平行四边形的判定典型例题及练习

合集下载

6.2平行四边形的判定同步练习

6.2平行四边形的判定同步练习

北师大八年级数学下6.2平行四边形的判定同步练习一、选择题1.以不共线的三点A、B、C为顶点的平行四边形共有( )A.1个B.2个C.3个D.无数个2.如下左图所示,四边形ABCD的对角线AC和BD相交于点O,下列判断正确的是()A.若AO=OC,则ABCD是平行四边形; B.若AC=BD,则ABCD是平行四边形;C.若AO=BO,CO=DO,则ABCD是平行四边形; D.若AO=OC,BO=OD,则ABCD是平行四边形3.如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是()A . AB∥CD,AD∥BCB . AD∥BC,AB=CDC . OA=OC,OB=OD D . AB=CD,AD=BC4.如图,已知AB=DC,AD=BC,E、F在DB上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF=()A . 150°B . 40°C . 80°D . 90°5.在给定的条件中,能画出平行四边形的是()A . 以60cm为一条对角线,20cm,34cm为两条邻边B . 以6cm,10cm为两条对角线,8cm为一边C . 以20cm,36cm为两条对角线,22cm为一边D . 以6cm为一条对角线,3cm,10cm为两条邻边点中不能作为平行四边形第四个顶点坐标的是()A.(3,-1) B.(-1,-1) C.(1,1) D.(-2,-1)7.如图,在平行四边形ABCD中,对角线AC、BD相交于点O. E、F是对角线AC上的两个不同点,当E、F 两点满足下列条件时,四边形DEBF不一定是平行四边形( )A. AE =CFB.DE =BFC.D.8.A ,B ,C ,D 在同一平面内,从①AB∥CD,②AB=CD,③BC∥AD,④BC=AD 这四个中任选两个作为条件,能使四边形ABCD 为平行四边形的选法有( )A .6种B .5种C .4种D .3种9.如图,▱ABCD 中,两对角线交于点O ,AB ⊥AC ,AD =5cm ,OC =2cm ,则对角线BD 的长为( )A .cmB .8cmC .3cmD .2cm10.如图,在△ABC 中,∠ACB=90°,D 是BC 的中点,DE⊥BC,CE∥AD,若AC=2,∠ADC=30°,①四边形ACED 是平行四边形;②△BCE 是等腰三角形;③四边形ACEB 的周长是10+;④四边形ACEB 的面积是16.则以上结论正确的是( )A .①②③B .①②④C .①③④D .②④二、填空题11.在平行四边形ABCD 中,若∠A =130°,则∠B = ,∠C = ,∠D = .12.如图,▱ABCD 中,AC ,BD 相交于点O ,若AD =3,AC +BD =10,则△BOC 的周长为 .13.如图,四边形ABCD 的对角线AC 与BD 相交于点O ,AD∥BC,若要使四边形是平行四边形,则需要添加的一个条件是 .(只写出一种情况即可)14.如图,平行四边形ABCD 的周长为18cm ,AC ,BD 相交于点O ,△OBC 的周长比△OAB 的周长小2cm ,则AB 的长度为_____cm .CBF ADE ∠=∠CFB AED ∠=∠132三、解答题15.如图,已知△ABC是等边三角形,D、F两点分别在线段BC、AB上,∠EFB=60°,DC=EF.(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD.16.如图,O是平行四边形ABCD对角线的交点,过点O的直线EF分别交AD、BC于F、E两点.求证:四边形AECF是平行四边形.。

平行四边形的性质及判定基本练习

平行四边形的性质及判定基本练习

平行四边形的性质及判定基本练习一、选择题1.若平行四边形ABCD的周长是40cm,△ABC的周长是27cm,则AC的长为( ) A.13cm B.3cm C.7cm D.11.5 cm2.根据下列条件,不能判定四边形是平行四边形的是( )A.一组对边平行且相等的四边形 B.两组对边分别相等的四边形C.对角线相等的四边形 D.对角线互相平分的四边形3.已知平行四边形周长为28cm,相邻两边的差是4cm ,则两边的长分别为( ) A.4cm、10cm B.5cm、9cm C.6cm、8cm D.5cm、7cm 4.下列条件中,能判定一个四边形是平行四边形的是( )A.一组对边平行,另一组对边相等 B.一组对边平行,一组对角相等 C.一组邻边相等,一组对角相等 D.一组对边平行,一组对角互补5.若A、B、C三点不在同一条直线上,则以其为顶点的平行四边形共有( )个A.1 B.2 C.3 D.46.能够判定四边形是平行四边形的条件是( )A.一组对角相等 B.两条对角线互相垂直C.两条对角线互相平分 D.一条邻角互补7.已知平行四边形的一条边长为14,下列各组数中能分别作它的两条对角线长的是( )A.10与6 B.12与16 C.20与22 D.10与188.四边形ABCD中,AD∥BC,当满足条件( )时,四边形ABCD是平行四边形A.∠A+∠C =︒180 B.∠B+∠D =︒180C.∠A+∠B =︒180 D.∠A+∠D =︒1809.已知下列三个命题⑴两组对角分别相等的四边形是平行四边形⑵一个角与相邻两角都互补的四边形是平行四边形⑶一组对角相等,一组对边平行的四边形是平行四边形其中错误的命题的个数是( )A.0个 B.1个 C.2个 D.3个10.平行四边形ABCD中,对角线AC、BD交于点O,AC = 10,BD = 8,则AD的取值范围是( )A.AD>1 B.AD<9 C.1<AD<9 D.AD>911、.如图,四边形ACED为平行四边形,DF垂直平分BE甲乙两虫同时从A点开始爬行到点F,甲虫沿着FEDA---的路线爬行,乙虫沿着FBCA---的路线爬行,若它们的爬行速度相同,则( )A 甲虫先到B 乙虫先到C 两虫同时到D 无法确定二、填空题12.一个平行四边形的周长为40,两邻边的比为3∶5,则四边形的长为_________.13、四边形A B C D中,已知A B C D=,则可再添加一个条件可判定四边形A B C D为平行四边形.14.一个平行四边形的一个内角比它的邻角大︒24,则这个四边形的四个内角分别是________.15.在平行四边形ABCD中,EF过对角线交点O,交CD、AB于E、F,若AB= 4cm,AD = 3cm,OF = 1.3cm,则四边形BCEF周长为_____________.16.已知平行四边形的面积是144,相邻两边上的高分别为8和9,则它的周长为_____.17.在平行四边形ABCD中,对角线BD = 7cm,∠DBC =︒30,BC = 5cm,则平行四边形ABCD的面积为___________.18.从平行四边形的一锐角顶点引另两条边的垂线,两垂线夹角︒135,则此四边形的四个角分别为_____________.三、解答题:19.平行四边形周长等于68cm ,被两条对角线分成两个不同的三角形的周长和等于80cm ,两对角线的长度之比是2∶3,求两条对角线的长度.20、如图所示,平行四边形A B C D 中,A C B D 、相交于O ,且O E O F =,则四边形A E C F 是平行四边形吗?请说明理由.21、.如图,ABC ∆中,BD 平分ABC ∠,BC DF //,AC EF //,试问BF 与CE 相等吗?为什么?22.如图,AD 、BC 垂直相交于点O ,AB ∥CD ,又BC = 8,AD = 6,求:AB +CD 的长.23.如图,某村有一口呈四边形的池塘,在它的四个角A 、B 、C 、D 处均种有一棵大核桃树,这村准备开挖池塘建养鱼池,想使池塘面积扩大一倍,又想保持核桃树不动,并要求扩建后的池塘成平行四边形形状,请问这村能否实现这一设想?若能,请你设计并画出图形;若不能,请说明理由.24.已知如图,在平行四边形ABCD 中,∠A =︒60,E 、F 分别为AB 、CD 的中点,AB = 2AD ,求证:BD =3EF .25、行四边形ABCD 中,E 在AC 上,AE=2EC,F 在AB 上,BF=2AF,如果BEF ∆的面积为22cm ,求平行四边形ABCD 的面积ADC BAB OCDEECAEBCFD O。

