江西省南昌市中考数学试题及解析审批稿

合集下载

2022年江西省中考数学真题(含解析)

2022年江西省中考数学真题(含解析)

z2022年江西省中考数学试题卷说明:1.全卷满分120分,考试时间120分钟.2.请将答案写在答题卡上,否则不给分.一、单项选择题(本大题共6小题,每小题3分,共18分)1. 下列各数中,负数是( ) A.B. 0C. 2D.2.实数a ,b 在数轴上的对应点的位置如图所示,则下列结论中,正确的是( )A.B.C.D.3. 下列计算正确的是( ) AB.C. D.4. 将字母“C ”,“H ”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H ”的个数是( )A. 9B. 10C. 11D. 125. 如图是四个完全相同的小正方体搭成的几何体,它的俯视图为( )1-a b >a b =a b <a b =-236m m m ×=()m n m n --=-+2()m m n m n +=+222()m n m n +=+zA. B.C. D.6. 甲、乙两种物质的溶解度与温度之间的对应关系如图所示,则下列说法中,错误的是( )A. 甲、乙两种物质的溶解度均随着温度的升高而增大B. 当温度升高至时,甲的溶解度比乙的溶解度大C. 当温度为时,甲、乙的溶解度都小于D. 当温度为时,甲、乙的溶解度相等二、填空题(本大题共6小题,每小题3分,共18分)7. 因式分解:__________.8. 正五边形的外角和等于 _______◦. 9. 已知关于方程有两个相等的实数根,则的值是______.10. 甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x 人,则可列分式方程为__________.11. 沐沐用七巧板拼了一个对角线长为2正方形,再用这副七巧板拼成一个长方形(如图所示),则长方形的对角线长为__________.(g)y ()t℃2t ℃0℃20g 30℃23a a -=x的220x x k ++=k 的z.12. 已知点A 在反比例函数的图象上,点B 在x 轴正半轴上,若为等腰三角形,且腰长为5,则的长为__________.三、解答题(本大题共5小题,每小题6分,共30分)13. (1)计算:; (2)解不等式组:14. 以下是某同学化筒分式的部分运算过程:(1)上面的运算过程中第__________步出现了错误; (2)请你写出完整的解答过程.15. 某医院计划选派护士支援某地的防疫工作,甲、乙、丙、丁4名护士积极报名参加,其中甲是共青团12(0)y x x=>OAB !AB 0|2|2-26325x x x <ìí>-+î2113422x x x x +æö-÷ç÷-+-èøz员,其余3人均是共产党员.医院决定用随机抽取的方式确定人选. (1)“随机抽取1人,甲恰好被抽中”是__________事件; A .不可能 B .必然 C .随机(2)若需从这4名护士中随机抽取2人,请用画树状图法或列表法求出被抽到的两名护士都是共产党员的概率.16. 如图是的正方形网格,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).(1)在图1中作的角平分线;(2)在图2中过点作一条直线,使点,到直线的距离相等.17. 如图,四边形为菱形,点E 在的延长线上,.(1)求证:;(2)当时,求的长.四、解答题(本大题共3小题,每小题8分,共24分)18. 如图,点在反比例函数图象上,点B 在y 轴上,,将线段向右下方平移,得到线段,此时点C 落在反比例函数的图象上,点D 落在x 轴正半轴上,且.44´ABC ÐC l A B l ABCD AC ACD ABE Ð=ÐABC AEB !!∽6,4AB AC ==AE (,4)A m (0)ky x x=>的2OB =AB CD 1OD =z(1)点B 的坐标为__________,点D 的坐标为__________,点C 的坐标为__________(用含m 的式子表示);(2)求k 的值和直线的表达式.19. (1)课本再现:在中,是所对的圆心角,是所对的圆周角,我们在数学课上探索两者之间的关系时,要根据圆心O 与的位置关系进行分类.图1是其中一种情况,请你在图2和图3中画出其它两种情况的图形,并从三种位置关系中任选一种情况证明; (2)知识应用:如图4,若的半径为2,分别与相切于点A ,B ,,求的长.20. 图1是某长征主题公园的雕塑,将其抽象成如图2所示的示意图,已知,A ,D ,H ,G 四点在同一直线上,测得.(结果保留小数点后一位)AC O !AOB ÐAB C ÐAB C Ð12Ð=ÐC AOB O !,PA PB O !60C Ð=°PA AB CD FG ∥∥72.9, 1.6m, 6.2m FEC A AD EFÐ=Ð=°==z(1)求证:四边形为平行四边形; (2)求雕塑的高(即点G 到的距离).(参考数据:)五、解答题(本大题共2小题,每小题9分,共18分)21. 在“双减”政策实施两个月后,某市“双减办”面向本市城区学生,就“‘双减’前后参加校外学科补习班的情况”进行了一次随机问卷调查(以下将“参加校外学科补习班”简称“报班”),根据问卷提交时间的不同,把收集到的数据分两组进行整理,分别得到统计表1和统计图1: 整理描述表1:“双减”前后报班情况统计表(第一组) 报班数 人数 类别 0 1 2 3 4及以上 合计“双减”前 102 48 75 51 24 m “双减”后 2551524nm(1)根据表1,m 的值为__________,的值为__________; (2)分析处理:请你汇总表1和图1中数据,求出“双减”后报班数为3的学生人数所占的百分比; (3)“双减办”汇总数据后,制作了“双减”前后报班情况的折线统计图(如图2).请依据以上图表中的信息回答以下问题:DEFG AB sin72.90.96,cos72.90.29,tan72.9 3.25°»°»°»nm的z①本次调查中,“双减”前学生报班个数的中位数为__________,“双减”后学生报班个数的众数为__________;②请对该市城区学生“双减”前后报班个数变化情况作出对比分析(用一句话来概括).22. 跳台滑雪运动可分为助滑、起跳、飞行和落地四个阶段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,着陆坡上的基准点K 为飞行距离计分的参照点,落地点超过K 点越远,飞行距离分越高.2022年北京冬奥会跳台滑雪标准台的起跳台的高度为,基准点K 到起跳台的水平距离为,高度为(h 为定值).设运动员从起跳点A 起跳后的高度与水平距离之间的函数关系为.(1)c 的值为__________;(2)①若运动员落地点恰好到达K 点,且此时,求基准点K 的高度h ; ②若时,运动员落地点要超过K 点,则b 的取值范围为__________; (3)若运动员飞行的水平距离为时,恰好达到最大高度,试判断他的落地点能否超过K 点,并说明理由.六、解答题(本大题共12分)23. 问题提出:某兴趣小组在一次综合与实践活动中提出这样一个问题:将足够大的直角三角板的一个顶点放在正方形中心O 处,并绕点O 逆时针旋转,探究直角三角板与正方形重叠部分的面积变化情况(已知正方形边长为2). OA 66m 75m m h (m)y (m)x 2(0)y ax bx c a =++¹19,5010a b =-=150a =-25m 76m ()90,60PEF P F Ð=°Ð=°PEF ABCDz(1)操作发现:如图1,若将三角板的顶点P 放在点O 处,在旋转过程中,当与重合时,重叠部分的面积为__________;当与垂直时,重叠部分的面积为__________;一般地,若正方形面积为S ,在旋转过程中,重叠部分的面积与S 的关系为__________;(2)类比探究:若将三角板的顶点F 放在点O 处,在旋转过程中,分别与正方形的边相交于点M ,N .①如图2,当时,试判断重叠部分的形状,并说明理由; ②如图3,当时,求重叠部分四边形的面积(结果保留根号); (3)拓展应用:若将任意一个锐角的顶点放在正方形中心O 处,该锐角记为(设),将绕点O 逆时针旋转,在旋转过程中,的两边与正方形的边所围成的图形的面积为,请直接写出的最小值与最大值(分别用含的式子表示),(参考数据:OF OB OF BC 1S ,OE OP BM CN =OMN !CM CN =OMCN GOH ÐGOH a Ð=GOH ÐGOH ÐABCD 2S 2S a sin15tan152°=°=°=z2022年江西省中考数学试题卷说明:1.全卷满分120分,考试时间120分钟.2.请将答案写在答题卡上,否则不给分.一、单项选择题(本大题共6小题,每小题3分,共18分)1. 下列各数中,负数是( ) A. B. 0C. 2D.【答案】A 【解析】【分析】根据负数的定义即可得出答案. 【详解】解:-1是负数,20既不是正数也不是负数,故选:A .【点睛】本题考查了实数,掌握在正数前面添加“-”得到负数是解题的关键. 2. 实数a ,b 在数轴上的对应点的位置如图所示,则下列结论中,正确的是( )A.B.C.D.【答案】C【解析】【分析】根据数轴上点的特点,进行判断即可.【详解】ABC.根据数轴上点a 、b 的位置可知,,, ∴,故AB 错误,C 正确;根据数轴上点a 、b 的位置可知,,故D 错误. 故选:C .【点睛】本题主要考查了数轴上点的特点,熟练掌握数轴上点表示的数,越向右越大,是解题的关键.3. 下列计算正确的是( ) A. B. C. D.【答案】B 【解析】1-a b >a b =a b <a b =-0a <0b >a b <a b -<236m m m ×=()m n m n --=-+2()m m n m n +=+222()m n m n +=+z【分析】利用同底数幂的乘法,去括号法则,单项式乘多项式,完全平方公式对各选项依次判断即可.【详解】解:A 、,故此选项不符合题意; B 、,故此选项符合题意;C 、,故此选项不符合题意;D 、,故此选项不符合题意. 故选:B .【点睛】本题考查了整式的混合运算,涉及到同底数幂的乘法,去括号法则,单项式乘多项式的运算法则,完全平方公式等知识.熟练掌握各运算法则和的应用是解题的关键.4. 将字母“C ”,“H ”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H ”的个数是( )A. 9B. 10C. 11D. 12【答案】B 【解析】【分析】列举每个图形中H 个数,找到规律即可得出答案.【详解】解:第1个图中H 的个数为4, 第2个图中H 的个数为4+2, 第3个图中H 的个数为4+2×2, 第4个图中H 的个数为4+2×3=10, 故选:B .【点睛】本题考查了规律型:图形变化类,通过列举每个图形中H 的个数,找到规律:每个图形比上一个图形多2个H 是解题的关键.5. 如图是四个完全相同的小正方体搭成的几何体,它的俯视图为( )2356m m m m ×=¹()m n m n --=-+22()m m n m mn m n +=+¹+22222()2m m n m n m n n +=++¹+222()2a b a ab b +=++的的zA. B.C. D.【答案】A【解析】【分析】从上面观察该几何体得到一个“T ”字形的平面图形,横着两个正方形,中间有一个正方形,且有两条垂直的虚线,下方有半个正方形.画出图形即可.【详解】俯视图如图所示.故选:A .【点睛】本题主要考查了几何体的三视图,俯视图是从上面观察几何体得出的平面图形..注意:能看到的线用实线,看不到而存在的线用虚线.6. 甲、乙两种物质的溶解度与温度之间的对应关系如图所示,则下列说法中,错误的是( ) (g)y ()t ℃zA. 甲、乙两种物质的溶解度均随着温度的升高而增大B. 当温度升高至时,甲的溶解度比乙的溶解度大C. 当温度为时,甲、乙的溶解度都小于D. 当温度为时,甲、乙的溶解度相等【答案】D【解析】【分析】利用函数图象的意义可得答案.【详解】解:由图象可知,A 、B 、C 都正确,当温度为t 1时,甲、乙的溶解度都为30g ,故D 错误,故选:D .【点睛】本题主要考查了函数的图象,熟练掌握横纵坐标表示的意义是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)7. 因式分解:__________.【答案】【解析】【分析】直接提公因式a 即可.【详解】解:原式=.故答案为:.【点睛】此题主要考查了提公因式法分解因式,关键是正确确定公因式.8. 正五边形的外角和等于 _______◦.【答案】360【解析】【详解】试题分析:任何n 边形的外角和都等于360度.考点:多边形的外角和.9. 已知关于的方程有两个相等的实数根,则的值是______. 2t ℃0℃20g 30℃23a a -=(3)a a -(3)a a -(3)a a -x 220x x k ++=k【答案】1【解析】【分析】由一元二次方程根的判别式列方程可得答案.【详解】解:一元二次方程有两个相等的实数根,可得判别式,∴,解得:.故答案为:【点睛】本题考查的是一元二次方程根的判别式,掌握根的判别式的含义是解题的关键. 10. 甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x 人,则可列分式方程为__________.【答案】 【解析】【分析】先表示乙每小时采样(x-10)人,进而得出甲采样160人和乙采样140人所用的时间,再根据时间相等列出方程即可.【详解】根据题意可知乙每小时采样(x-10)人,根据题意,得. 故答案为:. 【点睛】本题主要考查了列分式方程,确定等量关系是列方程的关键. 11. 沐沐用七巧板拼了一个对角线长为2的正方形,再用这副七巧板拼成一个长方形(如图所示),则长方形的对角线长为__________.【答【解析】【分析】根据图形可得长方形的长是正方形的对角线为2,长方形的宽是正方形对角线的一半为1,然后利用勾股定理即可解决问题. 0=!440k -=1k =1.16014010x x =-16014010x x =-16014010x x =-z 【详解】解:根据图形可知:长方形的长是正方形的对角线为2,长方形的宽是正方形对角线的一半为1,∴根据勾股定理故答案【点睛】本题主要考查了正方形的性质,七巧板,矩形的性质,勾股定理,解决本题的关键是所拼成的正方形的特点确定长方形的长与宽.12. 已知点A 在反比例函数的图象上,点B 在x 轴正半轴上,若为等腰三角形,且腰长为5,则的长为__________.【答案】5或【解析】【分析】因为等腰三角形的腰不确定,所以分三种情况分别计算即可.【详解】解:①当AO=AB 时,AB =5; ②当AB =BO 时,AB =5;③当OA =OB 时,则OB =5,B (5,0), 设A (a ,)(a >0), ∵OA=5, , 解得:,, ∴A (3,4)或(4,3), ∴AB AB 综上所述,AB 的长为5或故答案为:5或=12(0)y x x=>OAB !AB 12a 5=13a =24a ===z 【点睛】本题考查了等腰三角形的性质,反比例函数图象上点的坐标特征,考查分类讨论的思想,当时,求出点的坐标是解题的关键.三、解答题(本大题共5小题,每小题6分,共30分)13. (1)计算:;(2)解不等式组: 【答案】(1)3;(2)1<x <3【解析】【分析】(1)根据绝对值的性质,算术平方根的意义,零指数幂的意义解答即可;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】(1)原式=2+2-1,=3.(2) 解不等式①得:x <3,解不等式②得:x >1,∴不等式组的解集为:1<x <3.【点睛】本题考查的是实数的运算和解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14. 以下是某同学化筒分式的部分运算过程:(1)上面的运算过程中第__________步出现了错误;(2)请你写出完整的解答过程. 0|2|2-26325x x x <ìí>-+î26325x x x ìí-+î<①>②2113422x x x x +æö-÷ç÷-+-èø【答案】(1)③ (2)见解析【解析】【分析】根据分式的运算法则:先乘方,再加减,最后乘除,有括号先算括号里面的计算即可.【小问1详解】第③步出现错误,原因是分子相减时未变号,故答案:③;【小问2详解】解:原式= 【点睛】本题主要考查了分式的混合运算,熟练掌握分式的运算法则是解决本题的关键. 15. 某医院计划选派护士支援某地的防疫工作,甲、乙、丙、丁4名护士积极报名参加,其中甲是共青团员,其余3人均是共产党员.医院决定用随机抽取的方式确定人选.(1)“随机抽取1人,甲恰好被抽中”是__________事件;A .不可能B .必然C .随机 (2)若需从这4名护士中随机抽取2人,请用画树状图法或列表法求出被抽到的两名护士都是共产党员的概率.【答案】(1)C (2)【解析】【分析】(1)根据随机事件的定义即可解决问题;(2)从甲、乙、丙、丁名护士积极报名参加,设甲是共青团员用T 表示,其余3人均是共产党员用G 表示,从这4名护士中随机抽取2人,所有可能出现的结果共有12种,然后利用树状图即可解决问题.【小问1详解】解:“随机抽取1人,甲恰好被抽中”是随机事件;故答案为:C ; 为112(2)(2)23x x x x x éù+--´êú+-+ëû122(2)(2)(2)(2)3x x x x x x x éù+--=-´êú+-+-ëû122(2)(2)3x x x x x +-+-=´+-32(2)(2)3x x x -=´+-12x =+12z【小问2详解】从甲、乙、丙、丁4名护士积极报名参加,设甲是共青团员用T 表示,其余3人均是共产党员用G 表示.从这4名护士中随机抽取2人,所有可能出现的结果共有12种,如图所示:它们出现的可能性相同,所有的结果中,被抽到的两名护士都是共产党员的(记为事件A )的结果有6 种,则, 则被抽到的两名护士都是共产党员的概率为.【点睛】本题考查的是用列表法或画树状图法求概率,随机事件.解决本题的关键是掌握列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率所求情况数与总情况数之比.16. 如图是的正方形网格,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).(1)在图1中作的角平分线;(2)在图2中过点作一条直线,使点,到直线的距离相等.【答案】(1)作图见解析部分(2)作图见解析部分【解析】【分析】(1)连接,,与交于点,作射线即可;(2)取格点,过点和点作直线即可.【小问1详解】解:如图1,连接、,与交于点,设小正方形的边长为1个单位, ∵线段和是矩形的两条对角线且交于点,∴, ()61122P A ==1244´ABC ÐC l A B l AC HG AC HG P BP D C D l AC HG AC HG P AC HG P AP CP =z又∵∴,∴平分,∴射线即为所作;【小问2详解】如图2,连接、、、,直线经过点和点,设小正方形的边长为1个单位,∴∴,∴四边形是菱形, 又∵,,,在和中,∴,∴,∵,∴,∴,∴四边形是正方形,∴,,且, AB ==BC ==AB BC =BP ABC ÐBP AD AB BC CD l C D AB ==AD ==BC ==CD ==AB AD CD BC ===ABCD 1AE DF ==2BE AF ==90AEB DFA Ð=Ð=°AEB △DFA !AE DF AEB DFA BE AF =ìïÐ=Ðíï=î()AEB DFA SAS △≌△ABE DAF Ð=Ð90ABE BAE Ð+Ð=°90DAF BAE Ð+Ð=°90BAD Ð=°ABCD AD l ^BC l ^AD BC =z∴直线即为所作.【点睛】本题考查作图一应用与设计作图,考查了等腰三角形三线合一的性质,矩形的性质,正方形的判定和性质,全等三角形的判定和性质,直角三角形两锐角互余,勾股定理等知识.解题的关键是理解题意,学会利用数形结合的思想解决问题.17. 如图,四边形为菱形,点E 在的延长线上,.(1)求证:;(2)当时,求的长. 【答案】(1)见解析 (2)AE =9【解析】【分析】(1)根据四边形ABCD 是菱形,得出,,根据平行线的性质和等边对等角,结合,得出,即可证明结论;(2)根据,得出,代入数据进行计算,即可得出AE 的值. 【小问1详解】证明:∵四边形ABCD 为菱形,∴,,,,l ABCD AC ACD ABE Ð=ÐABC AEB !!∽6,4AB AC ==AE CD AB ∥AB CB =ACD ABE Ð=ÐACD ABE CAB ACB Ð=Ð=Ð=ÐABC AEB D D ∽AB AC AE AB =CD AB ∥AB CB =ACD CAB \Ð=ÐCAB ACB Ð=Ðz ∵,∴,∴.小问2详解】∵,∴, 即, 解得:.【点睛】本题主要考查了菱形的性质,平行线的性质,等腰三角形的性质,三角形相似的判定和性质,根据题意得出,是解题关键.四、解答题(本大题共3小题,每小题8分,共24分)18. 如图,点在反比例函数的图象上,点B 在y 轴上,,将线段向右下方平移,得到线段,此时点C 落在反比例函数的图象上,点D 落在x 轴正半轴上,且.(1)点B 的坐标为__________,点D 的坐标为__________,点C 的坐标为__________(用含m 的式子表示);(2)求k 的值和直线的表达式.【答案】(1)(0,2),(1,0),(m +1,2)(2)1;y =-2x +6【解析】【分析】(1)根据OB =2可得点B 的坐标,根据OD =1可得点D 的坐标为(1,0),由平移规律可得点C 的坐标;(2)根据点C 和D 的坐标列方程可得m 的值,从而得k 的值,再利用待定系数法可得直线AC 的解析式. ACD ABE Ð=ÐACD ABE CAB ACB Ð=Ð=Ð=ÐABC AEB D D ∽【ABC AEB D D ∽AB AC AE AB =646AE =9AE =ACD ABE CAB ACB Ð=Ð=Ð=Ð(,4)A m (0)k y x x=>2OB =AB CD 1OD=AC【小问1详解】∵点B 在y 轴上,, ∴B (0,2),∵点D 落在x 轴正半轴上,且 ∴D (1,0),∴线段AB 向下平移2个单位,再向右平移1个单位,得到线段CD , ∵点A (m ,4), ∴C (m +1,2),故答案为:(0,2),(1,0),(m +1,2); 【小问2详解】∵点A 和点C 在反比例函数的图象上, ∴k =4m =2(m +1), ∴m =1,∴A (1,4),C (2,2), ∴k =1×4=4,设直线AC 的表达式为:,∴ 解得,∴直线AC 的表达式为:y =-2x +6.【点睛】此题主要考查了一次函数和反比例函数的综合应用以及平移的性质,根据OB 和OD 的长得出平移的规律是解题关键.19. (1)课本再现:在中,是所对的圆心角,是所对的圆周角,我们在数学课上探索两者之间的关系时,要根据圆心O 与的位置关系进行分类.图1是其中一种情况,请你在图2和图3中画出其它两种情况的图形,并从三种位置关系中任选一种情况证明; (2)知识应用:如图4,若的半径为2,分别与相切于点A ,B ,,求的长. 2OB =1OD =(0)ky x x=>y sx t =+422s t s t +=ìí+=î26s t =-ìí=îO !AOB ÐAB C ÐAB C Ð12Ð=ÐC AOB O !,PA PB O !60C Ð=°PAz【答案】(1)见解析;(2)【解析】【分析】(1)①如图2,当点O 在∠ACB 的内部,作直径,根据三角形外角的性质和等腰三角形的性质可得结论;②如图3,当O 在∠ACB 的外部时,作直径CD ,同理可理结论;(2)如图4,先根据(1)中的结论可得∠AOB =120°,由切线的性质可得∠OAP =∠OBP =90°,可得∠OP A =30°,从而得P A 的长.【详解】解:(1)①如图2,连接CO ,并延长CO 交⊙O 于点D ,∵OA =OC =OB ,∴∠A =∠ACO ,∠B =∠BCO ,∵∠AOD =∠A +∠ACO =2∠ACO ,∠BOD =∠B +∠BCO =2∠BCO , ∴∠AOB =∠AOD +∠BOD =2∠ACO +2∠BCO =2∠ACB , ∴∠ACB =∠AOB ;如图3,连接CO ,并延长CO 交⊙O 于点D ,12z∵OA =OC =OB ,∴∠A =∠ACO ,∠B =∠BCO ,∵∠AOD =∠A +∠ACO =2∠ACO ,∠BOD =∠B +∠BCO =2∠BCO , ∴∠AOB =∠AOD -∠BOD =2∠ACO -2∠BCO =2∠ACB , ∴∠ACB=∠AOB ;(2)如图4,连接OA ,OB,OP ,∵∠C =60°,∴∠AOB =2∠C =120°,∵P A ,PB 分别与⊙O 相切于点A ,B ,∴∠OAP =∠OBP =90°,∠APO =∠BPO =∠APB =(180°-120°)=30°, ∵OA =2, ∴OP =2OA =4, ∴P A =【点睛】本题考查了切线长定理,圆周角定理等知识,掌握证明圆周角定理的方法是解本题的关键.20. 图1是某长征主题公园的雕塑,将其抽象成如图2所示的示意图,已知,A ,D ,H ,G 四点在同一直线上,测得121212=AB CD FG ∥∥z.(结果保留小数点后一位)(1)求证:四边形为平行四边形; (2)求雕塑的高(即点G 到的距离).(参考数据:) 【答案】(1)见解析 (2)雕塑的高为7.5m ,详见解析 【解析】【分析】(1)根据平行四边形的定义可得结论;(2)过点G 作GP ⊥AB 于P ,计算AG 的长,利用 ∠A 的正弦可得结论. 【小问1详解】证明:∵, ∴∠CDG =∠A , ∵∠FEC =∠A , ∴ ∠FEC =∠CDG , ∴EF ∥DG , ∵FG ∥CD ,∴四边形DEFG 为平行四边形; 【小问2详解】如图,过点G 作GP ⊥AB 于P , ∵四边形DEFG 为平行四边形, ∴DG =EF =6.2, ∵AD =1.6,∴AG =DG +AD =6.2+1.6=7.8, 在Rt △APG 中,sin A =, ∴=0.96, ∴PG =7.8×0.96=7.488≈7.5.72.9, 1.6m, 6.2m FEC A AD EF Ð=Ð=°==DEFG AB sin72.90.96,cos72.90.29,tan72.9 3.25°»°»°»AB CD FG ∥∥PGAG7.8PG答:雕塑的高为7.5m.【点睛】本题考查解直角三角形的应用,解题的关键是理解题意,正确作辅助线构建直角三角形解决问题.五、解答题(本大题共2小题,每小题9分,共18分)21. 在“双减”政策实施两个月后,某市“双减办”面向本市城区学生,就“‘双减’前后参加校外学科补习班的情况”进行了一次随机问卷调查(以下将“参加校外学科补习班”简称“报班”),根据问卷提交时间的不同,把收集到的数据分两组进行整理,分别得到统计表1和统计图1:整理描述表1:“双减”前后报班情况统计表(第一组)(1)根据表1,m 的值为__________,的值为__________; (2)分析处理:请你汇总表1和图1中的数据,求出“双减”后报班数为3的学生人数所占的百分比;(3)“双减办”汇总数据后,制作了“双减”前后报班情况的折线统计图(如图2).请依据以上图表中的信息回答以下问题:①本次调查中,“双减”前学生报班个数的中位数为__________,“双减”后学生报班个数的众数为__________;②请对该市城区学生“双减”前后报班个数变化情况作出对比分析(用一句话来概括). 【答案】(1)300;(2)见解析; (3)①1;0;②见解析 【解析】【分析】(1)将表1中“双减前”各个数据求和确定m 的值,然后再计算求得n 值,从而求解;(2)通过汇总表1和图1求得“双减后”报班数为3的学生人数,从而求解百分比; (3)①根据中位数和众数的概念分析求解;②根据“双减”政策对学生报班个数的影响结果角度进行分析说明. 【小问1详解】解:由题意得,,解得,∴, 故答案为:300; 【小问2详解】汇总表1和图1可得:0 1 2 3 4及以上 总数 “双减”前 172 82 118 82 46 500 “双减”后4232440121500∴“双减”后报班数为3的学生人数所占的百分比为; nm1502.4%1024875512425515240m n m =++++ìí++++=î3006m n =ìí=î6130050n m ==15012100% 2.4%500´=z【小问3详解】“双减”前共调查500个数据,从小到大排列后,第250个和第251个数据均为1, ∴“双减”前学生报班个数的中位数为1, “双减”后学生报班个数出现次数最多的是0, ∴“双减”后学生报班个数的众数为0, 故答案为:1;0;②从“双减”前后学生报班个数的变化情况说明:“双减”政策宣传落实到位,参加校外培训机构的学生大幅度减少,“双减”取得了显著效果.【点睛】本题考查统计的应用,理解题意,对数据进行采集和整理,掌握中位数和众数的概念是解题关键.22. 跳台滑雪运动可分为助滑、起跳、飞行和落地四个阶段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,着陆坡上的基准点K 为飞行距离计分的参照点,落地点超过K 点越远,飞行距离分越高.2022年北京冬奥会跳台滑雪标准台的起跳台的高度为,基准点K 到起跳台的水平距离为,高度为(h 为定值).设运动员从起跳点A 起跳后的高度与水平距离之间的函数关系为.(1)c 的值为__________;(2)①若运动员落地点恰好到达K 点,且此时,求基准点K 的高度h ; ②若时,运动员落地点要超过K 点,则b 的取值范围为__________; (3)若运动员飞行的水平距离为时,恰好达到最大高度,试判断他的落地点能否超过K 点,并说明理由.【答案】(1)66 (2)①基准点K 的高度h 为21m ;②b >; (3)他的落地点能超过K 点,理由见解析.OA 66m 75m m h (m)y (m)x 2(0)y ax bx c a =++¹19,5010a b =-=150a =-25m 76m 910【解析】【分析】(1)根据起跳台的高度OA 为66m ,即可得c =66; (2)①由a =﹣,b =,知y =﹣x 2+x +66,根据基准点K 到起跳台的水平距离为75m ,即得基准点K 的高度h 为21m ;②运动员落地点要超过K 点,即是x =75时,y >21,故﹣×752+75b +66>21,即可解得答案;(3)运动员飞行水平距离为25m 时,恰好达到最大高度76m ,即是抛物线的顶点为(25,76),设抛物线解析式为y =a (x ﹣25)2+76,可得抛物线解析式为y =﹣(x ﹣25)2+76,当x =75时,y =36,从而可知他的落地点能超过K 点. 【小问1详解】解:∵起跳台的高度OA 为66m , ∴A (0,66),把A (0,66)代入y =ax 2+bx +c 得: c =66, 故答案为:66; 【小问2详解】 解:①∵a =﹣,b =, ∴y =﹣x 2+x +66, ∵基准点K 到起跳台的水平距离为75m , ∴y =﹣×752+×75+66=21, ∴基准点K 的高度h 为21m ; ②∵a =﹣, ∴y =﹣x 2+bx +66, ∵运动员落地点要超过K 点, ∴当x =75时,y >21, 即﹣×752+75b +66>21, 150910150910150的2125150910150910150910150150150解得b >, 故答案为:b >; 【小问3详解】解:他的落地点能超过K 点,理由如下:∵运动员飞行的水平距离为25m 时,恰好达到最大高度76m , ∴抛物线的顶点为(25,76),设抛物线解析式为y =a (x ﹣25)2+76, 把(0,66)代入得: 66=a (0﹣25)2+76, 解得a =﹣, ∴抛物线解析式为y =﹣(x ﹣25)2+76, 当x =75时,y =﹣×(75﹣25)2+76=36, ∵36>21,∴他的落地点能超过K 点.【点睛】本题考查二次函数的应用,解题的关键是读懂题意,能根据题意把实际问题转化为数学问题.六、解答题(本大题共12分)23. 问题提出:某兴趣小组在一次综合与实践活动中提出这样一个问题:将足够大的直角三角板的一个顶点放在正方形中心O 处,并绕点O 逆时针旋转,探究直角三角板与正方形重叠部分的面积变化情况(已知正方形边长为2).910910212521252125()90,60PEF P F Ð=°Ð=°PEF ABCD。

