数等于代数重数,则对于非零向量v 0∈ℝn ,v 0不与主特征值对应的特征向量正交,按迭代公式进行计算:v k =Av k−1,(k =1,2,⋯),存在如下极限等式:lim k→∞v k λ1k =x 1 , (5.6) lim k→∞(v k+1)j (v k )j =λ1 , (5.7)其中x 1为主特征向量,(v k )j 表示向量v k 的第j 个分量(k =1,2,⋯).[证明]: 为了推导简便,不妨设主特征值λ1不是重特征值,并且假设矩阵A 为非亏损矩阵. 设A 的n 个特征值按模从大到小排列为: |λ1|>|λ2|≥⋯≥|λn |,它们对应于一组线性无关的单位特征向量x ̂1,⋯,x ̂n . 向量v 0可写成这些特征向量的线性组合:v 0=α1x̂1+⋯+αn x ̂n 根据已知条件,α1≠0,则v k =Av k−1=A k v 0=α1λ1k x ̂1+α2λ2k x̂2+⋯+αn λn k x ̂n =λ1k [α1x ̂1+∑αj (λj λ1)kx ̂j n j=2] =λ1k (α1x̂1+εk ) 其中εk =∑αj (λj λ1)k x ̂j n j=2. 由于|λj λ1|<1,(j =2,…,n), 则 lim k→∞εk =0 ⟹lim k→∞v kλ1k =α1x̂1 . 由于特征向量放大、缩小任意倍数后仍是特征向量,设x 1=α1x̂1,则它是主特征对应的一个特征向量. 上式说明,随k 的增大, v k 越来越趋近于主特征值的对应的特征向量.设j 为1到n 之间的整数,且(v k )j ≠0,则(v k+1)j (v k )j =λ1(α1x ̂1+εk+1)j (α1x̂1+εk )j 由于lim k→∞εk =0,随k 的增大上式等号右边趋于一个常数: λ1. 这就证明了定理的结论.若矩阵A 为亏损矩阵,可利用矩阵的若当分解证明这个定理,这里略去. 在这种情况下,“主特征值的几何重数等于代数重数”这一条件很重要,例如,若A =[310030001] ,它的主特征值为3,但其几何重数为1,不满足条件. 对这个矩阵A 进行实验显示无法用幂法求出主特征值.关于定理5.12,再说明几点:● 当主特征值λ1为重特征值时,应要求其几何重数等于代数重数,此时特征子空间维数大于1,向量序列{v k λ1k ⁄}的收敛值是其特征子空间中的某一个基向量.● 公式(5.7)式的含义是相邻迭代向量分量的比值收敛到主特征值. 因此在实际计算时,可任意取j 的值,只需保证比值的分母不为零.● 证明中假设了α1≠0,在实际应用中往往随机选取v 0,由于存在舍入误差,它一般都能满足. 感兴趣的读者也可思考一下,若初始向量v 0恰好与主特征向量都正交,那么幂法中的迭代向量序列会有什么结果?直接使用幂法,还存在如下两方面问题:(1) 溢出:由于v k ≈λ1k x 1,则|λ1|>1时,实际计算v k 会出现上溢出(当k 很大时);|λ1|<1时,实际计算v k 会出现下溢出(当k 很大时).(2) 可能收敛速度很慢. 由于εk =∑αj (λj λ1)kx j n j=2, εk →0的速度取决于求和式中衰减最慢的因子|λ2λ1|,当|λ2λ1|≈1时,收敛很慢. 由此导致v k →λ1k α1x 1, (v k+1)j (v k )j →λ1的收敛速度都将很慢,严重影响计算的效率.下面采用规格化向量的技术防止溢出,导出实用的幂法. 关于加速收敛技术的讨论,见下一小节.定义 5.6:记max ̅̅̅̅̅̅(v )为向量v ∈ℝn 的绝对值最大的分量, max ̅̅̅̅̅̅(v )=v j ,其中j 满足|v j |=max 1≤k≤n |v k |, 若j 的值不唯一,则取最小的那个. 并且,称u =v/max ̅̅̅̅̅̅(v )为向量v 的规格化向量(normalized vector).例5.5(规格化向量):设v =[3,−5,0]T ,max ̅̅̅̅̅̅(v )=−5,对应的规格化向量为u =[−35,1,0]T .根据定义5.6,容易得出规格化向量的两条性质.定理5.13: 定义5.6中的规格化向量满足如下两条性质:(1) 若u 为规格化向量,则‖u ‖ =1,并且max ̅̅̅̅̅̅(u )=1.(2) 设向量v 1和v 2的规格化向量分别为u 1和u 2,若v 1=αv 2, 实数α≠0,则u 1= u 2.在幂法的每一步增加向量规格化的操作可解决溢出问题. 