(完整版)平行四边形的性质判定练习题

(完整版)平行四边形的性质判定练习题

第一部分 平行四边形的性质练习题 例题1、平行四边形得周长为50cm ,两邻边之差为5cm,求各边长。

变题1.平行四边形ABCD 的周长为40cm,两邻边AB 、AC 之比为2:3,则AB=_______,BC=________. 变题2.四边形ABCD 是平行四边形,∠BAC=90°,AB=3,AC=4,求AD 的长。

例题2.平行四边形ABCD 中,∠A-∠B=20°,求平行四边形各内角的度数。

变题3.平行四边形ABCD 中,AE 平分∠DAB, ∠DEA=20°,则∠C=_________,∠B_________. 变题4.如图,在平行四边形ABCD 中,∠BAC=34°, ∠ACB=26°,求∠DAC 与∠D 的度数。

例题3.如图,在平行四边形ABCD 中,CE ⊥AD,CF ⊥BA 交BA 的延长线于F ,∠FBC=30°,CE=3cm,CF=5cm,求平行四边形ABCD 的周长。

变题5.如图,平行四边形ABCD 的周长为50,其中AB=15,∠ABC=60°,求平行四边形面积。

1、如图,四边形ABCD 是平行四边形,AB=6cm,BC=8cm ,∠B=70°,则AD=________,CD=______,∠D=_______,∠A=______,∠C=_______.2、平行四边形ABCD 的周长为40cm,两邻边AB 、AC 之比为2:3,则AB=_______,BC=________.3、平行四边形得周长为50cm ,两邻边之差为5cm,则长边是________ ,短边是__________.4、平行四边形ABCD 中,∠A-∠B=20°, 则∠A=_______ ∠B=________5、.平行四边形ABCD 中,AE 平分∠DAB, ∠DEA=20°,则∠C=____,∠B_____.6、平行四边形 ABCD 中,∠A+∠C=200°.则:∠A= _______,∠B= _________ .7、如图,平行四边形ABCD 的周长为50,其中AB=15,∠ABC=60°,求平行四边形面积。

平行四边形的判定练习题(含答案)

平行四边形的判定练习题(含答案)

