数学课程标准(2011年版)解读
《义务教育数学课程标准》(2011年版)解读...
《义务教育数学课程标准》(2011年版)解读——初中数学浙江省教育厅教研室许芬英一、“课程基本理念”的修改1.将“人人学有价值的数学,人人获得必需的数学,不同的人在数学上得到不同的发展”,改为“人人都能获得良好的数学教育,不同的人在数学上得到不同的发展”。
2.将“数学学习”和“数学教学”两条合并成一条“教学活动”,整体上阐述数学教学活动的特征。
表述为:“教学活动是师生积极参与、交往互动、共同发展的过程。
有效的数学教学活动是学生学与教师教的统一,学生是数学学习的主体,教师是数学学习的组织者、引导者与合作者。
”二、“设计思路”的修改1.对“数与代数”,“图形与几何”,“统计与概率”,“综合与实践”四个方面的课程内容做了明确的阐述。
2.将“空间与图形”改为“图形与几何”、“实践与综合应用”改为“综合与实践”。
确立了“数感”、“符号意识”、“运算能力”、“模型思想”、“空间观念”、“几何直观”、“推理能力”、“数据分析观念”等八个关键词,并给出具体描述。
并专门阐述了“应用意识”和“创新意识”。
三、“课程目标”的修改1.明确提出“四基”,即基础知识、基本技能、基本思想和基本活动经验。
2.提出了发现和提出问题的能力:在原分析和解决问题能力的基础上,进一步提出培养学生发现和提出问题的能力。
3.完善了一些具体目标的描述:比如对于学习习惯,明确指出使学生养成“认真勤奋、独立思考、合作交流、反思质疑等学习习惯”。
4.规范了课程目标的若干术语。
并在学段目标中使用这些术语。
四、“课程内容”(原“内容标准”)的修改1.对“数与代数”,“图形与几何”,“统计与概率”和“综合与实践”四个方面的内容及要求进行了适当的调整,使用规定的课程目标术语,对某些课程目标的表述进行了修改。
2.从总体结构上看,“几何与图形”领域发生了一些变化,另外三个领域的结构基本没变。
“几何与图形”结构的变化表现在:将实验稿中分四个方面对内容进行的要求(即“图形的认识”、“图形与变换”、“图形与坐标”、“图形与证明”)改为从三个方面展开内容要求,即“图形的性质”、“图形的变化”、“图形与坐标”,这三部分中的“图形的性质”基本上是整合了实验稿中的第一和第四部分而成,而其他两个部分与原来的两部分对应。
《义务教育数学课程标准(2011年版)》第一学段“综合与实践”的内容解读
《 义务教育数学课程标准( 2 0 1 1 年版 ) 》 实施 , 结合 自 课内, 也可 以课 内外结合 , 使之常态化地落实于教学 己的 教学 实 际 对 这一 内容 进行 解 读 ,作 为一 线 教 师 活动 之 中 。 教学时的参考。
容 。 的 实施 中 ) ,而 是 明 确 指 向 了新 课 标 “ 综 合 与 实
பைடு நூலகம்
感受到数学在 日常生活 中特有 的价值 。教师教学时 可 以适 时 设 计 关 于 “ 万 以 内的 数 ” 的实 践 活 动 , 让 学
生体验运用“ 万以内的数” 的知识解决简单问题 的过
程, 获 得初 步 的数 学活 动经 验 。
2 O 个1 平方分米 的方纸片 ) ,学生对完 在第一学段 中 , 通过综合实践活动 , 让学生充分 的小正方形 , 课外实践 l 生 作业” 很感兴趣。 感受到数学在实 际生 活 中特有的价值及其作用 , 引 成这些“
识” 时, 学生 “ 能认 、 读、 写 万 以 内 的数 ” 后, 让 学 生走 进 生 活 就能 感受 到 “ 万 以 内 的数 ”在 生 活 中无 处不 在, 就能 感 受 到 “ 万 以 内 的数 ” 在 生活 中的作 用 , 进 而
,
,
1 . 经历观 察 、 操作 、 实 的应 用 意识 , 帮 助 学 生积 验、 调 查、 推 理 等 实 践 累基 本 活动 经验 。 实验稿 活动 ; 在 合 作 与 交流 的 2 . 期诩 讳 第2 条要求, 是为了 过程 中, 获得 良好 的 情 提高学生解 决 问题 的 能 力
《2011版义务教育数学课程标准》基本理念解读
.
20
2.关于直观与抽象
波利亚:“抽象的道理是重要的,但要 用一切办法使它们看得见、摸得着。”
.
21
充分利用图形所具有的几何直观
将复杂的数学对象简明化 恰当地构造数学问题的现实情境
将抽象的数学关系具体化
.
22
通过直观调动学生的直觉思维
以获得数学猜想 通过数形结合的方法实现
抽象与具体之间的转化
.
2.数学课堂教学中最需要做的事
数学教学活动应激发学生兴趣,调动学生积极性,引发 学生的数学思考,鼓励学生的创造性思维;要注重培养学生 良好的数学学习习惯,使学生掌握恰当的数学学习方法。
.
28
3.学生的数学学习应当是一个什么样的过程
学生学习应当是一个生动活泼的、主动的和富有个性的过 程。除接受学习外,动手实践、自主探索与合作交流同样是学 习数学的重要方式。应当使学生有足够的时间和空间经历观察、 实验、猜测、计算、推理、验证等活动过程。
良好的数学学习过程
.
29
例:《孝义市课堂教学评价标准》
.
