产纤维素酶菌株的筛选及其酶活的测定
一株产纤维素酶益生芽孢杆菌的筛选与鉴定

株产纤维素酶益生芽孢杆菌的筛选与鉴定
但 言 陈元坤 朱杰 马跃刚
( 重庆市水产科 学研 究所 ,重庆 4 0 1 1 2 1 )
摘
要 :从 健康 大 鳍 鲮 (
)肠 道 菌群 分离 得 到 的2 5 株 细 菌 ,通过 平 板 筛
选 、发酵 液酶活力 测定和菌株 安全性检 测 ,筛选 出一株具有较 高产纤维 素酶能力 的益生 芽孢杆 菌 D Q H Y 一 7 菌株 。通 过 对 D Q H Y 一 7 菌 株 形态 观 察 、生理 生 化 试 验 ,对 D Q H Y 一 7 菌 株进 行 了分 类鉴 定 。结果 显示 :D Q H Y一 7 菌株 具有较 强 的分 泌纤维素 酶能力 ,水解 圈/ 菌落直径 比为 l 2 . 7 7 ,2 0 h 发
3 0 mi n。
1 . 2 . 4安全性试验 取1 0 0 c m ×5 0 c m×6 0 c m的 水族 缸 5 只 ,充 入曝气 自来水 ,每缸 ̄. / N . 2 0 只健康大鳍鲮( 2 0 ±
1 . 2 方 法
0 . 5 ) g ,取4 只缸 进行 动物 毒 性试 验 :将最 符合 益生 菌条件菌株 接种在 营养 肉汤 ,2 8 ℃培养2 4 h 后 ,用0 . 8 5 %无菌生理盐水稀释菌悬液至浓度
度接 种 3 个 平板 ,最 后将 平板 置 于2 8 ℃恒温 培
C F U / E 。将 不 同稀 释度 的 菌悬 液用 无菌 注射 m 器对 每尾 大 鳍鲮 注射 0 . 3 mL 作 为试验 组 。对照
组则注射 同体积 的无菌生理 盐水 。注射后放 回
水族箱 中继续饲 养 ,每 日记录死亡情 况 ,连续
观察7 d 。
高产纤维素酶菌的筛选、鉴定及应用概述

农家参谋科技研究-220-NONG JIA CAN MOU高产纤维素酶菌的筛选、鉴定及应用概述王琪(河南师范大学生命科学学院,河南新乡,453007)【摘 要】纤维素作为自然界最丰富的可再生资源之一,具有易获得、廉价等优点。
近年来,随着全球经济的迅速发展,能源消耗巨大,地球环境遭到严重破坏;因此,寻找可再生的清洁能源迫在眉睫,所以高产纤维素酶菌的筛选、鉴定及应用得到了人们广泛的关注,也是当今微生物学、农业科学、生态学的研究热点。
本文对之前高产纤维素酶菌的筛选、鉴定及应用的研究进行进行整合归总,展望今后的研究方向。
【关键词】高产纤维素;酶菌;筛选;鉴定1 高产纤维素酶自然界中纤维素广泛存在,但是降解过程生产成本高、环境污染问题,效果不理想。
经大量研究发现,纤维素酶是酶的一种,能够有效降解纤维素。
纤维素酶广泛存在于自然界的生物体中。
细菌、真菌、动物体内等都能产生纤维素酶,所以近年来各界学者致力于筛选及鉴定高产的纤维素酶菌的研究。
2 高产纤维素酶的筛选与鉴定经查阅资料与分析,从一定地区取样如:土样、常年堆积干枯腐败植物茎秆、东亚飞蝗肠道内等;取一定量样品在三角瓶中富集培养;先梯度稀释,然后通过常规的稀释法或划线法接种涂布于马铃薯平板与牛肉膏蛋白胨分离培养基之上,37℃恒温培养24d,菌落计数,然后挑选菌落形态差异比较明显的菌落,重复划线接种于相应的琼脂平板上,直至纯化得到单菌落。
根据菌落形态观察,保存不同种的菌落,利用牙签蘸取菌落,放入离心管进一步富集;之后取富集液滴在圆形滤纸片上然后分别接种与刚果红培养基,保持对应关系,进行培养;继而用游标卡尺测量菌落周围水解透明圈的直径,并以其大小作为初步判断分解能力的指标;接下来把筛选出的菌株用单染色法、复染色法和指纹代谢法进行初步确定菌株类别;最后用16SrDNA 鉴定,通过PCR 电泳比对后送公司进行测序;确定菌株后进行酶活测定以及优化其酶活力的条件探究。
目前经大量实验,从陕北花马盐湖分离得到一株黑曲霉Aspergillusniger6MA1,发酵条件优化后酶活可达到47.8U/mL;从常年堆积干枯腐败植物茎秆中筛选出一株肠杆菌属Enterobactersp,在未进行发酵条件优化的情况下酶活达到为0.44u/mL;从湿润木屑中分离和筛选获得1株高产纤维素酶目的菌株LYW-1等。