平行四边形的判定练习题(含答案)(1)因为AD∥BC,AB=CD,所以ABCD是平行四边形.()(2)因为AB∥CD,AD=BC,所以ABCD是平行四边形.()(3)因为AD∥BC,AD=BC,所以ABCD是平行四边形.()(4)因为AB∥CD,AD∥BC,所以ABCD是平行四边形.()(5)因为AB=CD,AD=BC,所以ABCD是平行四边形.()(6)因为AD=CD,AB=AC,所以ABCD是平行四边形.()5.已知AD∥BC,要使四边形ABCD为平行四边形,需要增加条件________.6.如图所示,∠1=∠2,∠3=∠4,问四边形ABCD是不是平行四边形.7.如图所示,在四边形ABCD中,AB=CD,BC=AD,E,F 为对角线AC上的点,且AE=CF,求证:BE=DF.8.如图所示,D为△ABC的边AB上一点,DF交AC于点E,且AE=CE,FC∥AB.求证:CD=AF.9.如图所示,已知四边形ABCD是平行四边形,在AB 的延长线上截取BE=•AB,BF=BD,连接CE,DF,相交于点M.求证:CD=CM.10.如图所示,在四边形ABCD中,DC∥AB,以AD,AC为边作□ACED,延长DC•交EB于F,求证:EF=FB.知能点2 三角形的中位□线11.如图所示,已知E为□ABCD中DC边的延长线上的一点,且CE=DC,连接AE,分别交BC,BD于点F,G,连接AC交BD于点O,连接OF,求证:AB=2OF.12.如图所示,在ABCD中,EF∥AB且交BC于点E,交AD于点F,连接AE,BF•交于点M,连接CF,DE交AD.于点N,求证:MN∥AD且MN=1213.如图所示,DE是△ABC的中位线,BC=8,则DE=_______.14.如图所示,在□ABCD中,对角线AC,BD交于点O,OE∥BC交CD•于E,•若OE=3cm,则AD的长为(). A.3cm B.6cm C.9cm D.12cm 15.如图所示,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,AD的中点,•则四边形EFGH是平行四边形吗?为什么?16.如图所示,在△ABC中,AC=6cm,BC=8cm,AB=10cm,D,E,F分别是AB,BC,CA的中点,求△DEF的面积.规律方法应用17.如图所示,A,B两点被池塘隔开,在A,B外选一点C,连接AC和BC,•并分别找出AC和BC的中点M,N,如果测得MN=20m,那么A,B两点间的距离是多少?18.如图所示,在□ABCD中,AB=2AD,∠A=60°,E,F 分别为AB,CD的中点,EF=1cm,那么对角线BD的长度是多少?你是怎样得到的?19.如图所示,在△ABC中,E为AB的中点,CD平分∠ACB,AD⊥CD于点D.•(BC-AC).试说明:(1)DE∥BC.(2)DE=12开放探索创新20.如图所示,在△ABC中,∠BAC=90°,AD⊥BC于D,BE平分∠ABC交AD•于E,EF∥BC交AC于F,那么AE与CF相等吗?请验证你的结论.中考真题实战21.(长沙)如下左图所示,在四边形ABCD中,AB∥CD,要使四边形ABCD•为平行四边形,则应添加的条件是________.(添加一个即可)22.(呼和浩特)如上右图所示,已知E,F,G,H是四边形ABCD各边的中点,•则S四边形EFGH :S四边形ABCD的值是_________.23.(南京)已知如图19-1-55所示,在Y ABCD中,E,F分别是AB,CD的中点.求证:(1) △AFD≌△CEB.(2)四边形AECF是平行四边形.答案:1.C 2.C 3.D4.(1)× (2)× (3)∨ (4)∨ (5)∨ (6)×5.AD=BC或AB∥CD6.解:∵∠1=∠2,∴AD∥BC.又∵∠3=∠4,∴AB∥CD.∴四边形ABCD是平行四边形.7.证明:∵AB=CD,BC=AD,∴四边形ABCD是平行四边形.∴AB∥CD,∴∠BAE=∠DCF.又∵AE=CE,∴△ABE≌△CDF(SAS),∴BE=EF.8.证明:∵FC∥AB,∴∠DAC=∠ACF,∠ADF=∠DFC.又∵AE=CE,∴△ADE≌△CFE(AAS),∴DE=EF.∵AE=CE,∴四边形ADCF为平行四边形.∴CD=AF.9.证明:∵四边形ABCD是平行四边形.∴AB//DC.又∵BE=AB,∴BE//DC,∴四边形BDCE是平行四边形.∵DC∥BF,∴∠CDF=∠F.同理,∠BDM=∠DMC.∵BD=BF,∴∠BDF=∠F.∴∠CDF=∠CMD,∴CD=CM.10.证明:过点B作BG∥AD,交DC的延长线于G,连接EG.∵DC∥AB,∴ABGD是平行四边形,∴BG// AD.在□ACED中,AD//CE,∴CE//BG.∴四边形BCEG为平行四边形,∴EF=FB.11.证明:∵四边形ABCD是平行四边形,∴AB//CD,AD=BC.∵CE=CD,∴AB//CE,∴四边形ABEC为平行四边形.∴BF=FC,∴OF//1AB,即AB=2OF.212.证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC.又∵EF∥AB,∴EF∥CD.∴四边形ABEF,ECDF均为平行四边形.又∵M,N分别为Y ABEF和Y ECDF对角线的交点.∴M为AE的中点,N为DE的中点,即MN为△AED的中位线.∴MN∥AD且MN=12AD.13.4 14.B15.解:EFGH是平行四边形,连接AC,在△ABC中,∵EF是中位线,∴EF//12AC.同理,GH//12AC.∴EF//GH,∴四边形EFGH为平行四边形.16.解:∵EF,DE,DF是△ABC的中位线,∴EF=12AB,DE=12AC,DF=12BC.又∵AB=10cm,BC=8cm,AC=6cm,∴EF=5cm,DE=3cm,DF=4cm,而32+42=25=52,即DE2+DF2=EF2.∴△EDF为直角三角形.∴S△EDF =12DE·DF=12×3×4=6(cm2).17.解:∵M,N分别是AC,BC的中点.∴MN是△ABC的中位线,∴MN=12AB.∴AB=2MN=2×20=40(m).故A,B两点间的距离是40m.18.解:连接DE.∵四边形ABCD是平行四边形,∴AB//CD.∵DF=12CD,AE=12AB,∴DF//AE.∴四边形ADFE是平行四边形.∴EF=AD=1cm.∵AB=2AD,∴AB=2cm.∵AB=2AD,∴AB=2AE,∴AD=AE.∴∠1=∠4.∵∠A=60°,∠1+∠4+∠A=180°,∴∠1=∠A=∠4=60°.∴△ADE是等边三角形,∴DE=AE.∵AE=BE,∴DE=BE,∴∠2=∠3.∵∠1=∠2+∠3,∠1=60°,∴∠2=∠3=30°.∴∠ADB=∠3+∠4=90°.=cm).19.解:延长AD交BC于F.(1)∵AD⊥CD,∴∠ADC=∠FDC=90°.∵CD平分∠ACB,∴∠ACD=∠FCD.在△ACD与△FCD中,∠ADC=∠FDC,DC=DC,∠ACD=∠FCD.∴△ACD≌△FCD,∴AC=FC,AD=DF.又∵E为AB的中点,∴DE∥BF,即DE∥BC.(2)由(1)知AC=FC,DE=12BF.∴DE=12(BC-FC)=12(BC-AC).20.解:AE=CF.理由:过E作EG∥CF交BC于G,∴∠3=∠C.∵∠BAC=90°,AD⊥BC,∴∠ABC+∠C=90°,∠ABD+∠BAD=90°.∴∠C=∠BAD,∴∠3=∠BAD.又∵∠1=∠2,BE=BE,∴△ABE≌△GBE(AAS),∴AE=GE.∵EF∥BC,EG∥CF,∴四边形EGCF是平行四边形,∴GE=CF,∴AE=CF.21.答案不唯一,如AB=CD或AD∥BC.22.1223.解:(1)在□ABCD中,AD=CB,AB=CD,∠D=∠B.∵E,F分别为AB,CD的中点,∴DF=12CD,BE=12AB,∴DF=BE,∴△AFD≌△CEB.(2)在□ABCD中,AB=CD,AB∥CD.由(1)得BE=DF,∴AE=CE,∴四边形AECF是平行四边形.。

