三年级奥数专题之巧填算符
三年级奥数第4讲——巧添符号
举一反三1
2.在下面算式中添上运算符号和括号,使等 式成立. (1)3 4 5 6 8=8
(2)3 4 5 6 8=8
举一反三1
3.巧添运算符号及括号,使算式成立 (1)3 3 3 3=1
(2)3 3 3 3=2
(3)3 3 3 3=3
王牌例题2
给下面各算式添上+、-、×、÷、( ), 使等式成立。你能试一试吗?
巧添符号
专题简析
给算式添加运算符号这类问题,通常采用尝试探 索法,这是一种很有趣的游戏。主要的尝试方法 有两种:
1.如果题目中的数字比较少,可以从算式的结果入 手,推想哪些算式能得到这个结果,然后拼凑出所 求的式子。
2.如果题目中的数字比较多,结果也较大,可以考 虑先用几个数字凑出比较接近算式结果的数,然后 再进行调整,使等式成立。
举一反三4
在下面算式中适当的地方添上+、-, 使等式成立。
9 8 7 6 5 4 3 2 1=23
举一反三4
在下面算式中适当的地方添上+、-, 使等式成立。 1 2 3 4 5 6 7 8=1
举一反三4
在下面算式中适当的地方添上+、-, 使等式成立。
1 2 3 4 5 6 7 8=14
王牌例题5 改变下式中的一个运算符号,使等
练习:
在下面算式中添上“+”“-”“×”“÷” 或“( )”,使等式成立。(6分)
(1)4 4 4 4 4 = 8 (2)3 3 3 3 3 = 9
练习:
在下面算式中添上“+”“-”“×”“÷” 或“( )”,使等式成立。(6分)
8 8 8 8 8 8 8 8 = 1000
练习:
三年级奥数专题之巧填算符之欧阳文创编
巧算算符根据题目给定的条件和要求,填运算符号或括号,使等式成立,这是一种很有趣的游戏,这种游戏需要动脑筋找规律,讲究方法。
填运算符号问题,通常采用尝试探索法,主要尝试方法有两种:1、逆推法,如果题目的数字比较简单,可以从等式的结果入手,推想那些算式能得到这个结果,然后拼凑出所求的式子。
2、凑数法,如果题目中的数字比较多,结果也较大,可以考虑先用几个数字凑出比较接近于等式结果的数,然后再进行调整,使等式成立。
通常情况下,要根据题目的特点,选择方法,有时将以上两种方法组合起来使用,更有助于问题的解决。
【例1】在下面4个4之间填上+、-、×、÷或括号,使等式成立4444=8【例2】在下面各题中添上+、-、×、÷、(),使等式成立。
12345=10【例3】拿出都是8的四张牌,添上+、-、×、÷或(),使等式成立,你能试一试吗?8888=08888=18888=28888=3【例4】在下面算式适当的地方添上加号,使算式成立。
8 8 8 8 8 8 8 8=1000【例5】在下面算式中合适的地方,只添两个加号和两个减号使等式成立。
1 2 3 4 5 6 7 8 9=100【例6】在下面算式合适的地方添上+、-、×,使等式成立。
12345678=1课后训练1、巧填运算符号,使等式成立。
(1)3333=1(2)4444=2(3)5555=32、在下面的各数之间,填上适当的运算符号+、-、×、÷和括号,使运算成立。
(1)4 4 4 4 = 5(2)1 2 3 4 5=1003、在下面算式适当的地方添上加号,使算是成立。
1 1 1 1 1 1 1 1 = 10004、在下列各式中填入符号+、-、×、÷或(),使得等式成立:(1)123=1(2)1234=1(3)12345=1(4)123456=1(5)1234567=1(6)12345678=1。
三年级奥数第4专题-巧填符号
第四讲巧填符号三年级奥数知识是从刻苦劳动中得来的,任何成就都是刻苦劳动的结晶。
——宋庆龄知识纵横根据题目给定的条件和要求,填运算符号或括号,使等式成立,这是一种很有趣的游戏,这种游戏需要动脑筋找规律,讲究方法,一旦掌握方法,就有取得成功的把握。
填运算符号问题,通常采用尝试探索法,主要尝试方法有两种:1.如果题目的数字比较简单,可以从等式的结果入手,推想那些算式能得到这个结果,然后拼凑出所求的式子。
2.如果题目中的数字比较多,结果也较大,可以考虑先用几个数字凑出比较接近于等式结果的数,然后再进行调整,使等式成立。
通常情况下,要根据题目的特点,选择方法,有时将以上两种方法组合起来使用,更有助于问题的解决。