紫外线诱变纤维素酶高产菌株的筛选及其酶活力

紫外线诱变纤维素酶高产菌株的筛选及其酶活力张君胜;张力;张尧【摘要】为筛选产纤维素酶酶活力高的菌株应用于秸秆饲料发酵,利用紫外线诱变对1株产纤维素酶绿色木霉菌进行了试验研究.结果表明:筛选出1株纤维素酶产酶量高且性状稳定的高产菌株ZJUV18,其发酵72h纤维素酶滤纸酶活达68.07 U/g,较原始菌株提高4.45倍.%A Trichoderma viride strain was treated with ultraviolet to screen out a high cellulase-producing strain and apply in straw feed fermentation. The results showed that a high cellulase-producing strain with high cellulose yield and stable characteristics, which was named ZJUV18, was screened out. The FPA could be up to 68. 07 U/g after fermented for 72 hours, which was 4. 45 times the activity of the original strain.【期刊名称】《贵州农业科学》【年(卷),期】2011(039)010【总页数】3页(P125-127)【关键词】纤维素酶;诱变;紫外线;酶活力【作者】张君胜;张力;张尧【作者单位】江苏畜牧兽医职业技术学院,江苏泰州225300;江苏畜牧兽医职业技术学院,江苏泰州225300;江苏畜牧兽医职业技术学院,江苏泰州225300【正文语种】中文【中图分类】S182粮食短缺、能源危机是目前全球所面临的危机。
而我国由于受人口多、耕地少的双重制约,粮食供应形势尤为严峻。
因此,我国畜牧业要稳定持久发展,就必须减少对粮食的依赖[1]。
菌株产纤维素酶的活力

菌株产纤维素酶的活力纤维素酶是一种能够降解纤维素的酶类,具有广泛的应用价值。
菌株产纤维素酶的活力是评价菌株纤维素降解能力的重要指标之一。
本文将探讨菌株产纤维素酶活力的相关内容。
一、菌株的筛选与培养菌株的筛选是寻找具有高纤维素酶活力的菌株的过程。
常用的筛选方法包括土壤样品的采集和分离、菌株的纤维素酶活力测定等。
通过这些方法,可以获得具有较高纤维素酶活力的菌株。
在菌株的培养过程中,培养基的选择和培养条件的优化对于提高菌株产纤维素酶活力至关重要。
常用的培养基包括纤维素、木质素等。
同时,适宜的温度、pH值和培养时间等因素也会对菌株产纤维素酶活力产生影响。
二、菌株产纤维素酶活力的测定菌株产纤维素酶活力的测定是评价菌株纤维素降解能力的重要手段。
常用的测定方法包括滤纸酶活力测定法、纤维素酶活力测定法等。
这些方法通过测定菌株产生的纤维素酶对底物的降解能力,来评估菌株的纤维素酶活力水平。
三、影响菌株产纤维素酶活力的因素菌株产纤维素酶活力受到多种因素的影响。
其中,培养条件是影响菌株产纤维素酶活力的重要因素之一。
适宜的温度、pH值和培养时间等条件可以提高菌株产纤维素酶活力。
此外,底物浓度、氮源和碳源等也会对菌株产纤维素酶活力产生影响。
四、提高菌株产纤维素酶活力的方法为了提高菌株产纤维素酶活力,可以采取多种方法。
一种常用的方法是通过菌株的遗传改良来提高其产酶能力。
通过选择和诱变等手段,可以获得具有较高纤维素酶活力的菌株。
此外,优化培养条件和添加适当的辅助物质也可以提高菌株产纤维素酶活力。
五、菌株产纤维素酶活力的应用菌株产纤维素酶活力的应用广泛。
纤维素酶可以用于纤维素的降解和转化,从而产生生物燃料、生物质材料等。