江西省南昌市中考数学试题及解析审批稿

江西省南昌市中考数学试题及解析审批稿

江西省南昌市中考数学试题及解析YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】2015年江西省南昌市中考数学试卷一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.(3分)(2015?南昌)计算(﹣1)0的结果为()A.1B.﹣1 C.0D.无意义2.(3分)(2015?南昌)2015年初,一列CRH5型高速车组进行了“300000公里正线运营考核”标志着中国高速快车从“中国制造”到“中国创造”的飞跃,将300000用科学记数法表示为()A.3×106B.3×105C.×106D.30×1043.(3分)(2015?南昌)下列运算正确的是()A.(2a2)3=6a6B.﹣a2b2?3ab3=﹣3a2b5C.?=﹣1D.+=﹣14.(3分)(2015?南昌)如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为()A.B.C.D.5.(3分)(2015?南昌)如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误的是()A.四边形ABCD由矩形变为平行四边形B.B D的长度增大C.四边形ABCD的面积不变D.四边形ABCD的周长不变6.(3分)(2015?南昌)已知抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,那么抛物线的对称轴()A.只能是x=﹣1B.可能是y轴C.在y轴右侧且在直线x=2的左侧D.在y轴左侧且在直线x=﹣2的右侧二、填空题(本大题共8小题,每小题3分,共24分)7.(3分)(2015?南昌)一个角的度数为20°,则它的补角的度数为.8.(3分)(2015?南昌)不等式组的解集是.9.(3分)(2015?南昌)如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有对全等三角形.10.(3分)(2015?南昌)如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为.11.(3分)(2015?南昌)已知一元二次方程x2﹣4x﹣3=0的两根为m,n,则m2﹣mn+n2=.12.(3分)(2015?南昌)如图1是小志同学书桌上的一个电子相框,将其侧面抽象为如图2所示的几何图形,已知BC=BD=15cm,∠CBD=40°,则点B到CD的距离为cm(参考数据sin20°≈,cos20°≈,sin40°≈,cos40°≈,结果精确到,可用科学计算器).13.(3分)(2015?南昌)两组数据:3,a,2b,5与a,6,b的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为.14.(3分)(2015?南昌)如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为.三、解答题(本大题共4小题,每小题6分,共24分)15.(6分)(2015?南昌)先化简,再求值:2a(a+2b)﹣(a+2b)2,其中a=﹣1,b=.16.(6分)(2015?南昌)如图,正方形ABCD于正方形A1B1C1D1关于某点中心对称,已知A,D1,D三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标.(2)写出顶点B,C,B1,C1的坐标.17.(6分)(2015?南昌)⊙O为△ABC的外接圆,请仅用无刻度的直尺,根据下列条件分别在图1,图2中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法).(1)如图1,AC=BC;(2)如图2,直线l与⊙O相切于点P,且l∥BC.18.(6分)(2015?南昌)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,请完成下列表格:事件A 必然事件随机事件m的值(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于,求m的值.四、解答题(本大题共3小题,每小题8分,共24分)19.(8分)(2015?南昌)某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷140份,每位学生家长1份,每份问卷仅表明一种态度,将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如图两幅不完整的统计图.根据以上信息解答下列问题:(1)回收的问卷数为份,“严加干涉”部分对应扇形的圆心角度数为.(2)把条形统计图补充完整(3)若将“稍加询问”和“从来不管”视为“管理不严”,已知全校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人?20.(8分)(2015?南昌)(1)如图1,纸片?ABCD中,AD=5,S?ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D的形状为A.平行四边形 B.菱形 C.矩形 D.正方形(2)如图2,在(1)中的四边形纸片AEE′D中,在EE′上取一点F,使EF=4,剪下△AEF,将它平移至△DE′F′的位置,拼成四边形AFF′D.①求证:四边形AFF′D是菱形.②求四边形AFF′D的两条对角线的长.21.(8分)(2015?南昌)如图,已知直线y=ax+b与双曲线y=(x>0)交于A(x1,y1),B(x2,y2)两点(A与B不重合),直线AB与x轴交于P(x0,0),与y轴交于点C.(1)若A,B两点坐标分别为(1,3),(3,y2),求点P的坐标.(2)若b=y1+1,点P的坐标为(6,0),且AB=BP,求A,B两点的坐标.(3)结合(1),(2)中的结果,猜想并用等式表示x1,x2,x0之间的关系(不要求证明).五、解答题(本大题共2小题,每小题9分,共18分)22.(9分)(2015?南昌)甲、乙两人在100米直道AB上练习匀速往返跑,若甲、乙分别中A,B两端同时出发,分别到另一端点处掉头,掉头时间不计,速度分别为5m/s和4m/s.(1)在坐标系中,虚线表示乙离A端的距离s(单位:m)与运动时间t(单位:s)之间的函数图象(0≤t≤200),请在同一坐标系中用实线画出甲离A端的距离s与运动时间t之间的函数图象(0≤t≤200);(2)根据(1)中所画图象,完成下列表格:两人相遇次数(单位:次)1 2 3 4 …n两人所跑路程之和(单位:m)100 300 …(3)①直接写出甲、乙两人分别在第一个100m内,s与t的函数解析式,并指出自变量t 的取值范围;②当t=390s时,他们此时相遇吗?若相遇,应是第几次?若不相遇,请通过计算说明理由,并求出此时甲离A端的距离.23.(9分)(2015?南昌)如图,已知二次函数L1:y=ax2﹣2ax+a+3(a>0)和二次函数L2:y=﹣a(x+1)2+1(a>0)图象的顶点分别为M,N,与y轴分别交于点E,F.(1)函数y=ax2﹣2ax+a+3(a>0)的最小值为,当二次函数L1,L2的y值同时随着x的增大而减小时,x的取值范围是.(2)当EF=MN时,求a的值,并判断四边形ENFM的形状(直接写出,不必证明).(3)若二次函数L2的图象与x轴的右交点为A(m,0),当△AMN为等腰三角形时,求方程﹣a(x+1)2+1=0的解.六、解答题(本大题共12分)24.(12分)(2015?南昌)我们把两条中线互相垂直的三角形称为“称为中垂三角形”,例如图1,图2,图3中,AF,BE是△ABC的中线,AF⊥BE,垂足为P,像△ABC这样的三角形均称为“中垂三角形”,设BC=a,AC=b,AB=c.特例探索(1)如图1,当∠ABE=45°,c=2时,a=,b=.如图2,当∠ABE=30°,c=4时,a=,b=.归纳证明(2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式.拓展应用(3)如图4,在?ABCD中,点E、F、G分别是AD,BC,CD的中点,BE⊥EG,AD=2,AB=3,求AF的长.2015年江西省南昌市中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.(3分)(2015?南昌)计算(﹣1)0的结果为()A.1B.﹣1 C.0D.无意义考点:零指数幂.分析:根据零指数幂的运算方法:a0=1(a≠0),求出(﹣1)0的结果为多少即可.解答:解:∵(﹣1)0=1,∴(﹣1)0的结果为1.故选:A.点评:此题主要考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:(1)a0=1(a≠0);(2)00≠1.2.(3分)(2015?南昌)2015年初,一列CRH5型高速车组进行了“300000公里正线运营考核”标志着中国高速快车从“中国制造”到“中国创造”的飞跃,将300000用科学记数法表示为()A.3×106B.3×105C.×106D.30×104考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将300000用科学记数法表示为:3×105.故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2015?南昌)下列运算正确的是()A.(2a2)3=6a6B.﹣a2b2?3ab3=﹣3a2b5C.?=﹣1D.+=﹣1考点:分式的乘除法;幂的乘方与积的乘方;单项式乘单项式;分式的加减法.专题:计算题.分析:A、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可做出判断;B、原式利用单项式乘以单项式法则计算得到结果,即可做出判断;C、原式约分得到结果,即可做出判断;D、原式变形后,利用同分母分式的减法法则计算,约分即可得到结果.解解:A、原式=8a4,错误;答:B、原式=﹣3a3b5,错误;C、原式=a﹣1,错误;D、原式===﹣1,正确;故选D.点评:此题考查了分式的乘除法,幂的乘方与积的乘方,单项式乘单项式,以及分式的加减法,熟练掌握运算法则是解本题的关键.4.(3分)(2015?南昌)如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为()A.B.C.D.考点:简单组合体的三视图.分析:找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.解答:解:从左面看所得到的图形是正方形,切去部分的棱能看到,用实线表示,故选:C.点评:本题考查了三视图的知识,掌握主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图是解题的关键.5.(3分)(2015?南昌)如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误的是()A.四边形ABCD由矩形变为平行四边形B.B D的长度增大C.四边形ABCD的面积不变D.四边形ABCD的周长不变考点:矩形的性质;平行四边形的性质.分析:由将四根木条用钉子钉成一个矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,由平行四边形的判定定理知四边形变成平行四边形,由于四边形的每条边的长度没变,所以周长没变;拉成平行四边形后,高变小了,但底边没变,所以面积变小了,BD的长度增加了.解答:解:∵矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,∴AD=BC,AB=DC,∴四边形变成平行四边形,故A正确;BD的长度增加,故B正确;∵拉成平行四边形后,高变小了,但底边没变,∴面积变小了,故C错误;∵四边形的每条边的长度没变,∴周长没变,故D正确,故选C.点评:本题主要考查了矩形的性质和平行四边形的性质,弄清图形变化后的变量和不变量是解答此题的关键.6.(3分)(2015?南昌)已知抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,那么抛物线的对称轴()A.只能是x=﹣1B.可能是y轴C.在y轴右侧且在直线x=2的左侧D.在y轴左侧且在直线x=﹣2的右侧考点:二次函数的性质.分析:根据题意判定点(﹣2,0)关于对称轴的对称点横坐标x2满足:﹣2<x2<2,从而得出﹣2<<0,即可判定抛物线对称轴的位置.解答:解:∵抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,∴点(﹣2,0)关于对称轴的对称点横坐标x2满足:﹣2<x2<2,∴﹣2<<0,∴抛物线的对称轴在y轴左侧且在直线x=﹣2的右侧.故选D.点评:本题考查了二次函数的性质,根据点坐标判断出另一个点的位置是解题的关键.二、填空题(本大题共8小题,每小题3分,共24分)7.(3分)(2015?南昌)一个角的度数为20°,则它的补角的度数为160°.考点:余角和补角.分析:根据互为补角的两个角的和等于180°列式进行计算即可得解.解答:解:180°﹣20°=160°.故答案为:160°.点本题考查了余角和补角,解决本题的关键是熟记互为补角的和等于180°.评:8.(3分)(2015?南昌)不等式组的解集是﹣3<x≤2.考点:解一元一次不等式组.专题:计算题.分析:分别求出不等式组中两不等式的解集,找出解集的公共部分即可.解答:解:,由①得:x≤2,由②得:x>﹣3,则不等式组的解集为﹣3<x≤2.故答案为:﹣3<x≤2点评:此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.9.(3分)(2015?南昌)如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有3对全等三角形.考点:全等三角形的判定;角平分线的性质.分析:由OP平分∠MON,PE⊥OM于E,PF⊥ON于F,得到PE=PF,∠1=∠2,证得△AOP≌△BOP,再根据△AOP≌△BOP,得出AP=BP,于是证得△AOP≌△BOP,和R t△AOP≌R t△BOP.解答:解:OP平分∠MON,PE⊥OM于E,PF⊥ON于F,∴PE=PF,∠1=∠2,在△AOP与△BOP中,,∴△AOP≌△BOP,∴AP=BP,在△EOP与△FOP中,,∴△AOP≌△BOP,在R t△AOP与R t△BOP中,,∴R t△AOP≌R t△BOP,∴图中有3对全等三角形,故答案为:3.点评:本题考查了角平分线的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定定理是解题的关键.10.(3分)(2015?南昌)如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为110°.考点:圆周角定理.分析:根据圆周角定理求得∠BOC=100°,进而根据三角形的外角的性质求得∠BDC=70°,然后根据邻补角求得∠ADC的度数.解答:解:∵∠A=50°,∴∠BOC=2∠A=100°,∵∠B=30°,∠BOC=∠B+?BDC,∴∠BDC=∠BOC﹣∠B=100°﹣30°=70°,∴∠ADC=180°﹣∠BDC=110°,故答案为110°.点评:本题考查了圆心角和圆周角的关系及三角形外角的性质,圆心角和圆周角的关系是解题的关键.11.(3分)(2015?南昌)已知一元二次方程x2﹣4x﹣3=0的两根为m,n,则m2﹣mn+n2=25.考点:根与系数的关系.分析:由m与n为已知方程的解,利用根与系数的关系求出m+n与mn的值,将所求式子利用完全平方公式变形后,代入计算即可求出值.解答:解:∵m,n是一元二次方程x2﹣4x﹣3=0的两个根,∴m+n=4,mn=﹣3,则m2﹣mn+n2=(m+n)2﹣3mn=16+9=25.故答案为:25.点评:此题考查了一元二次方程根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.12.(3分)(2015?南昌)如图1是小志同学书桌上的一个电子相框,将其侧面抽象为如图2所示的几何图形,已知BC=BD=15cm,∠CBD=40°,则点B到CD的距离为cm (参考数据sin20°≈,cos20°≈,sin40°≈,cos40°≈,结果精确到,可用科学计算器).考点:解直角三角形的应用.分析:作BE⊥CD于E,根据等腰三角形的性质和∠CBD=40°,求出∠CBE的度数,根据余弦的定义求出BE的长.解答:解:如图2,作BE⊥CD于E,∵BC=BD,∠CBD=40°,∴∠CBE=20°,在Rt△CBE中,cos∠CBE=,∴BE=BC?cos∠CBE=15×=.故答案为:.点评:本题考查的是解直角三角形的应用,掌握锐角三角函数的概念是解题的关键,作出合适的辅助线构造直角三角形是解题的重要环节.13.(3分)(2015?南昌)两组数据:3,a,2b,5与a,6,b的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为6.考点:中位数;算术平均数.分析:首先根据平均数的定义列出关于a、b的二元一次方程组,再解方程组求得a、b的值,然后求中位数即可.解答:解:∵两组数据:3,a,2b,5与a,6,b的平均数都是6,∴,解得,若将这两组数据合并为一组数据,按从小到大的顺序排列为3,4,5,6,8,8,8,一共7个数,第四个数是6,所以这组数据的中位数是6.故答案为6.点评:本题考查平均数和中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一组数据的中位数与这组数据的排序及数据个数有关,因此求一组数据的中位数时,先将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.14.(3分)(2015?南昌)如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为2或2或2.考点:勾股定理;含30度角的直角三角形;直角三角形斜边上的中线.专题:分类讨论.分析:利用分类讨论,当∠APB=90°时,易得∠PAB=30°,利用锐角三角函数得AP的长;当∠ABP=90°时,分两种情况讨论,情况一:如图2易得BP,利用勾股定理可得AP的长;情况二:如图3,利用直角三角形斜边的中线等于斜边的一半得出结论.解答:解:当∠APB=90°时(如图1),∵AO=BO,∴PO=BO,∵∠AOC=60°,∴∠BOP=60°,∴△BOP为等边三角形,∵AB=BC=4,∴AP=AB?sin60°=4×=2;当∠ABP=90°时,情况一:(如图2),∵∠AOC=∠BOP=60°,∴∠BPO=30°,∴BP===2,在直角三角形ABP中,AP==2,情况二:如图3,∵AO=BO,∠APB=90°,∴PO=AO,∵∠AOC=60°,∴△AOP为等边三角形,∴AP=AO=2,故答案为:2或2或2.点评:本题主要考查了勾股定理,含30°直角三角形的性质和直角三角形斜边的中线,分类讨论,数形结合是解答此题的关键.三、解答题(本大题共4小题,每小题6分,共24分)15.(6分)(2015?南昌)先化简,再求值:2a(a+2b)﹣(a+2b)2,其中a=﹣1,b=.考点:整式的混合运算—化简求值.专题:计算题.分析:原式第一项利用单项式乘以多项式法则计算,第二项利用完全平方公式化简,去括号合并得到最简结果,把a与b的值代入计算即可求出值.解答:解:原式=2a2+4ab﹣a2﹣4ab﹣4b2=a2﹣4b2,当a=﹣1,b=时,原式=1﹣12=﹣11.点评:此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.16.(6分)(2015?南昌)如图,正方形ABCD于正方形A1B1C1D1关于某点中心对称,已知A,D1,D三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标.(2)写出顶点B,C,B1,C1的坐标.考点:中心对称;坐标与图形性质.分析:(1)根据对称中心的性质,可得对称中心的坐标是D1D的中点,据此解答即可.(2)首先根据A,D的坐标分别是(0,4),(0,2),求出正方形ABCD与正方形A1B1C1D1的边长是多少,然后根据A,D1,D三点的坐标分别是(0,4),(0,3),(0,2),判断出顶点B,C,B1,C1的坐标各是多少即可.解答:解:(1)根据对称中心的性质,可得对称中心的坐标是D1D的中点,∵D1,D的坐标分别是(0,3),(0,2),∴对称中心的坐标是(0,).(2)∵A,D的坐标分别是(0,4),(0,2),∴正方形ABCD与正方形A1B1C1D1的边长都是:4﹣2=2,∴B,C的坐标分别是(﹣2,4),(﹣2,2),∵A1D1=2,D1的坐标是(0,3),∴A1的坐标是(0,1),∴B1,C1的坐标分别是(2,1),(2,3),综上,可得顶点B,C,B1,C1的坐标分别是(﹣2,4),(﹣2,2),(2,1),(2,3).点评:(1)此题主要考查了中心对称的性质和应用,要熟练掌握,解答此题的关键是要明确中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.(2)此题还考查了坐标与图形的性质的应用,要熟练掌握,解答此题的关键是要明确点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.17.(6分)(2015?南昌)⊙O为△ABC的外接圆,请仅用无刻度的直尺,根据下列条件分别在图1,图2中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法).(1)如图1,AC=BC;(2)如图2,直线l与⊙O相切于点P,且l∥BC.考点:作图—复杂作图;三角形的外接圆与外心;切线的性质.专题:作图题.分析:(1)过点C作直径CD,由于AC=BC,=,根据垂径定理的推理得CD垂直平分AB,所以AD将△ABC分成面积相等的两部分;(2)连结PO并延长交BC于E,过点A、E作弦AD,由于直线l与⊙O相切于点P,根据切线的性质得OP⊥l,而l∥BC,则PE⊥BC,根据垂径定理得BE=CE,所以弦AE将△ABC分成面积相等的两部分.解答:解:(1)如图1,直径CD为所求;(2)如图2,弦AD为所求.点评:本题考查了复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了切线的性质.18.(6分)(2015?南昌)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,请完成下列表格:事件A 必然事件随机事件m的值42,3(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于,求m的值.考概率公式;随机事件.点:分析:(1)当袋子中全部为黑球时,摸出黑球才是必然事件,否则就是随机事件;(2)利用概率公式列出方程,求得m的值即可.解答:解:(1)当袋子中全为黑球,即摸出4个红球时,摸到黑球是必然事件;当摸出2个或3个时,摸到黑球为随机事件,故答案为:4;2,3.(2)根据题意得:=,解得:m=2,所以m的值为2.点评:本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.四、解答题(本大题共3小题,每小题8分,共24分)19.(8分)(2015?南昌)某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷140份,每位学生家长1份,每份问卷仅表明一种态度,将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如图两幅不完整的统计图.根据以上信息解答下列问题:(1)回收的问卷数为120份,“严加干涉”部分对应扇形的圆心角度数为30°.(2)把条形统计图补充完整(3)若将“稍加询问”和“从来不管”视为“管理不严”,已知全校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)用“从来不管”的问卷数除以其所占百分比求出回收的问卷总数;用“严加干涉”部分的问卷数除以问卷总数得出百分比,再乘以360°即可;(2)用问卷总数减去其他两个部分的问卷数,得到“稍加询问”的问卷数,进而补全条形统计图;(3)用“稍加询问”和“从来不管”两部分所占的百分比的和乘以1500即可得到结果.解答:解:(1)回收的问卷数为:30÷25%=120(份),“严加干涉”部分对应扇形的圆心角度数为:×360°=30°.故答案为:120,30°;(2)“稍加询问”的问卷数为:120﹣(30+10)=80(份),补全条形统计图,如图所示:(3)根据题意得:1500×=1375(人),则估计该校对孩子使用手机“管理不严”的家长大约有1375人.点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体.20.(8分)(2015?南昌)(1)如图1,纸片?ABCD中,AD=5,S?ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D的形状为CA.平行四边形 B.菱形 C.矩形 D.正方形(2)如图2,在(1)中的四边形纸片AEE′D中,在EE′上取一点F,使EF=4,剪下△AEF,将它平移至△DE′F′的位置,拼成四边形AFF′D.①求证:四边形AFF′D是菱形.②求四边形AFF′D的两条对角线的长.考点:图形的剪拼;平行四边形的性质;菱形的判定与性质;矩形的判定;平移的性质.分析:(1)根据矩形的判定,可得答案;(2)①根据菱形的判定,可得答案;②根据勾股定理,可得答案.解答:解:(1)如图1,纸片?ABCD中,AD=5,S?ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D的形状为矩形,故选:C;(2)①证明:∵纸片?ABCD中,AD=5,S?ABCD=15,过点A作AE⊥BC,垂足为E,∴AE=3.如图2:,∵△AEF,将它平移至△DE′F′,∴AF∥DF′,AF=DF′,∴四边形AFF′D是平行四边形.在Rt△AEF中,由勾股定理,得AF===5,∴AF=AD=5,∴四边形AFF′D是菱形;②连接AF′,DF,如图3:在Rt△DE′F中E′F=FF′﹣E′F′=5﹣4=1,DE′=3,∴DF===,在Rt△AEF′中EF′=EF+FF′=4+5=9,AE=3,∴AF′===3.本题考查了图形的剪拼,利用了矩形的判定,菱形的判定,勾股定理.点评:21.(8分)(2015?南昌)如图,已知直线y=ax+b与双曲线y=(x>0)交于A(x1,y1),B(x2,y2)两点(A与B不重合),直线AB与x轴交于P(x0,0),与y轴交于点C.(1)若A,B两点坐标分别为(1,3),(3,y2),求点P的坐标.(2)若b=y1+1,点P的坐标为(6,0),且AB=BP,求A,B两点的坐标.(3)结合(1),(2)中的结果,猜想并用等式表示x1,x2,x0之间的关系(不要求证明).反比例函数与一次函数的交点问题.考点:分(1)先把A(1,3)),B(3,y2)代入y=求得反比例函数的解析式,进而求得析:B的坐标,然后把A、B代入y=ax+b利用待定系数法即可求得直线的解析式,继而即可求得P的坐标;(2)作AD⊥y轴于D,AE⊥x轴于E,BF⊥x轴于F,BG⊥y轴于G,AE、BG交于H,则AD∥BG∥x轴,AE∥BF∥y轴,得出=,==,根据题意得出=,==,从而求得B(,y1),然后根据k=xy得出x1?y1=?y1,求得y1=2,代入=,解得x1=2,即可求得A、B的坐标;(3)合(1),(2)中的结果,猜想x1+x2=x0.解解:(1)∵直线y=ax+b与双曲线y=(x>0)交于A(1,3),答:∴k=1×3=3,∴y=,∵B(3,y2)在反比例函数的图象上,∴y2==1,∴B(3,1),∵直线y=ax+b经过A、B两点,∴解得,∴直线为y=﹣x+4,令y=0,则x=4,∴P(4,O);(2)如图,作AD⊥y轴于D,AE⊥x轴于E,BF⊥x轴于F,BG⊥y轴于G,AE、BG交于H,则AD∥BG∥x轴,AE∥BF∥y轴,∴=,==,∵b=y1+1,AB=BP,∴=,==,∴B(,y1)∵A,B两点都是反比例函数图象上的点,∴x1?y1=?y1,解得y1=2,代入=,解得x1=2,∴A(2,2),B(4,1).(3)根据(1),(2)中的结果,猜想:x1,x2,x0之间的关系为x1+x2=x0.点评:本题考查了待定系数法求解析式以及反比例函数和一次函数的交点问题,数形结合思想的运用是解题的关键.五、解答题(本大题共2小题,每小题9分,共18分)22.(9分)(2015?南昌)甲、乙两人在100米直道AB上练习匀速往返跑,若甲、乙分别中A,B两端同时出发,分别到另一端点处掉头,掉头时间不计,速度分别为5m/s和4m/s.(1)在坐标系中,虚线表示乙离A端的距离s(单位:m)与运动时间t(单位:s)之间的函数图象(0≤t≤200),请在同一坐标系中用实线画出甲离A端的距离s与运动时间t之间的函数图象(0≤t≤200);(2)根据(1)中所画图象,完成下列表格:两人相遇次数(单位:次)1 2 3 4 …n两人所跑路程之和(单位:m)100 300 500700…200n﹣100(3)①直接写出甲、乙两人分别在第一个100m内,s与t的函数解析式,并指出自变量t 的取值范围;②当t=390s时,他们此时相遇吗?若相遇,应是第几次?若不相遇,请通过计算说明理由,并求出此时甲离A端的距离.考点:一次函数的应用.分析:(1)根据甲跑100米所用的时间为100÷5=20(秒),画出图象即可;(2)根据甲和乙第一次相遇时,两人所跑路程之和为100米,甲和乙第二次相遇时,两人所跑路程之和为100×2+100=300(米),甲和乙第三次相遇时,两人所跑路程之和为200×2+100=500(米),甲和乙第四次相遇时,两人所跑路程之和为300×2+100=700(米),找到规律即可解答;(3)①根据路程、速度、时间之间的关系即可解答;②由200n﹣100=9×390,解得:n=,根据n不是整数,所以此时不相遇,当t=400s 时,甲回到A,所以当t=390s时,甲离A端距离为(400﹣390)×5=50m.解解:(1)如图:。

最新整理江西省南昌市初中毕业暨中等校招生考试数试题和参考答案及评分意见Word.doc

最新整理江西省南昌市初中毕业暨中等校招生考试数试题和参考答案及评分意见Word.doc

江西省南昌市 初中毕业暨中等学校招生考试数学试题卷说明:1.本卷共有五个大题, 25个小题;全卷满分120分;考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分. 一、选择题(本大题共8小题,每小题3分,共24分);每小题只有一个正确的选项,请把正确选项的代号填涂在答题卡的相应位置上. 1.15-的相反数是( ) A .5B .5-C .15-D .152.不等式组2131x x -<⎧⎨-⎩≥,的解集是( )A .2x <B .1x -≥C .12x -<≤D .无解 3.下列四个点,在反比例函数6y x=图象上的是( ) A .(1,6-) B .(2,4) C .(3,2-) D .(6-,1-) 4.下列四张扑克牌的牌面,不是..中心对称图形的是( )A .B .C .D .5.如图,在□ABCD 中,E 是BC 的中点,且∠AEC =∠DCE , 则下列结论不正确...的是( ) A .2AFD EFB S S =△△ B .12BF DF =C .四边形AECD 是等腰梯形 D .AEB ADC ∠=∠6.在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定( ) A .与x 轴相离、与y 轴相切 B .与x 轴、y 轴都相离 C .与x 轴相切、与y 轴相离 D .与x 轴、y 轴都相切 7.下列四个三角形,与右图中的三角形相似的是( )(第5题)8.一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多..有( ) A .4个 B .5个 C .6个 D .7个二、填空题(本大题共8小题,每小题3分,共24分)9.“5·12汶川大地震”发生后,中央电视台于5月18日承办了《爱的奉献》晚会,共募集善款约1 514 000 000元,这个数用科学记数法表示是 . 10.分解因式:34x x - = .11.将抛物线23y x =-向上平移一个单位后,得到的抛物线解析式是 . 12.计算:1sin 60cos302-= . 13.如图,有一底角为35°的等腰三角形纸片,现过底边上一点,沿与底边垂直的方向将其剪开,分成三角形和四边形两部分,则四边形中,最大角的度数是 .14.方程(1)x x x -=的解是 . 15.某次射击训练中,一小组的成绩如下表所示:若该小组的平均成绩为7.7环,则成绩为8环的人数是 .(第7题) A . B . C . D .俯视图 主视图 (第8题)(第13题)35°16.如图,已知点F 的坐标为(3,0),点A B ,分别是某函数图象与x 轴、y 轴的交点,点P 是此图象上的一动点...设点P 的横坐标为x ,PF 的长为d ,且d 与x 之间满足关系:355d x =-(05x ≤≤),给出以下四个结论:①2AF =;②5BF =;③5OA =;④3OB =.其中正确结论的序号是_ .三、(本大题共4小题,每小题4分,共24分) 17,先化简,再求值:(2)(1)(1)x x x x +-+-, 其中12x =-.18.如图:在平面直角坐标系中,有A (0,1),B (1-,0),C (1,0)三点坐标. (1)若点D 与A B C ,,三点构成平行四边形,请写出所有符合条件的点D 的坐标; (2)选择(1)中符合条件的一点D ,求直线BD19.有两个不同形状的计算器(分别记为A ,B 图所示)散乱地放在桌子上.(1)若从计算器中随机取一个,再从保护盖中随机取一个,求恰好匹配的概率. (2)若从计算器和保护盖中随机取两个,用树形图法或列表法,求恰好匹配的概率.(第16题)xA B a b20.如图,把矩形纸片ABCD 沿EF 折叠,使点B 落在边AD 上的点B '处,点A 落在点A '处;(1)求证:B E BF '=;(2)设AE a AB b BF c ===,,,试猜想a b c ,,之间的一种关系,并给予证明.四、(本大题共3小题,每小题8分,共24分) 21.如图,AB 为O 的直径,CD AB ⊥于点E ,交O 于点D ,OF AC ⊥于点F .(1)请写出三条与BC 有关的正确结论;(2)当30D ∠=,1BC =时,求圆中阴影部分的面积.22.甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线l 起跑,绕过P 点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,甲同学说:“我俩所用的全部时间的和为50秒”,乙同学说:“捡球过程不算在内时,甲的速度是我的1.2倍”.根据图文信息,请问哪位同学获胜?ABCDFA 'B 'EB A23.为了了解甲、乙两同学对“字的个数”的估计能力,现场对他们进行了5次测试,测试方法是:拿出一张报纸,随意用笔画一个圈,让他们看了一眼后迅速说出圈内有多少个汉字,但不同的是:甲同学每次估计完字数后不告诉他圈内的实际字数,乙同学每次估计完字数后告诉他圈内的实际字数.根据甲、乙两同学5次估计情况可绘制统计图如下: (1)结合上图提供的信息,就甲、乙两同学分别写出两条不同类型......的正确结论; (2)若对甲、乙两同学进行第6次测试,当所圈出的实际字数为100个时,请你用统计知识分别预测他们估计字数的偏差率,并根据预测的偏差率,推算出他们估计的字数所在的范围.五、(本大题共2小题,每小题12分,共24分)24.如图,抛物线2212191128y ax ax P y ax ax ⎛⎫=--+-=-- ⎪⎝⎭经过点且与抛物线,,相交于A B ,两点. (1)求a 值;(2)设211y ax ax =--+与x 轴分别交于M N ,两点(点M 在点N 的左边),221y ax ax =--与x 轴分别交于E F ,两点(点E 在点F 的左边),观察M N E F ,,,四点的坐标,写出一条正确的结论,并通过计算说明;(3)设A B ,两点的横坐标分别记为A B x x ,,若在x 轴上有一动点(0)Q x ,,且A B x x x ≤≤,过Q 作一条垂直于x 轴的直线,与两条抛物线分别交于C ,D 两点,试问当x为何值时,线段CD 有最大值?其最大值为多少?25.如图1,正方形ABCD 和正三角形EFG 的边长都为1,点上滑动,设点G 到CD 的距离为x ,到BC 的距离为y ,记HEF ∠为α(当点E F ,分别与B A ,重合时,记0α=). (1)当0α=时(如图2所示),求x y ,的值(结果保留根号);(2)当α为何值时,点G 落在对角形AC 上?请说出你的理由,并求出此时x y ,的值(结果保留根号);(3)请你补充完成下表(精确到0.01):(4)若将“点E F ,分别在线段AB AD ,上滑动”改为“点E F ,分别在正方形ABCD 边上滑动”.当滑动一周时,请使用(3)的结果,在图4中描出部分点后,勾画出点G 运动所形成的大致图形.62621.732sin150.259sin 750.966-+==,≈,≈.)图1图2B (E A (F D图3H DACB图4江西省南昌市 初中毕业暨中等学校招生考试数学试题参考答案及评分意见说明:1.如果考生的解答与本答案不同,可根据试题的主要考查内容参考评分标准制定相应的评分细则后评卷.2.每题都要评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误,影响了后续部分时,如果该步以后的解答未改变这一题的内容和难度,则可视影响的程度决定后面部分的给分,但不得超过后面部分应给分数的一半,如果这一步以后的解答有较严重的错误,就不给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.一、选择题(本大题共8小题,每小题3分,共24分) 1.D 2.C 3.D 4.D 5.A 6.A 7.B 8.C 二、填空题(本大题共8小题,每小题3分,共24分) 9.91.51410⨯10.(2)(2)x x x +- 11.231y x =-+12.1413.12514.10x =,22x =15.416.①②③说明:第16题,填了④的,不得分;未填④的,①,②,③中每填一个得1分. 三、(本大题共4小题,每小题6分,共24分)17.解:原式222(1)x x x =+-- ······································································ 2分2221x x x =+-+··························································································· 3分21x =+. ···································································································· 4分 当12x =-时,原式12102⎛⎫=⨯-+= ⎪⎝⎭. ···························································· 6分 18.解:(1)符合条件的点D 的坐标分别是1(21)D ,,2(21)D -,,3(01)D -,. ···································································· 3分 (2)①选择点1(21)D ,时,设直线1BD 的解析式为y kx b =+, 由题意得021k b k b -+=⎧⎨+=⎩, 解得1313k b ⎧=⎪⎪⎨⎪=⎪⎩, ······························································· 5分∴直线1BD 的解析式为1133y x =+. ································································· 6分 ②选择点2(21)D -,时,类似①的求法,可得2③选择点3(01)D -,时,类似①的求法,可得直线3BD 的解析式为1y x =--. ·········· 6分说明:第(1)问中,每写对一个得1分. 19.解:(1)从计算器中随机抽取一个,再从保护盖中随机取一个,有Aa ,Ab ,Ba ,Bb 四种情况.恰好匹配的有Aa ,Bb 两种情况,21()42P ∴==恰好匹配. ················································································ 2分 (2)用树形图法表示:所有可能的结果AB Aa Ab BA Ba Bb aA aB ab bA bB ba ·················· 4分 可见,从计算器和保护盖中随机取两个,共有12种不同的情况. 其中恰好匹配的有4种,分别是Aa ,Bb ,aA ,bB ,41()123P ∴==恰好匹配. ··············································································· 6分 或用列表法表示:A B a b A AB Aa Ab B BA Ba Bb a aA aB ab bbAbBba······························································· 6分 可见,从计算器和保护盖中随机取两个,共有12种不同的情况. 其中恰好匹配的有4种,分别是Aa ,Bb ,aA ,bB ,41()123P ∴==恰好匹配. ··············································································· 6分 20.(1)证:由题意得B F BF '=,B FE BFE '∠=∠, ········································ 1分 在矩形ABCD 中,AD BC ∥,B EF BFE '∴∠=∠,B FE B EF ''∴∠=∠. ················································· 2分 B F B E ''∴=.B E BF '∴=. ·························································· 3分 (2)答:a b c ,,三者关系不唯一,有两种可能情况: (ⅰ)a b c ,,三者存在的关系是222a b c +=. ················································· 4分 证:连结BE ,则BE B E '=.由(1)知B E BF c '==,BE c ∴=. ······························································ 5分 在ABE △中,90A ∠=,222AE AB BE ∴+=.ABabBAaba ABbb ABaA B CD FA 'B 'E(ⅱ)a b c ,,三者存在的关系是a b c +>. ················· 4分证:连结BE ,则BE B E '=.由(1)知B E BF c '==,BE c ∴=. ·························· 5分 在ABE △中,AE AB BE +>,a b c ∴+>. ···························································· 6分 说明:1.第(1)问选用其它证法参照给分;2.第(2)问222a b c +=与a b c +>只证1种情况均得满分; 3.a b c ,,三者关系写成a c b +>或b c a +>参照给分. 四、(本大题共3小题,每小题8分,共24分) 21.解:(1)答案不唯一,只要合理均可.例如:①BC BD =;②OF BC ∥;③BCD A ∠=∠;④BCE OAF △∽△;⑤2BC BE AB =;⑥222BC CE BE =+;⑦ABC △是直角三角形;⑧BCD △是等腰三角形. ············ 3分 (2)连结OC ,则OC OA OB ==.30D ∠=,30A D ∴∠=∠=,120AOC ∴∠=. ······ 4分AB 为O 的直径,90ACB ∴∠=.在Rt ABC △中,1BC =,2AB ∴=,AC =. ········ 5分OF AC ⊥,AF CF ∴=.OA OB =,OF ∴是ABC △的中位线.1122OF BC ∴==.111222AOC S AC OF ∴==⨯=△ ························································· 6分 2133AOC S OA π=π⨯=扇形. ·············································································· 7分 3AOC AOC S S S π∴=-=△阴影扇形 ······························································· 8分 说明:第(1)问每写对一条得1分,共3分.22.解一:设乙同学的速度为x 米/秒,则甲同学的速度为1.2x 米/秒, ······················ 1分 根据题意,得60606501.2x x ⎛⎫++=⎪⎝⎭, ································································ 3分 解得 2.5x =. ······························································································· 4分经检验, 2.5x =是方程的解,且符合题意. ························································ 5分ABCDFA 'B 'EBA∴甲同学所用的时间为:606261.2x +=(秒), ···················································· 6分 乙同学所用的时间为:6024x=(秒). ······························································ 7分 2624>,∴乙同学获胜. ············································································ 8分 解二:设甲同学所用的时间为x 秒,乙同学所用的时间为y 秒, ······························ 1分 根据题意,得5060601.26x y x y +=⎧⎪⎨=⨯⎪-⎩,········································································· 3分 解得2624.x y =⎧⎨=⎩,································································································ 6分经检验,26x =,24y =是方程组的解,且符合题意.x y >,∴乙同学获胜. ··············································································· 8分 23.(1)可从不同角度分析.例如:①甲同学的平均偏差率是16%,乙同学的平均偏差率是11%; ②甲同学的偏差率的极差是7%,乙同学的偏差率的极差是16%; ③甲同学的偏差率最小值是13%,乙同学的偏差率最小值是4%; ④甲、乙两同学的偏差率最大值都是20%;⑤甲同学对字数的估计能力没有明显的提高,乙同学对字数的估计能力有明显提高. ························································· 4分 (2)可从不同角度分析.例如: ①从平均偏差率预测:甲同学的平均偏差率是16%,估计的字数所在范围是84~116; ································ 6分 乙同学的平均偏差率是11%,估计的字数所在范围是89~111; ································ 8分 ②从偏差率的中位数预测:甲同学偏差率的中位数是15%,估计的字数所在范围是85~115; ····························· 6分 乙同学偏差率的中位数是10%,估计的字数所在范围是90~110; ····························· 8分 ③从偏差率的变化情况预测:甲同学的偏差率没有明显的趋势特征,可有多种预测方法,如偏差率的最大值与最小值的平均值是16.5%,估计的字数所在范围是84~116或83~117. ···································· 6分 乙同学的偏差率是0%~4%,估计的字数所在的范围是96~104或其它. ··················· 8分 说明:1.第(1)问每写对一条结论得1分;2.每写对一条偏差率及估计字数范围的各得1分; 3.答案不唯一,只要合理均参照给分. 五、(本大题共2小题,每小题12分,共24分) 24.解:(1)点1928P ⎛⎫- ⎪⎝⎭,在抛物线211y ax ax =--+上,1191428a a ∴-++=, ··················································································· 2分解得12a =. ································································································· 3分 (2)由(1)知12a =,∴抛物线2111122y x x =--+,2211122y x x =--. ··········· 5分当2111022x x --+=时,解得12x =-,21x =. 点M 在点N 的左边,2M x ∴=-,1N x =. ················ 6分当2111022x x --=时,解得31x =-,42x =. 点E 在点F 的左边,1E x ∴=-,2F x =. ····················································· 7分0M F x x +=,0N E x x +=,∴点M 与点F 对称,点N 与点E 对称. ··························································· 8分(3)102a =>.∴抛物线1y 开口向下,抛物线2y 开口向上. ··················· 9分根据题意,得12CD y y =-22211111122222x x x x x ⎛⎫⎛⎫=--+---=-+ ⎪ ⎪⎝⎭⎝⎭. ············································· 11分A B x x x ≤≤,∴当0x =时,CD 有最大值2. ············································· 12分说明:第(2)问中,结论写成“M N ,,E F ,四点横坐标的代数和为0”或“M N E F =”均得1分. 25.解:(1)过G 作MN AB ⊥于M 交CD 于N ,GK BC ⊥于K .60ABG ∠=,1BG =, 2MG ∴=,12BM =. ··············································································· 2分 12x ∴=-,12y =. ·················································································· 3分 (2)当45α=时,点G 在对角线AC 上,其理由是: ········································· 4分 过G 作IQ BC ∥交AB CD ,于I Q ,, 过G 作JP AB ∥交AD BC ,于J P ,.AC 平分BCD ∠,GP GQ ∴=,GI GJ ∴=.B (E A (FGE GF =,Rt Rt GEI GFJ ∴△≌△,GEI GFJ ∴∠=∠.60GEF GFE ∠=∠=,AEF AFE ∴∠=∠. 90EAF ∠=,45AEF AFE ∴∠=∠=.即45α=时,点G 落在对角线AC 上. ···························································· 6分 (以下给出两种求x y ,的解法) 方法一:4560105AEG ∠=+=,75GEI ∴∠=.在Rt GEI △中,6sin 75GI GE ==,1GQ IQ GI ∴=-=. ·································································· (7)分 14x y +∴==-. ················································································· 8分 方法二:当点G 在对角线AC 上时,有12=, ···················································································· 7分解得1x =-14x y +∴==-. ·················································································8分 (3)α153045607590x0.13 0.03 0 0.03 0.13 0.29 0.50 y0.500.290.130.030.030.13···························································· 10分 (4)由点G 所得到的大致图形如图所示:········································································ 12分H AC DBDQ。