例题求解【例1】在下面4个4之间填上+、-、×、÷或括号,使等式成立4444=8【例2】在下面各题中添上+、-、×、÷、(),使等式成立。
12345=10【例3】拿出都是8的四张牌,添上+、-、×、÷或(),使等式成立,你能试一试吗?8888=08888=18888=28888=3【例4】在下面算式合适的地方添上+、-、×,使等式成立。
12345678=1【例5】在下面式子适当的地方添上+、-号,使等式成立。
987654321=21【例6】在下面12个5之间添上+、-、×、÷,使下面等式成立。
555555555555=1000学力训练1.你能在下面数中填上+、-、×、÷,使结果等于已知数吗?(1)5555=10(2)9999=182.在下面数中填上+、-、×、÷或(),使等式成立。
(1)33333=9(2)44444=83.在下面几个数中填上+、-、×、÷或(),使等式成立。
(1)2356=6(2)2356=64.你能在下面各数中添上运算符号,使等式成立吗?4125=105.巧填运算符号,使等式成立。
【奥数】小学三年级数学下册《巧填算符进阶》教学课件
练习4、把+、-、×、÷这4个运算符号,分别填入下面四个圆 圈内,使等式成立:
(2⚪ 8⚪ 4)⚪ (18⚪ 9)=36
(2+⚪ 8⚪÷ 4)⚪× (18⚪- 9)=36
例题5、用下面每小题中给定的5个数凑36,数可以打乱顺序, 每个数仅用一次,可用+、-、×、÷或()。 (1)2,4,6,8,10 (2)1,3,5,7,9
运算符号的由来
表示计算方法的符号叫做运算符号。如四则计算中的+、-、×、÷等。 加号“+”是加法符号,表示相加。 减号“-”是减法符号,表示相减。 “+”与“-”这两个符号是德国数学家威特曼在1489年他的著作《简算 与速算》一书中首先使用的。在1514年被荷兰数学家赫克作为代数运算符 号,后又经法国数学家韦达的宣传和提倡,开始普及,直到1630年,才获 得大家的公认。 乘号“×”是乘法符号,表示相乘。 1631 年,英国数学家奥特轩特提 出用符号“×”表示相乘。乘法是表示增加的另一种方法,所以把“+”号 斜过来。另一个乘法符号“x”是德国数学家莱布尼兹首先使用的。 除号“÷”是除法符号,表示相除。用这个符号表示除法首先出现在瑞 士学者雷恩于1656 年出版的一本代数书中,几年以后,该书被译成英文, 才逐渐被人们认识和接受。
(1) 4+4+4÷4+4÷4 =10
(2)(5 5 5- 5 5)÷5 =100
练习2、在下面算式中合适的地方填上+、-、×、÷或(),使等 式成立:
9 9 9 9 9 9 =102
9 9+(9+9+9)÷9=102
三年级奥数专题 巧填算符
巧填算符巧填算符的符号种类:+-×÷()〖〗{}解题方法:1.凑数法:根据所给的数,凑出一个与结果比较接近的数,然后再对算式中剩下的数字作适当的增加或减少,从而使等式成立。
一般用于等号左边的数比较多,而等号右边的数比较大的题目.2.逆推法:从算式的最后一个数字开始,逐步向前推想,从而得到等式。
一般用于数字不太多(如果太多,推的步骤也会太多),且得数比较小的题目.3.综合法:凑数法和逆推法并用.补充知识:括号的作用是改变运算的顺序,颠覆“先乘除,后加减”,使括号中的部分先做,要改变这一顺序,往往把括号加在有加、减运算的部分.在下列算式的数字之间,添入加号和减号,使等式成立.1 23 4 5 6 78 9=1001.1.在两数之间添上合适的运算符号“+”、“-”、“×”、“÷”(),使等式成立。
3 3 3 3=03 3 3 3=13 3 3 3=23 3 3 3=33 3 3 3=9注:此题答案默认为0,正确答案见解析!2.2.在下列算式的数字之间,添入加号和减号,使等式成立。
12 3 4 5 6 789=100注:此题答案默认为0,正确答案见解析!3.3.下面有8个数,在每两个相邻的数字之间都加上“+”或“-”,使得算式成立。
1 2 3 4 56 7 8=24注:此题答案默认为0,正确答案见解析!将“+”、“-”、“×”、“÷”分别填在下面的○内,使等式成立。
(6○18○3)○(7○2)=121.1.把“+”、“-”、“×”、“÷”分别填在下面的○内,使等式成立。
(4○12○6)○(17○9)=48注:此题答案默认为0,正确答案见解析!2.2.把“+”、“-”、“×”、“÷”分别填在下面的○内,使等式成立。