此外,纤维素酶还可以应用于食品工业、饲料工业和纺织工业等领域。
六、结论菌株产纤维素酶的活力是评价菌株纤维素降解能力的重要指标。
通过筛选合适的菌株、优化培养条件和提高菌株产纤维素酶活力的方法,可以获得具有较高纤维素酶活力的菌株。
产纤维素酶细菌的筛选鉴定及产酶条件研究

产纤维素酶细菌的筛选鉴定及产酶条件研究⼴西轻⼯业GUANGXI JOURNAL OF LIGHT INDUSTRY2009年7⽉第7期(总第128期)⾷品与⽣物纤维素是地球上分布最⼴,含量最丰富的碳源物质,对⼈类⽽⾔,它⼜是⾃然界中数量最⼤的可再⽣资源,是永不枯竭的⽣物资源。
纤维素可被纤维素酶降解⽣成葡萄糖,因此纤维素酶研究开发和应⽤是植物质资源再利⽤的主要途径。
微⽣物是纤维素酶的主要来源,据不完全统计,迄今为⽌,国内外共记录了产纤维素酶的菌株⼤约53个属的⼏千个菌株[1],其中主要有细菌、放线菌和真菌,⽬前研究的最清楚的是霉菌中的⾥⽒⽊霉T.reesei 。
细菌产纤维素酶的产量较少,主要是葡聚糖内切酶,⼤多数对结晶纤维素⽆降解活性,且所产⽣的酶多是胞内酶或吸附在细胞壁上,不分泌到培养液中,增加了提取纯化的难度[1],因此对细菌的研究较少。
但由细菌产⽣的纤维素酶⼀般为中性或碱性,近⼗年来随着中性纤维素酶和碱性纤维素酶在洗涤、纺织等⽅⾯应⽤前景⼴阔,细菌纤维素酶制剂已显⽰出良好的应⽤性能和巨⼤的经济价值[2]。
我们从青藏⾼原牦⽜粪中分离到⼀株⾰兰⽒阴性菌Ti-bet-YD4600-2,经16S rDNA 序列⽐对分析,Ti-bet-YD4600-2为鞘氨醇单胞菌属(Sphingomonas sp.)菌株。
鞘氨醇单胞菌属是Yabuuchi (1990)[3]等通过研究16S rDNA核苷酸序列,胞内脂质中出现的特殊鞘糖脂和辅酶Q 的主要类型,确定的⼀个新属,该属细菌具有着极强的⽣命⼒,分布⼴泛,对除草剂、偶氮染料、多环芳烃等具有较好的降解作⽤,近年来受到⼴泛重视和研究[4]。
1材料和⽅法1.1材料来源通天河(34°49.753N,92°56.142E )海拔4604m 处取牦⽜粪样品。
1.2培养基[5]分离平板培养基,复筛培养基,滤纸崩解实验培养基,液体摇瓶培养基。
1.3初筛取样品1g 置于装有100mL ⽆菌⽔的三⾓瓶中,摇匀,从三⾓瓶中取1mL 转移到另⼀盛有100mL ⽆菌⽔的三⾓瓶,在25℃和150r /min 下振荡培养2h ,取0.1mL 振荡培养液涂布筛选到以CMC 为唯⼀碳源的培养基平板,倒置恒温25℃培养3~4d ,注意观察菌的⽣长情况,挑取单菌落⽤斜⾯保存。
产纤维素酶菌种的筛选与优化

产纤维素酶菌种的筛选与优化一、菌种筛选的原理与方法菌种筛选的原理是通过筛选产纤维素酶活性高、产量大的菌种。
常用的菌种筛选方法有以下几种:1.传统菌种筛选:分离环境中的纤维素降解菌株,通过纤维素酶活性测定筛选产纤维素酶能力较强的菌株,再通过多次温育和活性测定,逐步筛选出高活性的菌株。
2.显性菌种筛选:利用纤维素酶结构上保守的区域设计引物,在环境DNA中扩增出纤维素酶基因片段,使用这些基因片段进行克隆构建,然后在宿主中进行表达,通过纤维素酶活性测定筛选产纤维素酶能力较强的菌株。
3.基因工程菌种筛选:利用已知纤维素酶的基因进行基因工程,通过载体导入宿主细胞中,通过外源表达基因,从而获得产纤维素酶菌种。
二、菌种优化的原理与方法菌种优化的原理是通过改变菌株基因组或环境条件,提高纤维素酶产量和活力。
常用的菌种优化方法有以下几种:1.自然进化优化:通过长期培养,逐渐挑选出产酶能力强、极端环境适应能力强的突变菌株。
2.诱变优化:利用物理、化学或基因工程等方法对菌株进行诱变,通过筛选获得产纤维素酶能力强、菌株稳定的变种。
3.基因工程优化:利用已知纤维素酶的基因进行基因编程,通过基因工程技术对菌株基因组进行改造,以提高纤维素酶的产量和活力。
三、未来的研究方向1.菌种筛选方法的改进与创新:应综合运用传统筛选、显性筛选和基因工程筛选等方法,发展新的高效、快速的菌种筛选方法。