江西省南昌市中考数学试卷含答案

江西省南昌市中考数学试卷含答案

2018年江西省南昌市中考数学试卷参考答案与试卷解读一、选择题<本大题共12小题,每小题3分,共36分,每小题只有一个正确选项)1. <3分)<2018?南昌)下列四个数中,最小的数是<)A _ 1B 0C - 2D 2.2 . . .分用数轴法,将各选项数字标于数轴之上即可解本题.析:解解:画一个数轴,将A=-丄、B=0、C= - 2、D=2标于数轴之上,答: :可得:v C点位于数轴最左侧,••• C选项数字最小.故选:C.点本题考查了数轴法比较有理数大小的方法,牢记数轴法是解题的关键.评:2. <3分)<2018?南昌)据相关报道,截止到今年四月,我国已完成 5.78万个农村教学点的建设任务.5.78万可用科学记数法表示为<)A 5.78 X03B 57.8 X O3C 0.578 X04D 5.78 沐04考科学记数法一表示较大的数.占:八、、•分科学记数法的表示形式为a X10n的形式,其中1W|齐10, n为整数.确定析:n的值是易错点,由于5.78万有5位整数,所以可以确定n=5-仁4.解解:5.78 万=57800=5.78 X I04.答:故选D.点此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.评:3. <3分)<2018?南昌)某市6月份某周气温<单位:C)为23、25、28、25、28、31、28,则这组数据的众数和中位数分别是<)A 25、25B 28、28C 25、28D 28、31考众数;中位数.占:八、、•分根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,析:注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数<或两个数的平均数)为中位数解解:将这组数据从小到大的顺序排列23, 25, 25,28, 28, 28, 31,答:在这一组数据中28是出现次数最多的,故众数是28C.处于中间位置的那个数是28,那么由中位数的定义可知,这组数据的中位数是28 C;故选B.点本题为统计题,考查中位数与众数的意义,中位数是将一组数据从小到大评:<或从大到小)重新排列后,最中间的那个数<最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.4.<3 分) <2018?南昌)下列运算正确的是< )A a2+a3=a5B <- 2a2) 3= - 6a6C <2a+1) <2a-D <2a3- a2)- - -1) =2a2- 1 - 詔=2a-1考整式的除法;合并同类项;幂的乘方与积的乘方;平方差公式.点:八、、・分A .根据合并同类项法则判断;析:B .根据积的乘方法则判断即可;C .根据平方差公式计算并判断;D .根据多项式除以单项式判断.解解:A. a2与a3不能合并,故本项错误;答:B . <- 2a2) 3=- 8a6,故本项错误;C <2a+1) <2a- 1) =4a2- 1,故本项错误;D . <2a3- a2) P2=2a- 1,本项正确,故选:D点本题主要考查了积的乘方运算、平方差公式以及多项式除以单项式和合并评:同类项,熟练掌握运算法则是解题的关键5 <3分) <2018?南昌)如图,贤贤同学用手工纸制作一个台灯灯罩,做好后发现上口太小了,于是他把纸灯罩对齐压扁,剪去上面一截后,正好合适,以下裁剪示意图中,正确的是< ) ABCD考简单几何体的三视图点:八、、・分根据从正面看得到的图形是主视图,可得答案析:解解:压扁后圆锥的主视图是梯形,故该圆台压扁后的主视图是 A 选项中所答:示的图形故选:A点本题考查了简单组合体的三视图,压扁是主视图是解题关键评:6 <3分) <2018?南昌)小锦和小丽购买了价格分别相同的中性笔和笔芯,小锦买了20支笔和2盒笔芯,用了56元;小丽买了2支笔和3盒笔芯,仅用了28元设每支中性笔x 元和每盒笔芯y 元,根据题意列方程组正确的是< )ABCD考由实际问题抽象出二元一次方程组点:八、、・分设每支中性笔x元和每盒笔芯y元,根据20支笔和2盒笔芯,用了56 析:元;买了2支笔和3盒笔芯,用了28元列出方程组成方程组即可解解:设每支中性笔x元和每盒笔芯y元,由题意得,答:[20x+3y=562xf3y=28 故选:B .点 此题考查实际问题抽出二元一次方程组,要注意抓住题目中的一些关键性 评:词语,找出等量关系,列出方程组.7. <3分)<2018?南昌)如图,AB // DE , AC // DF , AC=DF ,下列条件中不能判断△ ABCDEF 的是< )A AB=DEB / B= / EC EF=BCD EF / BC考全等三角形的判定. 占:八、、•本题可以假设A 、B 、C 、D 选项成立,分别证明△ ABC ◎△ DEF ,即可解题.解:••• AB // DE ,AC // DF ,A Z A= / D ,[AB 二 DE ZA=ZD ,A ^ ABC DEF ,故AC=DFA 选项错误; rZB=ZE<2)Z B= /〔,贝^厶ABC 和厶 DEF 中,“上扎二ZX ,•••△ ABCDEF ,L AC =DF故B 选项错误;<3) EF=BC ,无法证明△ ABC ◎△ DEFvASS );故C 选项正确;<4)v EF // BC ,AB // DE ,:/ B= /〔,贝^厶 ABC 和厶 DEF 中, fZB=ZE-■;-.-■:,: △ ABC ◎△ DEF ,故 D 选项错误;I AC=Dr 点本题考查了全等三角形的不同方法的判定,注意题干中 不能”是解题的关评:键.8. <3 分)<2018?南昌)如图,A 、B 、C 、D 四个点均在O O 上,/ AOD=70,AO // DC , 则/B 的度数为< )A 40°B 45°C 50°D 55°考 圆周角定理;平行线的性质.占:八、、•分 连接OC ,由AO // DC ,得出/ ODC= /AOD=70,再由OD=OC ,得出 析:/ ODC=/OCD=7°,求得/ COD=4°,进一步得出/ AOC ,进一步利用 圆周角定理得出/ B 的度数即可. 解解:如图,答:连接OC ,v AO // DC ,ODC= / AOD=70 ,v OD=OC ,ODC= / OCD=7° ,COD=4° ,AOC=110 ,分 析: 解 答:故选:D.点此题考查平行线的性质,等腰三角形的性质,三角形的内角和,圆周角定评:理,正确作出辅助线是解决问题的关键.9. <3分)<2018?南昌)若a, B是方程x2- 2x- 3=0的两个实数根,则a+的值为< )A 10B 9C 7D 5考根与系数的关系.占:八、、•分根据根与系数的关系求得a +B =,aB-3,则将所求的代数式变形为析:<a +p 2-2a B将其整体代入即可求值.解解:T a, B是方程x2- 2x - 3=0的两个实数根,答:二a + B =2 ap - 3,二a+ p=< a +p 2- 2 ap =—2X v-3)=10.故选:A.点此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合评:解题是一种经常使用的解题方法.10. <3 分)<2018?南昌)如图,A ABC 中,AB=4,BC=6,/ B=60°,将厶ABC 沿射线BC的方向平移,得到△ A B' ,C再将厶A B'绕点A'逆时针旋转一定角度后,点B怡好与点C重合,则平移的距离和旋转角的度数分别为< )A 4,30°B 2,60°C 1,30°D 3,60°考旋转的性质;平移的性质.占:八、、•分利用旋转和平移的性质得出,/ A B' C=6,AB=A B' =A C=4进而得出析:△ A' B'是等边三角形,即可得出BB'以及/ B' A'的度数.解解:I / B=60°,将厶ABC沿射线BC的方向平移,得到△ A B',再将答:△ A' B'绕点A'逆时针旋转一定角度后,点B'恰好与点C重合,/•/ A B' C=6, AB=A B' =A C=4•••△ A B'是等边三角形,••• B' C=4 / B' A C=6,BB =- 4=2,•••平移的距离和旋转角的度数分别为:2, 60°故选:B.点此题主要考查了平移和旋转的性质以及等边三角形的判定等知识,得出评:△ A' B'是等边三角形是解题关键.11. <3分)<2018?南昌)如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为< )A 2a- 3bB 4a- 8bC 2a- 4bD 4a- 10b考整式的加减;列代数式.占:八、、•专几何图形问题.题:分 根据题意列出关系式,去括号合并即可得到结果.析:解 解:根据题意得:2<a- b+a- 3b ) =2<2a- 4b ) =4a- 8b ,答:故选B点此题考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关评:键.12. <3分)<2018?南昌)已知反比例函数 y=~的图象如图,则二次函数 y=2kx 2- 4x+k 2的 图象大致为<) AB C D 考占:八、、•分 二次函数的图象;反比例函数的图象. 本题可先由反比例函数的图象得到字母系数 k v- 1,再与二次函数的图 象的开口方向和对称轴的位置相比较看是否一致,最终得到答案. 解:•••函数y=「的图象经过二、四象限,• k v 0, 由图知当 x= - 1 时,y= — k > 1,• k v- 1,•••抛物线y=2kx 2-4x+k 2开口向下,对称为x=- -4 |. __ 2X2k 1, -1 v 丄 v 0, k •对称轴在-1与0之间,故选:D .此题主要考查了二次函数与反比例函数的图象与系数的综合应用,正确判断抛物线开口方向和对称轴位置是解题关键.属于基础题.占 八、、 评:二、填空题 <本大题4小题,每小题3分,共12分) <3 分)<2018?沈阳)计算:「i= 3. 算术平方根. 13.考 占: 八、、• 分 析:根据算术平方根的定义计算即可.解:••• 32=9, •••”' J=3.本题较简单,主要考查了学生开平方的运算能力.14. <3分)<2018?南昌)不等式组 r 2x- 1>0■+ (好2)<0 的解集是 x >-.考 占: 八、、• 分解一元一次不等式组. 分别求出各不等式的解集,再求出其公共解集即可. 解: r 2x-l>0® -舟(卓)V0②,由①得,x>2,2由②得,x>- 2,故此不等式组的解集为:x >-.2故答案为:x >-.2点本题考查的是解一元一次不等式组,熟知同大取大;同小取小;大小小评:大中间找;大大小小找不到”的原则是解答此题的关键.15. <3分)<2018?南昌)如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90° 180° 270°后形成的图形•若/ BAD=60 , AB=2,则图中阴影部分的面积为12 -4 二考旋转的性质;菱形的性质.占:八、、•分根据菱形的性质得出DO的长,进而求出S正方形DNMF,进而得出S A ADF即析:可得出答案.解解:如图所示:连接AC,BD交于点E,连接DF,FM,MN,DN,答:•••将菱形ABCD 以点O为中心按顺时针方向分别旋转90°, 180°, 270°后形成的图形,/ BAD=60,AB=2,••• AC 丄BD,四边形DNMF 是正方形,/ AOC=90,BD=2,AE=EC二■:,•••/ AOE=45,ED=1,••• AE=EO=_ DO= :1,S正方形DNMF=2<I:Y- 1))^2< :;- 1)伞=8- 4"::,S A ADF== X AD X AFs in30 =1,•••则图中阴影部分的面积为:4S A ADF+S正方形DNMF =4+8 - 4. 1=12- 4.「;. 故答案为:12-4;点此题主要考查了菱形的性质以及旋转的性质,得出正确分割图形得出DO评:的长是解题关键.16. <3分)<2018?南昌)在Rt A ABC中,/ A=90°,有一个锐角为60°,BC=6.若点P在直线AC上<不与点A,C重合),且/ ABP=30,则CP的长为 6 或2: \■或 4 .:.考解直角三角形.占:八、、•专分类讨论.题:分根据题意画出图形,分4种情况进行讨论,利用直角三角形的性质解答.析:解解:如图1:答:当/ C=60 时,/ ABC=30,与/ ABP=30 矛盾;如图2:当/ C=60 时,/ ABC=30,vZ ABP=30,•/ CBP=60,•△ PBC是等边三角形,•CP=BC=6;如图3:当/ ABC=60 时,/ C=30 ,vZ ABP=30 ,:丄 PBC=60 - 30°=30°,••• PC=PB,v BC=6,••• AB=3 ,••• PC=PB==「=2「;;cos30 P如图4:当Z ABC=60 时,Z C=30 ,vZ ABP=30 ,•Z PBC=60 +30° =90°,•PC=B& cos30 =4 :故答案为:6或2.:或4;.点本题考查了解直角三角形,熟悉特殊角的三角函数值是解题的关键. 评:三、<本大题共4小题,每小题6分,共24分)17. <6 分)<2018?南昌)计算:<一-丄)十[-'.考分式的混合运算.占:八、、• 专计算题.题:分原式括号中两项利用同分母分式的减法法则计算,同时利用除法法则变析:形,约分即可得到结果.解解:原式= ------ ? =x- 1.答:点此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.评:18. <6分)<2018?南昌)已知梯形ABCD,请使用无刻度直尺画图.<1)在图1中画出一个与梯形ABCD面积相等,且以CD为边的三角形;<2)图2中画一个与梯形ABCD面积相等,且以AB为边的平行四边形. 考作图一应用与设计作图.占:八、、•分<1)求出三角形CD边上的高作图,析:<2)找出BE及它的高相乘得20,以AB为一边作平行四边形..解解:设小正方形的边长为1,贝U S梯形ABCD4<AD+BC)>4三X10X4=20, 答: ■- ‘<1)v CD=W2, -•三角形的高=20X2^4. ?=5 ,如图1, △ CDE就是所作的三角形,<2)如图2, BE=5, BE边上的高为4,•平行四边形ABEF的面积是5X4=20,•平行四边形ABEF就是所作的平行四边形.点本题主要考查了作图的设计和应用,解决问题的关键是根据面积相等求出评:高画图.19. <6分)<2018?南昌)有六张完全相同的卡片,分 A , B 两组,每组三张,在 A 组的卡 片上分别画上x”如图1.<1)若将卡片无标记的一面朝上摆在桌上再分别从两组卡片中随机各抽取一张,求两张卡 片上标记都是的概率. <请用树形图法”或列表法求解)<2)若把A ,B 两组卡片无标记的一面对应粘贴在一起得到三张卡片,其正、反面标记如 图2所示,将卡片正面朝上摆在桌上,并用瓶盖盖住标记.① 若随机揭开其中一个盖子,看到的标记是 的概率是多少?② 若揭开盖子,看到的卡片正面标记是 “、后,猜想它的反面也是求猜对的概率. 考占列表法与树状图法. 八、、: 计算题. 分 析: <1)列表得出所有等可能的情况数,找出两种卡片上标记都是 “\的情况数,即可求出所求的概率;<2)①根据题意得到所有等可能情况有 3种,其中看到的标记是的情 况有2种,即可求出所求概率;②所有等可能的情况有2种,其中揭开盖子,看到的卡片正面标记是 “2”后,它的反面也是“\的情况有1种,即可求出所求概率.解 答:占八解:<1)列表如下:V <2 2 <x , 2 <2 2x<2 X <x ,x <2 X x <2 X < x ,X )<2 X 所有等可能的情况有9种,两种卡片上标记都是“2勺情况有2种,则P-;9<2)①所有等可能的情况有3种,其中随机揭开其中一个盖子,看到的标 记是“2勺情况有2种,则P —;②所有等可能的情况有2种,其中揭开盖子,看到的卡片正面标记是“2” 后,它的反面也是“2勺情况有1种,则P 」.此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总 评: 20. 情况数之比. <6分)<2018?南昌)如图,在平面直角坐标系中, Rt A PBD 的斜边PB 落在y 轴上, tan / BPD 二丄.延长BD 交x 轴于点C ,过点D 作DA 丄x 轴,垂足为A ,OA=4,OB=3.<1) <2)求点C 的坐标;若点D 在反比例函数y==<k >0)的图象上,求反比例函数的解读式. 考 占:反比例函数与一次函数的交点问题. 八\、: 分 <1)根据正切值,可得PD 的斜率,根据直线垂直,可得 BD 的斜率,可 得直线BC ,根据函数值为0,可得C 点坐标; <2)根据自变量的值,可得D 点坐标,根据待定系数法,可得函数解读 式.解解:Rt A PBD的斜边PB落在y轴上,答:二BD 丄PB,k PD=cot/ BPD=——tanZBPDk BD?k PD=—1,k BD=-丄,2直线BD的解读式是y= —— x+3,2当y=0 时,-—x+3=0 ,"__■x=6,C点坐标是<6, 0);<2)当x=4 时,y=-丄>4+3=1,••• D<4, 1).点D在反比例函数y=」vk>0)的图象上,|Kk=4X1=4,•••反比例函数的解读式为y二.点本题考查了反比例函数与一次函数的交点问题,先求出PD的斜率求出评:BD的斜率,求出直线BD,再求出点的坐标.四、<本大题共3小题,每小题8分,共24分)21. <8分)<2018?南昌)某教研机构为了了解在校初中生阅读数学教科书的现状,随机抽取某校部分初中学生进行了调查,依据相关数据绘制成以下不完整的统计表,请根据图表中的信息解答下列问题:某校初中生阅读数学教科书情况统计图表类别人数占总人数比例重视a0.3一般570.38不重视b c说不清楚90.06V1)求样本容量及表格中a, b, c的值,并补全统计图;<2)若该校共有初中生2300名,请估计该校不重视阅读数学教科书”的初中人数;<3)①根据上面的统计结果,谈谈你对该校初中生阅读数学教科书的现状的看法及建议;②如果要了解全省初中生阅读数学教科书的情况,你认为应该如何进行抽样?考频数<率)分布直方图;用样本估计总体.占:八、、•分V1)利用类别为一般”人数与所占百分比,进而得出样本容量,进而得出析:a, b, c的值;<2)利用不重视阅读数学教科书”在样本中所占比例,进而估计全校在这一类别的人数;<3)根据<1)中所求数据进而分析得出答案,再从样本抽出的随机性进而得出答案.解解:<1)由题意可得出:样本容量为:57弋.38=150<人),答:• a=150X).3=45,b=150- 57 - 45 - 9=39,c=39 ^150=0.26,如图所示:<2)若该校共有初中生2300名,该校不重视阅读数学教科书”的初中人数约为:2300X).26=598<人);<3)①根据以上所求可得出:只有30%的学生重视阅读数学教科书,有32%的学生不重视阅读数学教科书或说不清楚,可以看出大部分学生忽略了阅读数学教科书,同学们应重视阅读数学教科书,从而获取更多的数学课外知识和对相关习题、定理的深层次理解与认识.②如果要了解全省初中生阅读数学教科书的情况,应随机抽取不同的学校以及不同的年级进行抽样,进而分析.点此题主要考查了频数分布直方表以及条形统计图和利用样本估计总体等知评:识,理论联系实际进而结合抽样调查的随机性进而得出是解题关键.22. <8分)<2018?南昌)图1中的中国结挂件是由四个相同的菱形在顶点处依次串联而成,每相邻两个菱形均成30。

南昌中考数学试题及答案

南昌中考数学试题及答案

南昌中考数学试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 如果a > b,那么下列哪个不等式是正确的?A. a < bB. a ≤ bC. a > bD. a ≥ b答案:D3. 圆的面积公式是什么?A. πr^2B. 2πrC. πrD. πr^3答案:A4. 以下哪个是二次方程?A. x + 2 = 0B. x^2 + 2x + 1 = 0C. x^3 - 1 = 0D. x^2 + 1 = 0答案:B5. 以下哪个是正弦函数的图像?A. 直线B. 抛物线C. 正弦波D. 双曲线答案:C6. 以下哪个是等差数列?A. 1, 3, 5, 7B. 2, 4, 6, 8C. 1, 1, 1, 1D. 2, 5, 8, 11答案:A7. 以下哪个是勾股定理?A. a^2 + b^2 = c^2B. a + b = cC. a * b = c^2D. a / b = c答案:A8. 以下哪个是圆周率π的近似值?A. 3.14B. 2.71C. 3.14159D. 2.71828答案:A9. 以下哪个是复数的实部?A. a + bi 的 aB. a + bi 的 bC. a - bi 的 aD. a - bi 的b答案:A10. 以下哪个是三角形的内角和?A. 180°B. 360°C. 90°D. 270°答案:A二、填空题(每题2分,共20分)11. 一个直角三角形的两个直角边分别为3和4,斜边的长度是________。

答案:512. 如果一个数的平方根是4,那么这个数是________。

答案:1613. 一个数的立方根是2,那么这个数是________。

答案:814. 一个数的倒数是1/2,那么这个数是________。

答案:215. 一个数的绝对值是5,那么这个数可以是________或________。

江西南昌2019中考试题-数学(解析版)

江西南昌2019中考试题-数学(解析版)

江西南昌2019中考试题-数学(解析版)一、选择题〔共12小题〕1、〔2018江西〕﹣1的绝对值是〔〕A、 1B、0C、﹣1D、±1考点:绝对值。

分析:依照绝对值的性质进行解答即可、解答:解:∵﹣1<0,∴|﹣1|=1、应选A、点评:此题考查的是绝对值的性质,即一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是零、2、〔2018南昌〕在以下表述中,不能表示代数式“4a”的意义的是〔〕A、 4的a倍B、a的4倍C、4个a相加D、4个a相乘考点:代数式。

分析:说出代数式的意义,实际上确实是把代数式用语言表达出来、表达时,要求既要说明运算的顺序,又要说出运算的最终结果、解答:解:A、4的a倍用代数式表示4a,故本选项正确;B、a的4倍用代数式表示4a,故本选项正确;C、4个a相加用代数式表示a+a+a+a=4a,故本选项正确;D、4个a相乘用代数式表示a•a•a•a=a4,故本选项错误;应选D、点评:此题考查了用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序、具体说法没有统一规定,以简明而不引起误会为动身点、3、〔2018江西〕等腰三角形的顶角为80°,那么它的底角是〔〕A、 20°B、50°C、60°D、80°考点:等腰三角形的性质。

分析:依照三角形内角和定理和等腰三角形的性质,能够求得其底角的度数、解答:解:∵等腰三角形的一个顶角为80°∴底角=〔180°﹣80°〕÷2=50°、应选B、点评:考查三角形内角和定理和等腰三角形的性质的运用,比较简单、4、〔2018江西〕以下运算正确的选项是〔〕A、 a3+a3=2a6B、a6÷a﹣3=a3C、a3a3=2a3D、〔﹣2a2〕3=﹣8a6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。

南昌市2019年中考数学试卷及答案(word版含解析)

南昌市2019年中考数学试卷及答案(word版含解析)