30
评价项目
评价要点
情境导入
自然、新颖、简洁,用多元化手段激发学习动力、调整学习状态、做好新旧知识与方法的衔接。
自主 学习
教师层面: 1.设计好90%能通过自学解决的具有层次性、思维性,突出重点的问题。 2.向学生说明自学的目标、方法、流程与要求。 3、留心观察学生的学习状态,自主学习结束时及时点评,并出示自学问题的答案。 学生层面: 1.专心致志、独立思考、严谨认真、规范书写、动作敏捷,用圈、点、勾、画的方式完成自学任务。 2.养成爱动脑、勤动手、善发现等良好学习习惯。 3.组长先完成学习任务,并督促本组成员圆满完成自学任务,协助老师完成自学情况的检查工作。 4、组员主动接受组长对自学情况的检查,认真纠正自学中出现的问题。
从“四能”角度解读《数学课程标准(2011年版)》新增的核心概念
有 整 数 、分 数 和 小 数 的 加 、 减 、 乘 、 除 四 则 运 算 法
则 ,运 算 律 主 要 有 加 法 交 换 律 、结 合 律 以 及 乘 法 交 换律、结合律和分配律。 因此 ,教 师 在 计 算 教 学 过 程 中 应 该 注 意 以 下 几
“ 四能 ” ,将 “ 算 能 力 ”渗 透 在 “ 析 问题 的 能 力 ” 运 分 和 “ 决 问 题 的 能 力 ” 之 中 。 第 二 ,运 算 能 力 的 基 解 础 是 掌 握 运 算 法 则 和 运 算 律 ,而 掌 握 运 算 法 则 和 运 算 律 的 关 键 是 理 解 算 理 。 运 算 能 力 的 标 志 是 能 正 确
过 程 中 ,要 注 意 以 下 几 个 问题 :第 一 ,运 算 能 力 是
解读 ,供 大 家参 考 。
一
、
几何直观
数 学 基 本 技 能 的 重 要 内 容 , 是 传 统 教 学 目 标 的 重 要 组 成 部 分 。 双 基 教 学 非 常 重 视 基 本 运 算 能 力 和 初 步
几 何 直 观 的 意 义 和 价 值 主 要 体 现 在 三 个 方 面 一 是 有 助 于 把 复 杂 、 抽 象 的 问题 变 得 简 明 、形 象 , 二 是 有 助 于 探 索 解 决 问题 的 思 路 并 预 测 结 果 ,三 是 有 助
于 帮助 学 生 直 观 地 理 解 数 学 。
个 问题 第 一 ,在 运 算 法 则 和 运 算 律 的 教 学 中 ,要
根 据 学 生 的 已 有 知 识 和 生 活 经 验 ,采 取 一 些 直 观 手
小学数学人教2011课标版一年级课标解读
一、课标要求《义务教育数学课程标准(2011年版)》在“学段目标”的“第一学段”中提出“经历从日常生活中抽象出数的过程,理解万以内数的意义”“体会四则运算的意义,掌握必要的运算技能,能准确进行运算”。
《义务教育数学课程标准(2011年版)》在“课程内容”中提出“在现实情境中理解万以内数的意义,能认、读、写万以内的数,能用数表示物体的个数或事物的顺序和位置”“理解符号<、=、>的含义,能用符号和词语描述万以内数的大小”“能运用数表示日常生活中的一些事物,并能进行交流”“结合具体情境,体会整数四则运算的意义”“能熟练地口算20以内的加减法”。
二、课标解读《6~10的认识和加减法》这部分知识,是学生系统学习了“1~5的认识和加减法”之后,又一次集中学习10以内数的认识和相应的加减法。
本单元的内容主要包括:这些内容不仅在日常生活中有着非常广泛的应用,而且也是学生进一步学习20以内数的认识和加减法计算最直接的基础。
同时,本单元中学生所学习的用数学解决问题的方法将对今后学习起到至关重要的作用。
因此,本单元是全册教材的重点内容之一,在整个小学数学教学中占有非常重要的地位。
从《义务教育数学课程标准(2011年版)》“数与代数”部分的教学内容和要求看,“现实情境”“生活情境”“具体情境”“简单情境”等词语出现频率都非常高,特别是第一学段。
这部分内容教学设计和实施时,要充分依托学生的现实背景,让他们感受到数学来源于生活,比如学生的学号、班级、人数、身高等都和数、数序、数的大小有关……可以说,现实背景对“数与代数”内容的支撑越强,学生对“数与代数”各个内容的理解就越清晰,越明白,越鲜活。
要到达这样的效果,基于现实背景的“意义”解释也很重要,也就是说要能紧扣“现实情境”“生活情境”“具体情境”,对数、量、式及其关系等进行生动的具体的“意义”解释,让学生更加充分地理解枯燥的数、量、式及其关系的具体含义和背后所隐藏的丰富的内涵。
《义务教育数学课程标准》(2011版)解读
与2001年版相比,数学课程标准从基 本理念、课程目标、课程内容到实施建议 都更加准确、规范、明了和全面。 下面我们就2011修订版与2001版课标 相比较所体现出的变化具体的进行解读。
一、总体框架结构的变化 2001年版分四个部分:前言、课程目标、 内容标准和课程实施建议。 2011年版:前言、课程目标、课程内容 和实施建议,并有附录。把其中的“内容标 准”改为“课程内容”。前言部分由原来的 基本理念和设计思路,改为课程基本性质、 课程基本理念和课程设计思路三部分。
《义务教育数学课程标准》(2011年版) 解读——小学数学
关于修订工作的几点说明
2001年,在国务院的直接领导下,教育部 启动了基础教育课程改革,颁布了义务教 育20个学科课程标准(实验稿)。 按照改革工作的总体部署,2003年开始组 织课程标准修订工作,2011年3月,基本 完成了修订任务。 2011年12月28日教育部正式颁布《全日制 义务教育数学课程标准(修改稿)》。
1.提纲挈领,领悟课标。 (1)理解课标理念 (2)明确“四基”要求 (3)正确处理“四个关系” (4)掌握四个领域内容调整 (5)提高“四个问题”能力( (6)领悟10个核心关键词的内涵和外延