先看第一步,v 1=Av 0,此时计算v 1的规格化向量u 1=v 1max ̅̅̅̅̅̅(v 1)=Av 0max ̅̅̅̅̅̅(Av 0). 然后使用规格化向量计算v 2:v 2=Au 1=A 2v 0max ̅̅̅̅̅̅(Av 0), (5.8) 再进行向量规划化操作,u 2=v 2max ̅̅̅̅̅̅(v 2)=A 2v 0max ̅̅̅̅̅̅(A 2v 0). (5.9) 公式(5.9)的推导,利用了(5.8)式和定理5.13的结论(2). 依次类推,我们得到: { v k =Au k−1=A k v 0max ̅̅̅̅̅̅(A k−1v 0) u k =v k max ̅̅̅̅̅̅(v k )=A k v 0max ̅̅̅̅̅̅(A k v 0) , k =1,2,⋯. (5.10) 根据定理5.12的证明过程, A k v 0=λ1k [α1x ̂1+∑αj (λj λ1)k x ̂j n j=2] ⟹u k =A k v 0max ̅̅̅̅̅̅(A k v 0)=α1x ̂1+∑αj (λj λ1)k x ̂j n j=2max ̅̅̅̅̅̅(α1x ̂1+∑αj (λj λ1)k x ̂j n j=2)k→∞→ x 1max ̅̅̅̅̅̅(x 1) , 即u k 逐渐逼近规格化的主特征向量. 同理,v k =Au k−1=A k v 0max ̅̅̅̅̅̅(A k−1v 0)=λ1k [α1x ̂1+∑αj (λj λ1)k x ̂j n j=2]max ̅̅̅̅̅̅(λ1k−1[α1x ̂1+∑αj (λj λ1)k−1x̂j n j=2]) =λ1α1x ̂1+∑αj(λj λ1)kx ̂j n j=2max ̅̅̅̅̅̅(α1x ̂1+∑αj (λj λ1)k−1x ̂j n j=2) 因此,根据定理5.13的结论(1)有:lim k→∞v k=λ1x1max̅̅̅̅̅̅(x1)⟹limk→∞max̅̅̅̅̅̅(v k)=λ1.基于上述推导,我们得到如下定理,以及如算法5.1描述的实用幂法.定理5.14: 设A∈ℝn×n,其主特征值唯一(且几何重数等于代数重数),记为λ1,取任意非零初始向量v0=u0,它不与主特征值对应的特征向量正交,按迭代公式(5.10)进行计算,则lim k→∞u k=x1max̅̅̅̅̅̅(x1),(5.11)lim k→∞max̅̅̅̅̅̅(v k)=λ1 ,(5.12)其中x1为主特征向量.算法5.1:计算主特征值λ1和主特征向量x1的实用幂法输入:v,A; 输出:x1,λ1.u:=v;While不满足判停准则dov:=Au;λ1:=max̅̅̅̅̅̅(v); {主特征值近似值}u:=v/λ1; {规格化}Endx1:=u. {规格化的主特征向量}在算法5.1中,可根据相邻两步迭代得到的主特征值近似值之差来判断是否停止迭代. 每个迭代步的主要计算是算一次矩阵与向量乘法,若A为稀疏矩阵则可利用它的稀疏性提高计算效率. 实用的幂法保证了向量序列{v k},{u k}不溢出,并且向量v k的最大分量的极限就是主特征值.最后,针对幂法的适用范围再说明两点:(1). 若实矩阵A对称半正定或对称半负定,则其主特征值必唯一(而且是非亏损阵). 有时也可以估计特征值的分布范围,从而说明主特征值的唯一性. 只有满足此条件,才能保证幂法的收敛性.(2). 对一般的矩阵,幂法的迭代过程有可能不收敛,此时序列{u k}有可能包括多个收敛于不同向量的子序列,它趋向于成为多个特征向量的线性组合. 但是,一旦幂法的迭代过程收敛,向量序列的收敛值就一定是特征向量,并可求出相应的特征值.例5.6 (实用的幂法):用实用的幂法求如下矩阵的主特征值:A=[3113] ,[解]: 取初始向量为v0=u0=[01]T . 按算法5.1的迭代过程,计算结果列于表5-1中.表5-1 实用幂法的迭代计算过程从结果可以看出,在每次迭代步中做的规格化操作避免了分量的指数增大或缩小. 经过9步迭代,特征值max ̅̅̅̅̅̅(v k )已非常接近主特征值的准确值4,特征向量也非常接近[1 1]T .5.2.2加速收敛的方法 加速幂法迭代收敛过程的方法主要有两种:原点位移技术和瑞利商(Rayleigh quotient )加速. 下面做些简略的介绍.一. 原点位移技术原点位移技术,也叫原点平移技术,它利用定理5.9的结论(2),即矩阵A −pI 的特征值为A 的特征值减去p 的结果. 对矩阵B =A −pI 应用幂法有可能得到矩阵A 的某个特征值λj 和相应的特征向量. 