8、矩阵特征值问题计算
矩阵的特征值

矩阵的特征值简介在线性代数中,矩阵的特征值是矩阵在特征向量上的投影,是一个重要的概念。
特征值可以帮助我们了解矩阵的性质和变换。
本文将介绍矩阵的特征值的定义、性质以及计算方法。
定义设 A 是一个 n × n 的矩阵,λ 是一个实数,如果存在一个非零向量 x 使得Ax = λx 成立,则称λ 是矩阵 A 的特征值,x 是对应的特征向量。
特征向量 x 满足Ax = λx,其中x ≠ 0,λ 可能是实数也可能是复数。
特征向量 x 的模长不影响特征向量的定义,通常我们会将特征向量标准化为单位向量。
性质1.矩阵 A 和其转置矩阵 A^T 具有相同的特征值。
2.若A 是一个对称矩阵,那么它的特征向量是正交的。
3.矩阵 A 的特征值的和等于它的迹,即λ1 + λ2 + … +λn = tr(A)。
4.矩阵 A 的特征值的积等于它的行列式,即λ1 * λ2* … * λn = |A|。
5.如果λ 是矩阵 A 的特征值,那么λ^k 是矩阵 A^k 的特征值,其中 k 是正整数。
6.矩阵 A 是奇异的(行列式为零)当且仅当它的零空间不为空,即存在非零向量使得 Ax = 0。
计算方法要计算矩阵的特征值,通常使用特征值问题的特征多项式。
设 A 是一个 n × n 的矩阵,特征多项式定义为f(λ) = |A - λI|,其中 I 是 n × n 的单位矩阵,|A - λI| 是矩阵 A - λI 的行列式。
1.求特征多项式的根:将特征多项式f(λ) = 0 的解称为特征值。
通过求解特征多项式的根,可以得到矩阵的特征值。
2.求解特征向量:对于每一个特征值λ,解齐次线性方程组 (A - λI)x = 0,得到相应的特征向量 x。
3.标准化特征向量:对于每一个特征值λ,将对应的特征向量 x 进行标准化处理,得到单位特征向量。
应用矩阵的特征值在很多领域有广泛的应用。
1.特征值可以帮助我们了解矩阵的变换性质。
矩阵特征值问题的数值方法.

矩阵特征值问题的数值方法矩阵特征值设A 是n 阶矩阵,x 是非零列向量. 如果有数λ 存在,满足那么,称x 是矩阵A 关于特征值λ的特征向量. 很显然一般地有主特征值的乘幂迭代法设n 阶矩阵A 的n 个特征值按模从大到小排序为:n 其对应的n 个线性无关的特征向量分别为:设是任意一个非零的n 维向量,则:假设,构造一个向量序列:则:或者:当时:如果是矩阵A 的关于特征值的一个特征向量,特征值个特征那么对于任意一个给定的,也是特征值的特征向量。
所以,是对主特征值对应的特征向量的近似。
如果则会变得很大或者如果,则会变得很大,或者如果,则会变得非常小,在实际计算中,为避免这种情况的出现需对做归一化处理况的出现,需对做归一化处理:由:左乘得:所以主特征值的近似值所以主特征值的近似值:残余误差向量定义为:当迭代次数充分大时,残余误差将充分小。
逆乘幂法:类似地,也可以求模最小特征值和对应的特征向量特征向量。
上述问题的主特征值问题就是矩阵A 的模最小特征值问题。
结果,逆乘幂法的迭代公式为:在实际应用中,无需计算逆矩阵,但需求解线性系统实对称矩阵的基本定理:对实对称矩阵A ,一定存在一个正交相似变换使得为对角矩阵且其对角矩阵P ,使得:为对角矩阵,且其对角的特征值元素为矩阵A 的特征值。
相似变换:相似变换保持矩阵特征值(但不是特征向量)不变不变。
(证明略)正交相似变换:中。
正交相似变换的例子—坐标旋转:叫旋转矩阵。