2019年江西省南昌市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分,每小题只有一个正确选项)1.(3分)(2019•南昌)下列四个数中,最小的数是()A .﹣B.0 C.﹣2 D.2分析:用数轴法,将各选项数字标于数轴之上即可解本题.解答:解:画一个数轴,将A=﹣、B=0、C=﹣2、D=2标于数轴之上,可得:∵C点位于数轴最左侧,∴C选项数字最小.故选:C.点评:本题考查了数轴法比较有理数大小的方法,牢记数轴法是解题的关键.2.(3分)(2019•南昌)据相关报道,截止到今年四月,我国已完成5.78万个农村教学点的建设任务.5.78万可用科学记数法表示为()A .5.78×103B.57.8×103C.0.578×104D.5.78×104考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于5.78万有5位整数,所以可以确定n=5﹣1=4.解答:解:5.78万=57 800=5.78×104.故选D.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.(3分)(2019•南昌)某市6月份某周气温(单位:℃)为23、25、28、25、28、31、28,则这组数据的众数和中位数分别是()A.25、25 B.28、28 C.25、28 D.28、31考点:众数;中位数.分析:根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数解答:解:将这组数据从小到大的顺序排列23,25,25,28,28,28,31,在这一组数据中28是出现次数最多的,故众数是28℃.处于中间位置的那个数是28,那么由中位数的定义可知,这组数据的中位数是28℃;故选B . 点评: 本题为统计题,考查中位数与众数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错. 4.(3分)(2019•南昌)下列运算正确的是( )A . a 2+a 3=a 5B . (﹣2a 2)3=﹣6a 6C . (2a+1)(2a ﹣1)=2a 2﹣1D . (2a 3﹣a 2)÷a 2=2a ﹣1考点: 整式的除法;合并同类项;幂的乘方与积的乘方;平方差公式.分析: A .根据合并同类项法则判断;B .根据积的乘方法则判断即可;C .根据平方差公式计算并判断;D .根据多项式除以单项式判断.解答: 解:A .a 2与a 3不能合并,故本项错误;B .(﹣2a 2)3=﹣8a 6,故本项错误;C .(2a+1)(2a ﹣1)=4a 2﹣1,故本项错误;D .(2a 3﹣a 2)÷a 2=2a ﹣1,本项正确, 故选:D . 点评: 本题主要考查了积的乘方运算、平方差公式以及多项式除以单项式和合并同类项,熟练掌握运算法则是解题的关键. 5.(3分)(2019•南昌)如图,贤贤同学用手工纸制作一个台灯灯罩,做好后发现上口太小了,于是他把纸灯罩对齐压扁,剪去上面一截后,正好合适,以下裁剪示意图中,正确的是( )A .B .C .D .考点: 简单几何体的三视图. 分析: 根据从正面看得到的图形是主视图,可得答案. 解答: 解:压扁后圆锥的主视图是梯形,故该圆台压扁后的主视图是A 选项中所示的图形.故选:A . 点评: 本题考查了简单组合体的三视图,压扁是主视图是解题关键. 6.(3分)(2019•南昌)小锦和小丽购买了价格分别相同的中性笔和笔芯,小锦买了20支笔和2盒笔芯,用了56元;小丽买了2支笔和3盒笔芯,仅用了28元.设每支中性笔x 元和每盒笔芯y 元,根据题意列方程组正确的是( ) A . B .C.D.考点:由实际问题抽象出二元一次方程组.分析:设每支中性笔x元和每盒笔芯y元,根据20支笔和2盒笔芯,用了56元;买了2支笔和3盒笔芯,用了28元.列出方程组成方程组即可.解答:解:设每支中性笔x元和每盒笔芯y元,由题意得,.故选:B.点评:此题考查实际问题抽出二元一次方程组,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.7.(3分)(2019•南昌)如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF 的是()A.A B=DE B.∠B=∠E C.E F=BC D.E F∥BC考点:全等三角形的判定.分析:本题可以假设A、B、C、D选项成立,分别证明△ABC≌△DEF,即可解题.解答:解:∵AB∥DE,AC∥DF,∴∠A=∠D,(1)AB=DE,则△ABC和△DEF中,,∴△ABC≌△DEF,故A选项错误;(2)∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故B选项错误;(3)EF=BC,无法证明△ABC≌△DEF(ASS);故C选项正确;(4)∵EF∥BC,AB∥DE,∴∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故D选项错误;点评:本题考查了全等三角形的不同方法的判定,注意题干中“不能”是解题的关键.8.(3分)(2019•南昌)如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为()A.40°B.45°C.50°D.55°考点:圆周角定理;平行线的性质.分析:连接OC,由AO∥DC,得出∠ODC=∠AOD=70°,再由OD=OC,得出∠ODC=∠OCD=70°,求得∠COD=40°,进一步得出∠AOC,进一步利用圆周角定理得出∠B的度数即可.解答:解:如图,连接OC,∵AO∥DC,∴∠ODC=∠AOD=70°,∵OD=OC,∴∠ODC=∠OCD=70°,∴∠COD=40°,∴∠AOC=110°,∴∠B=∠AOC=55°.故选:D.点评:此题考查平行线的性质,等腰三角形的性质,三角形的内角和,圆周角定理,正确作出辅助线是解决问题的关键.9.(3分)(2019•南昌)若α,β是方程x2﹣2x﹣3=0的两个实数根,则α2+β2的值为()A.10 B.9C.7D.5考点:根与系数的关系.分析:根据根与系数的关系求得α+β=2,αβ=﹣3,则将所求的代数式变形为(α+β)2﹣2αβ,将其整体代入即可求值.解答:解:∵α,β是方程x2﹣2x﹣3=0的两个实数根,∴α+β=2,αβ=﹣3,∴α2+β2=(α+β)2﹣2αβ=22﹣2×(﹣3)=10.故选:A.点评:此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.10.(3分)(2019•南昌)如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为()A.4,30°B.2,60°C.1,30°D.3,60°考点:旋转的性质;平移的性质.分析:利用旋转和平移的性质得出,∠A′B′C=60°,AB=A′B′=A′C=4,进而得出△A′B′C是等边三角形,即可得出BB′以及∠B′A′C的度数.解答:解:∵∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,∴∠A′B′C=60°,AB=A′B′=A′C=4,∴△A′B′C是等边三角形,∴B′C=4,∠B′A′C=60°,∴BB′=6﹣4=2,∴平移的距离和旋转角的度数分别为:2,60°.故选:B.点评:此题主要考查了平移和旋转的性质以及等边三角形的判定等知识,得出△A′B′C是等边三角形是解题关键.11.(3分)(2019•南昌)如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A.2a﹣3b B.4a﹣8b C.2a﹣4b D.4a﹣10b考点:整式的加减;列代数式.专题:几何图形问题.分析:根据题意列出关系式,去括号合并即可得到结果.解答:解:根据题意得:2(a﹣b+a﹣3b)=2(2a﹣4b)=4a﹣8b,故选B点评: 此题考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.12.(3分)(2019•南昌)已知反比例函数y=的图象如图,则二次函数y=2kx 2﹣4x+k 2的图象大致为( )A .B .C .D .考点: 二次函数的图象;反比例函数的图象. 分析: 本题可先由反比例函数的图象得到字母系数k <﹣1,再与二次函数的图象的开口方向和对称轴的位置相比较看是否一致,最终得到答案. 解答:解:∵函数y=的图象经过二、四象限,∴k <0,由图知当x=﹣1时,y=﹣k >1,∴k <﹣1,∴抛物线y=2kx 2﹣4x+k 2开口向下, 对称为x=﹣=,﹣1<<0,∴对称轴在﹣1与0之间, 故选:D . 点评: 此题主要考查了二次函数与反比例函数的图象与系数的综合应用,正确判断抛物线开口方向和对称轴位置是解题关键.属于基础题.二、填空题(本大题4小题,每小题3分,共12分) 13.(3分)(2019•沈阳)计算:= 3 .考点: 算术平方根. 分析: 根据算术平方根的定义计算即可.解答: 解:∵32=9,∴=3. 点评: 本题较简单,主要考查了学生开平方的运算能力.14.(3分)(2019•南昌)不等式组的解集是x>.考点:解一元一次不等式组.分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x>,由②得,x>﹣2,故此不等式组的解集为:x>.故答案为:x>.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.(3分)(2019•南昌)如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为12﹣4.考点:旋转的性质;菱形的性质.分析:根据菱形的性质得出DO的长,进而求出S正方形DNMF,进而得出S△ADF即可得出答案.解答:解:如图所示:连接AC,BD交于点E,连接DF,FM,MN,DN,∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形,∠BAD=60°,AB=2,∴AC⊥BD,四边形DNMF是正方形,∠AOC=90°,BD=2,AE=EC=,∴∠AOE=45°,ED=1,∴AE=EO=,DO=﹣1,∴S正方形DNMF=2(﹣1)×2(﹣1)×=8﹣4,S△ADF=×AD×AFsin30°=1,∴则图中阴影部分的面积为:4S△ADF+S正方形DNMF=4+8﹣4=12﹣4.故答案为:12﹣4.点评:此题主要考查了菱形的性质以及旋转的性质,得出正确分割图形得出DO的长是解题关键.16.(3分)(2019•南昌)在Rt△ABC中,∠A=90°,有一个锐角为60°,BC=6.若点P在直线AC 上(不与点A,C重合),且∠ABP=30°,则CP的长为6或2或4.考点:解直角三角形.专题:分类讨论.分析:根据题意画出图形,分4种情况进行讨论,利用直角三角形的性质解答.解答:解:如图1:当∠C=60°时,∠ABC=30°,与∠ABP=30°矛盾;如图2:当∠C=60°时,∠ABC=30°,∵∠ABP=30°,∴∠CBP=60°,∴△PBC是等边三角形,∴CP=BC=6;如图3:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°﹣30°=30°,∴PC=PB,∵BC=6,∴AB=3,∴PC=PB===2;如图4:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°+30°=90°,∴PC=BC÷cos30°=4.故答案为:6或2或4.点评:本题考查了解直角三角形,熟悉特殊角的三角函数值是解题的关键.三、(本大题共4小题,每小题6分,共24分)17.(6分)(2019•南昌)计算:(﹣)÷.考点:分式的混合运算.专题:计算题.分析:原式括号中两项利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.解答:解:原式=•=x﹣1.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.18.(6分)(2019•南昌)已知梯形ABCD,请使用无刻度直尺画图.(1)在图1中画出一个与梯形ABCD面积相等,且以CD为边的三角形;(2)图2中画一个与梯形ABCD面积相等,且以AB为边的平行四边形.考点:作图—应用与设计作图.分析:(1)求出三角形CD边上的高作图,(2)找出BE及它的高相乘得20,以AB为一边作平行四边形..解答:解:设小正方形的边长为1,则S梯形ABCD=(AD+BC)×4=×10×4=20,(1)∵CD=4,∴三角形的高=20×2÷4=5,如图1,△CDE就是所作的三角形,(2)如图2,BE=5,BE边上的高为4,∴平行四边形ABEF的面积是5×4=20,∴平行四边形ABEF就是所作的平行四边形.点评:本题主要考查了作图的设计和应用,解决问题的关键是根据面积相等求出高画图.19.(6分)(2019•南昌)有六张完全相同的卡片,分A,B两组,每组三张,在A组的卡片上分别画上“√,×,×”,如图1.(1)若将卡片无标记的一面朝上摆在桌上再分别从两组卡片中随机各抽取一张,求两张卡片上标记都是“√”的概率.(请用“树形图法”或“列表法“求解)(2)若把A,B两组卡片无标记的一面对应粘贴在一起得到三张卡片,其正、反面标记如图2所示,将卡片正面朝上摆在桌上,并用瓶盖盖住标记.①若随机揭开其中一个盖子,看到的标记是“√”的概率是多少?②若揭开盖子,看到的卡片正面标记是“√”后,猜想它的反面也是“√”,求猜对的概率.考点:列表法与树状图法.专题:计算题.分析:(1)列表得出所有等可能的情况数,找出两种卡片上标记都是“√”的情况数,即可求出所求的概率;(2)①根据题意得到所有等可能情况有3种,其中看到的标记是“√”的情况有2种,即可求出所求概率;②所有等可能的情况有2种,其中揭开盖子,看到的卡片正面标记是“√”后,它的反面也是“√”的情况有1种,即可求出所求概率.解答:解:(1)列表如下:√×√√(×,√)(√,√)(√,√)×(√,×)(×,×)(√,×)×(√,×)(×,×)(√,×)所有等可能的情况有9种,两种卡片上标记都是“√”的情况有2种,则P=;(2)①所有等可能的情况有3种,其中随机揭开其中一个盖子,看到的标记是“√”的情况有2种,则P=;②所有等可能的情况有2种,其中揭开盖子,看到的卡片正面标记是“√”后,它的反面也是“√”的情况有1种,则P=.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.20.(6分)(2019•南昌)如图,在平面直角坐标系中,Rt△PBD的斜边PB落在y轴上,tan∠BPD=.延长BD交x轴于点C,过点D作DA⊥x轴,垂足为A,OA=4,OB=3.(1)求点C的坐标;(2)若点D在反比例函数y=(k>0)的图象上,求反比例函数的解析式.考点:反比例函数与一次函数的交点问题.分析:(1)根据正切值,可得PD的斜率,根据直线垂直,可得BD的斜率,可得直线BC,根据函数值为0,可得C点坐标;(2)根据自变量的值,可得D点坐标,根据待定系数法,可得函数解析式.解答:解:Rt△PBD的斜边PB落在y轴上,∴BD⊥PB,k PD=cot∠BPD=,k BD•k PD=﹣1,k BD=﹣,直线BD的解析式是y=﹣x+3,当y=0时,﹣x+3=0,x=6,C点坐标是(6,0);(2)当x=4时,y=﹣×4+3=1,∴D(4,1).点D在反比例函数y=(k>0)的图象上,∴k=4×1=4,∴反比例函数的解析式为y=.点评:本题考查了反比例函数与一次函数的交点问题,先求出PD的斜率求出BD的斜率,求出直线BD,再求出点的坐标.四、(本大题共3小题,每小题8分,共24分)21.(8分)(2019•南昌)某教研机构为了了解在校初中生阅读数学教科书的现状,随机抽取某校部分初中学生进行了调查,依据相关数据绘制成以下不完整的统计表,请根据图表中的信息解答下列问题:某校初中生阅读数学教科书情况统计图表类别人数占总人数比例重视 a 0.3一般57 0.38不重视 b c说不清楚9 0.06(1)求样本容量及表格中a,b,c的值,并补全统计图;(2)若该校共有初中生2300名,请估计该校“不重视阅读数学教科书”的初中人数;(3)①根据上面的统计结果,谈谈你对该校初中生阅读数学教科书的现状的看法及建议;②如果要了解全省初中生阅读数学教科书的情况,你认为应该如何进行抽样?考点:频数(率)分布直方图;用样本估计总体.分析:(1)利用类别为“一般”人数与所占百分比,进而得出样本容量,进而得出a,b,c的值;(2)利用“不重视阅读数学教科书”在样本中所占比例,进而估计全校在这一类别的人数;(3)根据(1)中所求数据进而分析得出答案,再从样本抽出的随机性进而得出答案.解答:解:(1)由题意可得出:样本容量为:57÷0.38=150(人),∴a=150×0.3=45,b=150﹣57﹣45﹣9=39,c=39÷150=0.26,如图所示:(2)若该校共有初中生2300名,该校“不重视阅读数学教科书”的初中人数约为:2300×0.26=598(人);(3)①根据以上所求可得出:只有30%的学生重视阅读数学教科书,有32%的学生不重视阅读数学教科书或说不清楚,可以看出大部分学生忽略了阅读数学教科书,同学们应重视阅读数学教科书,从而获取更多的数学课外知识和对相关习题、定理的深层次理解与认识.②如果要了解全省初中生阅读数学教科书的情况,应随机抽取不同的学校以及不同的年级进行抽样,进而分析.点评:此题主要考查了频数分布直方表以及条形统计图和利用样本估计总体等知识,理论联系实际进而结合抽样调查的随机性进而得出是解题关键.22.(8分)(2019•南昌)图1中的中国结挂件是由四个相同的菱形在顶点处依次串联而成,每相邻两个菱形均成30°的夹角,示意图如图2.在图2中,每个菱形的边长为10cm,锐角为60°.(1)连接CD,EB,猜想它们的位置关系并加以证明;(2)求A,B两点之间的距离(结果取整数,可以使用计算器)(参考数据:≈1.41,≈1.73,≈2.45)考点:解直角三角形的应用.分析:(1)连接DE.根据菱形的性质和角的和差关系可得∠CDE=∠BED=90°,再根据平行线的判定可得CD,EB的位置关系;(2)根据菱形的性质可得BE,DE,再根据三角函数可得BD,AD,根据AB=BD+AD,即可求解.解答:解:(1)猜想CD∥EB.证明:连接DE.∵中国结挂件是四个相同的菱形,每相邻两个菱形均成30°的夹角,菱形的锐角为60°∴∠CDE=60°÷2×2+30°=90°,∴∠BED=60°÷2×2+30°=90°,∴∠CDE=∠BED,∴CD∥EB.(2)BE=2OE=2×10×cos30°=10cm,同理可得,DE=10cm,则BD=10cm,同理可得,AD=10cm,AB=BD+AD=20≈49cm.答:A,B两点之间的距离大约为49cm.点评:此题考查了解直角三角形的应用,菱形的性质和平行线的判定,主要是三角函数的基本概念及运算,关键是运用数学知识解决实际问题.23.(8分)(2019•南昌)如图1,AB是⊙O的直径,点C在AB的延长线上,AB=4,BC=2,P是⊙O上半部分的一个动点,连接OP,CP.(1)求△OPC的最大面积;(2)求∠OCP的最大度数;(3)如图2,延长PO交⊙O于点D,连接DB,当CP=DB时,求证:CP是⊙O的切线.考点:切线的判定与性质.分析:(1)在△OPC中,底边OC长度固定,因此只要OC边上高最大,则△OPC的面积最大;观察图形,当OP⊥OC时满足要求;(2)PC与⊙O相切时,∠OCP的度数最大,根据切线的性质即可求得;(3)连接AP,BP通过△ODB≌△BPC可求得DP⊥PC,从而求得PC是⊙O的切线.解答:(1)解:∵AB=4,∴OB=2,OC=OB+BC=4.在△OPC中,设OC边上的高为h,∵S△OPC=OC•h=2h,∴当h最大时,S△OPC取得最大值.观察图形,当OP⊥OC时,h最大,如答图1所示:此时h=半径=2,S△OPC=2×2=4.∴△OPC的最大面积为4.(2)解:当PC与⊙O相切时,∠O CP最大.如答图2所示:∵tan∠OCP===,∴∠OCP=30°∴∠OCP的最大度数为30°.(3)证明:如答图3,连接AP,BP.∴∠A=∠D=∠APD=∠ABD,∵=,∴=,∴AP=BD,∵CP=DB,∴AP=CP,∴∠A=∠C∴∠A=∠D=∠APD=∠ABD∠C,在△ODB与△BPC中,∴△ODB≌△BPC(SAS),∴∠D=∠BPC,∵PD是直径,∴∠DBP=90°,∴∠D+∠BPD=90°,∴∠BPC+∠BPD=90°,∴DP⊥PC,∵DP经过圆心,∴PC是⊙O的切线.点评:本题考查了全等三角形的判定和性质,切线的判定和性质,作出辅助线构建直角三角形是解题的关键.五、(本大题共2小题,每小题12分,共24分)24.(12分)(2019•南昌)如图1,边长为4的正方形ABCD中,点E在AB边上(不与点A,B 重合),点F在BC边上(不与点B,C重合).第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;第二次操作:将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H;依次操作下去…(1)图2中的△EFD是经过两次操作后得到的,其形状为等边三角形,求此时线段EF的长;(2)若经过三次操作可得到四边形EFGH.①请判断四边形EFGH的形状为正方形,此时AE与BF的数量关系是AE=BF;②以①中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围;(3)若经过多次操作可得到首尾顺次相接的多边形,其最大边数是多少?它可能是正多边形吗?如果是,请直接写出其边长;如果不是,请说明理由.考点:几何变换综合题.分析:(1)由旋转性质,易得△EFD是等边三角形;利用等边三角形的性质、勾股定理求出EF的长;(2)①四边形EFGH的四边长都相等,所以是正方形;利用三角形全等证明AE=BF;②求面积y的表达式,这是一个二次函数,利用二次函数性质求出最值及y的取值范围.(3)如答图2所示,经过多次操作可得到首尾顺次相接的多边形,可能是正多边形,最大边数为8,边长为4﹣4.解答:解:(1)如题图2,由旋转性质可知EF=DF=DE,则△DEF为等边三角形.在Rt△ADE与Rt△CDF中,∴Rt△ADE≌Rt△CDF(HL)∴AE=CF.设AE=CF=x,则BE=BF=4﹣x∴△BEF为等腰直角三角形.∴EF=BF=(4﹣x).∴DE=DF=EF=(4﹣x).在Rt△ADE中,由勾股定理得:AE2+AD2=DE2,即:x+42=[(4﹣x]2,解得:x1=8﹣4,x2=8+4(舍去)∴EF=(4﹣x)=4﹣4.DEF的形状为等边三角形,EF的长为4﹣4.(2)①四边形EFGH的形状为正方形,此时AE=BF.理由如下:依题意画出图形,如答图1所示:由旋转性质可知,EF=FG=GH=HE,∴四边形EFGH的形状为正方形.∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3.∵∠3+∠4=90°,∠2+∠3=90°,∴∠2=∠4.在△AEH与△BFE中,∴△AEH≌△BFE(ASA)∴AE=BF.②利用①中结论,易证△AEH、△BFE、△CGF、△DHG均为全等三角形,∴BF=CG=DH=AE=x,AH=BE=CF=DG=4﹣x.∴y=S正方形ABCD﹣4S△AEH=4×4﹣4×x(4﹣x)=2x2﹣8x+16.∴y=2x2﹣8x+16(0<x<4)∵y=2x2﹣8x+16=2(x﹣2)2+8,∴当x=2时,y取得最小值8;当x=0时,y=16,∴y的取值范围为:8≤y<16.(3)经过多次操作可得到首尾顺次相接的多边形,其最大边数是8,它可能为正多边形,边长为4﹣4.如答图2所示,粗线部分是由线段EF经过7次操作所形成的正八边形.设边长EF=FG=x,则BF=CG=x,BC=BF+FG+CG=x+x+x=4,解得:x=4﹣4.点评:本题是几何变换综合题,以旋转变换为背景考查了正方形、全等三角形、等边三角形、等腰直角三角形、正多边形、勾股定理、二次函数等知识点.本题难度不大,着重对于几何基础知识的考查,是一道好题.25.(12分)(2019•南昌)如图1,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与x轴平行,且与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M称为碟顶,点M到线段AB的距离称为碟高.(1)抛物线y=x2对应的碟宽为4;抛物线y=4x2对应的碟宽为;抛物线y=ax2(a>0)对应的碟宽为;抛物线y=a(x﹣2)2+3(a>0)对应的碟宽为;(2)抛物线y=ax2﹣4ax﹣(a>0)对应的碟宽为6,且在x轴上,求a的值;(3)将抛物线y=a n x2+b n x+c n(a n>0)的对应准蝶形记为F n(n=1,2,3…),定义F1,F2,…,F n 为相似准蝶形,相应的碟宽之比即为相似比.若F n与F n﹣1的相似比为,且F n的碟顶是F n﹣1的碟宽的中点,现将(2)中求得的抛物线记为y1,其对应的准蝶形记为F1.①求抛物线y2的表达式;②若F1的碟高为h1,F2的碟高为h2,…F n的碟高为h n,则h n=,F n的碟宽有端点横坐标为2+;F1,F2,…,F n的碟宽右端点是否在一条直线上?若是,直接写出该直线的表达式;若不是,请说明理由.考点:二次函数综合题.分析:(1)根据定义易算出含具体值的抛物线y=x2,抛物线y=4x2的碟宽,且都利用端点(第一象限)横纵坐标的相等.推广至含字母的抛物线y=ax2(a>0),类似.而抛物线y=a(x﹣2)2+3(a>0)为顶点式,可看成y=ax2平移得到,则发现碟宽只和a有关.(2)根据(1)的结论,根据碟宽易得a的值.(3)①由y1,易推y2.②结合画图,易知h1,h2,h3,…,h n﹣1,h n都在直线x=2上,但证明需要有一般推广,可以考虑h n∥h n﹣1,且都过F n﹣1的碟宽中点,进而可得.另画图时易知碟宽有规律递减,所以推理也可得右端点的特点.对于“F1,F2,…,F n的碟宽右端点是否在一条直线上?”,如果写出所有端点规律似乎很难,找规律更难,所以可以考虑基础的几个图形关系,如果相邻3个点构成的两条线段不共线,则结论不成立,反正结论成立.求直线方程只需考虑特殊点即可.解答:解:(1)4;1;;.分析如下:∵a>0,∴y=ax2的图象大致如下:其必过原点O,记AB为其碟宽,AB与y轴的交点为C,连接OA,OB.∵△DAB为等腰直角三角形,AB∥x轴,∴OC⊥AB,∴∠OCA=∠OCB=∠AOB=90°=45°,∴△ACO与△BCO亦为等腰直角三角形,∴AC=OC=BC,∴x A=y A,x B=y B,代入y=ax2,∴A(﹣,),B(,),C(0,),∴AB=,OC=,即y=ax2的碟宽为.①抛物线y=x2对应的a=,得碟宽为4;②抛物线y=4x2对应的a=4,得碟宽为为;③抛物线y=ax2(a>0),碟宽为;④抛物线y=a(x﹣2)2+3(a>0)可看成y=ax2向右平移2个单位长度,再向上平移3个单位长度后得到的图形,∵平移不改变形状、大小、方向,∴抛物线y=a(x﹣2)2+3(a>0)的准碟形≌抛物线y=ax2的准碟,∵抛物线y=ax2(a>0),碟宽为,∴抛物线y=a(x﹣2)2+3(a>0),碟宽为.(2)∵y=ax2﹣4ax﹣=a(x﹣2)2﹣(4a+),∴同(1),其碟宽为,∵y=ax2﹣4ax﹣的碟宽为6,∴=6,解得a=,∴y=(x﹣2)2﹣3.(3)①∵F1的碟宽:F2的碟宽=2:1,∴,∵a1=,∴a2=.∵y=(x﹣2)2﹣3的碟宽AB在x轴上(A在B左边),∴A(﹣1,0),B(5,0),∴F2的碟顶坐标为(2,0),∴y2=(x﹣2)2.②∵F n的准碟形为等腰直角三角形,∴F n的碟宽为2h n,∵2h n:2h n﹣1=1:2,∴h n=h n﹣1=()2h n﹣2=()3h n﹣3=…=()n+1h1,∵h1=3,∴h n=.∵h n∥h n﹣1,且都过F n﹣1的碟宽中点,∴h1,h2,h3,…,h n﹣1,h n都在一条直线上,∵h1在直线x=2上,∴h1,h2,h3,…,h n﹣1,h n都在直线x=2上,∴F n的碟宽右端点横坐标为2+.另,F1,F2,…,F n的碟宽右端点在一条直线上,直线为y=﹣x+5.分析如下:考虑F n﹣2,F n﹣1,F n情形,关系如图2,F n﹣2,F n﹣1,F n的碟宽分别为AB,DE,GH;C,F,I分别为其碟宽的中点,都在直线x=2上,连接右端点,BE,EH.∵AB∥x轴,DE∥x轴,GH∥x轴,∴AB∥DE∥GH,∴GH平行相等于FE,DE平行相等于CB,∴四边形GFEH,四边形DCBE都为平行四边形,∴HE∥GF,EB∥DC,∵∠GFI=•∠GFH=•∠DCE=∠DCF,∴GF∥DC,∴HE∥EB,∵HE,EB都过E点,∴HE,EB在一条直线上,∴F n﹣2,F n﹣1,F n的碟宽的右端点是在一条直线,∴F1,F2,…,F n的碟宽的右端点是在一条直线.∵F1:y1=(x﹣2)2﹣3准碟形右端点坐标为(5,0),F2:y2=(x﹣2)2准碟形右端点坐标为(2+,),∴待定系数可得过两点的直线为y=﹣x+5,∴F1,F2,…,F n的碟宽的右端点是在直线y=﹣x+5上.点评:本题考查学生对新知识的学习、理解与应用能力.题目中主要涉及特殊直角三角形,二次函数解析式与图象性质,多点共线证明等知识,综合难度较高,学生清晰理解有一定困难.。