要使原点位移达到理想的效果,首先要求λj −p 是B 的主特征值,其次还要使幂法尽快收敛,即比例|λ2(B)λj −p |要尽量小,这里的λ2(B)表示矩阵B 的(按模)第二大的特征值. 在某种情况下设置合适的p 值,矩阵A,B 可同时取到主特征值. 图5-3显示了这样一个例子,矩阵A 的特征值分布在阴影区域覆盖的实数轴上,λ1为其主特征值. 按图中所示选取的p 值,将使得λ1−p 是矩阵B =A −pI 的主特征值,并且显然有|λ2(B)λ1−p |<|λ2(A)λ1| . 此时用幂法计算B 的主特征值能更快地收敛,进而得到矩阵的A 的主特征值. 图5-3也解释了原点位移法名字的由来,即将原点(或虚数坐标轴)移到p 的位置上,原始矩阵A 的特征值分布变成了矩阵B 的特征值分布.采用原点位移技术后,执行幂法仅带来很少的额外运算,而且仍然能利用矩阵A 的稀疏性. 它的关键问题是,如何选择合适的参数p 以达到较好的效果?这依赖于具体矩阵的情况,以及对其特征值分布的了解. 在后面,我们还会看到原点位移技术的其他用途.二. 瑞利商加速首先给出瑞利商的定义,以及它与特征值的关系,然后介绍瑞利商加速技术.定义5.7:设A ∈ℝn×n ,且为对称矩阵,对任一非零向量x ≠0,称R (x )=〈Ax,x 〉〈x,x 〉为对应于向量x 的瑞利商(Rayleigh quotient ). 这里符号〈,〉代表向量内积.定理5.15:设A ∈ℝn×n ,且为对称矩阵,其n 个特征值依次为:λ1≥λ2≥⋯≥ λn ,则矩阵A 有关的瑞利商的上下确界分别为λ1和λn . 即∀x ≠0,λn ≤R (x )≤λ1,且当x 为λ1对应的特征向量时R (x )=λ1,当x 为λn 对应的特征向量时R (x )=λn .[证明]: 根据实对称矩阵的特点,即可正交对角化(定理3.3),设特征值λ1,λ2,⋯,λn 对应的单位特征向量为x 1,x 2,⋯,x n ,设x =∑αj x j n j=1,则〈x,x 〉=〈∑αj x j n j=1,∑αj x j n j=1〉=∑αj 2n j=1,而图5-3 原点位移技术示意图.。
矩阵特征值的求法举例
![矩阵特征值的求法举例](https://img.taocdn.com/s3/m/bd7f58b7f80f76c66137ee06eff9aef8941e48bf.png)
矩阵特征值的求法举例矩阵是线性代数中的重要概念,它在科学计算、工程领域以及图像处理等领域都有着广泛的应用。
而在矩阵中,特征值是一个非常重要的概念,它不仅能够描述矩阵的性质,还能够在很多实际问题中起到关键作用。
那么,特征值又是如何求解的呢?本文将通过几个具体的例子来说明矩阵特征值的求法。
一、矩阵特征值的定义我们来介绍一下矩阵的特征值是什么。
对于一个n阶矩阵A(n*n),如果存在一个数λ和一个非零向量v,使得Av=λv,那么我们称λ是矩阵A的特征值,v是对应的特征向量。
特征值和特征向量的求解对于矩阵的性质和应用有着非常重要的作用。
下面我们就通过具体的例子来说明矩阵特征值的求法。
二、特征值的求法1. 对角矩阵的特征值我们来看一个简单的例子,对于一个对角矩阵,特征值的求法非常简单。
对于一个对角矩阵D,我们有D=diag{d1, d2, …, dn},其中对角线元素为d1, d2, …, dn。
那么,对角矩阵的特征值为其对角线元素,即λ1=d1, λ2=d2, …, λn=dn。
特征向量可以取对应的单位向量,如e1=[1, 0, 0, …, 0],e2=[0, 1, 0, …, 0],以此类推。
对于一个2*2的对角矩阵A= [3, 0; 0, 5],其特征值为λ1=3, λ2=5,对应的特征向量可以分别取为v1=[1, 0]和v2=[0, 1]。
接下来,我们来看一个稍复杂一点的例子,对于一个3*3的矩阵,特征值的求法比较繁琐,通常采用特征多项式的方法进行求解。
假设矩阵A= [a, b, c; d, e, f; g, h, i],我们可以先求解其特征多项式:|A-λI| = det|a-λ, b, c; d, e-λ, f; g, h, i-λ|简化上式得到:(a-λ)(e-λ)(i-λ) + (b*d*λ + c*f*λ + a*e*λ) - (a*f*λ + c*d*λ + b*i) = 0然后,我们解出多项式的根,即为矩阵A的特征值。
数值分析——矩阵特征值问题计算
![数值分析——矩阵特征值问题计算](https://img.taocdn.com/s3/m/4e9195c0852458fb770b56d6.png)