容易验证:。
适当选择旋转角,可消去xy 项—得到对角阵D 。
矩阵特征值问题的数值方法实对称矩阵的基本定理再看下面的例子:令:O 平面的坐标旋转变换适当同样地有:。
则是在x-O-z 平面的坐标旋转变换。
适当x z —D 。
选择旋转角可消去z 项得到对角阵实对称矩阵的Jacobi 方法:全部特征值和特征向量根据实对称矩阵的基本定理,求得矩阵A 的全部特征值的关键是找到正交相似变换矩阵P 使部特征值的关键,是找到正交相似变换矩阵P ,使得为对角阵。
矩阵特征值问题

§1、特征值的估计
由于工程计算中求矩阵尤其是高阶矩阵的 精确特征值通常比较困难,而许多情况下我们 只需要知道特征值在什么范围内变化或者落在 什么区域内,例如判断方阵的幂级数是否收敛 只要看方阵的特征值的模或谱半径是否小于1, 因此特征值的估计就显得尤其必要,这方面的 理论在特征值问题中相当经典。
由于
实际上是 的
一个
维子空间,因此我们希望将
搜索极值的空间放大到任意
维子空
间 。而增大后的集合的极大值不会比原集
合的小,极小值也不会比原集合大。
58
设有 则
,并假定
,即
59
并且当
时等号成立。因此
60
一般地,我们有
定理4 (Courant-Fischer)设
是
Hermite矩阵,其特征值为
,则
存在Hermite矩阵特征值的极值原理
48
一、 Rayleigh商
二次型
,如果存在
,那么
所以如果
,我们自然也希望
49
定义1 设
是Hermite矩阵,称
为矩阵 的Rayleigh商。 注意到
因此我们可以把对 在单位球面
的极性的讨论限定 上。
50
单位球面 是闭集,又因为
是 的连续
函数,因此根据多元函数的最值定理,
在 上存在最大值和最小值。由于特征值与
对于广义特征值问题
,可以通过
适当选择位移(shift)或极点(pole) ,再通过 求逆,将之转化为SEP:
这种方法的优点是特征向量不变,矩阵 奇 异时也可以使用,并且在求解邻近 的特征 值或绝对值很小的特征值时效率较高。缺点仍 然是 一般不是特殊矩阵。
矩阵特征值与特征向量的计算_OK

n阶方阵A的特征值是特征方程 PA()=det(A-E)=0
的根.
A的特征向量是齐次线性方程组 (A-E)x=0
的非零解.
PA()是的高次的多项式,它的求根是很困难的。设法通
过数值方法是求它的根。
通常对某个特征值,可以用些针对性的方法来求其近似值。
若要求所有的特征值,则可以对A做一系列的相似变换,
“收敛”到对角阵或上(下)三角阵,
可得
n
xk
Ak x0 max(Ak x0 )
11 m ax (11
i
(
i 1
)
k
i
i2
n
i
(
i 1
)
k
i
)
7
i2
所以
8.1.1 幂法
n
xk
Ak x0 max(Ak x0 )
11
i
(
i 1
)
k
i
i2
n
max(11
i
(
i 1
)
k
i
)
lim
k
xk
11 max (11 )
i2 1
max (1 )
y=x/max(x)为向量x例的如规,范设化向向量量x=. (2,1,-5,-1)T,则max(x)=-5,y=(-0.4,-
0.2,1,0.2)T.可见规范化向量y总满足‖y‖=1.
幂法的规范化计算公式为: 任取初始向量x0=y0 0,计算
yk
Axk1
mk max(yk ) xk yk / mk , k 1,2,3,
1 1 1 1
n
n1
n2
1
对应的特征向量为ξn, ξn-1,…, ξ1.