江西省南昌市中考数学试卷及答案Word解析版

江西省南昌市中考数学试卷及答案Word解析版

2013年江西省南昌市中考数学试卷参考答案与试题解析一、选择题本大题共12小题;每小题3分;满分36分每小题只有一个正确选项.. 1.3分﹣1的倒数是A.1B.﹣1 C.±1D.0考点:倒数.分析:根据倒数的定义;得出﹣1×﹣1=1;即可得出答案.解答:解:∵﹣1×﹣1=1; ∴﹣1的倒数是﹣1.故选:B.点评:此题主要考查了倒数的概念及性质.倒数的定义:若两个数的乘积是1;我们就称这两个数互为倒数.2.3分下列计算正确的是A.a3+a2=a5B.3a﹣b2=9a2﹣b2C.﹣ab32=a2b6D.a6b÷a2=a3b 考点:完全平方公式;合并同类项;幂的乘方与积的乘方;整式的除法.分析:根据同类项的定义;完全平方公式;幂的乘方以及单项式的除法法则即可判断.解答:解:A、不是同类项;不能合并;选项错误;B、3a﹣b2=9a2﹣6ab+b2;故选项错误;C、正确;D、a6b÷a2=a4b;选项错误.故选C.点评:本题考查了幂的运算法则以及完全平方公式;理解公式的结构是关键.3.3分某单位组织34人分别到井冈山和瑞金进行革命传统教育;到井冈山的人数是到瑞金的人数的2倍多1人;求到两地的人数各是多少设到井冈山的人数为x人;到瑞金的人数为y人.下面所列的方程组正确的是A.B.C.D.考点:由实际问题抽象出二元一次方程组.分析:设到井冈山的人数为x人;到瑞金的人数为y人;根据共34人进行革命传统教育;到井冈山的人数是到瑞金的人数的2倍多1人;即可得出方程组.解答:解:设到井冈山的人数为x人;到瑞金的人数为y人; 由题意得:.故选B.点评:本题考查了有实际问题抽象出二元一次方程组;难度一般;关键是读懂题意设出未知数找出等量关系.4.3分下列数据是2013年3月7日6点公布的中国六大城市的空气污染指数情况:城市北京合肥南京哈尔滨成都南昌污染指数342 163 165 45 227 163则这组数据的中位数和众数分别是A.164和163 B.105和163 C.105和164 D.163和164考点:众数;中位数.分析:根据众数定义:一组数据中出现次数最多的数据叫做众数.中位数:将一组数据按照从小到大或从大到小的顺序排列;如果数据的个数是奇数;则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数;则中间两个数据的平均数就是这组数据的中位数.可以直接算出答案.解答:解:把数据从小到大排列:45;163;163;165;227;342;位置处于中间的数是163和165;故中位数是163+165÷2=164;163出现了两次;故众数是163;故答案为:A.点评:此题主要考查了众数和中位数;关键是掌握两种数的定义.5.3分某机构对30万人的调查显示;沉迷于手机上网的初中生大约占7%;则这部分沉迷于手机上网的初中生人数;可用科学记数法表示为A.2.1×105B.21×103C.0.21×105D.2.1×104考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式;其中1≤|a|<10;n为整数.确定n的值时;要看把原数变成a时;小数点移动了多少位;n的绝对值与小数点移动的位数相同.当原数绝对值>1时;n是正数;当原数的绝对值<1时;n是负数.解答:解:将30万×7%=21000用科学记数法表示为:2.1×104.故选:D.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式;其中1≤|a|<10;n为整数;表示时关键要正确确定a的值以及n的值.6.3分如图;直线y=x+a﹣2与双曲线y=交于A、B两点;则当线段AB的长度取最小值时;a的值为A.0B.1C.2D.5考点:反比例函数与一次函数的交点问题.分析:当直线y=x+a﹣2经过原点时;线段AB的长度取最小值;依此可得关于a的方程;解方程即可求得a的值.解答:解:∵要使线段AB的长度取最小值;则直线y=x+a﹣2经过原点; ∴a﹣2=0;解得a=2.故选C.点评:考查了反比例函数与一次函数的交点问题;本题的关键是理解当直线y=x+a﹣2经过原点时;线段AB的长度取最小值.7.3分一张坐凳的形状如图所示;以箭头所指的方向为主视方向;则它的左视图可以是A.B.C.D.考点:简单组合体的三视图.分析:找到从左面看所得到的图形即可;注意所有的看到的棱都应表现在主视图中.解答:解:从几何体的左边看可得.故选:C.点评:本题考查了三视图的知识;左视图是从物体的左面看得到的视图.8.3分将不等式组的解集在数轴上表示出来;正确的是A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:求出两个不等式的解集;然后表示在数轴上即可.解答:解:; 解不等式①得;x≥﹣1; 解不等式②得;x<3;在数轴上表示如下:.故选D.点评:本题考查了一元一次不等式组的解法;在数轴上表示不等式组的解集;需要把每个不等式的解集在数轴上表示出来>;≥向右画;<;≤向左画;在表示解集时“≥”;“≤”要用实心圆点表示;“<”;“>”要用空心圆点表示.9.3分下列因式分解正确的是A.x2﹣xy+x=xx﹣y B.a3﹣2a2b+ab2=aa﹣b2C.x2﹣2x+4=x﹣12+3 D.a x2﹣9=ax+3x﹣3 考点:因式分解-运用公式法;因式分解-提公因式法.分析:利用提公因式法分解因式和完全平方公式分解因式进行分解即可得到答案.解答:解:A、x2﹣xy+x=xx﹣y+1;故此选项错误;B、a3﹣2a2b+ab2=aa﹣b2;故此选项正确;C、x2﹣2x+4=x﹣12+3;不是因式分解;故此选项错误;D、ax2﹣9;无法因式分解;故此选项错误.故选:B.点评:此题主要考查了公式法和提公因式法分解因式;关键是注意口诀:找准公因式;一次要提净;全家都搬走;留1把家守;提负要变号;变形看奇偶.10.3分如图;将△ABC绕点A逆时针旋转一定角度;得到△ADE.若∠CAE=65°;∠E=70°;且AD⊥BC;∠BAC的度数为A.60°B.75°C.85°D.90°考点:旋转的性质.分析:根据旋转的性质知;旋转角∠EAC=∠BAD=65°;对应角∠C=∠E=70°;则在直角△ABF中易求∠B=35°;所以利用△ABC的内角和是180°来求∠BAC 的度数即可.解答:解:根据旋转的性质知;∠EAC=∠BAD=65°;∠C=∠E=70°.如图;设AD⊥BC于点F.则∠AFB=90°;∴在Rt△ABF中;∠B=90°﹣∠BAD=35°;∴在△ABC中;∠BAC=180°﹣∠B﹣∠C=180°﹣35°﹣70°=75°;即∠BAC的度数为75°.故选B.点评:本题考查了旋转的性质.解题的过程中;利用了三角形内角和定理和直角三角形的两个锐角互余的性质来求相关角的度数的.11.3分如图;正六边形ABCDEF中;AB=2;点P是ED的中点;连接AP;则AP的长为A.2B.4C.D.考点:勾股定理.分析:连接AE;求出正六边形的∠F=120°;再求出∠AEF=∠EAF=30°;然后求出∠AEP=90°并求出AE的长;再求出PE的长;最后在Rt△AEP中;利用勾股定理列式进行计算即可得解.解答:解:如图;连接AE;在正六边形中;∠F=×6﹣2180°=120°;∵AF=EF;∴∠AEF=∠EAF=180°﹣120°=30°;∴∠AEP=120°﹣30°=90°;AE=2×2cos30°=2×2×=2;∵点P是ED的中点;∴EP=×2=1;在Rt△AEP中;AP===.故选C.点评:本题考查了勾股定理;正六边形的性质;等腰三角形三线合一的性质;作辅助线构造出直角三角形是解题的关键.12.3分若二次函数y=ax2+bx+ca≠0的图象与x轴有两个交点;坐标分别为x1;0;x2;0;且x1<x2;图象上有一点Mx0;y0在x轴下方;则下列判断正确的是A.a>0 B.b2﹣4ac≥0C.x1<x0<x2D.a x0﹣x1x0﹣x2<考点:抛物线与x轴的交点.分析:根据抛物线与x轴有两个不同的交点;根的判别式△>0;再分a>0和a<0两种情况对C、D选项讨论即可得解.解答:解:A、二次函数y=ax2+bx+ca≠0的图象与x轴有两个交点无法确定a 的正负情况;故本选项错误;B、∵x1<x2;∴△=b2﹣4ac>0;故本选项错误;C、若a>0;则x1<x0<x2;若a<0;则x0<x1<x2或x1<x2<x0;故本选项错误;D、若a>0;则x0﹣x1>0;x0﹣x2<0;所以;x0﹣x1x0﹣x2<0;∴ax0﹣x1x0﹣x2<0;若a<0;则x0﹣x1与x0﹣x2同号;∴ax0﹣x1x0﹣x2<0;综上所述;ax0﹣x1x0﹣x2<0正确;故本选项正确.故选D.点评:本题考查了二次函数与x轴的交点问题;熟练掌握二次函数图象以及图象上点的坐标特征是解题的关键;C、D选项要注意分情况讨论.二、填空题本大题共4小题;每小题3分;满分12分13.3分如图△ABC中;∠A=90°;点D在AC边上;DE∥BC;若∠1=155°;则∠B的度数为65°.考点:平行线的性质;直角三角形的性质.专题:探究型.分析:先根据平角的定义求出∠EDC的度数;再由平行线的性质得出∠C的度数;根据三角形内角和定理即可求出∠B的度数.解答:解:∵∠1=155°;∴∠EDC=180°﹣155°=25°;∵DE∥BC;∴∠C=∠EDC=25°;∵△ABC中;∠A=90°;∠C=25°;∴∠B=180°﹣90°﹣25°=65°.故答案为:65°.点评:本题考查的是平行线的性质;用到的知识点为:两直线平行;内错角相等.14.3分观察下列图形中点的个数;若按其规律再画下去;可以得到第n个图形中所有点的个数为n+12用含n的代数式表示.考点:规律型:图形的变化类.专题:规律型.分观察不难发现;点的个数依次为连续奇数的个数;写出第n个图形中点析:的个数的表达式;再根据求和公式列式计算即可得解.解答:解:第1个图形中点的个数为:1+3=4;第2个图形中点的个数为:1+3+5=9;第3个图形中点的个数为:1+3+5+7=16;…;第n 个图形中点的个数为:1+3+5+…+2n+1==n+12.故答案为:n+12.点评:本题是对图形变化规律的考查;比较简单;观察出点的个数是连续奇数的和是解题的关键;还要注意求和公式的利用.15.3分若一个一元二次方程的两个根分别是Rt△ABC的两条直角边长;且S△ABC=3;请写出一个符合题意的一元二次方程x2﹣5x+6=0答案不唯一.考点:根与系数的关系.专题:开放型.分析:根据S△ABC=3;得出两根之积;进而根据根与系数的关系写出一个符合要求的一元二次方程即可.解答:解:∵一个一元二次方程的两个根分别是Rt△ABC的两条直角边长;且S△ABC=3;∴一元二次方程的两个根的乘积为:3×2=6;∴此方程可以为;x2﹣5x+6=0;故答案为:x2﹣5x+6=0答案不唯一.点评:此题主要考查了根与系数的关系以及直角三角形的面积;根据已知得出两根之积进而得出答案是解题关键.16.3分平面内有四个点A、O、B、C;其中∠AOB=120°;∠ACB=60°;AO=BO=2;则满足题意的OC 长度为整数的值可以是2;3;4 .考点:垂径定理;等边三角形的判定与性质.分析:分类讨论:如图1;根据圆周角定理可以退出点C在以点O为圆心的圆上;如图2;根据已知条件可知对角∠AOB+∠ACB=180°;则四个点A、O、B、C共圆.分类讨论:如图1;如图2;在不同的四边形中;利用垂径定理、等边△MAO的性质来求OC的长度.解答:解:如图1;∵∠AOB=120°;∠ACB=60°;∴∠ACB=∠AOB=60°;∴点C在以点O为圆心的圆上;且在优弧AB上.∴OC=AO=BO=2;如图2;∵∠AOB=120°;∠ACB=60°;∴∠AOB+∠ACB=180°;∴四个点A、O、B、C共圆.设这四点都在⊙M上.点C在优弧AB上运动.连接OM、AM、AB、MB.∵∠ACB=60°;∴∠AMB=2∠ACB=120°.∵AO=BO=2;∴∠AMO=∠BMO=60°.又∵MA=MO;∴△AMO的等边三角形;∴MA=AO=2;∴MA<OC≤2MA;即2<OC≤4;∴OC可以取整数3和4.综上所述;OC可以取整数2;3;4.故答案是:2;3;4.点评:本题考查了垂径定理、等边三角形的判定与性质.此题需要分类讨论;以防漏解.在解题时;还利用了圆周角定理;圆周角、弧、弦间的关系.三、本大题共4小题;每小题6分;满分24分17.6分如图AB是半圆的直径;图1中;点C在半圆外;图2中;点C在半圆内;请仅用无刻度的直尺按要求画图.1在图1中;画出△ABC的三条高的交点;2在图2中;画出△ABC中AB边上的高.考点:作图—复杂作图.分析:1根据圆周角定理:直径所对的圆周角是90°画图即可;2与1类似;利用圆周角定理画图.解答:解:1如图所示:点P就是三个高的交点;2如图所示:CT就是AB上的高.点评:此题主要考查了复杂作图;关键是掌握三角形的三条高交于一点;直径所对的圆周角是90°.18.6分先化简;再求值:÷+1;在0;1;2三个数中选一个合适的;代入求值.考分式的化简求值.点:分析:首先将原式能分解因式的分解因式;然后利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算;约分得到最简结果;最后根据分式的性质;选出有意义的x的值;即可得到原式的值.解答:解:÷+1=÷+1=×+1=+1=;当x=0或2时;分式无意义;故x只能等于1;原式=.点评:此题考查了分式的化简求值;分式的加减运算关键是通分;通分的关键是找最简公分母;分式的乘除运算关键是约分;约分的关键是找出公因式;约分时;分式的分子分母出现多项式;应将多项式分解因式后再约分.19.6分甲、乙、丙3人聚会;每人带了一件从外盒包装上看完全相同的礼物里面的东西只有颜色不同;将3件礼物放在一起;每人从中随机抽取一件.1下列事件是必然事件的是A、乙抽到一件礼物B、乙恰好抽到自己带来的礼物C、乙没有抽到自己带来的礼物D、只有乙抽到自己带来的礼物2甲、乙、丙3人抽到的都不是自己带来的礼物记为事件A;请列出事件A的所有可能的结果;并求事件A的概率.考点:列表法与树状图法;随机事件.专题:图表型.分析:1根据必然事件、随机事件的定义对各选项分析判断后利用排除法求解;2画出树状图;然后根据概率公式列式进行计算即可得解.解答:解:1A、乙抽到一件礼物是必然事件;B、乙恰好抽到自己带来的礼物是随机事件;C 、乙没有抽到自己带来的礼物是随机事件;D、只有乙抽到自己带来的礼物是随机事件;故选A;2设甲、乙、丙三人的礼物分别记为a、b、c;根据题意画出树状图如下:一共有6种等可能的情况;三人抽到的礼物分别为abc、acb、bac、bca、cab、cba;3人抽到的都不是自己带来的礼物的情况有bca、cab有2种;所以;PA==.点评:本题考查了列表法与树状图法;用到的知识点为:概率=所求情况数与总情况数之比.20.6分如图;在平面直角坐标系中;反比例函数y=x>0的图象和矩形ABCD在第一象限;AD平行于x轴;且AB=2;AD=4;点A的坐标为2;6.1直接写出B、C、D三点的坐标;2若将矩形向下平移;矩形的两个顶点恰好同时落在反比例函数的图象上;猜想这是哪两个点;并求矩形的平移距离和反比例函数的解析式.考点:反比例函数综合题.分析:1根据矩形性质得出AB=CD=2;AD=BC=4;即可得出答案;2设矩形平移后A的坐标是2;6﹣x;C的坐标是6;4﹣x;得出k=26﹣x=64﹣x;求出x;即可得出矩形平移后A的坐标;代入反比例函数的解析式求出即可.解答:解:1∵四边形ABCD是矩形;平行于x轴;且AB=2;AD=4;点A的坐标为2;6.∴AB=CD=2;AD=BC=4;∴B2;4;C6;4;D6;6;2A、C落在反比例函数的图象上;设矩形平移后A的坐标是2;6﹣x;C的坐标是6;4﹣x;∵A、C落在反比例函数的图象上;∴k=26﹣x=64﹣x;x=3;即矩形平移后A的坐标是2;3;代入反比例函数的解析式得:k=2×3=6;即A、C落在反比例函数的图象上;矩形的平移距离是3;反比例函数的解析式是y=.点评:本题考查了矩形性质;用待定系数法求反比例函数的解析式;平移的性质的应用;主要考查学生的计算能力.四、解答题本大题共3小题;每小题8分;共24分21.8分生活中很多矿泉水没有喝完便被扔掉;造成极大的浪费;为此数学兴趣小组的同学对某单位的某次会议所用矿泉水的浪费情况进行调查;为期半天的会议中;每人发一瓶500ml的矿泉水;会后对所发矿泉水喝的情况进行统计;大致可分为四种:A、全部喝完;B 、喝剩约;C、喝剩约一半;D开瓶但基本未喝.同学们根据统计结果绘制成如下两个统计图;根据统计图提供的信息;解答下列问题:1参加这次会议的有多少人在图2中D所在扇形的圆心角是多少度并补全条形统计图;2若开瓶但基本未喝算全部浪费;试计算这次会议平均每人浪费的矿泉水约多少毫升计算结果请保留整数3据不完全统计;该单位每年约有此类会议60次;每次会议人数约在40至60人之间;请用2中计算的结果;估计该单位一年中因此类会议浪费的矿泉水500ml/瓶约有多少瓶可使用科学记算器考点:条形统计图;用样本估计总体;扇形统计图.分析:1根据扇形统计图和条形统计图中B所代表的数据求出总人数;即可得出C代表的人数;2根据1中所求;得出浪费掉的总量进而得出平均数;3根据每次会议人数约在40至60人之间可以为50人;利用2中所求;进而求出总数.解答:解:1参加这次会议的人数:25÷50%=50;D 所在扇形的圆心角:360°××100%=36°;C的人数:50﹣25﹣10﹣5=10;如图所示:2500××25+500××10+500×5÷50≈183毫升;3183×60×÷500≈1098瓶;答:浪费的矿泉水500ml/瓶约有1098瓶.点评:此题主要考查了条形统计图与扇形统计图的综合应用;根据图象得出正确信息是解题关键.22.8分如图;在平面直角坐标系中;以点O为圆心;半径为2的圆与y轴交于点A;点P4;2是⊙O外一点;连接AP;直线PB与⊙O相切于点B;交x轴于点C.1证明PA是⊙O的切线;2求点B的坐标.考点:切线的判定与性质;坐标与图形性质.专题:计算题.分析:1由AO=2;P的纵坐标为2;得到AP与x轴平行;即PA与AO垂直;即可得到AP为圆O的切线;2连接OP;OB;过B作BQ垂直于OC;由切线长定理得到PA=PB=4;PO为角平分线;进而得到一对角相等;根据AP与OC平行;利用两直线平行内错角相等得到一对角相等;等量代换并利用等角对等边得到OC=CP;设OC=x;BC=BP﹣PC=4﹣x;OB=2;利用勾股定理列出关于x的方程;求出方程的解得到x的值;确定出OC与BC的长;在直角三角形OBC中;利用面积法求出BQ的长;再利用勾股定理求出OQ的长;根据B在第四象限;即可求出B的坐标.解1证明:∵圆O的半径为2;P4;2;答:∴AP⊥OA;则AP为圆O的切线;2解:连接OP;OB;过B作BQ⊥OC;∵PA、PB为圆O的切线;∴∠APO=∠BPO;PA=PB=4;∵AP∥OC;∴∠APO=∠POC;∴∠BPO=∠POC;∴OC=CP;在Rt△OBC中;设OC=PC=x;则BC=PB﹣PC=4﹣x;OB=2;根据勾股定理得:OC2=OB2+BC2;即x2=4+4﹣x2;解得:x=2.5;∴BC=4﹣x=1.5;∵S△OBC =OBBC=OCBQ;即OBBC=OCBQ;∴BQ==1.2;在Rt△OBQ中;根据勾股定理得:OQ==1.6;则B坐标为1.6;﹣1.2.点评:此题考查了切线的性质与判定;坐标与图形性质;勾股定理;三角形的面积求法;平行线的性质;以及切线长定理;熟练掌握切线的性质与判定是解本题的关键.23.8分如图1;一辆汽车的背面;有一种特殊性状的刮雨器;忽略刮雨器的宽度可抽象为一条折线OAB;如图2所示;量得连杆OA长为10cm;雨刮杆AB长为48cm;∠OAB=120°.若启动一次刮雨器;雨刮杆AB正好扫到水平线CD的位置;如图3所示.1求雨刮杆AB旋转的最大角度及O、B两点之间的距离;结果精确到0.01 2求雨刮杆AB扫过的最大面积.结果保留π的整数倍参考数据:sin60°=;cos60°=;tan60°=;≈26.851;可使用科学记算器考点:解直角三角形的应用;扇形面积的计算.分析:1根据平行线的性质得出雨刮杆AB旋转的最大角度;再利用锐角三角函数关系和勾股定理求出EO;AE;BO的长即可;2根据雨刮杆AB扫过的最大面积即为以BO为半径的半圆;进而得出答案即可.解答:解:1如图所示:A点转到C点;B点转到D点;启动一次刮雨器;雨刮杆AB正好扫到水平线CD的位置;故雨刮杆AB旋转的最大角度为:180°;过点O作OE⊥BA;交BA延长线于点E;连接BO;∵∠OAB=120°;∴∠OAE=60°;∴∠EOA=30°;∵OA长为10cm;∴EA=OA=5cm;∴EO==5cm;∵AB长为48cm;∴EB=48+5=53cm;∴BO===2≈53.70cm;答:雨刮杆AB旋转的最大角度为180°;O、B两点之间的距离为53.70cm;2∵雨刮杆AB旋转180°得到CD;即△OCD与△OAB关于点O中心对称; ∴△BAO≌△DCO;∴S△BAO=S△DCO;∴雨刮杆AB扫过的最大面积S=πOB2﹣OA2=1392πcm2.答:雨刮杆AB扫过的最大面积为1392πcm2.点评:此题主要考查了解直角三角形的应用以及勾股定理和扇形面积求法、勾股定理等知识;利用平行线的性质得出旋转的最大角是解题关键.五、本大题共2小题;每小题12分;共24分24.12分某数学活动小组在作三角形的拓展图形;研究其性质时;经历了如下过程:1操作发现:在等腰△ABC中;AB=AC;分别以AB和AC为斜边;向△ABC的外侧作等腰直角三角形;如图1所示;其中DF⊥AB于点F;EG⊥AC于点G;M是BC的中点;连接MD 和ME;则下列结论正确的是①②③④填序号即可①AF=AG=AB;②MD=ME;③整个图形是轴对称图形;④MD⊥ME.2数学思考:在任意△ABC中;分别以AB和AC为斜边;向△ABC的外侧作等腰直角三角形;如图2所示;M是BC的中点;连接MD和ME;则MD和ME具有怎样的数量关系请给出证明过程;3类比探究:i在任意△ABC中;仍分别以AB和AC为斜边;向△ABC的内侧作等腰直角三角形;如图3所示;M是BC的中点;连接MD和ME;试判断△MED的形状.答:等腰直角三角形.ii在三边互不相等的△ABC中见备用图;仍分别以AB和AC为斜边;向△ABC的内侧作非等腰直角三角形ABD和非等腰直角三角形ACE;M是BC的中点;连接MD和ME;要使2中的结论此时仍然成立;你认为需增加一个什么样的条件限用题中字母表示并说明理由.考点:四边形综合题.分析:1由条件可以通过三角形全等和轴对称的性质;直角三角形的性质就可以得出结论;2作AB、AC的中点F、G;连接DF;MF;EG;MG;根据三角形的中位线的性质和等腰直角三角形的性质就可以得出四边形AFMG是平行四边形;从而得出△DFM≌△MGE;根据其性质就可以得出结论;3i作AB、AC的中点F、G;连接DF;MF;EG;MG;DF和MG相交于H;根据三角形的中位线的性质K可以得出△DFM≌△MGE;由全等三角形的性质就可以得出结论;ii如图4;作直角三角形ADB和直角三角形AEC;∠ADB=∠AEC=90°;当∠BAD=∠CAE时;作AB、AC的中点F、G;连接DF;MF;EG;MG;DF和MG相交于H;根据三角形的中位线的性质K可以得出△DFM≌△MGE;由全等三角形的性质就可以得出结论DM=EM.解答:解:1∵△ADB和△AEC是等腰直角三角形;∴∠ABD=∠DAB=∠ACE=∠EAC=45°;∠ADB=∠AEC=90°∵在△ADB和△AEC中;;∴△ADB≌△AECAAS;∴BD=CE;AD=AE;∵DF⊥AB于点F;EG⊥AC于点G;∴AF=BF=DF=AB;AG=GC=GE=AC.∵AB=AC;∴AF=AG=AB;故①正确;∵M是BC的中点;∴BM=CM.∵AB=AC;∴∠ABC=∠ACB;∴∠ABC+∠ABD=∠ACB+∠ACE;即∠DBM=∠ECM.在△DBM和△ECM中∴△DBM≌△ECMSAS;∴MD=ME.故②正确;连接AM;根据前面的证明可以得出将图形1;沿AM对折左右两部分能完全重合;∴整个图形是轴对称图形;故③正确.∵AB=AC;BM=CM;∴AM⊥BC;∴∠AMB=∠AMC=90°;∵∠ADM=90°;∴四边形ADBM四点共圆;∴∠AMD=∠ABD=45°.∵AM是对称轴;∴∠AME=∠AMD=45°;∴∠DME=90°;∴MD⊥ME;故④正确;2MD=ME;理由:作AB、AC的中点F、G;连接DF;MF;EG;MG;∴AF=AB;AG=AC.∵△ABD和△AEC是等腰直角三角形;∴DF⊥AB;DF=AB;EG⊥AC;EG=AC;∴∠AFD=∠AGE=90°;DF=AF;GE=AG.∵M是BC的中点;∴MF∥AC;MG∥AB;∴四边形AFMG是平行四边形;∴AG=MF;MG=AF;∠AFM=∠AGM.∴MF=GE;DF=MG;∠AFM+∠AFD=∠AGM+∠AGE;∴∠DFM=∠MGE.∵在△DFM和△MGE中;;∴△DFM≌△MGESAS;∴DM=ME;3i∵点M、F、G分别是BC、AB、AC的中点; ∴MF∥AC;MF=AC;MG∥AB;MG=AB;∴四边形MFAG是平行四边形;∴MG=AF;MF=AG.∠AFM=∠AGM.∵△ADB和△AEC是等腰直角三角形;∴DF=AF;GE=AG;∠AFD=∠BFD=∠AGE=90°∴MF=EG;DF=MG;∠AFM﹣∠AFD=∠A GM﹣∠AGE;即∠DFM=∠MGE.∵在△DFM和△MGE中;∴△DFM≌△MGESAS;∴MD=ME;∠MDF=∠EMG.∵MG∥AB;∴∠MHD=∠BFD=90°;∴∠HMD+∠MDF=90°;∴∠HMD+∠EMG=90°;即∠DME=90°;∴△DME为等腰直角三角形;ii如图4;△ADB和△AEC是直角三角形;∠ADB=∠AEC=90°;当∠BAD=∠CAE时;DM=EM.理由:作AB、AC的中点F、G;连接DF;MF;EG;MG;∴MF=AC;MF∥AC;MG=AB;MG∥AB;∴四边形AFMG是平行四边形;∴MF=AG;MG=AF;∠AFM=∠AGM.∵∠ADB=∠AEC=90°;∴DF=AF;EG=AG;∴DF=MG;MF=EG;∠FDA=∠DAF;∠AGE=∠GAE.∵∠BAD=∠CAE;∴∠FDA=∠DAF=∠AGE=∠GAE;∴∠AFD=∠AGE;∴∠AFD﹣∠AFM=∠AGE﹣∠AGM;即∠DFM=∠MGE.∵在△DFM和△MGE中;;∴△DFM≌△MGESAS;∴DM=ME.故答案为:①②③④.点评:本题考查了等腰直角三角形的性质的运用;等腰三角形的性质的运用;全等三角形的判定及性质的运用;三角形的中位线的性质的运用;直角三角形的斜边上的中线的性质的运用;平行四边形的判定及性质的运用;解答时根据三角形的中位线的性质制造全等三角形是解答本题的关键.25.12分已知抛物线y n=﹣x﹣a n2+a n n为正整数;且0<a1<a2<…<a n与x轴的交点为A n﹣1b n﹣1;0和A n b n;0;当n=1时;第1条抛物线y1=﹣x﹣a12+a1与x轴的交点为A00;0和A1b1;0;其他依此类推.1求a1;b1的值及抛物线y2的解析式;2抛物线y3的顶点坐标为9 ; 9 ;依此类推第n条抛物线y n的顶点坐标为n2; n2;所有抛物线的顶点坐标满足的函数关系式是y=x ;3探究下列结论:①若用A n﹣1A n表示第n条抛物线被x轴截得的线段长;直接写出A0A1的值;并求出A n﹣1A n;②是否存在经过点A2;0的直线和所有抛物线都相交;且被每一条抛物线截得的线段的长度都相等若存在;直接写出直线的表达式;若不存在;请说明理由.考点:二次函数综合题.分析:1因为点A00;0在抛物线y1=﹣x﹣a12+a1上;可求得a1=1;则y1=﹣x﹣12+1;令y1=0;求得A12;0;b1=2;再由点A12;0在抛物线y2=﹣x﹣a22+a2上;求得a2=4;y2=﹣x﹣42+4.2求得y1的顶点坐标1;1;y2的顶点坐标4;4;y3的顶点坐标9;9;依此类推;y n的顶点坐标为n2;n2.因为所有抛物线顶点的横坐标等于纵坐标;所以顶点坐标满足的函数关系式是:y=x.3①由A00;0;A12;0;求得A0A1=2;y n=﹣x﹣n22+n2;令y n=0;求得A n﹣1n2﹣n;0;A n n2+n;0;所以A n﹣1A n=n2+n﹣n2﹣n=2n;②设直线解析式为:y=kx﹣2k;设直线y=kx﹣2k与抛物线y n=﹣x﹣n22+n2交于Ex1;y1;Fx2;y2两点;联立两式得一元二次方程;得到x1+x2=2n2﹣k;x1x2=n4﹣n2﹣2k.然后作辅助线;构造直角三角形;求出EF2的表述式为:EF2=k2+14n21﹣k+k2+8k;可见当k=1时;EF2=9为定值.所以满足条件的直线为:y=x﹣2.解答:解:1∵当n=1时;第1条抛物线y1=﹣x﹣a12+a1与x轴的交点为A00;0; ∴0=﹣0﹣a12+a1;解得a1=1或a1=0.由已知a1>0;∴a1=1;∴y1=﹣x﹣12+1.令y1=0;即﹣x﹣12+1=0;解得x=0或x=2;∴A12;0;b1=2.由题意;当n=2时;第2条抛物线y2=﹣x﹣a22+a2经过点A12;0;∴0=﹣2﹣a22+a2;解得a2=1或a2=4;∵a1=1;且已知a2>a1;∴a2=4;∴y2=﹣x﹣42+4.∴a1=1;b1=2;y2=﹣x﹣42+4.2抛物线y2=﹣x﹣42+4;令y2=0;即﹣x﹣42+4=0;解得x=2或x=6.∵A12;0;∴A26;0.由题意;当n=3时;第3条抛物线y3=﹣x﹣a32+a3经过点A26;0;∴0=﹣6﹣a32+a3;解得a3=4或a3=9.∵a2=4;且已知a3>a2;∴a3=9;∴y3=﹣x﹣92+9.∴y3的顶点坐标为9;9.由y1的顶点坐标1;1;y2的顶点坐标4;4;y3的顶点坐标9;9;依此类推;y n的顶点坐标为n2;n2.∵所有抛物线顶点的横坐标等于纵坐标;∴顶点坐标满足的函数关系式是:y=x.3①∵A00;0;A12;0;∴A0A1=2.y n=﹣x﹣n22+n2;令y n=0;即﹣x﹣n22+n2=0;解得x=n2+n或x=n2﹣n;∴A n﹣1n2﹣n;0;A n n2+n;0;即A n﹣1A n=n2+n﹣n2﹣n=2n.②存在.设过点2;0的直线解析式为y=kx+b;则有:0=2k+b;得b=﹣2k;∴y=kx﹣2k.设直线y=kx﹣2k与抛物线y n=﹣x﹣n22+n2交于Ex1;y1;Fx2;y2两点;联立两式得:kx﹣2k=﹣x﹣n22+n2;整理得:x2+k﹣2n2x+n4﹣n2﹣2k=0; ∴x1+x2=2n2﹣k;x1x2=n4﹣n2﹣2k.过点F作FG⊥x轴;过点E作EG⊥FG于点G;则EG=x2﹣x1;。

2024年江西省中考数学试卷+答案解析

2024年江西省中考数学试卷+答案解析

2024年江西省中考数学试卷一、选择题:本题共6小题,每小题3分,共18分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.的相反数是()A. B.5 C. D.2.“长征是宣言书,长征是宣传队,长征是播种机”.二万五千里长征是中国历史上的伟大壮举,也是人类史上的奇迹.将25000用科学记数法可表示为()A. B. C. D.3.如图所示的几何体,其主视图为()A.B.C.D.4.将常温中的温度计插入一杯的热水恒温中,温度计的读数与时间的关系用图象可近似表示为()A. B.C. D.5.如图是某地去年一至六月每月空气质量为优的天数的折线统计图,关于各月空气质量为优的天数,下列结论错误的是()A.五月份空气质量为优的天数是16天B.这组数据的众数是15天C.这组数据的中位数是15天D.这组数据的平均数是15天6.如图是的正方形网格,选择一空白小正方形,能与阴影部分组成正方体展开图的方法有()A.1种B.2种C.3种D.4种二、填空题:本题共6小题,每小题3分,共18分。

7.计算:______.8.因式分解:______.9.在平面直角坐标系中,将点向右平移2个单位长度,再向上平移3个单位长度得到点B,则点B 的坐标为______.10.观察a,,,,…,根据这些式子的变化规律,可得第100个式子为______.11.将图1所示的七巧板,拼成图2所示的四边形ABCD,连接AC,则______.12.如图,AB是的直径,,点C在线段AB上运动,过点C的弦,将沿DE翻折交直线AB于点F,当DE的长为正整数时,线段FB的长为______.三、解答题:本题共11小题,共84分。