17
vk 1k a1x1
即为矩阵 A 的对应特征值 1 的近似特征向量。
且
vk 1 Avk 1k 1a1x1 1vk
用 (vk)i 表示 vk 的第 i 个分量,则当k充分大时,有
vk1 i
vk
i
1
即为主特征值的近似值。
18
定理 设 A Rnn 有 n 个线性无关的特征向量,
主特征值 1 满足
a11k x1 a2k2 x2 ankn xn
1k
a1
x1
a2
2 1
k
x2
an
n 1k Fra bibliotek xn 1k a1x1 k
16
其中
k
a2
2 1
k
x2
an
n 1
k
xn
由假设条件 从而
j 1
1 j 2, ,n, 所以
lim
k
vk
1k
a1x1
lim
k
k
0
所以当k充分大时,有
vk 1k a1x1
9
0.5, 1, 0.8611
3 5.7222, 11.4444, 8.361 4 5.4621, 10.9223, 8.2306 5 5.5075, 11.0142, 8.2576
11.4444 10.9223 11.0142
0.5, 1, 0.7360 0.5, 1, 0.7536 0.5, 1, 0.7494
n
( Ax, x) (x, x)
1
(2)
n
min x0
( Ax, x) (x, x)
(3)
1
max x0
( Ax, x) (x, x)
矩阵的行列式和特征值的计算公式
![矩阵的行列式和特征值的计算公式](https://img.taocdn.com/s3/m/16956dc9f605cc1755270722192e453610665b2b.png)
矩阵的行列式和特征值的计算公式矩阵是一个高度抽象的数学概念,是很多科学领域都必不可少的工具。
矩阵的行列式和特征值是矩阵理论中的两个基本概念,也是很多实际问题中需要用到的关键概念。
本文将详细介绍矩阵的行列式和特征值的计算公式,帮助读者更好地理解和运用这些概念。
一、矩阵的行列式矩阵的行列式是一个数值,可以理解为矩阵在某种意义下的“大小”。
定义矩阵$A=(a_{ij})_{n\times n}$的行列式为:$$\det(A)=\sum_{\sigma\inS_n}\operatorname{sgn}(\sigma)a_{1\sigma(1)}a_{2\sigma(2)}\cdots a_{n\sigma(n)}$$其中,$S_n$表示$n$个数的全排列集合,$\sigma$是其中一个排列,$\operatorname{sgn}(\sigma)$是$\sigma$的符号,定义为$\operatorname{sgn}(\sigma)=(-1)^{\text{逆序数}}$,$a_{i\sigma(i)}$表示矩阵$A$的第$i$行,第$\sigma(i)$列的元素。
在计算行列式时,按照定义,需要对$S_n$中的每一个排列求积,逐一带入以上公式中,最终将求和得到行列式的值。
对于2阶和3阶矩阵,可以通过简单的公式直接计算行列式。
对于一个2阶矩阵$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} &a_{22} \\ \end{pmatrix}$,$$\det\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\\end{pmatrix}=a_{11}a_{22}-a_{21}a_{12}$$对于一个3阶矩阵$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\\end{pmatrix}$,$$\begin{aligned} &\det\begin{pmatrix} a_{11} & a_{12} &a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ \end{pmatrix} \\=&a_{11}a_{22}a_{33}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32} -a_{13}a_{22}a_{31}-a_{11}a_{23}a_{32}-a_{12}a_{21}a_{33}\end{aligned}$$但对于高维矩阵,直接计算行列式就不可行了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对应的特征向量x1, x2 ,, xm线性无关.