2.依据课标,找出差距。 (1)改变教学中的“十多十少“现象 ●课程理念知道多,理解落实比较少; ●关注教学情景多,创设有效情景少; ●关注教学形式多,关注教学实效少; ●操作实践活动多,有效探究活动少; ●师生互动废话多,启发引导语言少; ●课堂无效活动多,学生必要练习少; ●教学设计拼凑多,个性创新设计少; ●现代媒体运用多,优化整合运用少; ●关注表面知识多,领悟思想方法少; ●学生参与活动多,积累活动经验少。 (2)克服课堂教学中的“四个满堂” ●满堂问●满堂动●满堂放●满堂夸 (3)避免教学中的“四个虚假“ ●虚假地自主学习 ●虚假地合作交流 ●虚假地自主探究 ●虚假地情感、态度、价值观的渗透
2011年版数学新课标解读
2011年版数学新课标解读一:从理念到行为把握操作方法最重要从理念到行为把握操作方法最重要新修订的数学课程标准到底对我们的教学会产生怎样的影响呢?我认为,准确把握标准变化特点、以案例为载体形成具体的实践操作方法、关注广义教材是三个核心环节进一步明确“学生发展为本”的教育理念,把握从“双基到四基,从两能到四能,从单一思维到复合思维、增加多个核心词”的变化特点。
修订后的课标对实验稿课标既有传承,也有发展,我学习了修订后的课标,觉得以下三点变化最为深刻。
调试数学观,明确新的数学课程观。
实验稿课标认为,“数学是人们对客观世界定性把握和定量刻画、逐步抽象概括、形成方法和理论,并进行广泛应用的过程。
”而修订后的标准将其调整为“数学是研究空间形式和数量关系的科学。
”数学是一门科学,而非过程,无论是直接来源于现实世界的,还是来源于数学世界的,只要是空间形式和数量关系,都可以构成数学的研究对象。
与此同时,将原有的“人人学有价值的数学,人人获得必需的数学,不同的人在数学上得到不同的发展”的数学课程观,修改为“人人都能获得良好的数学教育,不同的人在数学上得到不同的发展”,这样的表述方式,保留了实验稿课标所界定的数学课程观的精髓。
明确提出“四基”、“四能”和复合思维的要求。
对学生的培养目标,在注重基础知识、基本技能的前提下,增加了针对基本思想和基本活动经验的具体要求,更加凸显数学对于学生发展的特殊作用,将实验稿标准提出而尚未显性化的有关理念显性化,这是对10年改革成功经验的提纯和升华。
对于能力培养的问题,不仅直接提出能力培养,而且增加了“发现问题、提出问题”的能力要求。
这种变化,不仅充分延续实验稿对于创新精神关注,而且有了显著发展。
在继续关注归纳、猜测等思维形式的基础上,修订后的课标明确提出“归纳思维”与“演绎思维”并举的具体要求。
在核心词上,增加了“几何直观”,将“符号感”修改为“符号意识”,将“统计观念”修改为“数据分析观念”,并对“数感”、“空间观念”的内涵作了修正。
小学数学人教2011课标版一年级课标分析
课标分析一、课标要求《义务教育数学课程标准(2011年版)》在“学段目标”的“第二学段”中提出“体验从具体情境中抽象出数的过程,认识万以上的数;理解分数、小数、百分数的意义,了解负数的意义;掌握必要的运算技能;理解估算的意义;能用方程表示简单的数量关系,能解简单的方程”“初步形成数感和空间观念,感受符号和几何直观的作用”“尝试从日常生活中发现并提出简单的数学问题,并运用一些知识加以解决”“愿意了解社会生活中与数学相关的信息,主动参与数学学习活动”“在运用数学知识和方法解决问题的过程,认识数学的价值”。
《义务教育数学课程标准(2011年版)》在“课程内容”的“第二学段”中提出“了解公因数和最大公因数”“在1~100的自然数中能找出10以内自然数的所有倍数,能找出10以内两个自然数的公倍数和最小公倍数”“在1~100的自然数中,能找出一个自然数的所有因数,能找出两个自然数的公因数和最大公因数”“结合具体情境,理解小数和分数的意义”“能比较小数的大小和分数的大小。
二、课标解读(一)经历具体到抽象的学习过程,揭示分数意义的本质在分数概念教学中,要充分利用教材提供的学习材料,尽可能地联系学生的生活经验,运用各种直观因素,让学生借助充分的感性材料,发现和归结一类事物的一般和本质特征,从而辅助其建构抽象的数学概念。
例如在分数的意义教学中,首先,可以用正方形、长方形、三角形等图形表示,去除图形的形状、大小等因素,提炼出“把一个图形平均分成4份,其中的1份用表示”;接着应用范围从一个图形拓展到把若干个物体看成的一个整体,去除整体的个数、部分的个数等因素,提炼出“把一个整体平均分成4份,其中的1份用分数表示”;最后,提供丰富的生活素材,通过整体(单位“1”)与部分(取得份数)不变,而等分的份数不同,分数大小相应在发生变化;或者通过整体不变,等分的份数以及取得份数不同,得到不同的分数等练习,以进一步揭示概括分数的意义。
小学数学新课程标准解读
决”“情感态度”四个方面阐述。 • ——学段目标的表述方式有所改变
18
解析数学课程目标
目 问题解决 标
情感与态度
学
课程 段 目标 目
标
第一学段 第二学段
第三学段
19
关于知识技能目标
能从具体事例中,知道或能举例说明
了解(知道、 初步认识)
对象的有关特征(或意义);能根据
对象的特征,从具体情境中辨认出这
小学数学新课程 标准解读
与2001年版相比,数学课程标 准从基本理念、课程目标、内容标 准到实施建议都更加准确、规范、 明了和全面。
2
2011年版小学数学课程标准 充分体现了德育为先,能力为重, 创新方法,力求减负等特点。
3
新修订课标主要呈现以下九大变化: 1. 基本理念“三句”变“两句”
• 原来的“三句话” • ● 人人学有价值的数学 • ● 人人都能获得必需的数学 • ● 不同的人在数学上得到不同的发展
→几何推理→创造活动
32
• 英国数学教育家利贝克1984年提出了小 学生学习数学的基本认知序列:
• 经验—语言—图像—符号
• 新课程背景下的小学数学教材的编写也 体现着这样的序列。在教学和学习活动
中,教师还应把握:学习速度,学习情 绪体验,理解能力。克服强记苦练,不
注重理解。
33
谢谢大家!
请提出宝贵建议!