《平行四边形的判定》典型例题知识讲解

《平行四边形的判定》典型例题知识讲解

《平行四边形的判定》典型例题《平行四边形的判定》典型例题例1如图,△DAB、△EBC、△FAC都是等边三角形,试说明四边形AFED是平行四边形.例2如图,E、F分别是ABCD边AD和BC上的点,并且AE=CF,AF 和BE相交于G,CE和DF相交于H、EF与GH是否互相平分,请说明理由.例3如图,在平行四边形ABCD中,A1、A2、A3、A4和B1、B2、B3、B4分别是AB和DC的五等分点,C1、C2和D1、D2分别是AD和BC的三等分点,若四边形C1A4D2B1的面积为1,求S平行四边形ABCD.例4已知:如图,E,F分别为ABCD的边CD,AB上一点,AE∥CF,BE,CF分别交CF,AE于H,G.求证:EG=FH.例5如图,已知:四边形ABCD中,AE⊥BD,CF⊥BD,E,F为垂足,且AE=CF,∠BAC=DCA.求证:四边形ABCD是平行四边形.参考答案例1分析要证四边形AFED是平行四边形,应观察:两组对边是否相等、两组对角是否相等,或一组对边是否平行且相等、对角线是否相互平分.但在本题中没有对角线,也没有明显的对角之间的关系,因此可以先考虑去证明四边形AFED的对边是否相等.事实上,AD=AB=BD,EF是否能等于这三条边中的一条呢?可以看到,∴EF=AB=BD.同理DE=AC=AF,因此,所要证的四边形AFED是平行四边形.证明,∴,且,∴,∴又,同理.∴AFED是平行四边形.例2分析若EF、GH互相平分,那么四边形EGFH应是平行四边形.观察已知条件,可以证明四边形EGFH是平行四边形.证明是平行四边形,∴又,∴,且∴四边形AECF是平行四边形,∴,∴又四边形EDFB是平行四边形,∴,∴在四边形GEHF中,,∴四边形GEHF是平行四边形,∴EF和GH互相平分.说明:本题中多次使用了平行四边形的性质:对边平行且相等以及平行四边形的判断方法:对边平行且相等的四边形是平行四边形.通过解题应熟悉平行四边形的性质及判别.例3 分析平行四边形ABCD被和分别成15个相等的小平行四边形。

平行四边形的判定练习题(含(答案))

平行四边形的判定练习题(含(答案))