2.菌种优化技术的优化与提高产量、活性:要通过生理、代谢工程的方法改造纤维素酶产生菌,提高纤维素酶的产量和活力。
3.开发新型纤维素酶菌株:从不同环境中分离筛选出产酶能力强的菌株,进一步发现和研究产纤维素酶的新菌株。
4.提高纤维素酶产量与废弃物转化率的研究:将纤维素酶应用于废弃物转化过程,提高纤维素酶产量和转化率。
综上所述,产纤维素酶菌种筛选与优化的研究是促进纤维素酶应用的关键。
通过不断改进筛选和优化方法,进一步开发新的菌种,提高纤维素酶的产量和活力,将对纤维素酶的应用产生积极的推动作用。
一株纤维素酶高产菌的筛选、鉴定与产酶研究

一株纤维素酶高产菌的筛选、鉴定与产酶研究田云;曹林友;周赓;邓成刚;陈帅;卢向阳;周海燕【摘要】A high cellulase-producing strain was screened from the mushroom cultivation matrix, and named as SAISA10. It was identified as Hypocreales sp. by morphological observation and DNA sequence identification. Results showed that,the optimum fermentation conditions for strain SAISA10 were as follows:fermentation time of 3 d,fermenta-tion temperature of 40 ℃,pH value of 4. 0,the mass ratio of sodium carboxymethyl cellulose and bran of 1 ∶ 1(g ∶ g), (NH4)2SO4 content of 0.8 g·(100 mL)-1. The preliminary research results of enzymatic properties showed that,the optimum enzymatic hydrolysis conditions were as follows:temperature of 45~55 ℃,pH value of 4. 0,and the optimum stable conditions were as fol lows:temperature of 40 ℃,pH value of 4. 5. The strain SAISA10 is a high cellulase-produ-cing strain with high activity and stability at high temperature or low pH value,which has high exploration potential.%从蘑菇培养基质中筛选到一株纤维素酶高产菌株,将其命名为SAISA10,经形态学及分子生物学鉴定,确认该菌为真菌Hypocreales sp.。
一株产纤维素酶细菌的筛选与发酵产酶试验

纤维素酶是一种多组分的复合酶系,由内切葡聚糖酶、外切葡聚糖酶和β-葡萄糖苷酶三种组分组成。
由于纤维素在自然界广泛分布,很多细菌、放线菌、酵母和霉菌都具有降解纤维素的能力。
此前纤维素降解菌的研究多以霉菌为主,而对细菌的研究着力较少。
近年来,随着中性纤维素酶和碱性纤维素酶在棉织品水洗整理工艺及洗涤剂工业中的成功应用,通过细菌发酵生产纤维素酶制剂已显示出良好的应用前景。
本文拟从土壤中筛选出产纤维素酶的细菌并进行初步鉴定,以期为纤维素酶制剂的生产提供可能的细菌菌种。
一、材料与方法1.材料(1)土壤样品。
从南京科技职业学院校园小树林堆放枯枝和落叶处采集腐殖土土样,五点取样,混匀,放入无菌的袋中备用。
(2)富集培养基。