定理7(对称矩阵的正交约化 ) 设A R nn为对称矩阵 , 则
(1) A的特征值均为实数; (2) A有n个线性无关的特征向量; (3) 存在正交矩阵P使得
1 2 , P 1 AP n 且i (i 1,2,, n)为A的特征值, 而P (u1,u2 , ,un )的列 向量u j为对应于 j的特征向量.
k
k
k A v0 max(vk ) max max(Ak 1v ) 0 k k 2 n 1 maxa1 x1 a2 x2 an xn 1 1 k 1 k 1 2 n maxa1 x1 a2 x2 an xn 1 1 1 (k )
k k 1
lim
vk
a1 x1.
即vk 是1的近似的特征向量. 而主特征值 (vk 1 ) j 1 n (vk 1 ) j 1 , 或1 . (v k ) j n j 1 (v k ) j
定理12 设A R nn有n个线性无关的特征向量, 其特征值
1 2 n ,
并设A的主特征值是实根,且满足
1 2 n ,
现在讨论求1及x1的基本方法.
(2.1)
v0 a1 x1 a2 x2 an xn , (设a1 0)
v1 Av0 a11 x1 a22 x2 ann xn ,
k k 2 n k vk Avk 1 1 a1 x1 a2 x2 an xn . 1 1 k 当k很大时,k 1 a1 x1, vk 1 1vk , Avk 1vk, v
设为A的特征值, 相应的齐次方程组 (I A) x 0 的非零解x称为A的对应于的特征向量.
(1.1)
的根称为A的特征值. ( A)表示A的所有特征值的集合.
(1.2)
2 1 0 例1 求A 1 3 1的特征值及其特征向量. 0 1 2
定理1 设是矩阵A R nn的特征值, x是对应的非零特征 向量,则 (1) c是cA的特征值(常数c 0); (2) p为A pI的特征值,即 ( A pI ) x ( p) x; (3) k 是Ak的特征值,即 Ak x k x; 1 1 1 1 (4) 设A非奇异,则 0且 为A 的特征值,即 A x x.
(2.9)
则
事实上,对于任给非零向量u0 v0, v1 Au0 Av0 , v1 Av0 u1 , max(v1 ) max(Av0 )
A2v0 v2 A2v0 v2 Au1 , u2 , 2 max( Av0 ) max(v2 ) max( A v0 ) ,
定义4 设A是n阶实对称阵, 对于任一非零向量x R n , 称 ( Ax, x ) R( x ) ( x, x ) 为关于向量x的瑞雷( Rayleigh)商.
定理11 设A为n阶实对称阵, 1 n为A的特征值. 则 () 1 (2) ( Ax, x ) 1 n , 对于任何非零向量x R n , ( x, x ) ( Ax, x ) 1 max , xR n ( x, x )
第8章
矩阵特征值问题计算
§1 引 言
物理、力学和工程技术中很多问题在数学上都归结为求 矩阵的特征值问题。例如,振动问题(大型桥梁或建筑物 的振动、机械的振动、电磁震荡等),物理学中的某些临 界值的确定。它们都归结为下述数学问题。
定义1 已知A (aij ) nn , 则称
a11 ( ) det(I A)
线性无关的特征向量的个数少于k,则称A为亏损矩阵.
定理6 ( )A R nn可对角化, 非奇异矩阵P使 1 即 1 2 1 P AP n 的充要条件是A具有n个线性无关的特征向量. (2) 若A R
nn
有m(m n)个不同的特征值1, 2 ,, m , 则
则对任何非零初始向量v0 (a1 0), vk lim k a1 x1
k 1 k
lim
(vk 1 ) j (v k ) j
1.