平行四边形的判定及中位线知能点1 平行四边形的判定方法1.能够判定四边形ABCD是平行四边形的题设是().A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠DC.AB=CD,AD=BC D.AB=AD,CB=CD2.具备下列条件的四边形中,不能确定是平行四边形的为().A.相邻的角互补 B.两组对角分别相等C.一组对边平行,另一组对边相等 D.对角线交点是两对角线中点3.如下左图所示,四边形ABCD的对角线AC和BD相交于点O,下列判断正确的是().A.若AO=OC,则ABCD是平行四边形;B.若AC=BD,则ABCD是平行四边形;C.若AO=BO,CO=DO,则ABCD是平行四边形;D.若AO=OC,BO=OD,则ABCD是平行四边形4.如上右图所示,对四边形ABCD是平行四边形的下列判断,正确的打“∨”,错误的打“×”.(1)因为AD∥BC,AB=CD,所以ABCD是平行四边形.()(2)因为AB∥CD,AD=BC,所以ABCD是平行四边形.()(3)因为AD∥BC,AD=BC,所以ABCD是平行四边形.()(4)因为AB∥CD,AD∥BC,所以ABCD是平行四边形.()(5)因为AB=CD,AD=BC,所以ABCD是平行四边形.()(6)因为AD=CD,AB=AC,所以ABCD是平行四边形.()5.已知AD∥BC,要使四边形ABCD为平行四边形,需要增加条件________.6.如图所示,∠1=∠2,∠3=∠4,问四边形ABCD是不是平行四边形.7.如图所示,在四边形ABCD中,AB=CD,BC=AD,E,F为对角线AC上的点,且AE=CF,求证:BE=DF.8.如图所示,D为△ABC的边AB上一点,DF交AC于点E,且AE=CE,FC∥AB.求证:CD=AF.9.如图所示,已知四边形ABCD是平行四边形,在AB的延长线上截取BE=•AB,BF=BD,连接CE,DF,相交于点M.求证:CD=CM.10.如图所示,在四边形ABCD中,DC∥AB,以AD,AC为边作□ACED,延长DC•交EB于F,求证:EF=FB.知能点2 三角形的中位□线11.如图所示,已知E 为□ABCD 中DC 边的延长线上的一点,且CE=DC ,连接AE ,分别交BC ,BD 于点F ,G ,连接AC 交BD 于点O ,连接OF ,求证:AB=2OF .12.如图所示,在ABCD 中,EF ∥AB 且交BC 于点E ,交AD 于点F ,连接AE ,BF•交于点M ,连接CF ,DE 交于点N ,求证:MN ∥AD 且MN=12AD .13.如图所示,DE 是△ABC 的中位线,BC=8,则DE=_______.14.如图所示,在□ABCD 中,对角线AC ,BD 交于点O ,OE ∥BC 交CD•于E ,•若OE=3cm ,则AD 的长为( ). A .3cm B .6cm C .9cm D .12cm15.如图所示,在四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,AD 的中点,•则四边形EFGH 是平行四边形吗?为什么?16.如图所示,在△ABC 中,AC=6cm ,BC=8cm ,AB=10cm ,D ,E ,F 分别是AB ,BC ,CA 的中点,求△DEF 的面积.规律方法应用17.如图所示,A ,B 两点被池塘隔开,在A ,B 外选一点C ,连接AC 和BC ,•并分别找出AC 和BC 的中点M ,N ,如果测得MN=20m ,那么A ,B 两点间的距离是多少?18.如图所示,在□ABCD 中,AB=2AD ,∠A=60°,E ,F 分别为AB ,CD 的中点,EF=1cm ,那么对角线BD 的长度是多少?你是怎样得到的?19.如图所示,在△ABC 中,E 为AB 的中点,CD 平分∠ACB ,AD ⊥CD 于点D .• 试说明:(1)DE ∥BC .(2)DE=12(BC-AC ).开放探索创新20.如图所示,在△ABC中,∠BAC=90°,AD⊥BC于D,BE平分∠ABC交AD•于E,EF∥BC交AC于F,那么AE与CF相等吗?请验证你的结论.中考真题实战21.(长沙)如下左图所示,在四边形ABCD中,AB∥CD,要使四边形ABCD•为平行四边形,则应添加的条件是________.(添加一个即可)22.(呼和浩特)如上右图所示,已知E,F,G,H是四边形ABCD各边的中点,•则S四边形EFGH:S四边形ABCD的值是_________.23.(南京)已知如图19-1-55所示,在ABCD中,E,F分别是AB,CD的中点.求证:(1)•△AFD≌△CEB.(2)四边形AECF是平行四边形.答案:1.C 2.C 3.D4.(1)×(2)×(3)∨(4)∨(5)∨(6)× 5.AD=BC或AB∥CD6.解:∵∠1=∠2,∴AD∥BC.又∵∠3=∠4,∴AB∥CD.∴四边形ABCD是平行四边形.7.证明:∵AB=CD,BC=AD,∴四边形ABCD是平行四边形.∴AB∥CD,∴∠BAE=∠DCF.又∵AE=CE,∴△ABE≌△CDF(SAS),∴BE=EF.8.证明:∵FC∥AB,∴∠DAC=∠ACF,∠ADF=∠DFC.又∵AE=CE,∴△ADE≌△CFE(AAS),∴DE=EF.∵AE=CE,∴四边形ADCF为平行四边形.∴CD=AF.9.证明:∵四边形ABCD是平行四边形.∴AB//DC.又∵BE=AB,∴BE//DC,∴四边形BDCE是平行四边形.∵DC∥BF,∴∠CDF=∠F.同理,∠BDM=∠DMC.∵BD=BF,∴∠BDF=∠F.∴∠CDF=∠CMD,∴CD=CM.10.证明:过点B作BG∥AD,交DC的延长线于G,连接EG.∵DC∥AB,∴ABGD是平行四边形,∴BG// AD.在□ACED中,AD//CE,∴CE//BG.∴四边形BCEG为平行四边形,∴EF=FB.11.证明:∵四边形ABCD是平行四边形,∴AB//CD,AD=BC.∵CE=CD,∴AB//CE,∴四边形ABEC为平行四边形.∴BF=FC,∴OF//12AB,即AB=2OF.12.证明:∵四边形ABCD是平行四边形,∴AB ∥CD ,AD ∥BC . 又∵EF ∥AB ,∴EF ∥CD .∴四边形ABEF ,ECDF 均为平行四边形.又∵M ,N 分别为ABEF 和ECDF 对角线的交点. ∴M 为AE 的中点,N 为DE 的中点, 即MN 为△AED 的中位线. ∴MN ∥AD 且MN=12AD . 13.4 14.B15.解:EFGH 是平行四边形,连接AC ,在△ABC 中,∵EF 是中位线,∴EF //12AC . 同理,GH //12AC . ∴EF //GH ,∴四边形EFGH 为平行四边形. 16.解:∵EF ,DE ,DF 是△ABC 的中位线, ∴EF=12AB ,DE=12AC ,DF=12BC . 又∵AB=10cm ,BC=8cm ,AC=6cm ,∴EF=5cm ,DE=3cm ,DF=4cm ,而32+42=25=52,即DE 2+DF 2=EF 2. ∴△EDF 为直角三角形. ∴S △EDF =12DE ·DF=12×3×4=6(cm 2). 17.解:∵M ,N 分别是AC ,BC 的中点. ∴MN 是△ABC 的中位线,∴MN=12AB . ∴AB=2MN=2×20=40(m ).故A ,B 两点间的距离是40m . 18.解:连接DE .∵四边形ABCD 是平行四边形, ∴AB //CD . ∵DF=12CD ,AE=12AB , ∴DF //AE .∴四边形ADFE 是平行四边形.∴EF=AD=1cm .∵AB=2AD ,∴AB=2cm .∵AB=2AD ,∴AB=2AE ,∴AD=AE . ∴∠1=∠4.∵∠A=60°,∠1+∠4+∠A=180°, ∴∠1=∠A=∠4=60°.∴△ADE 是等边三角形,∴DE=AE . ∵AE=BE ,∴DE=BE ,∴∠2=∠3.∵∠1=∠2+∠3,∠1=60°,∴∠2=∠3=30°. ∴∠ADB=∠3+∠4=90°. ∴BD=222221AB AD -=-=3(cm ).19.解:延长AD 交BC 于F .(1)∵AD ⊥CD ,∴∠ADC=∠FDC=90°.∵CD 平分∠ACB ,∴∠ACD=∠FCD . 在△ACD 与△FCD 中,∠ADC=∠FDC ,DC=DC ,∠ACD=∠FCD . ∴△ACD ≌△FCD ,∴AC=FC ,AD=DF .又∵E 为AB 的中点,∴DE ∥BF ,即DE ∥BC .(2)由(1)知AC=FC ,DE=12BF . ∴DE=12(BC-FC )=12(BC-AC ). 20.解:AE=CF .理由:过E 作EG ∥CF 交BC 于G , ∴∠3=∠C .∵∠BAC=90°,AD ⊥BC ,∴∠ABC+∠C=90°,∠ABD+∠BAD=90°. ∴∠C=∠BAD ,∴∠3=∠BAD . 又∵∠1=∠2,BE=BE , ∴△ABE ≌△GBE (AAS ),∴AE=GE . ∵EF ∥BC ,EG ∥CF ,∴四边形EGCF 是平行四边形,∴GE=CF , ∴AE=CF .21.答案不唯一,如AB=CD 或AD ∥BC . 22.1223.解:(1)在□ABCD 中,AD=CB ,AB=CD ,∠D=∠B . ∵E ,F 分别为AB ,CD 的中点, ∴DF=12CD ,BE=12AB ,∴DF=BE , ∴△AFD ≌△CEB .(2)在□ABCD 中,AB=CD ,AB ∥CD . 由(1)得BE=DF ,∴AE=CE ,∴四边形AECF 是平行四边形.。

平行四边形的判定练习题

平行四边形的判定练习题

平行四边形的判定练习题在几何学中,平行四边形是指有四边形的对边两两平行的情况。

平行四边形具有特定的性质和判定方法。

本文将为您提供关于平行四边形的练习题,帮助您巩固对平行四边形的判定方法的理解。

题目一:判断以下四边形是否是平行四边形。

1. ABDC,其中∠ABC = 60°,∠BAD = 120°,AB = AD,BC = CD2. MNOP,其中MN = OP,NO = MP,∠MNO = 80°,∠NOP = 100°3. PQRS,其中∠PQR = 90°,∠SPQ = 40°,∠SPR = 100°,RS = PQ4. XYZW,其中XY = WZ,YZ ≠ XW,∠XYZ = 120°,∠WZY = 60°解答:1. 四边形ABDC满足两对对边平行的条件,且相邻内角互补(∠ABC + ∠BAD = 180°),因此是平行四边形。