解答应写出文字说明,证明过程或演算步骤。

13.本小题6分计算:;化简:14.本小题6分如图,AC为菱形ABCD的对角线,请仅用无刻度的直尺按要求完成以下作图保留作图痕迹如图1,过点B作AC的垂线;如图2,点E为线段AB的中点,过点B作AC的平行线.15.本小题6分某校一年级开设人数相同的A,B,C三个班级,甲、乙两位学生是该校一年级新生,开学初学校对所有一年级新生进行电脑随机分班.“学生甲分到A班”的概率是______;请用画树状图法或列表法,求甲、乙两位新生分到同一个班的概率.16.本小题6分如图,是等腰直角三角形,,双曲线经过点B,过点作x 轴的垂线交双曲线于点C,连接点B的坐标为______;求BC所在直线的解析式.17.本小题6分如图,AB是半圆O的直径,点D是弦AC延长线上一点,连接BD,BC,求证:BD是半圆O的切线;当时,求的长.18.本小题8分如图,书架宽84cm,在该书架上按图示方式摆放数学书和语文书,已知每本数学书厚,每本语文书厚数学书和语文书共90本恰好摆满该书架,求书架上数学书和语文书各多少本;如果书架上已摆放10本语文书,那么数学书最多还可以摆多少本?19.本小题8分图1是世界第一“大碗”——景德镇昌南里文化艺术中心主体建筑,其造型灵感来自于宋代湖田窑影青斗笠碗,寓意“万瓷之母”.如图2,“大碗”的主视图由“大碗”主体ABCD和矩形碗底BEFC组成,已知,AM,DN是太阳光线,,,点M,E,F,N在同一条直线上.经测量,,,结果精确到求“大碗”的口径AD的长;求“大碗”的高度AM的长.参考数据:,,20.本小题8分追本溯源题来自于课本中的习题,请你完成解答,提炼方法并完成题如图1,在中,BD平分,交AC于点D,过点D作BC的平行线,交AB于点E,请判断的形状,并说明理由.方法应用如图2,在▱ABCD中,BE平分,交边AD于点E,过点A作交DC的延长线于点F,交BC于点①图中一定是等腰三角形的有______.A.3个B.4个C.5个D.6个②已知,,求CF的长.21.本小题9分近年来,我国肥胖人群的规模快速增长.目前,国际上常用身体质量指数,缩写来衡量人体胖瘦程度,其计算公式是中国人的BMI数值标准为:为偏瘦;为正常;为偏胖;为肥胖.某数学兴趣小组对本校七年级学生的胖瘦程度进行统计调查,从该校所有七年级学生中随机抽出10名男生、10名女生,测得他们的身高和体重值,并计算出相应的BMI数值,再参照BMI数值标准分成四组:;;;将所得数据进行收集、整理、描述.收集数据七年级10名男生数据统计表编号12345678910身高体重BMI s七年级10名女生数据统计表编号12345678910身高体重BMI整理、描述数据七年级20名学生BMI频数分布表组别BMI男生频数女生频数A32B46C t2D10应用数据______,______,______;已知该校七年级有男生260人,女生240人.①估计该校七年级男生偏胖的人数;②估计该校七年级学生的人数.根据以上统计数据,针对该校七年级学生的胖瘦程度,请你提出一条合理化建议.22.本小题9分如图,一小球从斜坡O点以一定的方向弹出,球的飞行路线可以用二次函数刻画,斜坡可以用一次函数刻画,小球飞行的水平距离米与小球飞行的高度米的变化规律如表:x012m4567…y068n…①______,______;②小球的落点是A,求点A的坐标.小球飞行高度米与飞行时间秒满足关系:①小球飞行的最大高度为______米;②求v的值.23.本小题12分综合与实践如图,在中,点D是斜边AB上的动点点D与点A不重合,连接CD,以CD为直角边在CD的右侧构造,,连接BE,特例感知如图1,当时,BE与AD之间的位置关系是______,数量关系是______.类比迁移如图2,当时,猜想BE与AD之间的位置关系和数量关系,并证明猜想.拓展应用在的条件下,点F与点C关于DE对称,连接DF,EF,BF,如图已知,设,四边形CDFE的面积为①求y与x的函数表达式,并求出y的最小值;②当时,请直接写出AD的长度.答案和解析1.【答案】B【解析】【分析】本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是根据相反数的定义直接求得结果.【解答】解:的相反数是故选:2.【答案】C【解析】解:,故选:将一个数表示成的形式,其中,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.3.【答案】B【解析】解:由题干中的几何体可得其主视图为,故选:结合图形,根据主视图的定义即可求得答案.本题考查简单组合体的三视图,此为基础且重要知识点,必须熟练掌握.4.【答案】C【解析】解:将常温中的温度计插入一杯的热水中,温度计的度数与时间的关系,图象是C;故选:根据温度计上升到一定的温度后不变,可得答案;本题考查了函数图象,注意温度计的温度升高到60度时温度不变.5.【答案】D【解析】解:A、根据折线图,五月份空气质量为优的天数是16天,故不符合题意;B、根据折线图,这组数据的众数是15天,故不符合题意;C、这组数据的中位数是天,故不符合题意;D、这组数据的平均数是,故符合题意.故选:分析折线统计图中的数据即可求出答案.本题考查了折线统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.6.【答案】B【解析】解:如图所示:选择标有1或2的位置的空白小正方形,能与阴影部分组成正方体展开图,所以能与阴影部分组成正方体展开图的方法有2种.故选:依据正方体的展开图的结构特征进行判断,即可得出结论.此题主要考查了几何体的展开图,关键是掌握正方体展开图的特点.7.【答案】1【解析】解:,故答案为:利用有理数的乘方法则计算即可.本题考查有理数的乘方,熟练掌握其运算法则是解题的关键.8.【答案】【解析】解:故答案为:直接提取公因式a,进而分解因式得出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.9.【答案】【解析】解:将点向右平移2个单位长度,再向上平移3个单位长度得到点B,则点B的坐标为,即故答案为:根据向右平移横坐标加,向上平移纵坐标加计算即可.本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.10.【答案】【解析】解:根据题意可知,有一列按照一定规律排列的单项式:a,,,,…,第100个式子为:,故答案为:根据题意可知,有一列按照一定规律排列的单项式:a,,,,…,据此可以得出第100个式子为:本题考查的是数字的变化规律和单项式,熟练找出数字间的变化规律是解题的关键.11.【答案】【解析】解:令AC与BD的交点为O,,,又,四边形ABCD是平行四边形,与BD互相平分,,在中,故答案为:根据所给拼图,得出四边形ABCD是平行四边形,根据平行四边形的性质及正切的定义即可解决问题.本题考查解直角三角形、七巧板及平行四边形的判定与性质,能根据所拼图形得出四边形ABCD是平行四边形及熟知正切的定义是解题的关键.12.【答案】或或2【解析】解:为直径,DE为弦,,当DE的长为正整数时,或2,当时,即DE为直径,,将DBE沿DE翻折交直线AB于点F,此时F与点A重合,故;当时,且在点C在线段OB之间,如图,连接OD,此时,,,,,;当时,且点C在线段OA之间,连接OD,同理可得,;综上,可得线段FB的长为或或2,故答案为:或或根据,可得或2,利用勾股定理进行解答即可.本题考查了圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.13.【答案】解:原式;原式【解析】利用零指数幂及绝对值的性质计算即可;利用分式的加减法则计算即可.本题考查零指数幂,绝对值,分式的加减,熟练掌握相关运算法则是解题的关键.14.【答案】解:如图1,连接BD,四边形ABCD为菱形,,则BD即为所求.如图2,连接CE并延长,交DA的延长线于点F,作直线BF,四边形ABCD为菱形,,,,点E为线段AB的中点,,≌,,四边形ACBF为平行四边形,,则直线BF即为所求.【解析】连接BD,根据菱形的性质可知,BD即为所求.结合菱形的性质、平行四边形的判定与性质、全等三角形的判定与性质,连接CE并延长,交DA的延长线于点F,作直线BF,则直线BF即为所求.本题考查作图-复杂作图、菱形的性质、平行四边形的判定与性质、全等三角形的判定与性质,解题的关键是理解题意,灵活运用所学知识解决问题.15.【答案】【解析】解:由题意知,共有3种等可能的结果,其中学生甲分到A班的结果有1种,“学生甲分到A班”的概率是故答案为:列表如下:A B CABC共有9种等可能的结果,其中甲、乙两位新生分到同一个班的结果有3种,甲、乙两位新生分到同一个班的概率为由题意知,共有3种等可能的结果,其中学生甲分到A班的结果有1种,利用概率公式可得答案.列表可得出所有等可能的结果数以及甲、乙两位新生分到同一个班的结果数,再利用概率公式可得出答案.本题考查列表法与树状图法、概率公式,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.16.【答案】【解析】解:过点B作x轴的垂线,垂足为M,点A坐标为,又是等腰直角三角形,,点B的坐标为故答案为:将点B坐标代入反比例函数解析式得,,反比例函数解析式为轴,将代入反比例函数解析式得,,点C的坐标为令直线BC的函数解析式为,将点B和点C的坐标代入函数解析式得,,解得,所以直线BC的函数解析式为过点B作x轴的垂线,根据等腰直角三角形的性质即可解决问题.求出点C的坐标,再利用待定系数法即可解决问题.本题考查待定系数法求反比例函数和一次函数解析式及等腰直角三角形的性质,熟知待定系数法及等腰直角三角形的性质是解题的关键.17.【答案】证明:是半圆O的直径,,,,,,是半圆O的直径,是半圆O的切线;解:连接OC,,,,是等边三角形,,的长【解析】根据圆周角定理得到,得到,求得,根据切线的判定定理即可得到结论;连接OC,根据圆周角定理得到,根据等边三角形的性质得到,根据弧长公式即可得到的长本题考查了切线的判定和性质,弧长的计算,圆周角定理,正确地作出辅助线是解题的关键.18.【答案】解:设书架上数学书x本,则语文书本,根据题意得,,解得,所以,答:书架上数学本60本,语文书30本.设数学书还可以摆m本,则,解得,所以数学书最多还可以摆90本.【解析】根据数学本和语文本的厚度,结合数学书和语文书的本书即可解决问题.用书架宽减去10本语文书的厚度,再利用数学书的本书即可解决问题.本题考查二元一次方程组的应用及一元一次不等式的应用,能根据题意找出题中的等量关系并建立方程及不等式是解题的关键.19.【答案】解:,,,,,四边形AMND是矩形,,“大碗”的口径AD的长为;延长CB交AM于点G,由题意得:,,,,,,在中,,,“大碗”的高度AM的长约为【解析】根据垂直定义可得,再利用平行线的性质可得,从而可得四边形AMND是矩形,然后利用矩形的性质可得,从而利用线段的和差关系进行计算即可解答;延长CB交AM于点G,根据题意可得:,,,,从而可得,然后在中,利用锐角三角函数的定义求出AG的长,从而利用线段的和差关系进行计算,即可解答.本题考查了解直角三角形的应用,矩形的判定与性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.20.【答案】B【解析】解:的形状是等腰三角形,理由如下:平分,,,,,是等腰三角形.①共有四个等腰三角形.分别是:,,,,故答案为:B;②由可知,,,,,,,,,,,,,由角平分线的定义得出由平行线的性质得出,证出,则可得出结论;①由等腰三角形的判定可得出结论;②由可知,,证出,则可得出答案.本题考查了等腰三角形的判定与性质,平行线的性质,角平分线的定义,熟练掌握等腰三角形的性质是解题的关键.21.【答案】【解析】解:由题意得,,,,故答案为:22,2,;①估计该校七年级男生偏胖的人数有:人;②估计该校七年级学生的人数有:人;由统计表可知,该校七年级学生的偏瘦、偏胖或肥胖的人数约半数,建议该校加强学生的体育锻炼,加强科学饮食习惯的宣传.答案不唯一根据公式计算可得s;用10分别减去其它组男生的频数可得t的值;用乘C组人数所占比例可得的值;利用样本估计总体即可;根据七年级20名学生BMI频数分布表数据解答即可答案不唯一本题考查了频数分布表和用样本估计总体,熟练掌握用样本估计总体的方法是解题的关键.22.【答案】368【解析】解:①根据小球飞行的水平距离米与小球飞行的高度米的变化规律表可知,抛物线顶点坐标为,,解得:,二次函数解析式为,当时,,解得:或舍去,,当时,,故答案为:3,②联立得:,解得:或,点A的坐标是①由题干可知小球飞行最大高度为8米,故答案为:②,则,解得负值舍去①由抛物线的顶点坐标为可建立过于a,b的二元一次方程组,求出a,b的值即可;②联立两函数解析式求解,可求出交点A的坐标;①根据第一问可知最大高度为8米;②将小球飞行高度与飞行时间的函数关系式化简为顶点式即可求得v值.本题主要考查二次函数的应用,从图象和表格中获取数据是解题的关键.23.【答案】【解析】解:,,理由:,,,,,,≌,,,,;故答案为:,;,,证明:,,,∽,,,,,,,;①连接CF交DE于O,由知,,,,,,,,点F与点C关于DE对称,垂直平分CF,,,,,,四边形CDFE是正方形,,与x的函数表达式为,,的最小值为18;②过D作于H,则是等腰直角三角形,,,连接OB,,,,,,,,,解得或,或由,得到,,根据等腰直角三角形的性质得到,,根据全等三角形的性质得到,,根据垂直的定义得到;根据相似三角形的判定定理得到∽,求得,,得到,根据垂直的定义得到;①连接CF交DE于O,由知,,,求得,得到,根据勾股定理得到,根据线段垂直平分线的性质得到,,推出四边形CDFE是正方形,根据正方形的面积公式即可得到,根据二次函数的性质即可得到结论;②过D作于H,根据等腰直角三角形到现在得到,求得,连接OB,推出,得到,根据勾股定理得到结论.本题是相似形的综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质,正方形的判定和性质.勾股定理,正确地作出辅助线是解题的关键.。

江西南昌市2022中考试卷-数学(解析版)

江西南昌市2022中考试卷-数学(解析版)

江西南昌市2022中考试卷-数学(解析版)一.选择题(共12小题)1.(2020江西)﹣1的绝对值是()A. 1 B. 0 C.﹣1 D.±1考点:绝对值。

分析:依照绝对值的性质进行解答即可.解答:解:∵﹣1<0,∴|﹣1|=1.故选A.点评:本题考查的是绝对值的性质,即一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是零.2.(2020南昌)在下列表述中,不能表示代数式“4a”的意义的是()A. 4的a倍B. a的4倍C. 4个a相加D.4个a相乘考点:代数式。

分析:说出代数式的意义,实际上确实是把代数式用语言叙述出来.叙述时,要求既要说明运算的顺序,又要说出运算的最终结果.解答:解:A.4的a倍用代数式表示4a,故本选项正确;B.a的4倍用代数式表示4a,故本选项正确;C.4个a相加用代数式表示a+a+a+a=4a,故本选项正确;D.4个a相乘用代数式表示a•a•a•a=a4,故本选项错误;故选D.点评:本题考查了用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.具体说法没有统一规定,以简明而不引起误会为动身点.3.(2020江西)等腰三角形的顶角为80°,则它的底角是()A. 20°B. 50°C. 60°D.80°考点:等腰三角形的性质。

分析:依照三角形内角和定理和等腰三角形的性质,能够求得其底角的度数.解答:解:∵等腰三角形的一个顶角为80°∴底角=(180°﹣80°)÷2=50°.故选B.点评:考查三角形内角和定理和等腰三角形的性质的运用,比较简单.4.(2020江西)下列运算正确的是()A. a3+a3=2a6B. a6÷a﹣3=a3C. a3a3=2a3D.(﹣2a2)3=﹣8a6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。

2019年江西省南昌市中考数学试卷(含答案)

2019年江西省南昌市中考数学试卷(含答案)

9.(3 分)(2019•南昌)若 α,β 是方程 x2﹣2x﹣3=0 的两个实数根,则 α2+β2 的值为( )
A 10 .
B9 .
C7 .
D5 .
考点:根与系数的关系. 菁优网版权所有
分析: 根据根与系数的关系求得 α+β=2,αβ=﹣3,则将所求的代数式变形为(α+β)2﹣2αβ, 将其整体代入即可求值.
解答:解:A.a2 与 a3 不能合并,故本项错误; B.(﹣2a2)3=﹣8a6,故本项错误;
C.(2a+1)(2a﹣1)=4a2﹣1,故本项错误;
D.(2a3﹣a2)÷a2=2a﹣1,本项正确, 故选:D. 点评:本题主要考查了积的乘方运算、平方差公式以及多项式除以单项式和合并同类项, 熟练掌握运算法则是解题的关键. 5.(3 分)(2019•南昌)如图,贤贤同学用手工纸制作一个台灯灯罩,做好后发现上口太小了,于是他把 纸灯罩对齐压扁,剪去上面一截后,正好合适,以下裁剪示意图中,正确的是( )
A
B
C
D




考点:简单几何体的三视图. 菁优网版权所有
分析:根据从正面看得到的图形是主视图,可得答案.
解答:解:压扁后圆锥的主视图是梯形,故该圆台压扁后的主视图是 A 选项中所示的图 形. 故选:A.
点评:本题考查了简单组合体的三视图,压扁是主视图是解题关键.
6.(3 分)(2019•南昌)小锦和小丽购买了价格分别相同的中性笔和笔芯,小锦买了 20 支笔和 2 盒笔芯,
解答:解:设每支中性笔 x 元和每盒笔芯 y 元,由题意得,

故选:B. 点评:此题考查实际问题抽出二元一次方程组,要注意抓住题目中的一些关键性词语,找

2023年江西省中考数学真题试卷(解析版)

2023年江西省中考数学真题试卷(解析版)

2023年江西省中考数学真题试卷及答案一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填涂在答题卡相应位置.错选、多选或未选均不得分.1. 下列各数中,正整数是()A. B. C. D.【答案】A【解析】根据有理数的分类即可求解.解:是正整数,是小数,不是整数,不是正数,不是正数,故选:A.【点拨】本题考查了有理数的分类,熟练掌握有理数的分类是解题的关键.2. 下列图形中,是中心对称图形的是()A. B. C.D.【答案】B【解析】根据中心对称图形的定义:把一个图形绕某一点旋转,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.解:选项A.C.D均不能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以不是中心对称图形;选项B能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以是中心对称图形;故选:B.【点拨】本题主要考查了中心对称图形,关键找出对称中心.3. 若有意义,则的值可以是( )A. B.C.D.【答案】D 【解析】根据二次根式有意义的条件即可求解.解:∵有意义,∴,解得:,则的值可以是故选:D .【点拨】本题考查了二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键. 4. 计算的结果为( )A. B.C.D.【答案】A 【解析】根据积的乘方计算法则求解即可.解:,故选A .【点拨】本题主要考查了积的乘方计算,熟知相关计算法则是解题的关键.5. 如图,平面镜放置在水平地面上,墙面于点,一束光线照射到镜面上,反射光线为,点在上,若,则的度数为( )A. B. C. D.【答案】C 【解析】根据题意可得,进而根据直角三角形的两个锐角互余即可求解.解:依题意,,∴,∵,∴,故选:C.【点拨】本题考查了直角三角形中两个锐角互余,入射角等于反射角,熟练掌握以上知识是解题的关键.6. 如图,点,,,均在直线上,点在直线外,则经过其中任意三个点,最多可画出圆的个数为()A. 3个B. 4个C. 5个D. 6个【答案】D【解析】根据不共线三点确定一个圆可得,直线上任意2个点加上点可以画出一个圆,据此列举所有可能即可求解.解:依题意,;;;;,加上点可以画出一个圆,∴共有6个,故选:D.【点拨】本题考查了确定圆的条件,熟练掌握不共线三点确定一个圆是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)7. 单项式的系数为______.【答案】【解析】根据单项式系数的定义:单项式中的数字因数,得出结果即可.解:单项式的系数是.故答案是:.【点拨】本题考查单项式的系数,解题的关键是掌握单项式系数的定义.8. 我国海洋经济复苏态势强劲.在建和新开工海上风电项目建设规模约1800万千瓦,比上一年同期翻一番,将18000000用科学记数法表示应为_______.【答案】【解析】根据科学记数法的表示形式进行解答即可.解:,故答案为:.【点拨】本题考查科学记数法,熟练掌握科学记数法的表示形式为(,a为整数)的形式,n的绝对值与小数点移动的位数相同是解题的关键.9. 计算:(a+1)2﹣a2=_____.【答案】2a+1【解析】原式利用完全平方公式展开,然后合并同类项即可得到结果.(a+1)2﹣a2=a2+2a+1﹣a2=2a+1,故答案为2a+1.【点拨】本题考查了整式的混合运算,熟练掌握完全平方公式以及合并同类项的法则是解题的关键.10. 将含角的直角三角板和直尺按如图所示的方式放置,已,点,表示的刻度分别为,则线段的长为_______cm.【答案】【解析】根据平行线的性质得出,进而可得是等边三角形,根据等边三角形的性质即可求解.解:∵直尺的两边平行,∴,又,∴是等边三角形,∵点,表示的刻度分别为,∴,∴∴线段的长为,故答案为:.【点拨】本题考查了平行线的性质,等边三角形的性质与判定,得出是解题的关键.11. 《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度如图,点,,在同一水平线上,和均为直角,与相交于点.测得,则树高______m.【答案】【解析】根据题意可得,然后相似三角形的性质,即可求解.解:∵和均为直角∴,∴,∴∵,∴,故答案为:.【点拨】本题考查了相似三角形的应用,熟练掌握相似三角形的性质与判定是解题的关键.12. 如图,在中,,将绕点逆时针旋转角()得到,连接,.当为直角三角形时,旋转角的度数为_______.【答案】或或【解析】连接,根据已知条件可得,进而分类讨论即可求解.解:连接,取的中点,连接,如图所示,∵在中,,∴,∴是等边三角形,∴,,∴∴,∴∴,如图所示,当点在上时,此时,则旋转角的度数为,当点在的延长线上时,如图所示,则当在的延长线上时,则旋转角的度数为,如图所示,∵,,∴四边形是平行四边形,∵∴四边形是矩形,∴即是直角三角形,综上所述,旋转角的度数为或或故答案为:或或.【点拨】本题考查了平行四边形的性质与判定,等边三角形的性质与判定,矩形的性质与判定,旋转的性质,熟练掌握旋转的性质是解题的关键.三、解答题(本大题共5小题,每小题6分,共30分)13. (1)计算:(2)如图,,平分.求证:.【答案】(1)2;(2)证明见解析【解析】(1)先计算立方根,特殊角三角函数值和零指数幂,再计算加减法即可;(2)先由角平分线的定义得到,再利用证明即可.解:(1)原式;(2)∵平分,∴,在和中,,∴.【点拨】本题主要考查了实数的运算,零指数幂,特殊角三角函数值,全等三角形的判定,角平分线的定义等等,灵活运用所学知识是解题的关键.14. 如图是的正方形网格,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).(1)在图1中作锐角,使点C在格点上;(2)在图2中的线段上作点Q,使最短.【答案】(1)作图见解析(2)作图见解析【解析】(1)如图,取格点,使,在的左上方的格点满足条件,再画三角形即可;(2)利用小正方形的性质取格点,连接交于,从而可得答案.【小问1详解】解:如图,即为所求作的三角形;【小问2详解】如图,即为所求作的点;【点拨】本题考查的是复杂作图,同时考查了三角形的外角的性质,正方形的性质,垂线段最短,熟记基本几何图形的性质再灵活应用是解本题的关键.15. 化简.下面是甲、乙两同学的部分运算过程:解:原式……解:原式……(1)甲同学解法的依据是________,乙同学解法的依据是________;(填序号)①等式的基本性质;②分式的基本性质;③乘法分配律;④乘法交换律.(2)请选择一种解法,写出完整的解答过程.【答案】(1)②,③ (2)见解析【解析】(1)根据所给的解题过程即可得到答案;(2)甲同学的解法:先根据分式的基本性质把小括号内的分式先同分,然后根据分式的加法计算法则求解,最后根据分式的乘法计算法则求解即可;乙同学的解法:根据乘法分配律去括号,然后计算分式的乘法,最后合并同类项即可.【小问1详解】解:根据解题过程可知,甲同学解法的依据是分式的基本性质,乙同学解法的依据是乘法分配律,故答案为:②,③;【小问2详解】解:甲同学的解法:原式;乙同学的解法:原式.【点拨】本题主要考查了分式的混合计算,熟知相关计算法则是解题的关键.16. 为了弘扬雷锋精神,某校组织“学雷锋,争做新时代好少年”的宣传活动,根据活动要求,每班需要2名宣传员,某班班主任决定从甲、乙、丙、丁4名同学中随机选取2名同学作为宣传员.(1)“甲、乙同学都被选为宣传员”是_______事件:(填“必然”、“不可能”或“随机”)(2)请用画树状图法或列表法,求甲、丁同学都被选为宣传员的概率.【答案】(1)随机(2)【解析】(1)由确定事件与随机事件的概念可得答案;(2)先画树状图得到所有可能的情况数与符合条件的情况数,再利用概率公式计算即可.【小问1详解】解:“甲、乙同学都被选为宣传员”是随机事件;【小问2详解】画树状图为:共有12种等可能的结果,其中选中的两名同学恰好是甲,丁的结果数为2,所以选中的两名同学恰好是甲,丁的概率.【点拨】本题考查的是事件的含义,利用画树状图求解随机事件的概率,熟记事件的概念与分类以及画树状图的方法是解本题的关键.17. 如图,已知直线与反比例函数的图象交于点,与y轴交于点B,过点B 作x轴的平行线交反比例函数的图象于点C.(1)求直线和反比例函数图象的表达式;(2)求的面积.【答案】(1)直线的表达式为,反比例函数的表达式为(2)6【解析】(1)利用待定系数法求函数解析式即可;(2)由一次函数解析式求得点B的坐标,再根据轴,可得点C的纵坐标为1,再利用反比例函数表达式求得点C坐标,即可求得结果.【小问1详解】解:∵直线与反比例函数的图象交于点,∴,,即,∴直线的表达式为,反比例函数的表达式为.【小问2详解】解:∵直线的图象与y轴交于点B,∴当时,,∴,∵轴,直线与反比例函数的图象交于点C,∴点C纵坐标为1,∴,即,∴,∴,∴.【点拨】本题考查用待定系数法求一次函数和反比例函数解析式、一次函数与反比例函数的交点、一次函数与y轴的交点,熟练掌握用待定系数法求函数解析式是解题的关键.四、解答题(本大题共3小题,每小题8分,共24分)18. 今年植树节,某班同学共同种植一批树苗,如果每人种3棵,则剩余20棵;如果每人种4棵,则还缺25棵.(1)求该班的学生人数;(2)这批树苗只有甲、乙两种,其中甲树苗每棵30元,乙树苗每棵40元.购买这批树苗的总费用没有超过5400元,请问至少购买了甲树苗多少棵?【答案】(1)该班的学生人数为45人(2)至少购买了甲树苗80棵【解析】(1)设该班的学生人数为x人,根据两种方案下树苗的总数不变列出方程求解即可;(2)根据(1)所求求出树苗的总数为155棵,设购买了甲树苗m棵,则购买了乙树苗棵树苗,再根据总费用不超过5400元列出不等式求解即可.【小问1详解】解:设该班的学生人数为x人,由题意得,,解得,∴该班的学生人数为45人;【小问2详解】解:由(1)得一共购买了棵树苗,设购买了甲树苗m棵,则购买了乙树苗棵树苗,由题意得,,解得,∴m得最小值为80,∴至少购买了甲树苗80棵,答:至少购买了甲树苗80棵.【点拨】本题主要考查了一元一次方程的实际应用,一元一次不等式的实际应用,正确理解题意找到等量关系列出方程,找到不等关系列出不等式是解题的关键.19. 如图1是某红色文化主题公园内的雕塑,将其抽象成加如图2所示的示意图,已知点,,,均在同一直线上,,测得.(结果保小数点后一位)(1)连接,求证:;(2)求雕塑的高(即点E到直线BC的距离).(参考数据:)【答案】(1)见解析(2)雕塑的高约为米【解析】(1)根据等边对等角得出,根据三角形内角和定理得出,进而得出,即可得证;(2)过点作,交的延长线于点,在中,得出,则,在中,根据,即可求解.(1)解:∵,∴∵即∴即∴;(2)如图所示,过点作,交的延长线于点,在中,∴,∴∴在中,,∴(米).答:雕塑的高约为米.【点拨】本题考查了等腰三角形的性质,三角形内角和定理的应用,解直角三角形的应用,熟练掌握三角函数的定义是解题的关键.20. 如图,在中,,以为直径的与相交于点D,E为上一点,且.(1)求长;(2)若,求证:为的切线.【答案】(1)(2)证明见解析【解析】(1)如图所示,连接,先求出,再由圆周角定理得到,进而求出,再根据弧长公式进行求解即可;(2)如图所示,连接,先由三角形内角和定理得到,则由圆周角定理可得,再由是的直径,得到,进而求出,进一步推出,由此即可证明是的切线.(1)解:如图所示,连接,∵是的直径,且,∴,∵E为上一点,且,∴,∴,∴的长;(2)证明:如图所示,连接,∵,,∴,∴,∵是的直径,∴,∴,∵,∴,即,∵是的半径,∴是的切线.【点拨】本题主要考查了切线的判定,求弧长,圆周角定理,三角形内角和定理等等,正确作出辅助线是解题的关键.五、解答题(本大题共2小题,每小题9分,共18分)21. 为了解中学生的视力情况,某区卫健部门决定随机抽取本区部分初、高中学生进行调查,并对他们的视力数据进行整理,得到如下统计表和统计图.整理描述初中学生视力情况统计表视力人数百分比0.6及以下80.7160.8280.934m及以上46n合计200高中学生视力情况统计图(1)_______,_______;(2)被调查的高中学生视力情况的样本容量为_______;(3)分析处理:①小胡说:“初中学生的视力水平比高中学生的好.”请你对小胡的说法进行判断,并选择一个能反映总体的统计量说明理由:②约定:视力未达到为视力不良.若该区有26000名中学生,估计该区有多少名中学生视力不良?并对视力保护提出一条合理化建议.【答案】(1);;(2);(3)①小胡的说法合理,选择中位数,理由见解析;②14300人,合理化建议见解析,合理即可.【解析】(1)由总人数乘以视力为的百分比可得的值,再由视力1.1及以上的人数除以总人数可得的值;(2)由条形统计图中各数据之和可得答案;(3)①选择视力的中位数进行比较即可得到小胡说法合理;②由中学生总人数乘以样本中视力不良的百分比即可,根据自身体会提出合理化建议即可.(1)解:由题意可得:初中样本总人数:人,∴(人),;(2)由题意可得:,∴被调查的高中学生视力情况的样本容量为;(3)①小胡说:“初中学生的视力水平比高中学生的好.”小胡的说法合理;初中学生视力的中位数为第100个与第101个数据的平均数,落在视力为这一组,而高中学生视力的中位数为第160个与第161个数据的平均数,落在视力为的这一组,而,∴小胡的说法合理.②由题意可得:(人),∴该区有26000名中学生,估计该区有名中学生视力不良;合理化建议为:学校可以多开展用眼知识的普及,规定时刻做眼保健操.【点拨】本题考查的是从频数分布表与频数分布直方图中获取信息,中位数的含义,利用样本估计总体,理解题意,确定合适的统计量解决问题是解本题的关键.22. 课本再现思考我们知道,菱形的对角线互相垂直.反过来,对角线互相垂直的平行四边形是菱形吗?可以发现并证明菱形一个判定定理;对角线互相垂直的平行四边形是菱形.(1)定理证明:为了证明该定理,小明同学画出了图形(如图1),并写出了“已知”和“求证”,请你完成证明过程.己知:在中,对角线,垂足为.求证:是菱形.(2)知识应用:如图,在中,对角线和相交于点,.①求证:是菱形;②延长至点,连接交于点,若,求的值.【答案】(1)见解析(2)①见解析;②【解析】(1)根据平行四边形的性质证明得出,同理可得,则,,进而根据四边相等的四边形是菱形,即可得证;(2)①勾股定理的逆定理证明是直角三角形,且,得出,即可得证;②根据菱形的性质结合已知条件得出,则,过点作交于点,根据平行线分线段成比例求得,然后根据平行线分线段成比例即可求解.(1)证明:∵四边形是平行四边形,∴,,∵∴,在中,∴∴,同理可得,则,又∵∴∴四边形是菱形;(2)①证明:∵四边形是平行四边形,.∴在中,,,∴,∴是直角三角形,且,∴,∴四边形是菱形;②∵四边形是菱形;∴∵,∴,∵,∴,∴,如图所示,过点作交于点,∴,∴,∴.【点拨】本题考查了菱形的性质与判定,勾股定理以及勾股定理的逆定理,等腰三角形的性质与判定,平行线分线段成比例,熟练掌握菱形的性质与判定是解题的关键.六、解答题(本大题共12分)23. 综合与实践问题提出:某兴趣小组开展综合实践活动:在中,,D为上一点,,动点P以每秒1个单位的速度从C点出发,在三角形边上沿匀速运动,到达点A时停止,以为边作正方形设点P的运动时间为,正方形的而积为S,探究S与t的关系(1)初步感知:如图1,当点P由点C运动到点B时,①当时,_______.②S关于t的函数解析式为_______.(2)当点P由点B运动到点A时,经探究发现S是关于t的二次函数,并绘制成如图2所示的图象请根据图象信息,求S关于t的函数解析式及线段的长.(3)延伸探究:若存在3个时刻()对应的正方形的面积均相等.①_______;②当时,求正方形的面积.【答案】(1)①3;②(2),(3)①4;②【解析】(1)①先求出,再利用勾股定理求出,最后根据正方形面积公式求解即可;②仿照(1)①先求出,进而求出,则;(2)先由函数图象可得当点P运动到B点时,,由此求出当时,,可设S关于t的函数解析式为,利用待定系数法求出,进而求出当时,求得t的值即可得答案;(3)①根据题意可得可知函数可以看作是由函数向右平移四个单位得到的,设是函数上的两点,则,是函数上的两点,由此可得,则,根据题意可以看作,则;②由(3)①可得,再由,得到,继而得答案.(1)解:∵动点P以每秒1个单位的速度从C点出发,在三角形边上沿匀速运动,∴当时,点P在上,且,∵,,∴,∴,故答案为:3;②∵动点P以每秒1个单位的速度从C点出发,在匀速运动,∴,∵,,∴,∴;(2)解:由图2可知当点P运动到B点时,,∴,解得,∴当时,,由图2可知,对应的二次函数的顶点坐标为,∴可设S关于t的函数解析式为,把代入中得:,解得,∴S关于t的函数解析式为,在中,当时,解得或,∴;(3)解:①∵点P在上运动时,,点P在上运动时,∴可知函数可以看作是由函数向右平移四个单位得到的,设是函数上的两点,则,是函数上的两点,∴,∴,∵存在3个时刻()对应的正方形的面积均相等.∴可以看作,∴,故答案为:4;②由(3)①可得,∵,∴,∴,∴..【点拨】本题主要考查了二次函数与图形运动问题,待定系数法求函数解析式,勾股定理等等,正确理解题意利用数形结合的思想求解是解题的关键.。

南昌市中考数学试卷答案

南昌市中考数学试卷答案

江西省南昌市 中等学校招生考试数学试题卷参考答案及评分意见说明:1.如果考生的解答与本答案不同,可根据试题的主要考查内容参考评分标准制定相应的评分细则后评卷.2.每题都要评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误,影响了后续部分时,如果该步以后的解答未改变这一题的内容和难度,则可视影响的程度决定后面部分的给分,但不得超过后面部分应给分数的一半,如果这一步以后的解答有较严重的错误,就不给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.一、选择题(本大题共12个小题,每小题3分,共36分)1.D 2.A 3.C 4.B 5.C 6.B 7.C 8.D 9. C 10. D 11. A 12. A 二、填空题(本大题共4个小题,每小题3分,共12分)13. 3- 14.()()11x x x +- 15. 90 16. ①②③④说明:第16题填了1个或2个序号的得1分,填了3个序号的得2分. 三、(本大题共2个小题,每小题各5分,共10分)17.解:原式=2111111aa a a a a a a a ⎛⎫-÷=⨯= ⎪----⎝⎭. ………………3分当1a =时, 原式= ………………5分 18.解:①-②,得 32y y -=-+,∴1y =. ………………2分 把1y =代入①得 1x =. ………………4分 ∴1,1.x y =⎧⎨=⎩………………5分 四、(本大题共2个小题,每小题各6分,共12分) 19.解:(1)方法一画树状图如下:所有出现的等可能性结果共有12种,其中满足条件的结果有2种.甲乙 丙 丁 丙甲 乙 丁 乙甲 丙 丁 丁甲 乙 丙 第一次 第二次∴P (恰好选中甲、乙两位同学)=16. ………………4分方法二所有出现的等可能性结果共有12种,其中满足条件的结果有2种. ∴P (恰好选中甲、乙两位同学)=16. ………………4分(2) P (恰好选中乙同学)=13. ………………6分20.解:(1) ∵(0,4),(3,0)A B -, ∴3,4,OB OA == ∴5AB =.在菱形ABCD 中,5AD AB ==, ∴1OD =, ∴()0,1D -. ………………3分(2)∵BC ∥AD , 5BC AB ==, ∴()3,5C --. 设经过点C 的反比例函数解析式为ky x=. 把()3,5--代入k y x =中,得:53k -=-, ∴15k =,∴15y x=. …………6分 五、(本大题共2个小题,每小题7分,共14分)21.解:(1)其余四个圆的直径依次为:2.8cm, 2.6cm, 2.4cm, 2.2cm. ………………2分(2)依题意得,4 1.5 1.53 2.8 2.6 2.4 2.221d +++++++=, ………………5分 ∴41621d +=, ∴54d =. ………………6分 答:相邻两圆的间距为54cm. ………………7分 22.解:(1) 解法一连接OB ,OC ,过O 作OE ⊥BC 于点E . ∵OE ⊥BC ,BC =∴BE EC = ………………1分 在Rt △OBE 中,OB =2,∵sin BE BOE OB ∠==, ∴60BOE ∠=, ∴120BOC ∠=,∴1602BAC BOC ∠=∠=. ………………4分解法二连接BO 并延长,交⊙O 于点D ,连接CD .∵BD 是直径,∴BD =4,90DCB ∠=.在Rt △DBC中,sin BC BDC BD ∠===, ∴60BDC ∠=,∴60BAC BDC ∠=∠=.………………4分(2) 解法一因为△ABC 的边BC 的长不变,所以当BC 边上的高最大时,△ABC 的面积最大,此时点A 落在优弧BC 的中点处. ………………5分 过O 作OE ⊥BC 于E ,延长EO 交⊙O 于点A ,则A 为优弧BC 的中点.连接AB ,AC ,则AB =AC ,1302BAE BAC ∠=∠=.在Rt △ABE中,∵30BE BAE =∠=, ∴33tan 303BEAE ===,∴S △ABC =132⨯=答:△ABC 面积的最大值是 ………………7分 解法二因为△ABC 的边BC 的长不变,所以当BC 边上的高最大时,△ABC 的面积最大,此时点A 落在优弧BC 的中点处. ………………5分 过O 作OE ⊥BC 于E ,延长EO 交⊙O 于点A ,则A 为优弧BC 的中点.连接AB ,AC ,则AB =AC .∵60BAC ∠=, ∴△ABC 是等边三角形.在Rt △ABE 中,∵30BE BAE =∠=, ∴3tan 303BEAE ===,∴S △ABC=132⨯=答:△ABC 面积的最大值是 ………………7分六、(本大题共2个小题,每小题8分,共16分). 23.解法一连接OB ,过点O 作OG ⊥BC 于点G . ………………1分 在Rt △ABO 中,AB =5,AO =17,∴ ta n ∠ABO =173.45AO AB ==, ∴∠ABO =73.6°,………………3分 ∴∠GBO =∠ABC -∠ABO =149°-73.6°=75.4°.………………4分又 ∵17.72OB =≈, ………………5分 ∴在Rt △OBG 中,sin 17.720.9717.1917OG OB OBG =⨯∠=⨯≈>. ……………7分∴水桶提手合格. ……………8分 解法二:连接OB ,过点O 作OG ⊥BC 于点G . ……………1分在Rt △ABO 中,AB =5,AO =17,∴ ta n ∠ABO =173.45AO AB ==, ∴∠ABO =73.6°. ………………3分 要使OG ≥OA ,只需∠OBC ≥∠ABO , ∵∠OBC =∠ABC -∠ABO =149°-73.6°=75.4°>73.6°,……7分 ∴水桶提手合格. ………………8分24.解:(1)2010年全省教育发展情况统计表(说明:“合计”栏不列出来不扣分) ……………3分(2)……………5分 (3)①小学师生比=1︰22, 初中师生比≈1︰16.7,全省各级各类学校所数扇形统计图图丙 C D高中师生比=1︰15,∴小学学段的师生比最小. ………6分②如:小学在校学生数最多等. ………7分 ③如:高中学校所数偏少等. ………8分说明:(1)第①题若不求出各学段师生比不扣分;(2)第②、③题叙述合理即给分. 七、(本大题共2个小题,每小题10分,共20分)25.解:(1)当1,1a b =-=时,抛物线m 的解析式为:21y x =-+. 令0x =,得:1y =. ∴C (0,1).令0y =,得:1x =±. ∴A (-1,0),B (1,0)∵C 与C 1关于点B 中心对称,∴抛物线n 的解析式为:()222143y x x x =--=-+ ………4分(2)四边形AC 1A 1C 是平行四边形. ………5分 理由:∵C 与C 1、A 与A 1都关于点B 中心对称, ∴11,AB BA BC BC ==,∴四边形AC 1A 1C 是平行四边形. ………8分(3)令0x =,得:y b =. ∴C (0,b ).令0y =,得:20ax b +=, ∴x =∴(A B , ………9分∴AB BC ===要使平行四边形AC 1A 1C 是矩形,必须满足AB BC =,∴ ∴24b b b a a ⎛⎫⨯-=- ⎪⎝⎭, ∴3ab =-.∴,a b 应满足关系式3ab =-. ………10分26.解: (1)能. ………………1分 (2)① 22.5°. ………………2分 ②方法一∵A A 1=A 1A 2=A 2A 3=1,A 1A 2⊥A 2A 3,∴A 1A 3AA 3=1 又∵A 2A 3⊥A 3A 4 ,∴A 1A 2∥A 3A 4.同理:A 3A 4∥A 5A 6,∴∠A =∠AA 2A 1=∠AA 4A 3=∠AA 6A 5, ∴AA 3=A 3A 4,AA 5=A 5A 6∴a 2=A 3A 4=AA 3=1, ………………3分 a 3=AA 3+ A 3A 5=a 2+ A 3A 5.∵A 3A 52,∴a 3=A 5A 6=AA 5=)2221a =. ………………4分方法二∵A A 1=A 1A 2=A 2A 3=1,A 1A 2⊥A 2A 3,∴A 1A 3AA 3=1 又∵A 2A 3⊥A 3A 4 ,∴A 1A 2∥A 3A 4.同理:A 3A 4∥A 5A 6.∴∠A 2A 3A 4=∠A 4A 5A 6=90°,∠A 2A 4A 3=∠A 4 A 6A 5,∴△A 2A 3A 4∽△A 4A 5A 6,∴2231a a a =,∴a 3=2221)1a =. ………………4分)11n n a -=………………5分(3)12θθ= ………………6分23θθ= ………………7分34θθ= ………………8分(4)由题意得:490,590,θθ⎧<⎪⎨≥⎪⎩∴1822.5θ≤<. ………………10分。