牛肉膏3g,蛋白胨10g,NaCl 5g,琼脂15g,加水至1000mL,调pH7.0-7.2。
(3)初筛培养基。
羧甲基纤维素钠(CMC-Na)5g,(NH4)2SO44g,KH2PO4 2g,MgSO4·7H2O 0.5g,蛋白胨1g,琼脂15g,加蒸馏水至l000mL,pH自然。
(4)复筛培养基。
CMC-Na 2g,(NH4)2SO4 2g,KH2PO4 1g,MgSO4·7H2O 0.5g,NaCl 0.5g,刚果红0.4g 琼脂15g,加蒸馏水至l000mL,pH自然。
(5)液体发酵培养基。
CMC-Na 10g,蛋白胨10g,酵母粉10g,NaCl 5g,KH2PO4 1g,加蒸馏水至l000mL,灭菌后用无菌Na2CO3溶液调pH至10。
2.方法(1)土壤细菌的富集。
称取土样10g,放入装有玻璃珠和90mL无菌水的锥形瓶中,充分振摇。
取5mL悬液放入含45mL富集培养基的250mL锥形瓶中,37℃,150r/min振荡培养一昼夜。
(2)初筛培养基稀释涂布。
将富集后的土壤细菌培养物进行梯度稀释,取10-4,10-5,10-6三个稀释度各0.1mL于初筛培养基平板上进行稀释涂布,37℃倒置培养一昼夜,得到单菌落。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本科开放项目题目:产纤维素酶菌株的筛选及其酶活的测定学生姓名:指导教师:学院:专业班级:2016年3月产纤维素酶菌株的筛选及其酶活的测定摘要纤维素作为植物光合作用的主要多糖类产物,是高等植物细胞壁的主要成分,是公认的自然界数量最丰富、最廉价的可再生有机物质资源。
据估计,纤维素生成量每年高达1000亿吨。
我国每年农作物秸秆总产量为7亿吨左右,仅农业生产中形成的农作物残渣(如稻草、玉米秸、麦秸等),每年就有5亿吨之多。
纤维素的降解是自然界碳素循环的中心环节。
但由于纤维素的结构特点,对纤维素的利用仍然非常有限。
目前仅有20%的纤维素物质被开发利用,大量的纤维素物质因无法分解利用而废弃,不仅造成资源浪费,而且污染环境。
随着人口数量的不断增长和人民生活水平的不断提高,能源危机、食物短缺、环境污染等问题日益严重,寻找利用可再生资源、节省粮食、减少环境污染的有效途径显得日趋重要。
采用微生物技术处理秸秆是当前研究最多的一种秸秆处理方法,纤维素酶能将天然纤维素降解,生成纤维素分子链、纤维二糖和葡萄糖,然而目前制约纤维素材料转化为乙醇并实现产业化的关键因素之一是纤维素酶效率低下,从而造成生产成本过高。
因此,筛选具有高活性纤维素酶的秸秆降解微生物菌株以及相关研究是当前研究的热点和难点。
关键词:纤维素降解高活性纤维素酶微生物菌株目录第1章绪论 (1)1.1 实验原理 (1)1.2 实验仪器及试剂 (1)1.2.1 实验材料 (1)1.2.2 实验仪器 (1)1.2.3 培养基 (2)第2章实验步骤 (3)2.1 采样培养 (3)2.2 初筛 (3)2.3 复筛 (3)2.4 酶活的测定 (3)2.4.1原理 (3)2.4.2溶液配制 (3)2.4.3实验步骤 (4)第3章实验结果 (6)3.1 标准曲线的绘制 (6)3.2 菌株复筛结果 (6)3.3 测定纤维素酶活力结果 (7)结束语 (8)参考文献 (9)第1章绪论1.1 实验原理自然界中存在大量的纤维素类物质,同时存在着很多能分解纤维素类物质的生物,小到细菌、放线菌、真菌,大到一些食草类昆虫与动物。
这些生物与绿色植物一起构成了这个世界的碳循环。
在发酵堆肥中,存在着大量的,耐高温的纤维素分解菌株,但多半都为混合分解,菌种需要:1. 内切型葡萄糖苷酶(endo-1,4-β-D-glucanase,EC3.3.1.4,简称EBG),也称Cx酶、CMC酶、EG。