2. 四边形MNOP满足两对对边平行的条件,但不满足相邻内角互补的条件,因此不是平行四边形。

3. 四边形PQRS满足对边平行的条件,但不满足相邻内角互补的条件,因此不是平行四边形。

4. 四边形XYZW满足对边平行的条件,但不满足相邻内角互补的条件,因此不是平行四边形。

题目二:已知ABCD是平行四边形,E为AD的中点,F为BC的中点,证明EF平行于AB和CD。

解答:由于ABCD是平行四边形,因此AB和CD是平行的。

根据平行四边形的性质,对角线的中点连线平行于两个相对边。

连接AE和BF,并延长AE和BF交于点G。

由于E是AD的中点,因此AE = ED;同理,由于F是BC的中点,因此BF = FC。

又因为平行四边形的两对对边分别平行,所以AE平行于BF。

根据平行线的性质,如果一条直线与一个平行线的一对内错角相等,则这条直线与这对平行线平行。

我们可以证明∠EAG = ∠CBF,且∠EGA = ∠CFB。

八年级数学(下)第十八章《平行四边形的判定》同步练习(含答案)

八年级数学(下)第十八章《平行四边形的判定》同步练习(含答案)

八年级数学(下)第十八章《平行四边形的判定》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,DE是△ABC的中位线,且△ADE的周长为20,则△ABC的周长为A.30 B.40C.50 D.无法计算【答案】B2.如图,在四边形ABCD中,AB=CD,BC=AD,若∠D=120°,则∠C的度数为A.60°B.70°C.80°D.90°【答案】A【解析】∵AB=CD,BC=AD,∴四边形ABCD是平行四边形,∴AD∥BC,∴∠C+∠D=180°,∵∠D=120°,∴∠C=60°.故选A.3.四边形ABCD中,从∠A,∠B,∠C,∠D的度数之比中,能判定四边形ABCD是平行四边形的是A.1∶2∶3∶4 B.2∶3∶2∶3C.2∶2∶3∶3 D.1∶2∶2∶3【答案】B【解析】根据对角相等的四边形是平行四边形,A.1∶2∶3∶4,对角不相等,不能;B.2∶3∶2∶3,对角相等,能;C.2∶2∶3∶3,对角不相等,不能;D.1∶2∶2∶3,对角不相等,不能,故选B.4.依次连接任意四边形各边的中点,得到一个特殊图形,则这个图形一定是A.平行四边形B.矩形C.菱形D.梯形【答案】A【解析】如图,连接AC,∵四边形ABCD各边中点是E、F、G、H,∴HG∥AC,HG=12AC,EF∥AC,EF=12AC,∴EF=GH,EF∥GH,∴四边形EFGH是平行四边形.故选A.5.如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是A.AB∥CD,AD∥BC B.OA=OC,OB=ODC.AD=BC,AB∥CD D.AB=CD,AD=BC【答案】C6.如图,ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则ABCD的周长为A.20 B.16 C.12 D.8【答案】B【解析】∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE =12BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,故选B.7.如图,在ABCD中,对角线AC,BD相交于点O,E,F是对角线AC上的两点,当E,F满足下列哪个条件时,四边形DEBF不一定是平行四边形A.AE=CF B.DE=BFC.∠ADE=∠CBF D.∠AED=∠CFB【答案】BD选项:∵∠AED=∠CFB,∴∠DEO=∠BFO ,∴DE∥BF,在△DOE和△BOF中,DOE BOF DEO BFO OD OB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DOE≌△BOF,∴DE=BF,∴四边形DEBF是平行四边形.故选项正确.故选B.8.如图,E,F分别是□ABCD的边AB,CD的中点,则图中平行四边形的个数共有A.2个B.3个C.4个D.5个【答案】C【解析】∵四边形ABCD是平行四边形,∴DC∥AB,DC=AB,∵E、F分别是边AB、CD的中点,∴DF=FC=12DC,AE=EB=12AB,∵DC=AB,∴DF=FC=AE=EB,∴四边形DFBE和CFAE都是平行四边形,∴DE∥FB,AF∥CE,∴四边形FHEG是平行四边形,故选C.二、填空题:请将答案填在题中横线上.9.如图,A、B两点被池塘隔开,在AB外选一点C,连接AC、BC,取AC、BC的中点D、E,量出DE=a,则AB=2a,它的根据是__________.【答案】三角形的中位线等于第三边的一半10.如图,在四边形ABCD中,AD∥BC,点E是BC边的中点,连接DE并延长,交AB的延长线于F点.已知AB=4,∠F=∠CDE,则BF的长为__________.【答案】4【解析】因为∠F=∠CDE,所以AB∥CD,因为AD∥BC,所以四边形ABCD是平行四边形,所以AB=CD,因为点E是BC边的中点,所以ED=EF,又因为∠F=∠CDE,∠DEC=∠FEB,所以△ECD≌△EBF,所以BF=CD,所以BF=AB,因为AB=4,所以BF=4,故答案为:4.11.如图,四边形ABCD中,AD∥BC,E是DC上一点,连接BE并延长交AD的延长线于点F,连接CF,BD,请你只添加一个条件:__________,使得四边形BDFC为平行四边形.【答案】DE=EC(答案不唯一)【解析】答案不唯一,比如:BD∥CF,构成两组对边分别平行的四边形是平行四边形;DF=BC,构成一组对边平行且相等的四边形是平行四边形;DE=EC,可以证明BE=EF,构成对角线相互平分的四边形是平行四边形,等等.故答案:DE=EC(答案不唯一).12.如图,在平行四边形ABCD中,对角线交于点O,点E、F在直线AC上(不同于A、C),当E、F的位置满足__________的条件时,四边形DEBF是平行四边形.【答案】AE=CF(答案不唯一)三、解答题:解答应写出文字说明、证明过程或演算步骤.13.如图,已知D、E、F分别是△ABC各边的中点,求证:AE与DF互相平分.【解析】∵D、E、F分别是△ABC各边的中点,根据中位线定理知:DE∥AC,DE=AF,EF∥AB,EF=AD,∴四边形ADEF为平行四边形,故AE与DF互相平分.14.如图,ABCD中,E、F分别是AB、CD上的点,AE=CF,M、N分别是DE、BF的中点.求证:四边形ENFM是平行四边形.【解析】∵四边形ABCD是平行四边形,∴AB∥CD.∵AE=CF,∴FD=EB,∴四边形DEBF是平行四边形,∴DE∥FB,DE=FB.∵M、N分别是DE、BF的中点,∴EM=FN.∵DE∥FB,∴四边形MENF是平行四边形.15.如图,点M,N在线段AC上,AM=CN,AB∥CD,AB=CD.求证:∠1=∠2.16.如图1,平行四边形ABCD中,对角线BD、AC交于点O.将直线AC绕点O顺时针旋转分别交BC、AD于点E、F.(1)在旋转过程中,线段AF与CE的数量关系是__________.⊥,当旋转角至少为__________︒时,四边形ABEF是平行四边形,并证明(2)如图2,若AB AC此时的四边形是ABEF是平行四边形.【解析】(1)相等,理由如下: 如图,在ABCD 中,AD ∥BC ,OA =OC ,∴∠1=∠2,在△AOF 和△COE 中,1234OA OC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AOF ≌△COE (ASA ), ∴AF =CE .(2)当旋转角为90︒时,90COE ∠=︒,如图,又∵AB ⊥AC , ∴∠BAO =90°, ∠AOF =90°, ∴∠BAO =∠AOF , ∴AB ∥EF ,∵四边形ABCD 是平行四边形, ∴AD ∥BC , 即:AF ∥BE , ∵AB ∥EF ,AF ∥BE ,∴四边形ABEF 是平行四边形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形一、知识点复习(1)平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其它直线上截得的线段也相等。