南昌中考试卷和答案数学

南昌中考试卷和答案数学

南昌中考试卷和答案数学****一、选择题(每题3分,共30分)1. 以下哪个选项是实数?A. \(\sqrt{-1}\)B. \(\pi\)C. \(i\)D. \(\frac{1}{0}\)答案:B2. 计算 \(2^3\) 的结果是:A. 6B. 8C. 12D. 16答案:B3. 以下哪个方程是一元一次方程?A. \(x^2 + 2x + 1 = 0\)B. \(x + 2 = 0\)C. \(x^2 - 4x + 4 = 0\)D. \(x + y = 0\)答案:B4. 以下哪个图形是轴对称图形?A. 任意三角形B. 任意四边形C. 圆D. 任意五边形答案:C5. 以下哪个选项是二次函数的图像?A. 直线B. 抛物线C. 双曲线D. 正弦曲线答案:B6. 计算 \((-2)^2\) 的结果是:A. -4B. 4C. -2D. 2答案:B7. 以下哪个选项是不等式?A. \(x + 3 = 5\)B. \(x + 3 > 5\)C. \(x + 3 \leq 5\)D. \(x + 3 < 5\)答案:B8. 以下哪个选项是等腰三角形?A. 两边长度相等的三角形B. 两个角相等的三角形C. 三边长度相等的三角形D. 三个角相等的三角形答案:A9. 以下哪个选项是锐角三角形?A. 三个角都小于90度的三角形B. 一个角大于90度的三角形C. 一个角等于90度的三角形D. 两个角大于90度的三角形答案:A10. 以下哪个选项是正比例函数?A. \(y = 2x + 3\)B. \(y = 3x\)C. \(y = \frac{1}{x}\)D. \(y = x^2\)答案:B二、填空题(每题4分,共20分)11. 计算 \(\sqrt{25}\) 的结果是 _______。

答案:512. 如果 \(x = 3\) 是方程 \(2x - 5 = 1\) 的解,则 \(x\) 的值是_______。

2021年江西省南昌市中学考试数学试卷及问题详解Word解析汇报版

2021年江西省南昌市中学考试数学试卷及问题详解Word解析汇报版

2021年江西省南昌市中学考试数学试卷及问题详解Word解析汇报版文档2021年江西省南昌市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题每小题3分满分36分)每小题只有一个正确选项。

1.(3分)﹣1的倒数是()A.1B.﹣1C.±1D.0考点:倒数.分析:根据倒数的定义得出﹣1×(﹣1)=1即可得出答案.解答:解:∵﹣1×(﹣1)=1∴﹣1的倒数是﹣1.故选:B.点评:此题主要考查了倒数的概念及性质.倒数的定义:若两个数的乘积是1我们就称这两个数互为倒数.2.(3分)下列计算正确的是()3252223226623A.B.D.C.(﹣ab)=abab﹣3ab)=9a﹣b÷a=aba+a=a(考点:完全平方公式;合并同类项;幂的乘方与积的乘方;整式的除法.分析:根据同类项的定义完全平方公式幂的乘方以及单项式的除法法则即可判断.解答:解:A、不是同类项不能合并选项错误;222=9a﹣6ab+b故选项错误;3aB、(﹣b)C、正确;624÷、aba=ab选项错误.D故选C.点评:本题考查了幂的运算法则以及完全平方公式理解公式的结构是关键人分别到井冈山和瑞金进行革命传统教育到井冈山的人数是到瑞金的人分)某单位组织34.(33人.下y人求到两地的人数各是多少?设到井冈山的人数为x人到瑞金的人数为数的2倍多面所列的方程组正确的是(...B.CDA考实际问题抽象出二元一次方程组人进行革命传统教育到井冈人到瑞金的人数人根据3分析到井冈山的人数x1人即可得出方程组.的人数是到瑞金的人数的2倍多解解答::设到井冈山的人数为x人到瑞金的人数为y人由题意得:.故选B.点评:本题考查了有实际问题抽象出二元一次方程组难度一般关键是读懂题意设出未知数找出等量关系.文档4.(3分)下列数据是2021年3月7日6点公布的中国六大城市的空气污染指数情况:城市北京合肥南京哈尔滨成都南昌污染指数34216316545227163则这组数据的中位数和众数分别是()A.164和163B.105和163C.105和164D.163和164考点:众数;中位数.分析:根据众数定义:一组数据中出现次数最多的数据叫做众数.中位数:将一组数据按照从小到大(或从大到小)的顺序排列如果数据的个数是奇数则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数则中间两个数据的平均数就是这组数据的中位数.可以直接算出答案.解答:解:把数据从小到大排列:45163163165227342位置处于中间的数是163和165故中位数是(163+165)÷2=164 163出现了两次故众数是163;故答案为:A.点评:此题主要考查了众数和中位数关键是掌握两种数的定义.5.(3分)某机构对30万人的调查显示沉迷于手机上网的初中生大约占7%则这部分沉迷于手机上网的初中生人数可用科学记数法表示为()5354A.B.C.D.2.1×1021×100.21×102.1×10考点:科学记数法—表示较大的数.n分析:科学记数法的表示形式为a×10的形式其中1≤|a|<10n为整数.确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同.当原数绝对值>1时n 是正数;当原数的绝对值<1时n是负数.4解答:解:将30万×7%=21000用科学记数法表示为:2.1×10.故选:D.n点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10的形式其中1≤|a|<10n为整数表示时关键要正确确定a的值以及n的值.6.(3分)如图直线y=x+a﹣2与双曲线y=交于A、B两点则当线段AB的长度取最小值时a的值为()A.0B.1C.2D.5比例函数与一次函数的交点问题.:考点反文档的方程解方程即a经过原点时线段AB的长度取最小值依此可得关于当直线y=x+a﹣2分析:的值.可求得a经过原点y=x+a﹣2解:∵要使线段AB的长度取最小值则直线解答:﹣2=0∴a.解得a=2.故选C经过原点时2y=x+a﹣点评:考查了反比例函数与一次函数的交点问题本题的关键是理解当直线的长度取最小值.线段AB)(3分)一张坐凳的形状如图所示以箭头所指的方向为主视方向则它的左视图可以是(7.D.C..A.B单组合体的三视图.:简考点到从左面看所得到的图形即可注意所有的看到的棱都应表现在主视图中.分析:找解答:.解:从几何体的左边看可得.故选:题考查了三视图的知识左视图是从物体的左面看得到的视图点评)3分)将不等式组的解集在数轴上表示出来正确的是(8.(..DC.A.B在数轴上表示不等式的解集;解一元一次不等式组.:考点求出两个不等式的解集然后表示在数轴上即可.分析:解答:解:1x解不等式①得≥﹣3<x解不等式②得在数轴上表示如下:文档.故选D.题考查了一元一次不等式组的解法在数轴上表示不等式组的解集需要把每个不等式的点评:本“≤”要用实解集在数轴上表示出来(>≥向右画;<≤向左画)在表示解集时“≥”“>”要用空心圆点表示.心圆点表示;“<”).(3分)下列因式分解正确的是(922223B.A.b)=a(a ﹣x﹣y)a﹣2ab+abxy+x=_______﹣(222D.C.)(x﹣3)+3ax﹣9=a(x+3)(x﹣2x+4=x﹣1提公因式法.式分解-运用公式法;因式分解-考点:因用提公因式法分解因式和完全平方公式分解因式进行分解即可得到答案.分析:利2解答:故此选项错误;﹣y+1)A、x﹣xy+x=x(x 解:2232(a﹣b)故此选项正确;B、a﹣2ab+ab=a22+3不是因式分解故此选项错误;﹣1)C、x﹣2x+4=(x2无法因式分解故此选项错误.ax﹣9D、.故选:B题主要考查了公式法和提公因式法分解因式关键是注意口诀:找准公因式一次要提净;此点评:全家都搬走留1把家守;提负要变号变形看奇偶.°且°∠E=70A(3分)如图将△ABC绕点逆时针旋转一定角度得到△ADE.若∠CAE=6510.)AD⊥BC∠BAC的度数为(°.90C.85°DBA.60°.75°转的性质考中°则在直角ABBAD=6°对应角CE=7分析据旋转的性质知旋转角EAC的度数即可BAAB的内角和18°来求求B=3°所以利用△°.C=∠E=70∠解答:解:根据旋转的性质知∠EAC=BAD=65°∠.则∠AFB=90°如图设AD⊥BC于点F°°﹣∠ABF中∠B=90BAD=35△∴在Rt的度数为BAC75°.°即∠°°﹣°﹣﹣∠°﹣∠中∠∴在△ABCBAC=180BC=1803570=75.故选B文档题考查了旋转的性质.解题的过程中利用了三角形内角和定理和直角三角形的两个锐角点评:本互余的性质来求相关角的度数的.)AP的中点连接AP则的长为(.(3分)如图正六边形ABCDEF中AB=2点P是ED11D.4C..A.B2股定理.考点:勾°并求AEP=90∠EAF=30°然后求出∠连接AE求出正六边形的∠F=120°再求出∠AEF=分析:△AEP中利用勾股定理列式进行计算即可得解.的长最后在出AE的长再求出PERt:如图连接AE解答:解=120°2)?180°6在正六边形中∠F=×(﹣AF=EF∵°°﹣120°)=30∠∴∠AEF=EAF=(18°3=9∴AEP=12°﹣=22×2cos30°=2××AE=2的中点P是ED∵点2=1∴EP=×AEP中AP==.=△在Rt故选C.题考查了勾股定理正六边形的性质等腰三角形三线合一的性质作辅助线构造出直角本点评:文档三角形是解题的关键.2x0)(≠0)的图象与x轴有两个交点坐标分别为(x12.(3分)若二次函数y=ax+bx+c(a21)轴下方则下列判断正确的是(M(xy)在x0)且x<x图象上有一点00122..D>0B.CaA.)x﹣x)a(x﹣x(b﹣4ac≥0x<x<x<物线与x轴的交点.考点:抛、0两种情况对Ca>0和a<分析:根据抛物线与x轴有两个不同的交点根的判别式△>0再分D选项讨论即可得解.2解答:负情况故本轴有两个交点无法确定a 的正a≠0)的图象与x解:A、二次函数y=ax+bx+c(选项错误;<xB、∵x212故本选项错误;>0∴△=b﹣4ac<x0则x<xC、若a>210故本选项错误;<x或x<xa<0则x<x<x若0212100x﹣x<0则x﹣x>0、若Da>21000x﹣x)<所以(x﹣x)(21000﹣x)<(x﹣x)(x∴a2100)同号x﹣x则(<0x﹣x)与(若a20__x)<0x)(x﹣(∴ax﹣20__正确故本选项正确.)<0)(x﹣x综上所述a(x﹣x20__.故选D次函数图象以及图象上点的坐标特征是轴的交点问题熟练掌握二题考查了二次函数与x点评:本D选项要注意分情况讨论.C解题的关键、12分)4小题每小题3分满分二、填空题(本大题共.65°1=155°则∠B的度数为∥A=90ABC中∠°点D在AC边上DEBC若∠如图△.13(3分)性质;直角三角形的性质行线考究型.探专题:根据三角形内角和C的度数根据平角的定义求出∠EDC的度数再由平行线的性质得出∠先分析:B的度数.定理即可求出∠°1=155解:∵∠解答:°155°=25∴∠EDC=180°﹣∥BC∵DEEDC=25°∴∠C=∠°A=90°∠C=25ABC∵△中∠°.25°﹣°=6590B=180∴∠°﹣°.65故答案为:文档本题考查的是平行线的性质用到的知识点为:两直线平行内错角相等.点评:个图形中所有点的个数分)观察下列图形中点的个数若按其规律再画下去可以得到第n14.(32.(用含n的代数式表示)为(n+1)规律型:图形的变化类.考点:规律型.专题:个图形中点的个数的表达式再察不难发现点的个数依次为连续奇数的个数写出第n分析:观根据求和公式列式计算即可得解.1+3=4:第1个图形中点的个数为:解答:解2个图形中点的个数为:1+3+5=9第3个图形中点的个数为:1+3+5+7=16第…2n+1).2n+1)==(第n个图形中点的个数为:1+3+5+…+(2.n+1)故答案为:(题是对图形变化规律的考查比较简单观察出点的个数是连续奇数的和是解题的关键本点评:还要注意求和公式的利用.请写出一个=3的两条直角边长且S分)若一个一元二次方程的两个根分别是Rt△ABC15.(3ABC△2.x﹣5x+6=0(答案不唯一)符合题意的一元二次方程与系数的关系考放型专分析得出两根之积进而根据根与系数的关系写出一个符合要求的一元二次方程=AB可解答的两条直角边长=:∵一个一元二次方程的两个根分别RABAB2=∴一元二次方程的两个根的乘积为5x+6=∴此方程可以为故答案为5x+6=(答案不唯一题主要考查了根与系数的关系以及直角三角形的面积根据已知得出两根之积进而得出点评案是解题关键.则满足题意的°AO=BO=2C、其中∠AOB=120°∠ACB=60O316.(分)平面内有四个点A、、B.34OC 长度为整数的值可以是2垂径定理;等边三角形的判定与性质.:考点为圆心的圆上;在以点根据圆周角定理可以退出点类讨论:如图分析:分1CO文档共圆.分类讨论:、CO、B根据已知条件可知对角∠AOB+∠ACB=180°则四个点A、如图2OC的长度.在不同的四边形中利用垂径定理、等边△MAO的性质来求如图1如图2°AOB=120°∠ACB=60解解答::如图1∵∠∠AOB=60°∴∠ACB=为圆心的圆上且在优弧AB上.∴点C 在以点O∴OC=AO=BO=2;°∠ACB=60°如图2∵∠AOB=120ACB=180°∴∠AOB+∠C共圆.、O、B、∴四个点AAB上运动.M上.点C在优弧设这四点都在⊙.ABAM、、MB连接OM、°∵∠ACB=60°.∴∠AMB=2∠ACB=120∵AO=BO=2∠BMO=60°.∴∠AMO=又∵MA=MO∴△AMO的等边三角形MA=AO=2∴4即2<OC≤OC∴MA<≤2MA.OC可以取整数3和4∴34.综上所述OC可以取整数24.3故答案是:2题考查了垂径定理、等边三角形的判定与性质.此题需要分类讨论以防漏解.在解题时点评:本还利用了圆周角定理圆周角、弧、弦间的关系.分)6分满分24(本大题共三、4小题每小题在半圆内请仅用无刻中点1C在半圆外;图2C中点是半圆的直径图分)如图(17.6AB度的直尺按要求画图.11()在图中画出△的三条高的交点;ABC文档(2)在图2中画出△ABC中AB边上的高.考点:作图—复杂作图.分析:(1)根据圆周角定理:直径所对的圆周角是90°画图即可;(2)与(1)类似利用圆周角定理画图.解答:解:(1)如图所示:点P就是三个高的交点;(2)如图所示:CT就是AB上的高.点评:此题主要考查了复杂作图关键是掌握三角形的三条高交于一点直径所对的圆周角是90°.18.(6分)先化简再求值:÷+1在012三个数中选一个合适的代入求值.考点:分式的化简求值.分析:首先将原式能分解因式的分解因式然后利用除以一个数等于乘以这个数的倒数将除法运化为乘法运算约分得到最简结果最后根据分式的性质选出有意义的值即可得原式的值解答解:÷+1=÷+1=×+1=+1=当x=0或2时分式无意义文档x只能等于1故原式=.题考查了分式的化简求值分式的加减运算关键是通分通分的关键是找最简公分母;分:此点评式的乘除运算关键是约分约分的关键是找出公因式约分时分式的分子分母出现多项式应将多项式分解因式后再约分.人聚会每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有分)甲、乙、丙319.(63件礼物放在一起每人从中随机抽取一件.颜色不同)将)(1)下列事件是必然事件的是(、乙抽到一件礼物A、乙恰好抽到自己带来的礼物B、乙没有抽到自己带来的礼物C、只有乙抽到自己带来的礼物D的所有可能的结A人抽到的都不是自己带来的礼物(记为事件A)请列出事件(2)甲、乙、丙3的概率.果并求事件A:列表法与树状图法;随机事件.考点:图表型.专题(1)根据必然事件、随机事件的定义对各选项分析判断后利用排除法求解;分析:(2)画出树状图然后根据概率公式列式进行计算即可得解.A、乙抽到一件礼物是必然事件;:解答:解(1)B、乙恰好抽到自己带来的礼物是随机事件;、乙没有抽到自己带来的礼物是随机事件;CD、只有乙抽到自己带来的礼物是随机事件;;故选A、b、c)设甲、乙、丙三人的礼物分别记为(2a根据题意画出树状图如下:、cab)、)(bca)、(、、6一共有种等可能的情况三人抽到的礼物分别为(abc)(acb)(bac(cba))有2种cabbca3人抽到的都不是自己带来的礼物的情况有()、(.A所以P()==所求情况数与总情况数之比.=本点评:题考查了列表法与树状图法用到的知识点为:概率文档y=(x>0)的图象和矩形ABCD在第一象限20.(6分)如图在平面直角坐标系中反比例函数AD平行于x轴且AB=2AD=4点A 的坐标为(26).(1)直接写出B、C、D三点的坐标;(2)若将矩形向下平移矩形的两个顶点恰好同时落在反比例函数的图象上猜想这是哪两个点并求矩形的平移距离和反比例函数的解析式.考点:反比例函数综合题.分析:(1)根据矩形性质得出AB=CD=2AD=BC=4即可得出答案;(2)设矩形平移后A的坐标是(26﹣x)C的坐标是(64﹣x)得出k=2(6﹣x)=6(4﹣x)求出x即可得出矩形平移后A的坐标代入反比例函数的解析式求出即可.解答:解:(1)∵四边形ABCD是矩形平行于x轴且AB=2AD=4点A的坐标为(26).∴AB=CD=2AD=BC=4∴B(24)C(64)D(66);(2)A、C落在反比例函数的图象上设矩形平移后A的坐标是(26﹣x)C的坐标是(64﹣x)∵A、C落在反比例函数的图象上∴k=2(6﹣x)=6(4﹣x)x=3即矩形平移后A的坐标是(23)代入反比例函数的解析式得k=3=即A、C落在反比例函数的图象上矩形的平移距离是3反比例函数的解析式是y=.点评:本题考查了矩形性质用待定系数法求反比例函数的解析式平移的性质的应用主要考查学生的计算能力.四、解答题(本大题共3小题每小题8分共24分)21.(8分)生活中很多矿泉水没有喝完便被扔掉造成极大的浪费为此数学兴趣小组的同学对某单位的某次会议所用矿泉水的浪费情况进行调查为期半天的会议中每人发一瓶500ml的矿泉水会后对所发矿泉水喝的情况进行统计大致可分为四种:A、全部喝完;B、喝剩约;C、喝剩约一半;D开瓶但基本未喝.同学们根据统计结果绘制成如下两个统计图根据统计图提供的信息解答下列问题:文档D所在扇形的圆心角是多少度?并补全条形统计图;)参加这次会议的有多少人?在图(2)中(1)若开瓶但基本未喝算全部浪费试计算这次会议平均每人浪费的矿泉水约多少毫升?(计算结(2果请保留整数))2人之间请用(每次会议人数约在该单位每年约有此类会议60次40至60(3)据不完全统计瓶)约有多少瓶?(可使用科500ml/中计算的结果估计该单位一年中因此类会议浪费的矿泉水(学记算器)形统计图;用样本估计总体;扇形统计图.:条考点代表的人数;所代表的数据求出总人数即可得出CB分析:(1)根据扇形统计图和条形统计图中)中所求得出浪费掉的总量进而得出平均数;)根据(1(2进而求出总数.)中所求人利用(2至(3)根据每次会议人数约在4060人之间可以为5050%=501)参加这次会议的人数:25÷(解答:解:100%=36°所在扇形的圆心角:360°××D5=10如图所示:﹣10﹣C的人数:50﹣25;≈183(毫升)×10+500×5)÷50500(2)(××25+500×109(瓶65018×1098瓶.500ml/答:浪费的矿泉水(瓶)约有此题主要考查了条形统计图与扇形统计图的综合应用根据图象得出正确信息是解题关键.点评:4P(A为圆心半径为2的圆与y轴交于点点822.(分)如图在平面直角坐标系中以点O.x轴于点CBPBO)是⊙外一点连接AP 直线与⊙O相切于点交2的切线;O1()证明PA是⊙的坐标.B2()求点文档线的判定与性质;坐标与图形性质.切考点:计算题.专题:OAP为圆PA与AO垂直即可得到P的纵坐标为2得到AP与x 轴平行即分析:(1)由AO=2的切线;为角平分线进而POOC由切线长定理得到PA=PB=4OB过B作BQ垂直于)连接(2OP平行利用两直线平行内错角相等得到一对角相等等量代与OC得到一对角相等根据AP利用勾股定理列出关于OB=2PC=4﹣xOC=CP设OC=xBC=BP ﹣换并利用等角对等边得到中利用面OBC与BC的长在直角三角形x的方程求出方程的解得到x的值确定出OC的坐标.B在第四象限即可求出B积法求出BQ的长再利用勾股定理求出OQ的长根据2)42P(解答:(1)证明:∵圆O的半径为⊥OA∴AP的切线;为圆O则AP⊥OC过B作BQ(2)解:连接OPOBO的切线PA、PB为圆∵PA=PB=4APO=∠BPO∴∠OC∵AP∥POC∴∠APO=∠POC∴∠BPO=∠∴OC=COB=BC=PPC=ROB中OC=PC==OO+B=4根据勾股定理得解得x=2.BC=x=1.BQBC=OCBQ?=∵SOBBC=OC?即OBOBC△∴BQ==1.2OQ=OBQ 中根据勾股定理得:△在Rt=1.6.)﹣坐标为(则B1.61.2 文档题考查了切线的性质与判定坐标与图形性质勾股定理三角形的面积求法平行线的此点评:性质以及切线长定理熟练掌握切线的性质与判定是解本题的关键.一辆汽车的背面有一种特殊性状的刮雨器忽略刮雨器的宽度可抽象为一条1(8分)如图23.°.若启动一次48cm∠OAB=120OA长为10cm雨刮杆AB长为折线OAB如图2所示量得连杆的位置如图3所示.刮雨器雨刮杆AB正好扫到水平线CD0.01)B旋转的最大角度及O、两点之间的距离;(结果精确到(1)求雨刮杆AB°=°=cos60sin60(2)求雨刮杆AB扫过的最大面积.(结果保留π的整数倍)(参考数据:可使用科学记算器)tan60°=≈26.851直角三角形的应用;扇形面积的计算.考点:解旋转的最大角度再利用锐角三角函数关系和勾股定AB(1)根据平行线的性质得出雨刮杆分析:的长即可;AEBO理求出EO扫过的最大面积即为AB为半径的半圆进而得出答案即可)根据雨刮正好扫到点启动一次刮雨器雨刮A点转点转点解答)如图所示C的位置平18°故雨刮A旋转的最大角度为延长线于连B过OBB°∵OAB=120∴∠OAE=60°∴∠EOA=30°10cm∵OA长为OA=5(cm)EA=∴cm)EO=∴=5(AB∵长为48cmcmEB=48+5=53∴()文档(cm);∴BO===2≈53.70;两点之间的距离为53.70cmO答:雨刮杆AB旋转的最大角度为180°、B中心对称关于点O旋转180°得到CD即△OCD与△OAB(2)∵雨刮杆ABDCO△BAO≌△DCO∴S△BAO=S∴△222.=1392π(cm)∴雨刮杆AB扫过的最大面积S=π(OB﹣OA)2πcm.答:雨刮杆AB扫过的最大面积为1392题主要考查了解直角三角形的应用以及勾股定理和扇形面积求法、勾股定理等知识利用此点评:平行线的性质得出旋转的最大角是解题关键.分)24小题每小题12分共五、(本大题共2分)某数学活动小组在作三角形的拓展图形研究其性质时经历了如下过程:.(1224的外侧作等腰直角三角AC为斜边向△AB C分别以(1)操作发现:在等腰△ABC中AB=ACAB和则下列结论和MEAC于点GM是BC的中点连接MDEG1形如图所示其中DF⊥AB于点F⊥(填序号即可)正确的是①②③④.AF=AG=AB;②MD=ME;③整个图形是轴对称图形;④MD⊥ME①的外侧作等腰直角三角形如ABC中分别以AB和AC为斜边向△ABC(2)数学思考:在任意△具有怎样的数量关系?请给出证明过程;MD则和ME是图2所示MBC的中点连接MD和ME)类比探究:(3所示的内侧作等腰直角三角形如图3AC(i)在任意△ABC中仍分别以AB和为斜边向△ABC和ME试判断△MED的形状.答:等腰直角三角形.BCM是的中点连接MD的内侧作(非ABC和ABAC为斜边向△ABC(ii)在三边互不相等的△中(见备用图)仍分别以)中MEBCACE和(非等腰)直角三角形M是的中点连接MD和要使(2ABD等腰)直角三角形的结论此时仍然成立你认为需增加一个什么样的条件?(限用题中字母表示)并说明理由.四边形综合题.考点:分析:)由条件可以通过三角形全等和轴对称的性质直角三角形的性质就可以得出结论;1(文档根据三角形的中位线的性质和等腰直角MGEG连接DFMF(2)作AB、AC的中点F、G根据其性质就≌△MGE三角形的性质就可以得出四边形AFMG是平行四边形从而得出△DFM可以得出结论;根据三角形的中相交于H和MGDFMGG连接DFMFEG、(3)i作ABAC 的中点F、MGE由全等三角形的性质就可以得出结论;K可以得出△DFM≌△位线的性质时作∠CAE∠AEC=90°当∠BAD=如图4作直角三角形ADB和直角三角形AEC∠ADB=ii根据三角形的中位线的性质相交于HDF和MGMFEGMG的中点AB、ACF、G连接DFDM=EM.≌△MGE由全等三角形的性质就可以得出结论K可以得出△DFM是等腰直角三角形ADB和△AEC(解答:解:1)∵△°ADB=∠AEC=90DAB=∠ACE=∠EAC=45°∠∴∠ABD=∠中ADB 和△AEC∵在△)≌△∴△ADBAEC(AASAD=AE∴BD=CEGEG⊥AC于点AB∵DF⊥于点FAG=GC=GE=.AC∴AF=BF=DF=AB∵AB=ACAB故①正确;∴AF=AG=BC的中点∵M是.∴BM=CM∵AB=AC∴∠ABC=∠ACBABD=∠ACB+∠ACE∴∠ABC+∠即∠DBM=∠ECMDB和EC在△)DBM∴△≌△ECM(SAS.故②正确;∴MD=ME沿连接AM根据前面的证明可以得出将图形1AM对折左右两部分能完全重合∴整个图形是轴对称图形故③正确.∵AB=ACBM=CMAM⊥BC∴AMC=90°∠∴∠AMB=°∵∠ADM=90∴四边形ADBM四点共圆°.∠∴∠AMD=ABD=45AM是对称轴∵∴∠AME=°AMD=45∠文档°∴∠DME=90故④正确⊥ME∴MD)MD=ME(2MGMFEGAB、AC的中点F、G连接DF理由:作.ABAG=AC∴AF=ABD和△AEC是等腰直角三角形∵△ACDF=ABEG⊥ACEG=∴DF⊥ABGE=AG.∴∠AFD=∠AGE=90°DF=AF的中点∵M是BCMF∥ACMG∥AB∴是平行四边形∴四边形AFMG.MG=AF∠AFM=∠AGM∴AG=MFAFD=∠AGM+∠AGE∴MF=GEDF=MG ∠AFM+∠∴∠DFM=∠MGE.∵在△DFM和△MGE中SAS)(∴△DFM≌△MGE∴DM=ME;AC的中点、MF、G分别是BC、AB、(3)i∵点ABMG=MG∥AB∴MF∥ACMF=ACMFAG是平行四边形∴四边.AFMAGMG=AMF=AG是等腰直角三角形ADB和△AEC∵△AGE=90°∠∴DF=AFGE=AG∠AFD=∠BFD=∠MF=EGDF=MGAF M﹣∠AFD=∠AGM﹣∠AGE∴即∠DFM=∠MGE.中和△MGE∵在△DFMSAS)(∴△DFM≌△MGE.MDF=∴MD=ME∠∠EMG∵MG∥AB°BFD=90MHD=∴∠∠∠MDF=90°HMD+∴∠HMD+∴∠∠°EMG=90DME=90即∠°文档为等腰直角三角形;∴△DME.时DM=EMAEC=90°当∠BAD=∠CAEADBii如图4△和△AEC是直角三角形∠ADB=∠MGMFEGAB理由:作、AC的中点F、G连接D FMG∥ABMF∥ACMG=AB∴MF=AC∴四边形AFMG是平行四边形∠AGM.∴MF=AGMG=AF∠AFM=AEC=90°ADB=∵∠∠EG=AG∴DF=AF.DAF∠AGE=∠GAEFDA=∴DF=MGMF=EG∠∠∵∠BAD=∠CAEAGE=∠GAEF DA=∴∠∠DAF=∠∠AGE∴∠AFD=AGMAFD∴∠﹣∠AFM=∠AGE﹣∠.即∠DFM=∠MGEDFM∵在△和△MGE中SASDFM∴△≌△MGE ().∴DM=ME故答案为:①②③④.文档题考查了等腰直角三角形的性质的运用等腰三角形的性质的运用全等三角形的判定及点评:本性质的运用三角形的中位线的性质的运用直角三角形的斜边上的中线的性质的运用平行四边形的判定及性质的运用解答时根据三角形的中位线的性质制造全等三角形是解答本题的关键.2轴的交点为x<a<…<a)与﹣a)+a(n为正整数且0<a=25.(12分)已知抛物线y﹣(xnnnn212轴的交点为xA(0=﹣(x﹣a)+a与时第A(b0)和A(b0)当n=11条抛物线y011n﹣1nn﹣11n0)其他依此类推.0)和A(b11b的值及抛物线y的解析式;(1)求a2112n;依此类推第n条抛物线y的顶点坐标为()(2)抛物线y的顶点坐标为(99n32y=x;)n;所有抛物线的顶点坐标满足的函数关系式是3)探究下列结论:(;A轴截得的线段长直接写出AA的值并求出A表示第①若用AAn条抛物线被xnn10n1﹣n﹣1)的直线和所有抛物线都相交且被每一条抛物线截得的线段的长度都0②是否存在经过点A(2相等?若存在直接写出直线的表达式;若不存在请说明理由.二次函数综合题.考点:22分析:;+1﹣1)a=1则y=﹣(x上可求得﹣(((1)因为点A00)在抛物线y=x﹣a)+a1111102上求得a=4))在抛物线0y=﹣(x﹣a+a(;2求得y令=0A(0)b=2再由点A2211221122+4.﹣y=﹣(x4)2依此类推)94)y的顶点坐标(94的顶点坐标(11的顶点坐标()求得(2y)y32122.因为所有抛物线顶点的横坐标等于纵坐标所以顶点坐标满足的nn的顶点坐标为(y)n文档.函数关系式是:y=x2222n(求得A﹣(x﹣n)+n令y=00(0)A(20)求得AA=2;y=(3)①由A1﹣nn0011n222=2n;(=n+n)﹣(n﹣n)﹣n0)A(n+n0)所以AAn﹣1nn222y)n)+n 交于E(x②设直线解析式为:y=kx﹣2k设直线y=kx﹣2k与抛物线y=﹣(x﹣11n224.然后作2k?_______=n﹣n﹣F(xy)两点联立两式得一元二次方程得到x+x=2n﹣k22212122222可见+8k]?(1﹣k)+k辅助线构造直角三角形求出EF的表述式为:EF=(k+1)[4n2.EF=9为定值.所以满足条件的直线为:y=x﹣2当k=1时2解答:(00)a条抛物线y=﹣(x﹣)+a与x轴的交点为A解:(1)∵当n=1时第112a=1或a=0.∴0=﹣(0﹣a)+a解得11110∴a=1由已知a>112﹣1)+1.∴y=﹣(x12x=0或x=2y令=0即﹣(x﹣1)+1=0解得1.b=2∴A(20)1120)﹣a)+a经过点A (2时第由题意当n=22条抛物线y=﹣(x12222=4)﹣a+a解得a=1或a∴0=﹣(22222a∵a=1且已知a>121=4∴a22.=﹣(x﹣4)+4∴y22.﹣(x﹣4)+4=1∴ab=2y=21122或x=6.=0+4令y即﹣(x﹣4)+4=0解得x=2﹣((2)抛物线y=x﹣4)22)(∵A201).∴A(6022经过点A(60))y由题意当n=3时第3条抛物线=﹣(x﹣a+a23332=9.=4或a解得﹣(∴0=6﹣a)+aa3333>aa∵a=4且已知223a=9∴32.=∴y﹣(x ﹣9)+的顶点坐标为的顶点坐标的顶点坐标的顶点坐标的顶点坐标为依此类推∵所有抛物线顶点的横坐标等于纵坐标y=∴顶点坐标满足的函数关系式是:文档20)00)A((3)①∵A(10.∴AA=210222222)+n=0令y=0即﹣(x﹣ny=﹣(x﹣n)+nnn22﹣n解得x=n+n或x=n2222=2n.+n)﹣(n﹣n)(An+n0)即AA=(n∴A(n﹣n0)nn1nn﹣1﹣②存在.2k则有:0=2k+b得b=﹣y=kx+b设过点(20)的直线解析式为2k.∴y=kx﹣222y)两点x交于E(y)F (xy=kx设直线﹣2k与抛物线y=﹣(x﹣n)+n2212k=0(k﹣2n)x+n﹣n﹣+n联立两式得:kx﹣2k=﹣(x﹣n)整理得:x+224.=nx?x﹣n﹣2k∴x+x=2n﹣k2211FG于点G则EG=x﹣x作过点F作FG⊥x轴过点EEG⊥122222222.﹣_______)+x(x﹣2n)(x﹣x)=k(﹣)yFG=y﹣=[﹣(x﹣n+n]﹣[﹣(xn)+n]=1211211222222+FGEF=EG在Rt△EFG中由勾股定理得:2222222)﹣4x?x]x)+1=(k)(x﹣x=(k+1)[(+x]﹣+[k﹣=即:EF(_______)(_______)22121111222242222[4n(1﹣k)+k+8k]k代入整理得:﹣?k+x将x=2n﹣_______=nn﹣2kEF=(+1)21122EF=3=9∴为定值1+8(k=1当时EF=1+1)().2k=1∴满足条件此时直线解析式为y=x﹣y=x∴存在满足条件的直线该直线的。