(2○8○4)○(18○9)=36注:此题答案默认为0,正确答案见解析!3.3.把“+”、“-”、“×”、“÷”分别填在下面的○内,使等式成立。
三年级奥数巧填符号方法技巧
三年级奥数巧填符号方法技巧嘿,小朋友们和家长们!今天咱就来讲讲三年级奥数里巧填符号那些有趣的方法技巧。
你们想想啊,这就好比是一场数字的大冒险!那些数字就像是一个个小精灵,等着我们给它们安排合适的符号,让它们乖乖听话,得出我们想要的结果呢。
先来说说凑数法吧。
就好像搭积木一样,我们要试着把数字通过加呀、减呀、乘呀、除呀这些操作,凑成我们想要的那个数。
比如说,给定几个数字,我们得想办法让它们通过符号的连接,变成一个特定的结果。
这是不是很有意思呀?再讲讲倒推法。
这就像是破案一样,从结果出发,一步一步往回推,看看用什么符号才能达成这个结果。
哎呀,就像是走迷宫,找到正确的路可不容易呢,但一旦找到了,那成就感,啧啧啧,别提多棒啦!还有分组法呢!把数字分成小组,然后分别处理,再把结果组合起来。
这就像是把小伙伴们分组做游戏,每个小组都有自己的任务,最后一起完成大目标。
举个例子吧,比如有这么几个数字3、4、5、6,要让它们等于24。
那我们就可以用 6÷3=2,然后 2×4=8,最后 8×3=24,这不就成功啦!这就像是解开了一个数字谜题,是不是很神奇呀?小朋友们在做这些题目的时候,可不要着急哦,要像小侦探一样细心观察,慢慢尝试。
就像找宝藏一样,一点点地挖掘出正确的答案。
而且呀,多练习这些巧填符号的题目,会让你们的小脑袋变得更聪明呢!其实呀,奥数就像是一个神奇的魔法世界,充满了各种奇妙的挑战和乐趣。
巧填符号只是其中的一小部分,但却是非常有趣的一部分呢。
所以呀,小朋友们,大胆地去探索这个魔法世界吧!别怕犯错,因为每一次错误都是成长的机会呀。
家长们也要多多鼓励和支持孩子们哦,和他们一起享受这个探索的过程。
怎么样,现在是不是对三年级奥数的巧填符号方法技巧有了更清楚的认识呀?那就赶紧去试试吧,看看你们能不能成为数字魔法世界里的小高手!。
小学三年级奥数巧填算符【三篇】
小学三年级奥数巧填算符【三篇】1 2 3 4 5 6 7 8 9=100分析在本题条件中,不但限制了所使用运算符号的种类,而且还限制了每种运算符号的个数。
因为题目中,一共能够添四个运算符号,所以,应把123456789分为五个数,又考虑最后的结果是100,所以应在这五个数中凑出一个较接近100的,这个数能够是123或89。
如果有一个数是123,就要使剩下的后六个数凑出23,且把它们分为四个数,应该是两个两位数,两个一位数.观察发现,45与67相差22,8与9相差1,加起来正巧是23,所以本题的一个答案是:123+45-67+8-9=100如果这个数是89,则它的前面一定是加号,等式变为1234567+89=100,为满足要求,1234567=11,在中间要添一个加号和两个减号,且把它变成四个数,观察发现,无论怎样都不能满足要求。
答案与解析:本题的一个答案是:123+45-67+8-9=100补充说明:一般在解题时,如果没有特别说明,只要得到一个准确的解答就能够了。
在例5这类限制比较多的题目的解决过程中,要时时注意按照题目的要求去做,因为题目的要求比较高,所以解决的方法比较少。
【第二篇】练习题:在下面算式适当的地方添上加号,使算是成立。
1 1 1 1 1 1 1 1=1000分析:这道题,1000是大数,先找一个离1000最近的数,就是1111,那么多了111怎么办呢?那么就要“-111”这时已经是1000了,还有一个1怎么办呢?会想到:(1111-111)÷1=1000【第三篇】练习题:在下面算式适当的地方添上加号,使算式成立。
8 8 8 8 8 8 8 8=1000分析要在八个8之间只添加号,使和为1000,可先考虑在加数中凑出一个较接近1000的数,它能够是888,而888+88=976,此时,用去了五个8,剩下的三个8应凑成1000-976=24,这只要三者相加就行了。
答案与解析:本题的答案是888+88+8+8+8=1000。
小学三年级奥数题及答案解析:巧填算符
小学三年级奥数题及答案解析:巧填算符1.巧填算符在+、-、、、()中,挑出合适的符号,填入下面的数字之间,使算式成立。