当1 2 r,r r 1 n , 且A R nn有n个 线性无关的特征向量时,上述结果仍成立 r (vk 1 ) j vk lim k ai xi , lim 1. k 1 k (v k ) j i 1
x 0
(3)
( Ax, x ) n min . n ( x, x ) xR
x 0
§2
一、幂法
幂法及反幂法
幂法是一种求实矩阵A的按模最大的特征值λ 1及其对 应的特征向量x1的方法。特别适合于大型稀疏矩阵。
设A (aij )nn R nn有一个完全特征向量组, 其特征值 为1, 2 ,, n , 对应的特征向量为x1, x2 ,, xn .
定义3 设A (aij ) nn , 令 n ( )i | aij | (2) Di {z | | z aii | ri , z C }, (i 1,, n) 1 r , ji 称Di为复平面上以aii为圆心以ri为半径的Gerschgorin圆盘.
定理8 (Gerschgorin圆盘定理) (1) 设A (aij ) nn , 则A的每 一个特征值必属于下列某个圆盘之中 n | aii | | aij |, (i 1,, n). ji (2) 如果上述的n个圆盘中有m个圆盘构成一个连通域S ,
2 收敛速度由比值r 确定. 1
例3 用幂法求 1 0.5 1 A 1 1 0.25 2 0.5 0.25 的按模最大特征值及其特征向量.
A=[1 1 0.5;1 1 .25;.5 .25 2] u=[1,1,1]' v=A*u,v1=max(v),u=v/v1
定理9( Schur定理) 设A R nn, 则存在酉矩阵 U使 r11 r12 r1n r22 r2n R, U T AU rnn 其中rii (i 1,2,, n)为A的特征值.
定理10(实Schur分解) 设A R nn, 则存在正交矩阵 Q使 R11 R12 R1m R22 R2m , QT AQ Rmm 其中当Rii (i 1,2,, m)为一阶时Rii是A的实特征值,当 Rii为 二阶时Rii的两个特征值是 A的两个共轭复特征值.
a21 an1
a12 a 22 an 2
a1n a2 n
a nn
n (a11 a22 ann )n1 (1)n | A | 为A的特征多项式. A的特征方程 ( ) det(I A) 0
且S与其余n m个圆盘分离, 则S中恰有A的m个特征值.
选取非奇异对角矩阵D diag (1,, n ),得到 aij j D AD . i nn 适当选取 i (i 1,2,, n)有时可使某些圆盘半径和连通性
1
改变,根据相似矩阵性质获得特征值的进一步结果. 4 1 0 | 4 | 1 1 0 1的特征值的范围. | | 2 例2 估计A | 4 | 2 1 1 4 1 1 0 4 3 1 5 1 D 1 , D AD 1 0 10 . 19 19 9 2 9 9 10 5.8 2.2 0.9 0.9 4 9 3
2. 瑞雷商加速法
定理14 设A R
nn
为对称矩阵, 其特征值满足
1 2 n ,
应用幂法(2.9),则uk的瑞利商给出1的较好近似 2k ( Auk , uk ) 1 O 2 . 1 (uk , uk )
为了避免“溢出”下面做改进. 记 max(v )为向量v的绝对 v 值最大的分量,规范化得 u (v 0). 就有 max(v ) 定理13 设A R nn有n个线性无关的特征向量, 其特征值
1 2 n ,
对任何非零初始向量v0 (a1 0), 计算 u0 v0 , v Au , k k 1 (k 1,2, ) k max(vk ), uk vk / k . x1 lim uk , lim k 1. k max(x1 ) k
2 n a1 x1 a2 x2 an xn k A v0 1 1 uk k k k max(A v0 ) 2 n max a1 x1 a2 x2 an xn 1 1 x1 (k ) max(x1 )
二、加速方法
1. 原点位移法 B A pI . 例4 设 (A) {5,3,1},考察带原点平移的幂法求A的按模
最大特征值及其特征向量的收敛速度. 若 1 2 n, 则p* 2 n . 2 例5 用带原点平移的幂法求
1 0.5 1 A 1 1 0.25 2 0.5 0.25 的按模最大特征值及其特征向量. 取p 0.75.
Ak v0 vk Ak v0 vk , uk . k 1 k max(vk ) max(A v0 ) max(A v0 )
k k 2 n k Ak v0 1 a1 x1 a2 x2 an xn , 1 1
m i 1
其中每个对角块Aii均为方阵, 则 ( A) ( Aii ).
定理5 若A与B为相似矩阵, 即非奇异P使P 1 AP B, 则 (1) A与B有相同的特征值; (2) 若y是B的特征向量, 则Py是A的特征向量.