• 强调社会责任,忽视了教师的个人生命 价值与需要;
22
• 强调教师的权利角色,忽视了教师与学 生的合作关系;
• 强调教师的业务能力,忽视了培养人的 作用;
• 强调了教师劳动的传递性,忽视了教与 学的创造性。
23
• 呼唤小学教师: 1、成为学生学习的组织者
小学数学课程标准(2011年版)解读
二、第一部分,前言内容作了较大调整
在“前言”部分除修改了对数学的意义与 价值、数学教育的功能、数学课程的基本 理念以及数学课程设计思路的表述外,还 增加了“数学课程的性质”。
1.修改了 “数学”的定义
实验稿: 数学是人们对客观世界定性把握和定量刻
画、逐渐抽象概括、形成方法和理论,并 进行广泛应用的过程。 修订稿(标准P1): 数学是研究数量关系和空间形式的科学
(8)注意信息技术与课程内容的整合。
注意信息技术与课程内容的整合,注重实效。(标 准P3)
7.重新修订了课程设计思路:
(1)学段划分保持不变;(标准P4) 将九年的学习时间划分为三个学段: 第一学段(1-3年级) 第二学段(4-6年级) 第三学段(7-9年级)
(2)关于课程目标的调整(标准P4)
对课程目标动词及水平要求的设计基本保 持不变,增加了目标动词的同义词;
义务教育阶段数学课程目标分为总目标和 学段目标,从知识技能、数学思考、问题 解决、情感态度等四个方面加以阐述。
数学课程目标包括结果目标和过程目标。 结果目标使用“了解、理解、掌握、运用” 等行为动词表述,过程目标使用“经历、 体验、探索”等行为动词表。
2.修改了数学观
实验稿: 数学是人们生活、劳动和学习必不可少的工具。 数学为其他科学提供了语言、思想和方法; 数学是人类的一种文化,它的内容、思想、方法
和语言是现代文明的重要组成部分。 数学在提高人的推理能力、抽象能力、想象力和
创造力等方面有着独特的作用;
修订稿(标准P1): 数学更加广泛应用于社会生产和日常生活
实验稿:
“符号感”主要表现在:能从具体情境中抽象出 数量关系和变化规律,并用符号来表示;理解符 号所代表的数量关系和变化规律;会进行符号间 的转换;能选择适当的程序和方法解决用符号所 表达的问题。”
2011年版数学课程标准
《2011年版数学课程标准》概况及解读一、《2011年版数学课程标准》颁布的意义和背景1.坚持改革不动摇,新课标的颁布是对10年课改的肯定和坚持2001年数学课程标准(实验稿)(约15万字)问世,取代了使用近五十年〈数学大纲〉,实验稿数学课程标准从2001年开始进入实验区,对中小学数学教育的影响是积极和明显的。
10年的课改实验,首先是转变了教师的教育观念、改变了传统教育理念,我们的基础教育过去非常强调“双基”,要求基础知识扎实、基本技能熟练。
但只要求这一点对学生的创造性思维不利。
实验稿课标提出了三维目标,从关心教师如何教到关心学生如何学,教学方法上改变了过去教师单一讲授、学生被动听讲的状况,更加关注学生的学,确立了学生学习的主体地位。
从教学评价来说,除了知识以外,还提出了教育过程的循序渐进,关注态度、情感、价值观方面的评价。
与教学大纲相比,课程标准更加重视学生能力的培养和素养的提高。
而(2011年版)课程标准的颁布是对10年课改的发扬,也传达国家、教委对课改不动摇的决心。
2.充分吸纳了10年义务教育课改实验的经验与教训但是,由于实验稿课标在制订过程中的一些局限性,比如时间比较仓促等,内容上有些地方系统性不够,同时,对教育价值的表述也不够清晰。
一是目标不够清晰,可操作性不强。
比如:实验稿只提出通过数学学习让学生分析问题和解决问题,其实发现问题与提出问题也很重要(但是我省普教室研究、福建省教育学会小学数学教学委员会的一数学教研专题:问题解决,5月8-11日在福州举行第十七届小学数学“问题解决”课题研究现场教学观摩研讨会,我省已经开始重视这方面的问题了)。
让学生亲身参与活动很好,但仅有活动是不够的,应该追问活动为了什么?活动是否脱离了数学本质,活动如何突出数学特点?三维目标如何鉴定?如何操作?等系列问题摆在教师面前,二是对数学实质的表述不清楚,比如计算的本质是什么,符号的本质是什么,等等。
这样,在教师中就会造成两大问题:一是对所教的内容从数学角度吃得不透,数学意义不清楚。
《义务教育数学课程标准》(2011年版)
《义务教育数学课程标准》(2011年版)解读——小学数学2011年12月28日,教育部正式公布了《义务教育阶段数学课程标准(2011年版)》(以下简称《标准》),并于2012年秋季开始执行。
这意味着2001年公布的义务教育阶段数学课程标准(实验稿)将完成它的历史使命,随之而来的,就是教材的改革,数学课程改革也必将进入一个新的发展阶段。
对修订版数学课程标准的学习和研究也将成为数学教育工作者们当前的头等大事。
经过几年来对数学课程标准修订情况的跟踪研究以及对数学课程标准(2011年版)的深入研读,我认为修订版是对实验稿的继承和发扬,改进与完善,但又不乏创新之举,让人读来眼前一亮,对数学与数学教育的意义与价值的定位更准确,对学生思维能力和创新能力的培养目标的要求更明晰,对学习方式、教学方式等教学策略与手段的指导更明确,对课程内容的调整更合理。
与2001年版相比,数学课程标准从基本理念、课程目标、内容标准到实施建议都更加准确、规范、明了和全面。
具体变化为如下几个方面:一、总体框架结构的变化2001年版分四个部分:前言、课程目标、内容标准和课程实施建议。
2011年版把其中的“内容标准”改为“课程内容”。
前言部分由原来的基本理念和设计思路,改为课程基本性质、课程基本理念和课程设计思路三部分。
二、关于数学观的变化2001年版:数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。
数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。
2011年版:数学是研究数量关系和空间形式的科学。