第8章 矩阵特征值计算

第八章 矩阵特征值计算1 特征值性质和估计工程实践中有许多种振动问题,如桥梁或建筑物的振动,机械机件的振动,飞机机翼的颤动等,这些问题的求解常常归纳为求矩阵的特征值问题。
另外,一些稳定分析问题及相关问题也可以转化为求矩阵特征值与特征向量的问题。
1.1 特征值问题及性质设矩阵n n ⨯∈A R (或n n ⨯C ),特征值问题是:求C λ∈和非零向量n R ∈x ,使λ=Ax x (1.1)其中x 是矩阵A 属于特征值λ的特征向量。
A 的全体特征值组成的集合记为sp()A 。
求A 的特征值问题(1.1)等价于求A 的特征方程()det()0p I λλ=-=A (1.2)的根。
因为一般不能通过有限次运算准确求解()0p λ=的根,所以特征值问题的数值方法只能是迭代法。
反之,有时为了求多项式111()n n n n q a a a λλλλ--=++++的零点,可以把()q λ看成矩阵123101010n a a a a ----⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦的特征多项式(除(1)n -因子不计)。
这是一个Hessenberg 矩阵,可用QR 方法求特征值,从而求出代数方程()0q λ=的根。
矩阵特征值和特征向量的计算问题可分为两类:一类是求矩阵A 的全部特征值及其对应的向量;另一类是求部分特征值(一个或几个、按模最大或最小)及其对应的特征向量。
本章介绍部分特征值和特征向量的幂法、内积法;求实对称矩阵全部特征值的雅可比法、Given 方法和Householder 方法;求任意矩阵全部特征值的QR 算法。
在第5章已给出特征值的一些重要性质,下面再补充一些基本性质。
定理1 设n n R ⨯∈A ,则(1) 设λ为A 的特征值,则λμ-为μ-A I 的特征值;(2) 设12,,,n λλλ是A 的特征值,()p x 是一多项式,则矩阵()p A 的特征值是12(),(),,()n p p p λλλ。
矩阵特征值的计算

物理、力学和工程技术中的许多问题在数学上都归结为求矩 阵的特征值和特征向量问题。
� 计算方阵 A 的特征值,就是求特征多项式方程:
| A − λI |= 0 即 λn + p1λn−1 + ⋅ ⋅ ⋅ + pn−1λ + pn = 0
的根。求出特征值 λ 后,再求相应的齐次线性方程组:
(13)
为了防止溢出,计算公式为
⎧ Ay k = xk −1
⎪ ⎨
m
k
=
max(
yk )
( k = 1, 2, ⋅ ⋅⋅)
⎪ ⎩
x
k
=
yk
/ mk
(14)
相应地取
⎧ ⎪
λ
n
⎨
≈
1 mk
⎪⎩ v n ≈ y k ( 或 x k )
(15)
9
(13)式中方程组有相同的系数矩阵 A ,为了节省工作量,可先对
11
11
≤ ≤ ⋅⋅⋅ ≤
<
λ1 λ2
λn −1
λn
对应的特征向量仍然为 v1, v2 ,⋅⋅⋅, vn 。因此,计算矩阵 A 的按模
最小的特征值,就是计算 A−1 的按模最大的特征值。
� 反幂法的基本思想:把幂法用到 A−1 上。
任取一个非零的初始向量 x0 ,由矩阵 A−1 构造向量序列:
xk = A−1xk−1 , k = 1, 2, ⋅⋅⋅
如果 p 是矩阵 A 的特征值 λi 的一个近似值,且
| λi − p |<| λ j − p | , i ≠ j
1 则 λ i − p 是矩阵 ( A − pI )−1 的按模最大的特征值。因此,当给
特征值问题的计算方法

Gi ( A) = { z ∈ C : z − aii ≤ ∑ aij }; i = 1,L , n
j≠i
则 λ ( A) ⊂ G1 ( A) ∪ G2 ( A) ∪ L ∪ Gn ( A)
( 分解定理) Th8.1.4 谱分解定理)/*Spectral Decomposition*/ n× n n× n 对称矩阵 则存在正交 矩阵, 正交矩阵 设 A ∈ R 为对称矩阵,则存在正交矩阵Q ∈ R T 使得 Q AQ = Λ = diag ( λ1 ,L , λn ) 个特征值。 其中 λ1 ,L , λn 是 A 的n个特征值。 个特征值 定理) (极大极小定理 Th8.1.5 极大极小定理) 对称矩阵 矩阵, 设 A ∈ R n× n 为对称矩阵,且 A的特征值为 λ1 ≥ λ2 ≥ L ≥ λn
∀u0 , u0
∞
=1
设
yk = Auk −1 µk = yk ∞ yk uk =
For k=1,2,3,…
uk 和 µk均收敛,由算法知 收敛, 算法知 Auk −1 = µk uk
lim Auk −1 = lim µk lim uk
k →∞ k →∞ k →∞