(2)平行线等分线段定理的推论:经过三角形一边中点与另一边平行的直线必平分第三边。

(3)三角形的中位线:连接三角形两边中点的线段叫做三角形的中位线。

(4)三角形中位线定理:三角形两边中点的连线平行于第三边,并且等于第三边的一半。

3、三角形的重心(1)重心的定义:三角形的三条中线交于一点,这点就是三角形的重心。

(2)重心的性质:三角形的三条中线相交于一点,这点和各边中点的距离等于相应各边上中线的三分之一。

二、典型例题讲解模块1:平行四边形的判定题型1:平行四边形的判定例题1:如图所示,在平行四边形ABCD 中,CF AE ,分别是DAB ∠,BCD ∠的平分线,求证:四边形AFCE 是平行四边形。

例题2:如图,在等边三角形ABC 中,D 是BC 的中点,以AD 为边向左侧作等边三角形ADE 。

(1)求CAE ∠的度数。

(2)取AB 的中点F ,连接CF 、EF 。

试证明四边形CDEF 是平行四边形。

例题3:如图,在平行四边形ABCD 中,BD 为对角线,F E ,是BD 上的点,且DF BE =. 求证:四边形AECF 是平行四边形。

变式练习:1.如图,在ABC ∆中,中线BD ,CE 相交于点O ,F 、G 分别是OB 、OC 的中点,连接DE GD FG EF ,,,,求证:四边形DEFG 是平行四边形。

2.如图,已知DE AB //,DE AB =,DC AF =,求证:四边形BCEF 是平行四边形。

3.如图,四边形ABCD 中,BC AD //,作DC AE //交BC 于E 。

ABE ∆的周长是cm 25,四边形ABCD 的周长是cm 37,那么=AD cm 。

题型2:添加条件证明平行四边形例题4:如图,在四边形ABCD 中,ACB DAC ∠=∠,要使四边形ABCD 成为平行四边形,则应添加的条件不能是( )A 、BC AD =B 、OC OA = C 、CD AB = D 、 180=∠+∠BCD ABC例题5:A 、B 、C 、D 在同一平面内,从①CD AB //;②CD AB =;③AD BC //;④AD BC =这四个条件中任选两个,能使四边形ABCD 是平行四边形的选法有 种。

变式练习1.(如图,四边形ABCD 的对角线交于点O ,下列哪组条件不能判断四边形ABCD 是平行四边形( )A 、DO OB OC OA ==, B 、CD AB BCD BAD //,∠=∠C 、BC AD BC AD =,// D 、CO AO CD AB ==,2. 已知在四边形ABCD 中,CD AB //,添加下列一个条件后,一定能判定四边形ABCD 是平行四边形的是( )A 、BC AD =B 、BD AC = C 、C A ∠=∠D 、B A ∠=∠3.如图所示,平行四边形ABCD 中,E 、F 是对角线BD 上两点,连接AE ,AF ,CE ,CF ,添加 条件,可以判定四边形AECF 是平行四边形。

(填一个符合要求的条件即可)4.四边形ABCD 中,BC AD //,要使四边形ABCD 成为平行四边形还需满足的条件是 (横线上只需填一个你认为合适的条件即可)题型3:平行四边形的判定与性质的综合应用例题6:已知:如图,平行四边形ABCD 的两条对角线相交于点O ,E 是BO 的中点,过点B 作AC 的平行线,交CE 的延长线于点F ,连接BF 。

(1)求证:CO FB =;(2)求证:四边形AOBF 是平行四边形。

例题7:如图所示,O 为等边ABC ∆内任意一点,BC OD //,AC OE //,AB OF //,并且D 、E 、F 分别在AB 、BC 、AC 上,求证:BC OF OE OD =++.例题8:如图所示,BD 是ABC ∆的角平分线,点E ,F 分别在边BC ,AB 上,且AC EF AB DE //,//.(1)求证:AF BE =;(2)若6,60==∠BD ABC,求四边形ADEF 的面积。

变式练习1. 如图,P 是等边三角形ABC 外一点,且AB PD //,BC PE //,AC PF //,若AB C ∆的周长是36,则PE PF PD -+= 。

2.如图,在平行四边形ABCD 中,AC 交BD 于点O ,BD AE ⊥,BD CF ⊥,垂足分别为F E ,,求证:四边形AECF 为平行四边形。

3. 如图所示,在平行四边形ABCD 中, 60=∠C ,N M ,分别是BC AD ,的中点,CD BC 2=.(1)求证四边形MNCD 是平行四边形;(2)求证MN BD 3=.题型4:平行四边形中的动点问题 例题18:如图,在四边形ABCD 中,AD ∥BC ,且AD >BC ,BC=6cm ,点P 、Q 分别从A 、C 两点的位置同时出发,点P 以1cm/s 的速度由点A 向点D 运动,点Q 以2cm/s 的速度由点C 出发向点B 运动.试探究:几秒后四边形ABQP 是平行四边形?例题19:如图,在四边形ABCD 中,BC AD //,6=AD ,16=BC ,E 是BC 的中点。