①9 8 7 6 5 4 3 2 1=1②9 8 7 6 5 4 3 2 1=1000分析这两道题等号左边的数字各不相同,且从大到小排列,题目要求在每个数字之间都要填上运算符号,这是解题中要注意到的。
①中,等号右边的得数是最小的自然数1,而等号左边共有九个数字。
解答:先考虑用逆推法:由于等号左边最后一个数字恰好是1,与等号右边相同,所以,可以考虑在1的前面添+ 号,这样如果前面8个数字的运算结果是0就可以了,观察注意到,前面8个数字每一个数都比它前面一个数小1,这样,只要把它们分成4组,每两数相减都得1,在两组的前面添+ 号,两组的前面添- 号,即得到:(9-8)+(7-6)-(5-4)-(3-2)=0或(9-8)-(7-6)+(5-4)-(3-2)=0于是得到答案:9-8+7-6-(5-4)-(3-2)+1=1或9-8-(7-6)+5-4-(3-2)+1=1再考虑用凑数法:注意到等号左边每一个数都比前一个数小1,所以,只要在最前面凑出一个1,其余的凑出0即可,事实上,恰有9-8+7-6-(5-4)+(3-2)-1=1凑数法的解答还有很多,请同学们试一试其他的凑法。
②中,等号右边是一个较大的自然数1000,而等号左边要在每两个数字之间添上运算符号,考虑用凑数法。
由于等号右边是1000,所以,运算结果应由个位是5或0的数与一个偶数的乘积得到。
如果这个偶数是8,则在8的左、右两边都应该添号,而9 8=72,而1000 72不是整数.所以,无论在7 65 4 3 2 1之间怎样添算符,都不能得到所要的答案。
如果这个偶数是6,由于1000 6不是整数,所以,不能得到所要的结果。
如果这个偶数是4,那么在4的两边都应该添号,即有:9 8 7 6 5 4 3 2 1=1000.在4的右边只有添为4 (3-2)1才有可能使左边的算式得1000,这时,必须有9 8 7 6 5=250,经过试验知,无论怎样添算符,都不能使上面的算式成立.所以,这个偶数不能是4。
小学三年级奥数题及答案:巧填算符
小学三年级奥数题及答案:巧填算符在下列算式中合适的地方,添上()[],使等式成立。
①1+2 3+4 5+6 7+8 9=303②1+2 3+4 5+6 7+8 9=1395③1+2 3+4 5+6 7+8 9=4455分析本题要求在算式中添括号,注意到括号的作用是改变运算的顺序,使括号中的部分先做,而在四则运算中规定先乘除,后加减,要改变这一顺序,往往把括号加在有加、减运算的部分。
题目中三道小题的等号左边完全相同,而右边的得数一个比一个大.要想使得数增大,可以让加数增大或因数增大,这是考虑本题的基本思想。
①题中,由凑数的思想,通过加(),应凑出较接近303的数,注意到1+2 3+4 5+6=33,而33 7=231.较接近303,而231+8 9=303,就可得到一个解为:(1+2 3+4 5+6)7+8 9=303②题中,得数比①题大得多,要使得数增大,只要把乘法中的因数增大.如果考虑把括号加在7+8上,则有6 (7+8)9=810,此时,前面1+2 3+4 5无论怎样加括号也得不到1395-810=585.所以这样加括号还不够大,可以考虑把所有的数都乘以9,即(1+2 3+4 5+6 7+8)9=693,仍比得数小,还要增大,考虑将括号内的数再增大,即把括号添在(1+2)或(3+4)或(5+6)或(7+8)上,试验一下知道,可以有如下的添加法:[(1+2)(3+4)5+6 7+8] 9=1395③题的得数比②题又要大得多,可以考虑把(7+8)作为一个因数,而1+2 3+4 5+6 (7+8)9=837,还远小于4455,为增大得数,试着把括号加在(1+2 3+4 5+6)上,作为一个因数,结果得33,而33 (7+8)9=4455.这样,得到本题的答案是:(1+2 3+4 5+6)(7+8)9=4455解:本题的答案是:①(1+2 3+4 5+6)7+8 9=303②[(1+2)(3+4)5+6 7+8] 9=1395③(1+2 3+4 5+6)(7+8)9=4455小2.巧填算符在下面算式适当的地方添上加号,使算式成立。
小学奥数全国推荐三年级奥数通用学案附带练习题解析答案25巧填算符(一)
年级三年级学科奥数版本通用版课程标题巧填算符(一)所谓巧填算符,就是指在一些数之间的适当地方填上适当的运算符号(包括括号),从而使这些数和运算符号构成的算式成为一个等式。