Ax = λ1 x
uk
∞
µk → λ1
其中J (λi ) = diag( J1 (λi ), ,L , J k (λi )) ∈ C ni ×ni ;1 ≤ i ≤ r i
λi J j ( λi ) =
1
λi
且除了 J j (λi ) 的排列 O 次序外 J 唯一的 次序外, 是唯一的。 O 1 λi J 称作 A 的Jordan标准型 标准型
n× n
是可对角化的 存在如下分解: 是可对角化的,即 A 存在如下分解: 对角化
矩阵特征值计算

其 中 每个 对角 块 ������������������ 均 为方阵 , 则矩 阵 ������ 的 特征 值为各 对 角块 矩阵 特征 值的合 并 ,即 ������(������) = ⋃������ ������=1 ������(������������������ ). 定理 5.5: 矩阵的相似变换(similarity transformation)不改变特征值. 设矩阵������和������为相似矩阵, 即存在非奇异矩阵������使得������ = ������−1 ������������,则 (1) 矩阵������和������的特征值相等,即 ������(������) = ������(������) ; (2) 若������为������的特征向量,则相应地,������������为������的特征向量. 通过相似变换并不总能把矩阵转化为对角阵,或者说矩阵 ������ 并不总是 可对角化 的 (diagonalizable). 下面给出特征值的代数重数、几何重数,和亏损矩阵的概念,以及几个定 理.. ̃1 , ⋯ , ������ ̃������ ,若������ ̃������ 是特征方程的������������ 重 定义 5.2: 设矩阵������ ∈ ℝ������×������ 有 m 个(mn)不同的特征值������ ̃������ 的代数重数(algebraic multiplicity),并称������ ̃������ 的特征子空间(ℂ������ 的子空间)的维数 根,则称������������ 为������ ̃������ 的几何重数(geometric multiplicity). 为������ ̃1 , ⋯ , ������ ̃������ ,特征值������ ̃������ , (������ = 1, ⋯ , ������)的代数 定理 5.6:设矩阵������ ∈ ℝ������×������ 的 m 个不同的特征值为������ 重数为������������ ,几何重数为������������ ,则 (1) ∑������ ������=1 ������������ = ������,且任一个特征值的几何重数不大于代数重数,即∀������,������������ ≥ ������������ . (2) 不同特征值的特征向量线性无关,并且将所有特征子空间的∑������ ������=1 ������������ 个基(特征向量)放在 一起,它们构成一组线性无关向量. (3) 若每个特征值的代数重数等于几何重数,则总共可得������个线性无关的特征向量,它们是 全空间ℂ������ 的基. 定义 5.3:若矩阵������ ∈ ℝ������×������ 的某个代数重数为 k 的特征值对应的线性无关特征向量数目少于 k(即几何重数小于代数重数) ,则称 ������为亏损阵(defective matrix) ,否则称其为非亏损阵 (nondefective matrix). 定理 5.7:设矩阵������ ∈ ℝ������×������ 可对角化,即存在非奇异矩阵������ ∈ ℂ������×������ 使得 ������−1������������ = ������, 其中������ ∈ ℂ������×������ 为对角阵, 的充要条件是������为非亏损矩阵. 此时,������的对角线元素为矩阵������的特 征值,而矩阵������的列向量为 n 个线性无关的特征向量. 定理 5.7 中方程的等价形式为������ = ������������������−1, 它被称为特征值分解,也叫谱分解(spectrum decomposition). 特征值分解存在的充要条件是������为非亏损矩阵. 但现实中还有很多矩阵是亏 损矩阵,例如例 5.2 中的矩阵,它的特征值 2 的代数重数为 2,而几何重数仅为 1. 这种矩阵
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对应的特征向量x1, x2 ,, xm线性无关.