江西省中考数学真题试题(含解析)

江西省中考数学真题试题(含解析)

江西省中考数学真题试题说明:1.全卷满分120分,考试时间120分钟。

2.请将答案写在答题卡上,否则不给分。

一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1. ﹣2的绝对值是A. B. C. D.【解析】本题考察有理数中的绝对值的概念,容易,但注意与倒数,相反数的区别. 【答案】 B ★2.计算的结果为A. B. C. D.【解析】本题考察代数式的乘法运算,容易,注意 ,约分后值为.【答案】 A★3.如图所示的几何体的左视图为第3题A B C D【解析】本题考察三视图,容易,但注意错误的选项B和C.【答案】 D ★4.某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10 %【解析】本题考察条形统计图,容易,对相关概念要理解清楚. 【答案】 C ★频数(人数)2084612(第4题)乓球径毛球球球252015105D5.小同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形从当前位置开始进行一次平移操作,平移后的正方形的顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有A. 3个B. 4个C. 5个D. 无数个【解析】本题考察图形变换,平移的方向只有5个,向上,下,右,右上45°,右下45°方向,否则两个图形不轴对称.【答案】 C ★★6.在平面直角坐标系中,分别过点,作轴的垂线和 ,探究直线和与双曲线的关系,下列结论中错误..的是A.两直线中总有一条与双曲线相交B.当=1时,两条直线与双曲线的交点到原点的距离相等C.当时,两条直线与双曲线的交点在轴两侧D.当两直线与双曲线都有交点时,这两交点的最短距离是2【解析】本题考察直线与双曲线的关系,当=0时,与双曲线有交点,当=-2时,与双曲线有交点,当时,和双曲线都有交点,所以正确;当时,两交点分别是(1,3),(3,1),到原点的距离都是,所以正确;当时,在轴的左侧,在轴的右侧,所以正确;两交点分别是),两交点的距离是 ,当无限大时,两交点的距离趋近于2,所以不正确;注意是错误的选项.【答案】 D ★★★二、填空题(本大题共6小题,每小题3分,共18分)7.若分式有意义,则的取值范围是 .【解析】本题考察分式有意义的条件,当分母不为0时,分式有意义,所以.【答案】★8.5月13日,中国首艘国产航空母舰首次执行海上试航任务,其排水量超过6万吨,将数60000用科学记数法表示应为 .【解析】 本题考察科学记数法,把60000写成的形式,注意【答案】★9.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金十 两。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江西省南昌市中考数学试题及解析YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】2015年江西省南昌市中考数学试卷一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.(3分)(2015?南昌)计算(﹣1)0的结果为()A.1B.﹣1 C.0D.无意义2.(3分)(2015?南昌)2015年初,一列CRH5型高速车组进行了“300000公里正线运营考核”标志着中国高速快车从“中国制造”到“中国创造”的飞跃,将300000用科学记数法表示为()A.3×106B.3×105C.×106D.30×1043.(3分)(2015?南昌)下列运算正确的是()A.(2a2)3=6a6B.﹣a2b23ab3=﹣3a2b5C.=﹣1D.+=﹣14.(3分)(2015?南昌)如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为()A.B.C.D.5.(3分)(2015?南昌)如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误的是()A.四边形ABCD由矩形变为平行四边形B.B D的长度增大C.四边形ABCD的面积不变D.四边形ABCD的周长不变6.(3分)(2015?南昌)已知抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,那么抛物线的对称轴()A.只能是x=﹣1B.可能是y轴C.在y轴右侧且在直线x=2的左侧D.在y轴左侧且在直线x=﹣2的右侧二、填空题(本大题共8小题,每小题3分,共24分)7.(3分)(2015?南昌)一个角的度数为20°,则它的补角的度数为.8.(3分)(2015?南昌)不等式组的解集是.9.(3分)(2015?南昌)如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有对全等三角形.10.(3分)(2015?南昌)如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为.11.(3分)(2015?南昌)已知一元二次方程x2﹣4x﹣3=0的两根为m,n,则m2﹣mn+n2=.12.(3分)(2015?南昌)如图1是小志同学书桌上的一个电子相框,将其侧面抽象为如图2所示的几何图形,已知BC=BD=15cm,∠CBD=40°,则点B到CD的距离为cm(参考数据sin20°≈,cos20°≈,sin40°≈,cos40°≈,结果精确到,可用科学计算器).13.(3分)(2015?南昌)两组数据:3,a,2b,5与a,6,b的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为.14.(3分)(2015?南昌)如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为.三、解答题(本大题共4小题,每小题6分,共24分)15.(6分)(2015?南昌)先化简,再求值:2a(a+2b)﹣(a+2b)2,其中a=﹣1,b=.16.(6分)(2015?南昌)如图,正方形ABCD于正方形A1B1C1D1关于某点中心对称,已知A,D1,D三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标.(2)写出顶点B,C,B1,C1的坐标.17.(6分)(2015?南昌)⊙O为△ABC的外接圆,请仅用无刻度的直尺,根据下列条件分别在图1,图2中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法).(1)如图1,AC=BC;(2)如图2,直线l与⊙O相切于点P,且l∥BC.18.(6分)(2015?南昌)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,请完成下列表格:事件A 必然事件随机事件m的值(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于,求m的值.四、解答题(本大题共3小题,每小题8分,共24分)19.(8分)(2015?南昌)某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷140份,每位学生家长1份,每份问卷仅表明一种态度,将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如图两幅不完整的统计图.根据以上信息解答下列问题:(1)回收的问卷数为份,“严加干涉”部分对应扇形的圆心角度数为.(2)把条形统计图补充完整(3)若将“稍加询问”和“从来不管”视为“管理不严”,已知全校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人?20.(8分)(2015南昌)(1)如图1,纸片ABCD中,AD=5,S ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D的形状为A.平行四边形 B.菱形 C.矩形 D.正方形(2)如图2,在(1)中的四边形纸片AEE′D中,在EE′上取一点F,使EF=4,剪下△AEF,将它平移至△DE′F′的位置,拼成四边形AFF′D.①求证:四边形AFF′D是菱形.②求四边形AFF′D的两条对角线的长.21.(8分)(2015?南昌)如图,已知直线y=ax+b与双曲线y=(x>0)交于A(x1,y1),B(x2,y2)两点(A与B不重合),直线AB与x轴交于P(x0,0),与y轴交于点C.(1)若A,B两点坐标分别为(1,3),(3,y2),求点P的坐标.(2)若b=y1+1,点P的坐标为(6,0),且AB=BP,求A,B两点的坐标.(3)结合(1),(2)中的结果,猜想并用等式表示x1,x2,x0之间的关系(不要求证明).五、解答题(本大题共2小题,每小题9分,共18分)22.(9分)(2015?南昌)甲、乙两人在100米直道AB上练习匀速往返跑,若甲、乙分别中A,B两端同时出发,分别到另一端点处掉头,掉头时间不计,速度分别为5m/s和4m/s.(1)在坐标系中,虚线表示乙离A端的距离s(单位:m)与运动时间t(单位:s)之间的函数图象(0≤t≤200),请在同一坐标系中用实线画出甲离A端的距离s与运动时间t之间的函数图象(0≤t≤200);(2)根据(1)中所画图象,完成下列表格:两人相遇次数(单位:次)1 2 3 4 …n两人所跑路程之和(单位:m)100 300 …(3)①直接写出甲、乙两人分别在第一个100m内,s与t的函数解析式,并指出自变量t 的取值范围;②当t=390s时,他们此时相遇吗若相遇,应是第几次若不相遇,请通过计算说明理由,并求出此时甲离A端的距离.23.(9分)(2015?南昌)如图,已知二次函数L1:y=ax2﹣2ax+a+3(a>0)和二次函数L2:y=﹣a(x+1)2+1(a>0)图象的顶点分别为M,N,与y轴分别交于点E,F.(1)函数y=ax2﹣2ax+a+3(a>0)的最小值为,当二次函数L1,L2的y值同时随着x的增大而减小时,x的取值范围是.(2)当EF=MN时,求a的值,并判断四边形ENFM的形状(直接写出,不必证明).(3)若二次函数L2的图象与x轴的右交点为A(m,0),当△AMN为等腰三角形时,求方程﹣a(x+1)2+1=0的解.六、解答题(本大题共12分)24.(12分)(2015?南昌)我们把两条中线互相垂直的三角形称为“称为中垂三角形”,例如图1,图2,图3中,AF,BE是△ABC的中线,AF⊥BE,垂足为P,像△ABC这样的三角形均称为“中垂三角形”,设BC=a,AC=b,AB=c.特例探索(1)如图1,当∠ABE=45°,c=2时,a=,b=.如图2,当∠ABE=30°,c=4时,a=,b=.归纳证明(2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式.拓展应用(3)如图4,在?ABCD中,点E、F、G分别是AD,BC,CD的中点,BE⊥EG,AD=2,AB=3,求AF的长.2015年江西省南昌市中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.(3分)(2015?南昌)计算(﹣1)0的结果为()A.1B.﹣1 C.0D.无意义考点:零指数幂.分析:根据零指数幂的运算方法:a0=1(a≠0),求出(﹣1)0的结果为多少即可.解答:解:∵(﹣1)0=1,∴(﹣1)0的结果为1.故选:A.点评:此题主要考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:(1)a0=1(a≠0);(2)00≠1.2.(3分)(2015?南昌)2015年初,一列CRH5型高速车组进行了“300000公里正线运营考核”标志着中国高速快车从“中国制造”到“中国创造”的飞跃,将300000用科学记数法表示为()A.3×106B.3×105C.×106D.30×104考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将300000用科学记数法表示为:3×105.故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2015?南昌)下列运算正确的是()A.(2a2)3=6a6B.﹣a2b23ab3=﹣3a2b5C.=﹣1D.+=﹣1考点:分式的乘除法;幂的乘方与积的乘方;单项式乘单项式;分式的加减法.专题:计算题.分析:A、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可做出判断;B、原式利用单项式乘以单项式法则计算得到结果,即可做出判断;C、原式约分得到结果,即可做出判断;D、原式变形后,利用同分母分式的减法法则计算,约分即可得到结果.解解:A、原式=8a4,错误;答:B、原式=﹣3a3b5,错误;C、原式=a﹣1,错误;D、原式===﹣1,正确;故选D.点评:此题考查了分式的乘除法,幂的乘方与积的乘方,单项式乘单项式,以及分式的加减法,熟练掌握运算法则是解本题的关键.4.(3分)(2015?南昌)如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为()A.B.C.D.考点:简单组合体的三视图.分析:找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.解答:解:从左面看所得到的图形是正方形,切去部分的棱能看到,用实线表示,故选:C.点评:本题考查了三视图的知识,掌握主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图是解题的关键.5.(3分)(2015?南昌)如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误的是()A.四边形ABCD由矩形变为平行四边形B.B D的长度增大C.四边形ABCD的面积不变D.四边形ABCD的周长不变考点:矩形的性质;平行四边形的性质.分析:由将四根木条用钉子钉成一个矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,由平行四边形的判定定理知四边形变成平行四边形,由于四边形的每条边的长度没变,所以周长没变;拉成平行四边形后,高变小了,但底边没变,所以面积变小了,BD的长度增加了.解答:解:∵矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,∴AD=BC,AB=DC,∴四边形变成平行四边形,故A正确;BD的长度增加,故B正确;∵拉成平行四边形后,高变小了,但底边没变,∴面积变小了,故C错误;∵四边形的每条边的长度没变,∴周长没变,故D正确,故选C.点评:本题主要考查了矩形的性质和平行四边形的性质,弄清图形变化后的变量和不变量是解答此题的关键.6.(3分)(2015?南昌)已知抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,那么抛物线的对称轴()A.只能是x=﹣1B.可能是y轴C.在y轴右侧且在直线x=2的左侧D.在y轴左侧且在直线x=﹣2的右侧考点:二次函数的性质.分析:根据题意判定点(﹣2,0)关于对称轴的对称点横坐标x2满足:﹣2<x2<2,从而得出﹣2<<0,即可判定抛物线对称轴的位置.解答:解:∵抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,∴点(﹣2,0)关于对称轴的对称点横坐标x2满足:﹣2<x2<2,∴﹣2<<0,∴抛物线的对称轴在y轴左侧且在直线x=﹣2的右侧.故选D.点评:本题考查了二次函数的性质,根据点坐标判断出另一个点的位置是解题的关键.二、填空题(本大题共8小题,每小题3分,共24分)7.(3分)(2015?南昌)一个角的度数为20°,则它的补角的度数为160°.考点:余角和补角.分析:根据互为补角的两个角的和等于180°列式进行计算即可得解.解答:解:180°﹣20°=160°.故答案为:160°.点本题考查了余角和补角,解决本题的关键是熟记互为补角的和等于180°.评:8.(3分)(2015?南昌)不等式组的解集是﹣3<x≤2.考点:解一元一次不等式组.专题:计算题.分析:分别求出不等式组中两不等式的解集,找出解集的公共部分即可.解答:解:,由①得:x≤2,由②得:x>﹣3,则不等式组的解集为﹣3<x≤2.故答案为:﹣3<x≤2点评:此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.9.(3分)(2015?南昌)如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有3对全等三角形.考点:全等三角形的判定;角平分线的性质.分析:由OP平分∠MON,PE⊥OM于E,PF⊥ON于F,得到PE=PF,∠1=∠2,证得△AOP≌△BOP,再根据△AOP≌△BOP,得出AP=BP,于是证得△AOP≌△BOP,和R t△AOP≌R t△BOP.解答:解:OP平分∠MON,PE⊥OM于E,PF⊥ON于F,∴PE=PF,∠1=∠2,在△AOP与△BOP中,,∴△AOP≌△BOP,∴AP=BP,在△EOP与△FOP中,,∴△AOP≌△BOP,在R t△AOP与R t△BOP中,,∴R t△AOP≌R t△BOP,∴图中有3对全等三角形,故答案为:3.点评:本题考查了角平分线的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定定理是解题的关键.10.(3分)(2015?南昌)如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为110°.考点:圆周角定理.分析:根据圆周角定理求得∠BOC=100°,进而根据三角形的外角的性质求得∠BDC=70°,然后根据邻补角求得∠ADC的度数.解答:解:∵∠A=50°,∴∠BOC=2∠A=100°,∵∠B=30°,∠BOC=∠B+BDC,∴∠BDC=∠BOC﹣∠B=100°﹣30°=70°,∴∠ADC=180°﹣∠BDC=110°,故答案为110°.点评:本题考查了圆心角和圆周角的关系及三角形外角的性质,圆心角和圆周角的关系是解题的关键.11.(3分)(2015?南昌)已知一元二次方程x2﹣4x﹣3=0的两根为m,n,则m2﹣mn+n2=25.考点:根与系数的关系.分析:由m与n为已知方程的解,利用根与系数的关系求出m+n与mn的值,将所求式子利用完全平方公式变形后,代入计算即可求出值.解答:解:∵m,n是一元二次方程x2﹣4x﹣3=0的两个根,∴m+n=4,mn=﹣3,则m2﹣mn+n2=(m+n)2﹣3mn=16+9=25.故答案为:25.点评:此题考查了一元二次方程根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.12.(3分)(2015?南昌)如图1是小志同学书桌上的一个电子相框,将其侧面抽象为如图2所示的几何图形,已知BC=BD=15cm,∠CBD=40°,则点B到CD的距离为cm (参考数据sin20°≈,cos20°≈,sin40°≈,cos40°≈,结果精确到,可用科学计算器).考点:解直角三角形的应用.分析:作BE⊥CD于E,根据等腰三角形的性质和∠CBD=40°,求出∠CBE的度数,根据余弦的定义求出BE的长.解答:解:如图2,作BE⊥CD于E,∵BC=BD,∠CBD=40°,∴∠CBE=20°,在Rt△CBE中,cos∠CBE=,∴BE=BC?cos∠CBE=15×=.故答案为:.点评:本题考查的是解直角三角形的应用,掌握锐角三角函数的概念是解题的关键,作出合适的辅助线构造直角三角形是解题的重要环节.13.(3分)(2015?南昌)两组数据:3,a,2b,5与a,6,b的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为6.考点:中位数;算术平均数.分析:首先根据平均数的定义列出关于a、b的二元一次方程组,再解方程组求得a、b的值,然后求中位数即可.解答:解:∵两组数据:3,a,2b,5与a,6,b的平均数都是6,∴,解得,若将这两组数据合并为一组数据,按从小到大的顺序排列为3,4,5,6,8,8,8,一共7个数,第四个数是6,所以这组数据的中位数是6.故答案为6.点评:本题考查平均数和中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一组数据的中位数与这组数据的排序及数据个数有关,因此求一组数据的中位数时,先将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.14.(3分)(2015?南昌)如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为2或2或2.考点:勾股定理;含30度角的直角三角形;直角三角形斜边上的中线.专题:分类讨论.分析:利用分类讨论,当∠APB=90°时,易得∠PAB=30°,利用锐角三角函数得AP的长;当∠ABP=90°时,分两种情况讨论,情况一:如图2易得BP,利用勾股定理可得AP的长;情况二:如图3,利用直角三角形斜边的中线等于斜边的一半得出结论.解答:解:当∠APB=90°时(如图1),∵AO=BO,∴PO=BO,∵∠AOC=60°,∴∠BOP=60°,∴△BOP为等边三角形,∵AB=BC=4,∴AP=AB?sin60°=4×=2;当∠ABP=90°时,情况一:(如图2),∵∠AOC=∠BOP=60°,∴∠BPO=30°,∴BP===2,在直角三角形ABP中,AP==2,情况二:如图3,∵AO=BO,∠APB=90°,∴PO=AO,∵∠AOC=60°,∴△AOP为等边三角形,∴AP=AO=2,故答案为:2或2或2.点评:本题主要考查了勾股定理,含30°直角三角形的性质和直角三角形斜边的中线,分类讨论,数形结合是解答此题的关键.三、解答题(本大题共4小题,每小题6分,共24分)15.(6分)(2015?南昌)先化简,再求值:2a(a+2b)﹣(a+2b)2,其中a=﹣1,b=.考点:整式的混合运算—化简求值.专题:计算题.分析:原式第一项利用单项式乘以多项式法则计算,第二项利用完全平方公式化简,去括号合并得到最简结果,把a与b的值代入计算即可求出值.解答:解:原式=2a2+4ab﹣a2﹣4ab﹣4b2=a2﹣4b2,当a=﹣1,b=时,原式=1﹣12=﹣11.点评:此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.16.(6分)(2015?南昌)如图,正方形ABCD于正方形A1B1C1D1关于某点中心对称,已知A,D1,D三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标.(2)写出顶点B,C,B1,C1的坐标.考点:中心对称;坐标与图形性质.分析:(1)根据对称中心的性质,可得对称中心的坐标是D1D的中点,据此解答即可.(2)首先根据A,D的坐标分别是(0,4),(0,2),求出正方形ABCD与正方形A1B1C1D1的边长是多少,然后根据A,D1,D三点的坐标分别是(0,4),(0,3),(0,2),判断出顶点B,C,B1,C1的坐标各是多少即可.解答:解:(1)根据对称中心的性质,可得对称中心的坐标是D1D的中点,∵D1,D的坐标分别是(0,3),(0,2),∴对称中心的坐标是(0,).(2)∵A,D的坐标分别是(0,4),(0,2),∴正方形ABCD与正方形A1B1C1D1的边长都是:4﹣2=2,∴B,C的坐标分别是(﹣2,4),(﹣2,2),∵A1D1=2,D1的坐标是(0,3),∴A1的坐标是(0,1),∴B1,C1的坐标分别是(2,1),(2,3),综上,可得顶点B,C,B1,C1的坐标分别是(﹣2,4),(﹣2,2),(2,1),(2,3).点评:(1)此题主要考查了中心对称的性质和应用,要熟练掌握,解答此题的关键是要明确中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.(2)此题还考查了坐标与图形的性质的应用,要熟练掌握,解答此题的关键是要明确点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.17.(6分)(2015?南昌)⊙O为△ABC的外接圆,请仅用无刻度的直尺,根据下列条件分别在图1,图2中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法).(1)如图1,AC=BC;(2)如图2,直线l与⊙O相切于点P,且l∥BC.考点:作图—复杂作图;三角形的外接圆与外心;切线的性质.专题:作图题.分析:(1)过点C作直径CD,由于AC=BC,=,根据垂径定理的推理得CD垂直平分AB,所以AD将△ABC分成面积相等的两部分;(2)连结PO并延长交BC于E,过点A、E作弦AD,由于直线l与⊙O相切于点P,根据切线的性质得OP⊥l,而l∥BC,则PE⊥BC,根据垂径定理得BE=CE,所以弦AE将△ABC分成面积相等的两部分.解答:解:(1)如图1,直径CD为所求;(2)如图2,弦AD为所求.点评:本题考查了复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了切线的性质.18.(6分)(2015?南昌)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,请完成下列表格:事件A 必然事件随机事件m的值42,3(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于,求m的值.考概率公式;随机事件.点:分析:(1)当袋子中全部为黑球时,摸出黑球才是必然事件,否则就是随机事件;(2)利用概率公式列出方程,求得m的值即可.解答:解:(1)当袋子中全为黑球,即摸出4个红球时,摸到黑球是必然事件;当摸出2个或3个时,摸到黑球为随机事件,故答案为:4;2,3.(2)根据题意得:=,解得:m=2,所以m的值为2.点评:本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.四、解答题(本大题共3小题,每小题8分,共24分)19.(8分)(2015?南昌)某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷140份,每位学生家长1份,每份问卷仅表明一种态度,将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如图两幅不完整的统计图.根据以上信息解答下列问题:(1)回收的问卷数为120份,“严加干涉”部分对应扇形的圆心角度数为30°.(2)把条形统计图补充完整(3)若将“稍加询问”和“从来不管”视为“管理不严”,已知全校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)用“从来不管”的问卷数除以其所占百分比求出回收的问卷总数;用“严加干涉”部分的问卷数除以问卷总数得出百分比,再乘以360°即可;(2)用问卷总数减去其他两个部分的问卷数,得到“稍加询问”的问卷数,进而补全条形统计图;(3)用“稍加询问”和“从来不管”两部分所占的百分比的和乘以1500即可得到结果.解答:解:(1)回收的问卷数为:30÷25%=120(份),“严加干涉”部分对应扇形的圆心角度数为:×360°=30°.故答案为:120,30°;(2)“稍加询问”的问卷数为:120﹣(30+10)=80(份),补全条形统计图,如图所示:(3)根据题意得:1500×=1375(人),则估计该校对孩子使用手机“管理不严”的家长大约有1375人.点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体.20.(8分)(2015南昌)(1)如图1,纸片ABCD中,AD=5,S ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D的形状为CA.平行四边形 B.菱形 C.矩形 D.正方形(2)如图2,在(1)中的四边形纸片AEE′D中,在EE′上取一点F,使EF=4,剪下△AEF,将它平移至△DE′F′的位置,拼成四边形AFF′D.①求证:四边形AFF′D是菱形.②求四边形AFF′D的两条对角线的长.考点:图形的剪拼;平行四边形的性质;菱形的判定与性质;矩形的判定;平移的性质.分析:(1)根据矩形的判定,可得答案;(2)①根据菱形的判定,可得答案;②根据勾股定理,可得答案.解答:解:(1)如图1,纸片?ABCD中,AD=5,S ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D的形状为矩形,故选:C;(2)①证明:∵纸片?ABCD中,AD=5,S ABCD=15,过点A作AE⊥BC,垂足为E,∴AE=3.如图2:,∵△AEF,将它平移至△DE′F′,∴AF∥DF′,AF=DF′,∴四边形AFF′D是平行四边形.在Rt△AEF中,由勾股定理,得AF===5,∴AF=AD=5,∴四边形AFF′D是菱形;②连接AF′,DF,如图3:在Rt△DE′F中E′F=FF′﹣E′F′=5﹣4=1,DE′=3,∴DF===,在Rt△AEF′中EF′=EF+FF′=4+5=9,AE=3,∴AF′===3.本题考查了图形的剪拼,利用了矩形的判定,菱形的判定,勾股定理.点评:21.(8分)(2015?南昌)如图,已知直线y=ax+b与双曲线y=(x>0)交于A(x1,y1),B(x2,y2)两点(A与B不重合),直线AB与x轴交于P(x0,0),与y轴交于点C.(1)若A,B两点坐标分别为(1,3),(3,y2),求点P的坐标.(2)若b=y1+1,点P的坐标为(6,0),且AB=BP,求A,B两点的坐标.(3)结合(1),(2)中的结果,猜想并用等式表示x1,x2,x0之间的关系(不要求证明).反比例函数与一次函数的交点问题.考点:分(1)先把A(1,3)),B(3,y2)代入y=求得反比例函数的解析式,进而求得析:B的坐标,然后把A、B代入y=ax+b利用待定系数法即可求得直线的解析式,继而即可求得P的坐标;(2)作AD⊥y轴于D,AE⊥x轴于E,BF⊥x轴于F,BG⊥y轴于G,AE、BG交于H,则AD∥BG∥x轴,AE∥BF∥y轴,得出=,==,根据题意得出=,==,从而求得B(,y1),然后根据k=xy得出x1y1=y1,求得y1=2,代入=,解得x1=2,即可求得A、B的坐标;(3)合(1),(2)中的结果,猜想x1+x2=x0.解答:解:(1)∵直线y=ax+b与双曲线y=(x>0)交于A(1,3),∴k=1×3=3,∴y=,∵B(3,y2)在反比例函数的图象上,∴y2==1,∴B(3,1),∵直线y=ax+b经过A、B两点,∴解得,∴直线为y=﹣x+4,令y=0,则x=4,∴P(4,O);(2)如图,作AD⊥y轴于D,AE⊥x轴于E,BF⊥x轴于F,BG⊥y轴于G,AE、BG交于H,则AD∥BG∥x轴,AE∥BF∥y轴,∴=,==,∵b=y1+1,AB=BP,∴=,==,∴B(,y1)∵A,B两点都是反比例函数图象上的点,∴x1y1=y1,解得y1=2,代入=,解得x1=2,∴A(2,2),B(4,1).(3)根据(1),(2)中的结果,猜想:x1,x2,x0之间的关系为x1+x2=x0.点评:本题考查了待定系数法求解析式以及反比例函数和一次函数的交点问题,数形结合思想的运用是解题的关键.五、解答题(本大题共2小题,每小题9分,共18分)22.(9分)(2015?南昌)甲、乙两人在100米直道AB上练习匀速往返跑,若甲、乙分别中A,B两端同时出发,分别到另一端点处掉头,掉头时间不计,速度分别为5m/s和4m/s.(1)在坐标系中,虚线表示乙离A端的距离s(单位:m)与运动时间t(单位:s)之间的函数图象(0≤t≤200),请在同一坐标系中用实线画出甲离A端的距离s与运动时间t之间的函数图象(0≤t≤200);(2)根据(1)中所画图象,完成下列表格:两人相遇次数(单位:次)1 2 3 4 …n两人所跑路程之和(单位:m)100 300 500700…200n﹣100(3)①直接写出甲、乙两人分别在第一个100m内,s与t的函数解析式,并指出自变量t 的取值范围;②当t=390s时,他们此时相遇吗若相遇,应是第几次若不相遇,请通过计算说明理由,并求出此时甲离A端的距离.考点:一次函数的应用.分析:(1)根据甲跑100米所用的时间为100÷5=20(秒),画出图象即可;(2)根据甲和乙第一次相遇时,两人所跑路程之和为100米,甲和乙第二次相遇时,两人所跑路程之和为100×2+100=300(米),甲和乙第三次相遇时,两人所跑路程之和为200×2+100=500(米),甲和乙第四次相遇时,两人所跑路程之和为300×2+100=700(米),找到规律即可解答;(3)①根据路程、速度、时间之间的关系即可解答;②由200n﹣100=9×390,解得:n=,根据n不是整数,所以此时不相遇,当t=400s 时,甲回到A,所以当t=390s时,甲离A端距离为(400﹣390)×5=50m.。

相关文档
最新文档