数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具。
数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。
三、基本理念“三句”变“两句”,“6 条”改“5条”2001年版“三句话”:“人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。
《数学课程标准》(第一学段)对比解读-2022年学习材料
综合与实践-1、通过实践活动,感受数学在日堂生-活中的作用,体验运用-法解决简单问题的过程-第一学段:-学 动经验。-以实践活动为主要-形式,内容安排强调实践-性和趣味性-2、在实践活动中,-和解决问题的办法-3、 历实践操作的过程,进一步理解-所学内容。
课程实施建议-—教学建议-1、数学教学活动要注重课程目标的整-体实现。-2、重视学生在学习活动中的主体地位 -3、注重学生对有-知识、基本技能的-理解和掌握。-4、感悟数学思想、积累数以-5、-关注学生情广-6、理把握-新课标建议除基础知识、基本技-7、教学中应能外还关注学生思想、情感与活动过-全体与个体-程(四基。 时还提到了“预设”-信息技术与教学-与“生成”的关系,面向全体学生与-关注学生个体差异的关系,这也是课-堂 学的重点。
课程实施建议—-评价建议-1、基础知识和基本技能的评价。-2、数学思考和问题解决的评价。-3、情感态度的评 。-4、注重对学生数学学习过程的评价。-5、体现评价主体多元化和评价方式多-样化。-6、恰当地呈现和利用评 结果。-7、合理设计与实施书面测验。
图形与几何-测量-1、结合生活实际,经历用不同方式测-量物体长度的过程,体会建立统一度-量单位的重要性。、在实践活动中,体会并认识长度单-位千米、米、厘米,知道分米、毫米,-能进行简单的单位换算,能恰当地选-择 度单位。-3、能估测一些物体的长度并进行测量。-4、结合实例认识周长,并能测量简单-图形的周长,探索并掌握 方形、正-方形的周长公式。、-5、结合实例认识面积,体会并认识面-积单位平方厘米、平方分米、平方米,-能进 简单的单位换算。-6、探索并掌握长方形、正方形的面积-公式,会估计给定简单图形的面积。
数与代数-一一探索规律-探索简单情境下的变化规律。
图形与几何-图形的认识-1、能通过实物和模型辨认长方体、正方体、-圆柱和球等几何体。-2、能根据具体事物、 片或直观图辨认从-不同角度观察到的简单物体。-3、能辨认长方形、正方形、三角形、平行-四边形、圆等简单图形 -4、通过观察、操作,初步认识长方形、正-方形的特征。-5、会用长方形、正方形、三角形、平行四-边形或圆拼 。-6、结合生活情境认识角,了解直角、锐角-和钝角。-7、能对简单几何体和图形进行分类。
2011年(新版)小学数学新课程标准解读
小学数学新课程标准(修改稿)解读一、前言《全日制义务教育数学课程标准(修改稿)》(以下简称《标准》)是针对我国义务教育阶段的数学教育制定的。
根据《义务教育法》、《基础教育课程改革纲要(试行)》的要求,《标准》以全面推进素质教育,培养学生的创新精神和实践能力为宗旨,明确数学课程的性质和地位,阐述数学课程的基本理念和设计思路,提出数学课程目标与内容标准,并对课程实施(教学、评价、教材编写)提出建议。
《标准》提出的数学课程理念和目标对义务教育阶段的数学课程与教学具有指导作用,教学内容的选择和教学活动的组织应当遵循这些基本理念和目标。
《标准》规定的课程目标和内容标准是义务教育阶段的每一个学生应当达到的基本要求。
《标准》是教材编写、教学、评估、和考试命题的依据。
在实施过程中,应当遵照《标准》的要求,充分考虑学生发展和在学习过程中表现出的个性差异,因材施教。
为使教师更好地理解和把握有关的目标和内容,以利于教学活动的设计和组织,《标准》提供了一些有针对性的案例,供教师在实施过程中参考。
二、设计理念数学是研究数量关系和空间形式的科学。
数学与人类的活动息息相关,特别是随着计算机技术的飞速发展,数学更加广泛应用于社会生产和日常生活的各个方面。
数学作为对客观现象抽象概括而逐渐形成的科学语言与工具,不仅是自然科学和技术科学的基础,而且在社会科学与人文科学中发挥着越来越大的作用。
数学是人类文化的重要组成部分,数学素养是现代社会每一个公民所必备的基本素养。
数学教育作为促进学生全面发展教育的重要组成部分,一方面要使学生掌握现代生活和学习中所需要的数学知识与技能,一方面要充分发挥数学在培养人的科学推理和创新思维方面的功能义务教育阶段的数学课程具有公共基础的地位,要着眼于学生的整体素质的提高,促进学生全面、持续、和谐发展。
课程设计要满足学生未来生活、工作和学习的需要,使学生掌握必需的数学基础知识和基本技能,发展学生抽象思维和推理能力,培养应用意识和创新意识,在情感、态度与价值观等方面都要得到发展;要符合数学科学本身的特点、体现数学科学的精神实质;要符合学生的认知规律和心理特征、有利于激发学生的学习兴趣;要在呈现作为知识与技能的数学结果的同时,重视学生已有的经验,让学生体验从实际背景中抽象出数学问题、构建数学模型、得到结果、解决问题的过程。
数学课程标准(2011版)解读
八、内容标准的变化
调整的内容和要求: ❖将“理解等式的性质”,改为“了解等式的性质” ❖将“会用等式的性质解简单的方程(如3x+2=5, 2x-x=3)”,改为“能解简单的方程(如3x+2=5, 2x-x=3)”。 ❖降低要求:降低了“可能性”部分的要求,只要 求学生体会随机现象,并能对随机现象发生的可能 性大小做定性描述,定量描述放入第三学段。
珠海新世纪学校
四、设计思路的变化
❖学段划分保持不变; ❖对课程目标动词及水平要求的设计基本保持不变, 增加了目标动词的同义词; ❖对四个学习领域的名称作适当调整; ❖对学习内容中的若干关键词作适当调整对其意义 作更明确的阐释。
珠海新世纪学校
五、四个领域名称的变化