在这一讲中,我们主要进行口算能力和观察能力的培养,要进行适当的推理判断,找到解决问题的关键,才能很好地完成巧填算符的问题。
本讲我们主要研究一些简单的巧填算符问题。
在填算符的问题中,所填的算符包括:+、-、×、÷、()、[ ]、{}。
解决这类问题常用的基本方法:凑数法、逆推法和试填法,常常是这几种方法并用。
凑数法是根据所给的数,凑出一个与结果比较接近的数,然后,再对算式中剩下的数字作适当的增加或减少,从而使等式成立。
凑数法常用于数字较多,结果也较大的题目。
逆推法常是从算式的最后一个数字开始,逐步向前推想,从而得到等式。
逆推法常用于数字不太多,数字也比较小的题目。
在解决实际填算符的问题时,通常需要我们打开思维,多方位思考。
例1 在○内填上与等号左边不同的运算符号,使等式成立。
(1)6+2+2=6○2○2(2)8+2+3=8○2○3分析与解:在解决本题时,可先算出左边算式的答案是几,再看右边算式,在不用左边算式的运算符号的情况下凑出答案。
填运算符号时往往答案不唯一,如题目没有特别说明,我们只需给出一种答案。
(1)6+2+2=6×2-2 (2)8+2+3=8×2-3例2在合适的地方填上“+”,使等式成立。
(位置相邻的两个数字可以组成一个数)(1)1 2 3 4 5 =60(2)1 2 3 4 5 6 =102分析与解:(1)题目中只允许填“+”号,要使等号右边等于60,首先观察左边,我们先找一个比较接近60的数,那就是45,想(15)+45=60,那么我们继续考虑:1 2 3=15,可以得出12+3=15。
这样可推导出正确答案:12+3+45=60。
(2)这道题要求组成的算式的和等于102,我们可以先考虑把相邻的数字组合成一个比较接近102的数,如果考虑组成123,456,那么它们比102大。
三年级上奥数精品讲义巧填算符
消失的符号(巧填算符)知识图谱消失的符号知识精讲一.巧填算符1.一个加减法算式中,如果把某个数前的加号变为减号,那么最后的计算结果不但少加了一次这个数,还额外减了一次这个数,那么结果会变小该数的两倍.2.对于特定的两个数,之间填上“+”和“⨯”一般可以使结果变大,而如果填上“-”和“÷”一般可以使结果变小,但注意存在数字1时比较特殊.3.两个数字越大,那么填上“⨯”所得的结果要比“+”的结果大得多.4.在填写除号的时候,注意一定要让组成的算式可以整除.5.括号用来改变运算顺序,在原有算式的基础上添上括号会使整个计算结果发生变化.6.注意题意,数字间不填符号可以得到多位数.二.算符与数字1.除了和符号相关的问题外,还有许多有关数字的问题.两个一位数相加,所能得到的和最大是9918+=,最小为000+=.除了0、1、17、18外,其他的和都可以有多组数相加得到,而且离9越近,分拆的方法就越多.2.部分数字(0、1、6、8、9)颠倒后仍是数字,而其他则不行.3.各种算式的组成与修改问题.在已知数之间添加运算符号与括号,得出给定结果或取得最大、最小值.通过枚举、试算、顺推、逆推等方法解决算式的变化问题.要求学生有较强的心算和估算能力.三点剖析本讲主要培养学生的观察推理能力,其次培养学生的运算能力.本讲内容是在整数计算的基础上,学习算符与数字.课堂引入例题1、 柯小南对数学可以说是情有独钟,而且对于一些数学难题他会很轻松的解答出来,所以知道他的人都称他为数学家.一天,他的朋友唐小虎遇到一个数学难题,怎么也算不出来.于是,唐小虎带着这个疑问去找柯小南.当唐小虎刚说完题目,聪明的柯小南只是说这不是什么难题,同时在纸上马上添加了运算符号,唐小虎看了后豁然开朗.例题2、 下面有6个数,在每两个相邻的数之间都填上一个加号或减号,使得结果为18:6 5 4 3 2 118=算符与数字中的等式成立例题1、 (1)下面有6个数,在每两个相邻的数之间都填上一个加号或减号,使得结果为19: 65432119=(2)在下面相邻两数之间,填上“”或“”,使等式成立.3____4____5____610=. (3)在下面算式中合适的地方填入小括号,使等式成立: (4)在下面算式中合适的地方填入+、-、×、÷或(),使等式成立:1234578=(5)请在下式中填入“+”和“⨯”,使等式成立(不要求每两个数之间都填入符号,但不能填“+”和“⨯”以外的符号):.