这类酶作用于纤维素分子内部的非结晶区,随机识别并水解β-1,4-糖苷键,将长链纤维素分子截短,产生大量非还原性末端的小分子纤维素;2. 外切型葡萄糖苷酶(exo-1,4-β-D-glucanase,EC3.2.1.91),也称C1酶、微晶纤维素酶、纤维二糖水解酶(Cellobiohydrolase,简称CBH),这类酶从纤维素长链的非还原性末端水解β-1,4-糖苷键,每次切下纤维二糖分子;3. Β-葡萄糖苷酶(β-glucosidase,EC3.2.21,简称BG)又称纤维二糖酶,它能水解纤维二糖以及短链的纤维寡糖生产葡萄糖,对纤维二糖和纤维三糖的水解很快。
随着葡萄糖聚合酶的增加水解速度下降,这种酶的专一性比较差。
只有三种酶的协同作用,才能较好的分解纤维素。
就单菌落而言,霉菌如木霉、曲霉和青霉的总体酶活性较高,产量大,故在畜牧业和饲料工业中的应用的纤维素酶主要是真菌纤维素酶。
本实验以羟甲基纤维素钠为唯一碳源的培养基作为筛选培养基,只有能够水解纤维素成单糖并加以利用的微生物才能在筛选培养基上生长,利用筛选培养基分离产纤维素酶的微生物。
以羧甲基纤维素钠(CMC-Na)为唯一碳源,通过微生物分解利用CMC-Na,分离出能产纤维素酶的菌种;刚果红是一种酸性染料,可与纤维素反应形成红色复合物。
1.2 实验仪器及试剂1.2.1 实验材料土样取自湖南省长沙市岳麓山上、中南大学校本部草地15—20cm深处;1.2.2 实验仪器试管、烧杯、移液管、平板、锥形瓶、玻璃珠、电磁炉、电子称、量筒、培养皿、酒精灯、移液枪、接种环、高压灭菌锅等;1.2.3 培养基(1)培养基A、纤维素富集培养基(1L):NaCl 6g,MgSO4 0.1g,KH2PO4 0.5g,CaCl2 0.1g,(NH4)SO4 2.0g,K2HPO4 2.0g,琼脂1.5%,CMC-Na 0.5%,pH调至7.0。
B、纤维素筛选培养基(1L):在上述纤维素酶富集培养基中加入酵母粉1g。
C、马丁培养基:葡萄糖1g,蛋白胨0.5g,KH2PO4~3H2O0.1g,MgSO4~7H2O0.05g,0.1%孟加拉红溶液0.33mL,琼脂1.5g,蒸馏水100mL,自然ph,2%去氧胆酸钠溶液2mL(预先灭菌,临用前加入),;链霉素溶液10000u/mL 0.33mL(临用前加入)。
(2)溶液A、刚果红染色液:用蒸馏水溶解刚果红,终浓度为0.1%(w/v)。
B、刚果红脱色液:终浓度为1mol/L的NaCl溶液。
第2章实验步骤2.1 采样培养(1)采样:在事先勘察好的取样地土壤15-20cm,取3个点采样;(2)溶解:将3份土样各10g加入带有玻璃珠的锥形瓶并溶于无菌水中,在摇床上以200r/min振荡30min;(3)富集:配制100m L 富集培养基中,加入250mL锥形瓶中,取生理盐水中振荡的土样溶液上清取5mL加入富集培养基中,30℃200r/min,培养24h;(4)稀释:梯度稀释10-1mol/L、10-2 mol/L、10-3 mol/L、10-4 mol/L,10-5 mol/L、10-6 mol/L。
2.2 初筛初筛:选取10-5mol/L、10-6mol/L两个浓度梯度各0.1mL分别做3个平行,涂布于纤维素富集培养基平板上,30℃恒温培养箱中培养2d。
挑取生长良好的形态大小不同的菌落于纤维素液体富集培养基中30℃200r/min,培养24h。
2.3 复筛(1)复筛:用接种针将分离到的菌株活化后点种于纤维素筛选培养基平板上,30℃恒温倒置培养2d。
用0.1%刚果红染色液浸染再用1mol/LNaCl溶液脱色5min。
若菌株产纤维素酶,则会在菌落周围出现清晰的透明圈,依据透明圈直径与菌落直径的比值大小选择产酶菌株(2)将筛选获得的产纤维素酶的菌株接种到马丁培养基中,30℃培养4d,能在该培养基中生长良好的为真菌,不能生长的为细菌。
2.4 酶活的测定2.4.1原理纤维素经纤维素酶水解后生成的还原糖能将3,5-二硝基水杨酸(DNS)中的硝基还原为氨基,生成棕红色的氨基化合物。
在一定的浓度范围内,还原糖的量与棕红色的深浅呈正比关系。
可用比色法测定。