❖ 2001年版:数与代数、空间与图形、统计与概率、 实践与综合应用。 ❖2011年版:数与代数、图形与几何、统计与概率、 综合与实践。
珠海新世纪学校
六、核心概念的变化
应用意识有两个方面的含义,一方面有意识利用数学的概念、 原理和方法解释现实世界中的现象,解决现实世界中的问题; 另一方面,认识到现实生活中蕴涵着大量与数量和图形有关 的问题,这些问题可以抽象成数学问题,用数学的方法予以 解决。在整个数学教育的过程中都应该培养学生的应用意识, 综合实践活动是培养应用意识很好的载体。
七、目标的变化
活动经验:亲自或间接经历了活动过程而获得的经 验,包括操作的经验,思考的经验,探究的经验, 复合的经验。
七、目标的变化
2 、“两能”变“四能” ❖“两能”:分析问题和解决问题能力 ❖“四能”:发现问题、提出问题、分析问题和解 决问题能力
3、总目标和学段目标分别并从知识技能、数学思考、 问题解决、情感态度等四个方面加以具体阐述。学 段表述目标有所变化。
2011年版义务教育小学数学课程标准解读
八、实施建议的变化 不再分学段阐述,而是分教学建议、 评价建议、教材编写建议、课程资源 利用和开发建议。在强调学生主体作 用的同时,明确提出教师的组织和引 导作用。
具体变化
数与代数 数与代数现行大纲这部分内容主要侧重有 关数、代数式、方程、函数的运算,《标准》 对此作了较大地改革: 1.重视数与符号意义以及对数的感受,体 会数字用来表示和交流的作用。通过探索丰富 的问题情景发展运算的含义,在保持基本笔算 训练的前提下,强调能够根据题目条件寻求合 理、简捷的运算途径和运算方法,加强估算, 引进计算器,鼓励算法多样化。
《标准》中还指出,逻辑证明的要求并不局限于几 何内容,而应该体现在数学学习各个领域,包括代数 和统计与概率等;对于几何证明的教学来说,它的目 的不应当是追求证明的技巧、证明的速度和题目的难 度,而应服从于使学生养成“说明有据”的态度、尊 重客观事实的精神和质疑的习惯,形成证明的意识, 理解证明的必要性和意义,体会证明的思想,掌握证 明的基本方法等等。因此,《标准》中在强调探索图 形性质的基础之上,要求证明基本图形(三角形、四 边形)的基本性质,降低了对论证过程形式化和证明 技巧的要求,删节去了繁难的几何证明题,旨在通过 这些让学生体验逻辑证明的意义、过程,掌握基本的 证明方法,同时,向学生介绍欧几里得和《几何原 本》,使学生体会它们对于人类历史和思想发展中的 重要作用。综上所述,《标准》大大地加强和改善了 目前的几何教学。
⑵ 加强分析图表的能力里的培养。提升 “读图能力”的培养。 ⑶加强调查等活动的体验。(主要是小调 查) 在收集数据方法方面,考虑到学生年龄 特征,要求学生了解测量、调查等的简单方 法,不要求学生从报刊、杂志、电视等去收 集资料。 ⑷第二学段与《标准》相比,在统计方面, 只要求学生体会平均数的意义,不要求学生 学习中位数、众数(这些内容放在第三学段) 平均数易受极端数的影响(最大数与最小数 的影响)。 ⑸另外,删去“体会数据可能产生的误导” 这一要求。
《义务教育数学课程标准(2011年版)》第一学段“综合与实践”的内容解读-最新资料
《义务教育数学课程标准(2011年版)》第一学段“综合与实践”的内容解读“综合与实践”是《义务教育数学课程标准(2011年版)》的一个特色,安排这一内容的意图在于培养学生运用所学知识与方法解决实际问题的意识,引导学生在综合实践活动中积累相应的活动经验,以此提高学生解决问题的能力,但在教学过程中大多数教师对这一内容并不太重视,甚至“跳过”这一教学进度(特别是第一学段),所以,“综合与实践”实际上还没有真正在小学阶段“登堂入室”。
为此,时值《义务教育数学课程标准(2011年版)》实施,结合自己的教学实际对这一内容进行解读,作为一线教师教学时的参考。
一、新旧课标内容对比二、第一学段“综合与实践”内容概要在第一学段中,通过综合实践活动,让学生充分感受到数学在实际生活中特有的价值及其作用,引领学生经历运用所学知识与方法解决日常生活中实际问题的过程,从而积累相应的基本数学活动经验。
在解决问题的活动中,也增强了对所学知识与方法的理解与巩固。
本学段(其他学段也如此)“综合与实践”这种教学形式应当体现在日常教学活动中,贯彻“少而精”的原则,针对性要强,但要保证每学期至少有一到二次的实践活动。
它的活动形式灵活多样,可以穿插在课内,也可以课内外结合,使之常态化地落实于教学活动之中。
三、结合具体的教学案例(教学片段),逐条解读1.通过实践活动,感受数学在日常生活中的作用,体验运用所学的知识和方法解决简单问题的过程,获得初步的数学活动经验。
从本条目标提出的要求看,“综合与实践”的教学方案不一定要独立设计,可以将它“体现在日常教学活动中”,也可以将其融合于各个领域的学习内容之中,让学生感受到数学与生活密切相关,感受数学在生活中的作用。
例如在学习“数与代数”中“数的认识”时,学生“能认、读、写万以内的数”后,让学生走进生活就能感受到“万以内的数”在生活中无处不在,就能感受到“万以内的数”在生活中的作用,进而感受到数学在日常生活中特有的价值。
课程标准(2011年版)的主要变化
《义务教务阶段数学课程标准(2011年版)》解读2001年,在国务院的直接领导下,教育部启动了基础教育课程改革,颁布了义务教育20个学科课程标准(实验稿)。
于2001年秋开始在各实验区实施,逐年推广。
经过几年的实施取得了明显成效,也发现了一些问题。
2005年教育部成立修订组,开展了对课程标准(实验稿)的修订工作。
2011年3月,基本完成了修订任务。
2011年5月通过审议,2011年12月正式颁布。
据我所知,现在有的县区已经拿到了《义务教育数学课程标准(2011年版)》(以下简称《标准》)。
下面我们就一起来看一看新的《标准》和实验稿相比有哪些变化。
标准修订的主要内容《标准》从体例结构、文本表述、具体内容和实施建议等方面都做了的修订,主要包括以下几个方·面。