例题2、 改变下面算式中一个数字前的运算符号,就能使等式成立. (1)(只能加变减,减变加):765432118++--+-=,(2)123456789100++++++++=,(3)1234567891011121314151617181920200+++++++++++++++++++=.⨯÷6812430⨯+÷=12345678910100=在3个9之间添加任意的运算符号,使其等于2.你知道柯小南是怎样添加运算符号的吗?说一说.我能不能先填一种运算符号呢?然后根据结果再调整?那是不是可以先看看原来的算式结果是多少呢?例题3、 在下面算式中合适的地方填入+、-、×、÷或(),使等式成立: (1)999999102=(2)8888888888882016=随练1、 在下面算式中合适的地方填入+、-、×、÷或(),使等式成立. (1),(2) 随练2、 在下面算式中合适的地方填入小括号,使等式成立:算符与数字中的最值问题例题1、 在下面的算式中填入一对括号,使得算式的结果最大,最大值是________.例题2、 (1)把+、-、×、÷各一个填入下面的空格内,使得计算的结果最大,这个最大值是________.(2)在下面的一排数字之间添入一个加号和一个减号,组成的算式的最小值是________.(3)把+、-、×、÷各一个填入下面的横线上,再添一对括号,要使计算的结果最大,那么能得到的最大的结果是________.例题3、 将1至8填入算式“”中,使得算式结果达到最大或最小.444420=9999919=578124220+⨯+÷-=108320++⨯97531□□□□5432110_____8_____4_____2_____1()()+⨯-□□□□□□□□注意仔细读题哦~是在合适的地方添符号哦~结果最大,那就应该乘数最大吧?什么时候才会有最大值呢?结果最大,相乘的两数要尽可能大;结果最小,相乘的两数要……随练1、 在下面的算式中填入一对括号,使得算式的结果最大,最大值是________. 随练2、 把从1到6这6个数字填入算式中,使得等式达到最大:.算符与数字的实际应用例题1、 有一类三位数,各数位上的数字之积是18,在所有这样的三位数中,最大的数与最小的数的差是______.例题2、 将一个多位数的相邻两个数字从左到右依次相加,得到的和分别为:2、0、4,那么这个多位数是________.例题3、 一张纸片上写着一个两位数,把纸片倒过来之后又变成了另一个两位数,且两个两位数的和为107,那么这两个两位数分别是________.例题4、 在下面的横线上填入2、3、8、9各一个,使得最后的结果等于24.随练1、 将一个多位数相邻两位数字依次相加,得到的和从左到右依次为:5、1、9、8、2、4、8、15,那么这个多位数是________.24点与36点例题1、 在下面各题中,请你用给出的四个数,适当进行加、减、乘、除运算,每个数恰好用一次,使得计算结果等于24:(1)1,4,5,6;(2)1,5,5,5;(3)3,3,7,7;(4)3,3,8,8. 例题2、 把+、-、×、÷这4个运算符号,分别填入下面四个圆圈内,使等式成立:例题3、 用下面每小题给定的5个数凑36,数可以打乱顺序,每个数仅用一次,可用+、-、×、÷或(). (1)2,4,6,8,10 (2)1,3,5,7,9随练1、 在下面的横线上填入1、3、6、8各一个,使得最后的结果等于24.102310++⨯⨯+⨯□□□□□□()________________________________24÷⨯-=()()28418936=○○○○()________________________________24÷+⨯=三位数,各数位上的数字之积是18,那就是说……最后一步是乘法,是不是去凑两个数相乘等于24就可以了呢?易错纠改例题1、看完题目,唐小虎思考了一会,和姐姐唐小果有了以下的讨论:你能帮唐小虎解决这个问题吗?请写出计算过程.拓展1、 用运算符号将1、4、7、7组成一个算式,使结果等于24.__________2、 在下面算式中合适的地方填入+、-、×、÷或(),使等式成立 (1)333310=,(2)55555500=3、 在下面的算式中填入一对括号,使得算式的结果最大,最大值是__________. 7523++⨯4、 在下面的算式中合适的地方填入小括号,使等式成立: (1)48123217-⨯÷+=;(2)3020105250+÷÷⨯=.5、 请将四个4用“+、-、×、÷、( )”组成3个算式如:44449++÷=.