点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒3个单位长度的速度从点C 出发,沿CB 向点B 运动。

点P 停止运动时,点Q 也随之停止运动。

当运动时间t 为多少秒时,以Q P ,D E ,为顶点的四边形是平行四边形。

变式练习1.如图:在四边形ABCD 中,AD ∥BC ,且AD >BC ,BC=6cm ,AD=9cm ,P 、Q 分别从A 、C 同时出发,P 以1cm/s 的速度由A 向D 运动,Q 以2cm/s 的速度由C 向B 运动,______秒时直线QP 将四边形截出一个平行四边形.2. 如图,在四边形ABCD 中,BC AD //, 90=∠B ,cm AB 8=,cm AD 24=,cm BC 26=,点P 从点A 出发,以S cm /1的速度向点D 运动;点Q 从点C 同时出发,以s cm /3的速度向点B 运动。

规定,其中一个动点到达端点时,另一个动点也随之停止运动,从运动开始,使CD PQ //和CD PQ =,分别需经过多少时间?为什么?模块2:三角形的中位线题型1:直接利用三角形的中位线性质例题1:如图,在ABC ∆中,5=AB ,6=BC ,7=AC ,点D ,E ,F 分别是ABC ∆三边的中点,则DEF ∆的周长为( )A 、9B 、10C 、11D 、12例题2:如图,ABC ∆周长为1,连接ABC ∆三边中点构成第二个三角形,再连接第二个三角形三边中点构成第三个三角形,以此类推,第2018个三角形的周长为( )A 、20162B 、20172C 、20182D 、20192变式练习1. 已知三角形的3条中位线分别为cm 3、cm 4、cm 6,则这个三角形的周长是( )A 、cm 3B 、cm 26C 、cm 24D 、cm 652.如图所示,EF 是ABC ∆的中位线,BD 平分ABC ∠,交EF 于D ,若2=DE ,则=EB 。

题型2:利用三角形的中位线解决图形的面积问题例题3:如图,DE 是ABC ∆的中位线,F 是DE 的中点,CF 的延长线交AB 于点G ,若CEF ∆的面积为212cm ,则DGF S ∆的值为( )A 、24cmB 、26cmC 、28cmD 、29cm例题4:如图,ABC ∆的面积是12,点D 、E 、F 、G 分别是BC 、AD 、BE 、CE 的中点,则AFG ∆的面积是( )A 、5.4B 、5C 、5.5D 、6变式练习1. 如图,在ABC ∆中,AC AB =,N M ,分别是AC AB ,的中点,E D ,为BC 上的点,连接DN ,EM 。

若cm AB 13=,cm BC 10=,cm DE 5=,则图中阴影部分面积为( )2cm 。

A 、25B 、35C 、30D 、42第1题 第2题 2.如图,在ABC ∆中, 90=∠BAC ,6,4==AC AB ,点E D ,分别是BC ,AD 的中点,BC AF //交CE 的延长线于F ,则四边形AFBD 的面积为 。

题型3:与三角形中位线有关的动点问题例题4:如图,四边形ABCD 中, 90=∠A ,8=AB ,6=AD ,点N M ,分别为线段BC ,AB 上的动点(含端点,但点M 不与点B 重合),点F E ,分别为MN DM ,的中点,则EF 长度的最大值为( )A 、8B 、6C 、4D 、5变式练习1. 如图,已知四边形ABCD 中,P R ,分别是BC ,CD 边上的点,F E ,分别是RP AP ,的中点,当点P 在CD 上从C 向D 移动而点R 不动时,下列结论成立的是( )A 、EFP ∆的周长不变B 、线段EF 的长与点P 的位置无关C 、点P 到EF 的距离不变D 、APR ∠的大小不变2. 如图,已知四边形ABCD 中,90=∠C ,点P 是CD 边上的动点,连接AP ,F E ,分别是AB ,AP 的中点,当点P 在CD 上从点D 向点C 移动过程中,下列结论成立的是( )A 、线段EF 的长先减小后增大B 、线段EF 的长不变C 、线段EF 的长逐渐增大D 、线段EF 的长逐渐减小题型4:三角形中位线性质的综合应用例题5:如图,在ABC ∆中,点D 是边BC 的中点,点E 在ABC ∆内,AE 平分BAC ∠,AE CE ⊥,点F 在边AB 上,BC EF //.(1)求证:四边形BDEF 是平行四边形;(2)线段BF 、AB 、AC 的数量之间具有怎样的关系?证明你所得到的结论。

变式练习1.如图所示,已知AO 是ABC ∆中BAC ∠的平分线,AO BD ⊥的延长线于点E D ,是BC 的中点。

求证:)(21AC AB DE -=.课后作业一、选择题。

1. 下列不能判定一个四边形是平行四边形的是( )A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行另一组对边相等的四边形是平行四边形D.对角线相互平分的四边形是平行四边形2. 能判定四边形ABCD 为平行四边形的条件是( )A 、BC AD CD AB =,// B 、DC B A ∠=∠∠=∠,C 、A C CD AB ∠=∠,// D 、CD CB AD AB ==,3. 小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是( )A 、①,②B 、①,④C 、③,④D 、②,③第3题 第4题 第5题4. 如图,ABC ∆中,D 、E 分别是BC 、AC 的中点,BF 平分ABC ∠,交DE 于点F ,若6=BC ,则DF 的长是( )A 、3B 、2C 、25 D 、4 5. 如图,M 是ABC ∆的边BC 的中点,AN 平分BAC ∠, AN BN ⊥于点N ,且10=AB ,3,15==MN BC ,则AC 的长是( )A 、12B 、14C 、16D 、186. 如图,在A B C ∆中D ,E 分别是AC AB ,的中点,点,F G 在BC 上,且CG BF BC 44==,EF 与DG 相交于点O ,若 40=∠DFE , 80=∠DGE ,那么DOE ∠的度数是( )A 、 100B 、 120C 、 140D 、160第6题 第7题 第8题7. 如图,在四边形ABCD 中,CD AB //,5==BC AD ,7=DC ,13=AB ,点P 从点A 出发以3个单位/s 的速度沿DC AD →向终点C 运动,同时点Q 从点B 出发,以1个单位/s 的速度沿BA 向终点A 运动。

相关文档
最新文档