定理7(对称矩阵的正交约化 ) 设A R nn为对称矩阵 , 则
(1) A的特征值均为实数; (2) A有n个线性无关的特征向量; (3) 存在正交矩阵P使得
1 2 , P 1 AP n 且i (i 1,2,, n)为A的特征值, 而P (u1,u2 , ,un )的列 向量u j为对应于 j的特征向量.
k
k
k A v0 max(vk ) max max(Ak 1v ) 0 k k 2 n 1 maxa1 x1 a2 x2 an xn 1 1 k 1 k 1 2 n maxa1 x1 a2 x2 an xn 1 1 1 (k )
k k 1
lim
vk
a1 x1.
即vk 是1的近似的特征向量. 而主特征值 (vk 1 ) j 1 n (vk 1 ) j 1 , 或1 . (v k ) j n j 1 (v k ) j
定理12 设A R nn有n个线性无关的特征向量, 其特征值
1 2 n ,
并设A的主特征值是实根,且满足
1 2 n ,
现在讨论求1及x1的基本方法.
(2.1)
v0 a1 x1 a2 x2 an xn , (设a1 0)
v1 Av0 a11 x1 a22 x2 ann xn ,
k k 2 n k vk Avk 1 1 a1 x1 a2 x2 an xn . 1 1 k 当k很大时,k 1 a1 x1, vk 1 1vk , Avk 1vk, v
设为A的特征值, 相应的齐次方程组 (I A) x 0 的非零解x称为A的对应于的特征向量.
(1.1)
的根称为A的特征值. ( A)表示A的所有特征值的集合.
(1.2)
2 1 0 例1 求A 1 3 1的特征值及其特征向量. 0 1 2
定理1 设是矩阵A R nn的特征值, x是对应的非零特征 向量,则 (1) c是cA的特征值(常数c 0); (2) p为A pI的特征值,即 ( A pI ) x ( p) x; (3) k 是Ak的特征值,即 Ak x k x; 1 1 1 1 (4) 设A非奇异,则 0且 为A 的特征值,即 A x x.
(2.9)
则
事实上,对于任给非零向量u0 v0, v1 Au0 Av0 , v1 Av0 u1 , max(v1 ) max(Av0 )
A2v0 v2 A2v0 v2 Au1 , u2 , 2 max( Av0 ) max(v2 ) max( A v0 ) ,
定义4 设A是n阶实对称阵, 对于任一非零向量x R n , 称 ( Ax, x ) R( x ) ( x, x ) 为关于向量x的瑞雷( Rayleigh)商.
定理11 设A为n阶实对称阵, 1 n为A的特征值. 则 () 1 (2) ( Ax, x ) 1 n , 对于任何非零向量x R n , ( x, x ) ( Ax, x ) 1 max , xR n ( x, x )
第8章
矩阵特征值问题计算
§1 引 言
物理、力学和工程技术中很多问题在数学上都归结为求 矩阵的特征值问题。例如,振动问题(大型桥梁或建筑物 的振动、机械的振动、电磁震荡等),物理学中的某些临 界值的确定。它们都归结为下述数学问题。
定义1 已知A (aij ) nn , 则称
a11 ( ) det(I A)
线性无关的特征向量的个数少于k,则称A为亏损矩阵.
定理6 ( )A R nn可对角化, 非奇异矩阵P使 1 即 1 2 1 P AP n 的充要条件是A具有n个线性无关的特征向量. (2) 若A R
nn
有m(m n)个不同的特征值1, 2 ,, m , 则
则对任何非零初始向量v0 (a1 0), vk lim k a1 x1
k 1 k
lim
(vk 1 ) j (v k ) j
1.
当1 2 r,r r 1 n , 且A R nn有n个 线性无关的特征向量时,上述结果仍成立 r (vk 1 ) j vk lim k ai xi , lim 1. k 1 k (v k ) j i 1
x 0
(3)
( Ax, x ) n min . n ( x, x ) xR
x 0
§2
一、幂法
幂法及反幂法
幂法是一种求实矩阵A的按模最大的特征值λ 1及其对 应的特征向量x1的方法。特别适合于大型稀疏矩阵。
设A (aij )nn R nn有一个完全特征向量组, 其特征值 为1, 2 ,, n , 对应的特征向量为x1, x2 ,, xn .