(一)完善标准的体例与结构本次修订,在保持《标准(实验稿)》基本体例不变的基础上,经充分讨论,在结构上有以下调整。
1.重新撰写“前言”在“前言”部分除了修改了对数学的意义与价值、数学教育的功能、数学课程的基本理念以及数学课程设计思路的表述外,增加了“数学课程的性质”。
《标准》重新阐述了数学的意义与性质,进一步明确了数学教育的作用和义务教育阶段数学课程的特征。
2.整合三个学段的“实施建议”为了避免行文的重复、进一步突出义务教育阶段数学教育的完整性,《标准》将原来分三个学段撰写的实施建议进行了整合,三个学段统一撰写了教学建议、评价建议和教材编写建议,并增加了课程资源开发与利用建议。
3.将“行为动词”和“案例”等统一放入附录《标准》增加课程目标中的有关“行为动词”的解释,这些行为动词分为两类:一类是描述结果目标的行为动词,包括“了解、理解、掌握、运用”等术语;另一类是描述过程目标的行为动词,包括“经历、体验、探索”等术语。
将这些行为动词和相关的同义词的解释统一列入附录。
同时课程内容和实施建议中的“案例”也统一列入附录中,分别成为附录1和附录2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学课程标准(2011年版)解读2011年12月28日教育部正式发布义务教育语文等学科课程标准(2011年版),并于2012年秋季开始执行。
数学课程标准(2011年版)发布后全国的数学教师掀起一股学课标、研课标、论课标的热潮,在学习中老师们还存在不少困惑,亟需课程标准修订组的专家为我们答疑解惑。
课程标准从基本理念、课程目标、核心概念、课程内容、实施建议等方面进行了修订。
今天主要介绍课程目标、核心概念和课程内容的变化。
首先看课程目标。
《标准》与《实验稿》一样,明确了学生在义务教育阶段的发展应该是多方面的。
《标准》在《实验稿》基础上,进一步明确提出了获得必需的基础知识、基本技能、基本思想、基本活动经验;在分析和解决问题的基础上,明确提出了增强发现和提出问题、分析和解决问题的能力,这些无疑是巨大进步。
同时,《标准》还对一些目标进行了完善,比如对于学习习惯,明确提出了应该培养的学习习惯是:认真勤奋、独立思考、合作交流、反思质疑。
将双基拓展为四基,首先体现了对于数学课程价值的全面认识,学生通过数学学习不仅仅获得必需的知识和技能,还要在学习过程中积累经验、获得数学发展和处理问题的思想。
同时,新增加的双基,特别是基本活动经验更加强调学生的主体体验,体现了以学生为本的基本理念。
提出基本思想、基本活动经验的最重要的原因,是要切实发展学生的实践能力和创新精神,特别是创新精神。
实际上,一个人要具有创新精神,可能需要三个基本要素:创新意识、创新能力和创新机遇。
其中,创新意识和创新能力的形成,不仅仅需要必要的知识和技能的积累,更需要思想方法、活动经验的积累。
也就是说,要创新,需要具备知识技能、需要掌握思想方法、需要积累有关经验,几方面缺一不可。
正如史宁中教授所说:“创新能力依赖于三方面:知识的掌握、思维的训练、经验的积累,三方面同等重要。
”对于数学活动经验的内涵,目前学者们的观点并不统一。
这里介绍几个。
张奠宙指出:“数学经验,依赖所从事的数学活动具有不同的形式。
大体上可以有以下不同的类型:直接数学活动经验(直接联系日常生活经验的数学活动所获得的经验)、间接数学活动经验(创设实际情景构建数学模型所获得的数学经验)、专门设计的数学活动经验(由纯粹的数学活动所获得的经验)、意境联结性数学活动经验(通过实际情景意境的沟通,借助想象体验数学概念和数学思想的本质)。
”徐斌艳教授认为:我们还可以将基本活动经验进一步细化,它包括基本的数学操作经验;基本的数学思维活动经验;发现问题、提出问题、分析问题、解决问题的经验。
孔凡哲教授认为:“基本活动经验”是指“在数学目标的指引下,通过对具体事物进行实际操作、考察和思考,从感性向理性飞跃时所形成的认识。
”无论大家的观点如何,有几点是共同的:第一,基本活动经验建立在生活经验基础上。
第二,是在特定数学活动中积累的。
第三,其核心是如何思考的经验。
第四,最终帮助学生建立自己的数学现实和数学学习的直觉,学会运用数学的思维方式进行思考。
这里就有几个关键词:学生现实、数学活动、思考和反思。
特别要设计好的数学活动。
不妨列举两个例子。
第一,数数活动。
比如“数数”的活动,仔细思考,在这个活动中,学生可以对自然数的基数意义和序数意义有所体会,可以体会一一对应的原则。
不仅仅是对于数的认识,学生在数数过程中还为数的比较大小,加法(往后数)、减法(往前数)、乘法(几个几个的往后数),除法(几个几个的往前数),甚至是数排列的规律等奠定了丰富的经验。
第二,北师大五年级图形面积的第一节课。
在这个活动中,学生将在比较图形面积的活动中积累比较方法的经验:数面积单位、通过平移旋转轴对称过后的两个图形的面积是相等的、图形的割补、图形的拼接等。
所以,对于一线老师,我觉得有三件事情是值得做的:第一,积累好的案例。
第二,认真地研究学生。
学生在面对一个问题时他们是如何思考的,其中是否存在着经验。
第三,探索经验形成的途径。
一般说来,要经历:“经历、内化、概括、迁移”的过程。
首先,需要经历,无论是生活中的经历、还是学习活动中的经历,对于学生基本经验的积累是必须的。
但仅仅是经历是不够的,还需要学生在活动中充分调动数学思维,将活动所得不断内化和概括,最终迁移到其他的活动和学习中。
由此可见,数学活动经验既是数学学习的产物,也是学生进一步认识和实践的基础。
这里反思和迁移是重要的。
比如,我在国外教材中看到过这样的问题:“今天你学习的方法在以前哪里用过?今后可能用到什么地方”。
这样的问题就是在帮助学生实现迁移。
关于基本思想,在课程标准解读中,提出了三个基本思想:抽象、推理、模型。
人们通过抽象,从客观世界中得到数学的概念和法则,建立了数学学科;通过推理,进一步得到更多的结论,促进数学内部的发展;通过建模,把数学应用到客观世界中,沟通了数学与外部世界的桥梁。