使它们的结果分别等于5、6、7. (1)________________________=5(2)________________________=6 (3)________________________=7.6、 ()()÷⨯+-⨯+-□□□□□□□□从1至9这9个数中选出8个数,分别填在上面的8个□内,使算式的结果尽可能大,那么这个最大的结果是多少?7、 把+、-、×、÷各一个填入下面的横线上,再添一对括号,要使计算的结果最大,那么能得到的最大的结果是多少?9_____7_____5_____3_____18、 将一个多位数相邻两位数字依次相加,得到的和分别为:6、2、4、9、5、8、11,那么这个多位数是多少? 9、 分析并口述题目的做题思路及方法.请用4、5、7、9以及算符和括号组成一个算式,使得结果为24,至少用三种方法.姐姐,这节课的内容既好玩还容易哦~那是你没遇到,来看看这题吧.把0~9这十个数字倒过来看,其中0,1,8三个数字不变,6与9两个数字互换,而其余数字倒过来都没有意义.在一张纸片上写出一个两位数,把纸片倒过来看,恰好与原数相同,这样的两位数有几个?如果写的是一个三位数,倒过来看与原数相同,这样的三位数有几个?首先两位数肯定只能是由0、1、8、6、9组成.那就在这5个数中挑出2来组成两位数就可以了呀!按照你的方法,那10满足要求吗?注意题目中的意思哦~不行哎,倒过来就变成01,和10不想等了,姐姐,你等我再想想奥……。
(完整版)小学三年级奥数巧填算符【三篇】
小学三年级奥数巧填算符【三篇】1 2 3 4 5 6 7 8 9=100分析在本题条件中,不但限制了所使用运算符号的种类,而且还限制了每种运算符号的个数。
因为题目中,一共能够添四个运算符号,所以,应把123456789分为五个数,又考虑最后的结果是100,所以应在这五个数中凑出一个较接近100的,这个数能够是123或89。
如果有一个数是123,就要使剩下的后六个数凑出23,且把它们分为四个数,应该是两个两位数,两个一位数.观察发现,45与67相差22,8与9相差1,加起来正巧是23,所以本题的一个答案是:123+45-67+8-9=100如果这个数是89,则它的前面一定是加号,等式变为1234567+89=100,为满足要求,1234567=11,在中间要添一个加号和两个减号,且把它变成四个数,观察发现,无论怎样都不能满足要求。
答案与解析:本题的一个答案是:123+45-67+8-9=100补充说明:一般在解题时,如果没有特别说明,只要得到一个准确的解答就能够了。
在例5这类限制比较多的题目的解决过程中,要时时注意按照题目的要求去做,因为题目的要求比较高,所以解决的方法比较少。
【第二篇】练习题:在下面算式适当的地方添上加号,使算是成立。
1 1 1 1 1 1 1 1=1000分析:这道题,1000是大数,先找一个离1000最近的数,就是1111,那么多了111怎么办呢?那么就要“-111”这时已经是1000了,还有一个1怎么办呢?会想到:(1111-111)÷1=1000【第三篇】练习题:在下面算式适当的地方添上加号,使算式成立。
8 8 8 8 8 8 8 8=1000分析要在八个8之间只添加号,使和为1000,可先考虑在加数中凑出一个较接近1000的数,它能够是888,而888+88=976,此时,用去了五个8,剩下的三个8应凑成1000-976=24,这只要三者相加就行了。
答案与解析:本题的答案是888+88+8+8+8=1000。
三年级奥数-巧填算符
在下式的两数中间填上四则运算符号,使等式成立: 8○2○3=3○3
在一些确定的数字之间填上适当的运算符号和括号,使这些数字和运 算符号构成的算式等于一个给定的数,这种问题,我们称它为巧填算 符。
(★★★ ) 在五个 4 之间,填上适当的运算符号+、-、×、÷和( 的算式成立。 4 4 4 4 4=8
),使得下面
(★★★ ) 在八个 8 之间的适当地方,填上运算符号+、-、×、÷,使算式成立。 8 8 8 的地方,只填两个加号和两个减号使等式成立。 1 2 3 4 5 6 7 8 9=100
(★★★★ ) 把 100 个桃子分给 6 只猴子,每只猴子分得的桃子数都要含有数字 6, 每只猴子应该分到多少只桃子呢?