定义3 设A (aij ) nn , 令 n ( )i | aij | (2) Di {z | | z aii | ri , z C }, (i 1,, n) 1 r , ji 称Di为复平面上以aii为圆心以ri为半径的Gerschgorin圆盘.
定理8 (Gerschgorin圆盘定理) (1) 设A (aij ) nn , 则A的每 一个特征值必属于下列某个圆盘之中 n | aii | | aij |, (i 1,, n). ji (2) 如果上述的n个圆盘中有m个圆盘构成一个连通域S ,
2 收敛速度由比值r 确定. 1
例3 用幂法求 1 0.5 1 A 1 1 0.25 2 0.5 0.25 的按模最大特征值及其特征向量.
A=[1 1 0.5;1 1 .25;.5 .25 2] u=[1,1,1]' v=A*u,v1=max(v),u=v/v1
定理9( Schur定理) 设A R nn, 则存在酉矩阵 U使 r11 r12 r1n r22 r2n R, U T AU rnn 其中rii (i 1,2,, n)为A的特征值.
定理10(实Schur分解) 设A R nn, 则存在正交矩阵 Q使 R11 R12 R1m R22 R2m , QT AQ Rmm 其中当Rii (i 1,2,, m)为一阶时Rii是A的实特征值,当 Rii为 二阶时Rii的两个特征值是 A的两个共轭复特征值.
a21 an1
a12 a 22 an 2
a1n a2 n
a nn
n (a11 a22 ann )n1 (1)n | A | 为A的特征多项式. A的特征方程 ( ) det(I A) 0
且S与其余n m个圆盘分离, 则S中恰有A的m个特征值.
选取非奇异对角矩阵D diag (1,, n ),得到 aij j D AD . i nn 适当选取 i (i 1,2,, n)有时可使某些圆盘半径和连通性
1
改变,根据相似矩阵性质获得特征值的进一步结果. 4 1 0 | 4 | 1 1 0 1的特征值的范围. | | 2 例2 估计A | 4 | 2 1 1 4 1 1 0 4 3 1 5 1 D 1 , D AD 1 0 10 . 19 19 9 2 9 9 10 5.8 2.2 0.9 0.9 4 9 3
2. 瑞雷商加速法
定理14 设A R
nn
为对称矩阵, 其特征值满足
1 2 n ,
应用幂法(2.9),则uk的瑞利商给出1的较好近似 2k ( Auk , uk ) 1 O 2 . 1 (uk , uk )
为了避免“溢出”下面做改进. 记 max(v )为向量v的绝对 v 值最大的分量,规范化得 u (v 0). 就有 max(v ) 定理13 设A R nn有n个线性无关的特征向量, 其特征值
1 2 n ,
对任何非零初始向量v0 (a1 0), 计算 u0 v0 , v Au , k k 1 (k 1,2, ) k max(vk ), uk vk / k . x1 lim uk , lim k 1. k max(x1 ) k
2 n a1 x1 a2 x2 an xn k A v0 1 1 uk k k k max(A v0 ) 2 n max a1 x1 a2 x2 an xn 1 1 x1 (k ) max(x1 )
二、加速方法
1. 原点位移法 B A pI . 例4 设 (A) {5,3,1},考察带原点平移的幂法求A的按模
最大特征值及其特征向量的收敛速度. 若 1 2 n, 则p* 2 n . 2 例5 用带原点平移的幂法求
1 0.5 1 A 1 1 0.25 2 0.5 0.25 的按模最大特征值及其特征向量. 取p 0.75.
Ak v0 vk Ak v0 vk , uk . k 1 k max(vk ) max(A v0 ) max(A v0 )
k k 2 n k Ak v0 1 a1 x1 a2 x2 an xn , 1 1
m i 1
其中每个对角块Aii均为方阵, 则 ( A) ( Aii ).
定理5 若A与B为相似矩阵, 即非奇异P使P 1 AP B, 则 (1) A与B有相同的特征值; (2) 若y是B的特征向量, 则Py是A的特征向量.