比如,由数量抽象到数,由数量关系抽象到方程、函数(如正反比例)等;通过推理计算可以求解方程;有了方程等模型,就可以把数学应用到客观世界中。
笔者认为基本思想这一层面是数学思想的最高层面。
处于下一层次的还有与具体内容紧密结合的具体思想,如数形结合思想、化归思想、分类思想、方程思想、函数思想等。
在数学思想之下统领的还有一些具体的方法。
对于教师,首先要对数学基本思想要熟悉,心里有这根弦。
作为研究,可以研究与具体内容紧密结合的具体思想,如数形结合思想、函数思想等。
关于发现和提出问题、分析和解决问题。
这里关键和要鼓励学生发现和提出问题,比如有的地方进行的“单元情境+提出问题”的试验。
对于一个单元,设计一个大的情境,鼓励学生根据大情境从不同角度提出问题,然后根据情况选择其中一些问题进行讨论,在分析和解决问题中学习新的内容。
有的老师在学生学习之后,鼓励学生提出一些新的可以研究的问题,这也很好。
比如,在一次小数的认识学习后,老师可以鼓励学生提出想要进一步思考的问题。
例如,学生纷纷提出了“小数点的作用是什么”、“小数为什么要叫‘小’数”、“不是十进分数的分数能否化成小数”、“小数和自然数一样也是无限大的吗”等。
并且他们对于“小数和自然数一样也是无限大的吗”这一问题进行了讨论,下面是片段:生1:我觉得是无限大的。
师:说说你的理由?能举个例子吗?生2:比如说,10000.1比10000大;再多就是100000,100000.1比100000大;再多就是……一直可以再多,谁也不知道到底有多大。
生3:我觉得自然数有多大,小数就有多大。
因为,自然数的基础上可以再加一个小数,自然数是无限大的,小数就是无限大的。
生4:我补充,1亿加上0.1就比1亿大了。
生1:小数是在自然数上“附加”的,所以如果自然数是无限多,小数就应该无限大。
(大家都表示同意)并且他们对于“小数和自然数一样也是无限大的吗”这一问题进行了讨论,下面是片段:生1:我觉得是无限大的。
师:说说你的理由?能举个例子吗?生2:比如说,10000.1比10000大;再多就是100000,100000.1比100000大;再多就是……一直可以再多,谁也不知道到底有多大。
生3:我觉得自然数有多大,小数就有多大。
因为,自然数的基础上可以再加一个小数,自然数是无限大的,小数就是无限大的。
生4:我补充,1亿加上0.1就比1亿大了。
生1:小数是在自然数上“附加”的,所以如果自然数是无限多,小数就应该无限大。
(大家都表示同意)这里特别有两句话,提醒老师们注意:第一,启发学生思考的最好的办法是教师与学生一起思考。
教师要能暴露自己的思考路径,教学中为什么要提出这些问题供大家思考,遇到情境可以从哪些方面提出问题,遇到这些问题后应该从哪些角度来分析,解决了这个问题又可以提出哪些新的问题。
第二,要鼓励学生“从头到尾”的思考问题。
这句话是史宁中教授的,我觉得很形象。
比如,小学中也有很多例子,比如圆的周长与直径的关系,教师一上来就让学生去测量,然后用周长去除以直径。
学生就没有“从头思考”,为什么要用周长去除以直径?这时候,教师可以引导学生思考:圆的周长的大小与什么有关,学生能可以到与直径或半径有关,因为直径等于2个半径,所以可以只研究周长与直径的关系。
那么有什么关系呢?教师可以鼓励学生类比正方形,正方形的周长等于边长的4倍,那么圆的周长是否也和直径存在着倍数关系呢,不妨测量以后相除看一看。
进一步,鼓励学生思考,接着要想什么。
可能学生会说,要想为什么我测了以后不是3倍多,为什么数学家就能得到这么准确的值。
还可能问,为什么是3倍多而不是2倍多。
《标准》指出:“在数学课程中,应当注重发展学生的数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想。
核心概念反应了一类课程内容的核心,是学生数学学习的目标,也是数学教学中的关键。
与《实验稿》相比,在这10个核心概念中,有一些是新增加的:运算能力、模型思想、几何直观、创新意识;有一些是名称或内涵发生较大变化的:数感、符号意识、数据分析观念;有一些是保持了原有名称,基本保持了原有内涵:空间观念、推理能力、应用意识。
一步,这10个核心概念可以分成三层。
第一层,主要体现在某一内容领域的核心概念。
数感、符号意识、运算能力主要体现在数与代数领域,空间观念主要体现在图形与几何领域,数据分析观念主要体现在统计与概率领域;第二层,体现在不同内容领域的核心概念,包括几何直观、推理能力和模型思想;第三层,超越课程内容,整个小学数学课程都应特别注重培养学生的应用意识和创新意识。
1.数感《标准》去掉了原来《实验稿》中对于数感描述中与运算有关的某些内容,将其独立为另一个核心概念:运算能力。
《标准》将数感定义为一种感悟,这既包括了感知、又包括了领悟,既有感性又有理性的思维。
《标准》将这种对数的感悟归纳为三个方面:数与数量、数量关系、运算结果的估计。
数与数量,实际上就是建立起抽象的数和现实中的数量之间的关系。
这既包括从数量到数的抽象过程中,对于数量之间共性的感悟;也包括在实际背景中提到一个数时,能将其与现实背景中的数量联系起来,并判断其是否合理。
比如,曾经有一个例子,一位学生看见某一博物馆的介绍资料中提到“7000平方米森林中生活着两只东北虎”时,发现了其不合理处,原来应该是“7000平方千米森林中生活着两只东北虎”。
数量之间的关系包括数的大小关系及其所对应的数量之间的多少关系,也包括变化的量之间的函数关系等。
比如,学生在观察两个变量之间对应的数据时,能够对于它们之间可能存在的关系进行初步的判断。
有关估算,我下面还要谈到,这里不赘述了。
由上面对于数感的理解不难看出,发展学生的数感,需要创设情境建立起抽象的数和现实中的数量之间的关系;需要学生对于单位数量(比如1平方米)有比较准确的把握;需要能从多种角度来表示一个数,比如,0.25就是1/4;还需要对数之间的大小关系有所感悟,比如0.49比1/2小但很接近,1.3介于1和1.5之间。