2.4.2溶液配制(1)CMC-Na底物溶液的配制浓度1% 热水煮ph 4.5(2) DNS的配制总量为250ml配方称取3,5-二硝基水杨酸(2.5±0.1 g),置于约150mL水中,逐渐加入氢氧化钠10g,在50℃水浴中(磁力)搅拌溶解,在再依次加入酒石酸钾钠50g、苯酚(重蒸)0.5g 和无水硫酸钠1.25g,待全部溶解澄清后,冷却至室温,用水定容至250mL,过滤。
贮存于棕色试剂瓶中,于暗处放置7d后使用。
但是一定要注意,3,5-二硝基水杨酸和NaOH的加入时间一定要很近,或者是先加入NaOH。
否则会产生难溶的沉淀,导致配制溶液失败。
且配置过程中,溶液加热温度不宜超过50摄氏度。
(3)3.200mL 0.1mol/L乙酸-乙酸钠缓冲溶液 ph 4.5(4)酶活定义1mL液体酶在指定温度50 ,pH=4.5,每分钟水解CMC-Na底物,产生相当于1μg葡萄糖的还原糖量,为1个酶活力单位,以ug/mL*min表示。
简写为CMC-Na。
2.4.3实验步骤(1)绘制葡萄糖标准曲线葡萄糖标准液浓度10mg/mLA、向25mL容量瓶中按下表加入相应体积的葡萄糖储液。
B、取0.5mL各个浓度的葡萄糖标准溶液,再加入3mL DNS试剂混匀,沸水浴10min后终止反应,定容至25mL,在540nm处测定吸光度。
每管取3个平行样。
C、所得平行吸光度取均值,对应葡萄糖标准液浓度,吸光度为横坐标,葡萄糖质量为纵坐标作图,作线性拟合,得到葡萄糖标准曲线。
(2)空白管的测定:同DNS法,将0.5mL酶液改成0.5mL缓冲液(3)制备粗酶液A、取发酵液1mL 8000r/min 常温离心10min,取上清液为粗酶液;B、取粗酶液依次稀释至10-1mol/L、10-2 mol/L、10-3 mol/L。
(4)DNS法测酶活力参照DNS法,取0.5mL稀释后的酶液,加入到2mL的CMC-Na底物缓冲液溶液。
50℃水浴反应30min后,立即加入3mLDNS试剂混匀,沸水浴10min后终止反应,冷却后定容至25mL。
在 540nm处测定吸光度,以空白作为对照调零值,每管取三个平行样。
第3章实验结果3.1 标准曲线的绘制3.2 菌株复筛结果3.3 测定纤维素酶活力结果复筛之后测定酶活没有得到预想的结果,分析原因如下:(1)复筛挑选的菌株不准确,培养得到的菌株不是产纤维素酶的菌株;(2)取样地点有限,取样地菌落可能不符合实验要求;(3)稀释梯度太大,富集之后得到的菌株太少;(4)操作过程中无菌不是很严格,可能发生了染菌。
结束语地球上每年生产超过5000亿吨的纤维素,因而纤维素是储藏极为丰富的资源。
它的生产对人类生存环境和可持续发展有着举足轻重的影响。
纤维素酶的微生物的发酵研究主要为菌种的选育以及工艺优化两方面。
实验室规模的纤维素酶生产的研究主要集中于原料预处理和发酵过程。
纤维素酶的生产主要存在酶活力和产酶量不足的问题,运用各种科学方法提高纤维素酶的活力和产量已成为科学研究的重要方面。
当前纤维素酶研究的一个重要课题就是选育新菌株以提高纤维素酶的产量和质量从而达到工业化生产的要求。
万事开头难,第一次实验报告也是如此,实验原理论述长,实验数据处理麻烦,课后思考题做着纠结,牢骚也发了,但还是耐着性子一项一项的完成了。
慢慢地也就没有了那种排斥感,更多的是当做一种习惯,当作实验后的一种总结——把实验时得到的一些简单数字变成说服人的道理。
这次实验对我而言并不仅仅是学习生物学实验技术和方法的宝贵经历,它意味着更多。
首先是实验条件、实验过程、实验设计的完备性,从这里可以初步感受到生物学研究的科学性与严肃性,自己可以得到宝贵的机会,亲身体会生物学研究的苦辣酸甜。
一直一直喜欢,得到正确实验结果时刻的畅快感,那是无法言明的欣慰感,一次身心彻底地放松,可以将所有一整天来积累的疲劳抛之身后,即使仅仅是小小的成功,也会让我们兴奋不已。
失误是常有的,经历过吃惊、后悔、无奈,检讨分析,最后重新开始。
一波三折的记忆清晰的印在脑海中,这种深深的挫折感,再试一次的勇气,我会一生记取的。