(★★★★) 在下列算式中合适的地方,填上( )[ ],使等式成立。 ⑴1+2×3+4×5+6×7+8×9=303 ⑵1+2×3+4×5+6×7+8×9=1395 ⑶1+2×3+4×5+6×7+8×9=4455
1
三年级奥数-巧填算符与数字谜(B级)
巧填算符与加减竖式谜考试要求1、掌握凑数法与逆推法并能灵活运用其解决数字谜问题;2、能运用奇偶性、加减进位退位等进行分析加减竖式谜。
知识框架一、基本概念数字谜定义:一般是指那些含有未知数字或未知运算符号的算式.填算符:指在一些数之间的适当地方填上适当的运算符号(包括括号),从而使这些数和运算符号构成的算式成为一个等式。
算符:指+、-、×、÷、()、[]、{}。
二、数字谜分类1、竖式谜2、横式谜3、填空谜4、幻方5、数阵三、解题技巧与方法竖式数字谜1、技巧(1)从首位或者末尾找突破口(突破口:指在做数字谜问题开始时的入口,一般在算式的首位或者末尾,可以确定其数字或者范围然后通过推理很快可以确定其值为后面的推理做好铺垫);(2)要根据算式性质逐步缩小范围,并进行适当的估算逐步排除不符合的数字;(3)题目中涉及多个字母或汉字时,要注意用不同符号表示不同数字这一条件来排除若干可能性;(4)注意结合进位及退位来考虑;(5)数字谜中的文字,字母或其它符号,只取0~9中的某个数字。
(6)数字谜解出之后,最好验算一遍.2、数字迷加减法(1)个位数字分析法;(2)加减法中的进位与退位;(3)乘除法中的进位与退位;(4)奇偶性分析法。
横式数字谜解决巧填算符的基本方法(1)凑数法:根据所给的数,凑出一个与结果比较接近的数,再对算式中剩下的数字作适当的增加或减少,从而使等式成立。
(2)逆推法:常是从算式的最后一个数字开始,逐步向前推想,从而得到等式。
四、奇数和偶数的简单性质1、整数可以分为奇数和偶数两类(1)我们把1,3,5,7,9和个位数字是1,3,5,7,9的数叫奇数.(2)把0,2,4,6,8和个位数是0,2,4,6,8的数叫偶数.2、性质:(1)奇数≠偶数.(2)整数的加法有以下性质:奇数+奇数=偶数;奇数+偶数=奇数;偶数+偶数=偶数.(3)整数的减法有以下性质:奇数-奇数=偶数;奇数-偶数=奇数;偶数-奇数=奇数;偶数-偶数=偶数.(4)整数的乘法有以下性质:奇数×奇数=奇数;奇数×偶数=偶数;偶数×偶数=偶数.重难点1、凑数法与逆推法的掌握与运用;2、奇偶性分析的灵活运用;3、加减进位与退位的灵活运用。
三年级数学奥数第6讲:巧填运算符号-教案
星团站备课教员:***第六讲巧填运算符号一、教学目标:1、使学生掌握添运算符号的各种方法。
2、能熟练运用倒推法和凑数法巧填运算符号。
3、培养学生活跃的思维能力,提高学习的兴趣。
二、教学重点:能根据不同的算式运用不同的方法。
三、教学难点:熟练掌握倒推法和凑数法。
四、教学准备:PPT五、教学过程:第一课时(40分钟)一、外星游记(5分钟)师:同学们,你们玩过24点吗?生:玩过。
师:今天上课前我们一起来玩玩24点。
游戏规则:1、老师随意报4个数字。
2、学员用最短的时间利用加、减、乘、除使得这4个数的结果等于24。
3、每个数必须用一次且只能用一次,先算出结果者获胜。
4、解二十四点的方法:(1)利用3×8=24,4×6,2×12求解。
把牌面上的四个数想办法凑成3和8、4和6,再相乘求解。
(2)先乘后加。
常见的有2×7+10,3×5+9,2×9+6,3×7+3。
(3)先乘后减。
常见的有3×9-3,4×7-4,5×6-6。
这种类型里较难的是减数是由两个数相加而得,例如:2、5、7、9。
【5×7-(9+2)】(4)消去法。
有时候,3个数就可以算出24,多出来一个数,用消去法,可将多余的数除去。
师:也可以让学生随意出题,其它的学生算。
师:大家在玩24点时都是怎么算的呢?生:运用“+、-、×、÷”或()算出得数是24。
师:是的,所以今天我们来学习巧填运算符号,也是运用“+、-、×、÷”或()使等式成立。
(板书课题:巧填运算符号)二、星海遨游(30分钟)(一)星海遨游1(10分钟)用各种运算符号把下面三个相同的数字连接起来,使结果等于30。
5 5 5 = 306 6 6 = 30师:结果等于30,我们可以知道能用什么运算符号?生:加、减、乘法。
师:我们可以用什么方法来填呢?生:倒推法。
小学三年级奥数巧填算符【三篇】
【导语】海阔凭你跃,天⾼任你飞。
愿你信⼼满满,尽展聪明才智;妙笔⽣花,谱下锦绣第⼏篇。
学习的敌⼈是⾃⼰的知⾜,要使⾃⼰学⼀点东西,必需从不⾃满开始。
以下是⽆忧考为⼤家整理的《⼩学三年级奥数巧填算符【三篇】》供您查阅。
【第⼀篇】练习题:在下⾯算式中合适的地⽅,只添两个加号和两个减号使等式成⽴。
1 2 3 4 5 6 7 8 9=100 分析在本题条件中,不仅限制了所使⽤运算符号的种类,⽽且还限制了每种运算符号的个数。
由于题⽬中,⼀共可以添四个运算符号,所以,应把123456789分为五个数,⼜考虑最后的结果是100,所以应在这五个数中凑出⼀个较接近100的,这个数可以是123或89。
如果有⼀个数是123,就要使剩下的后六个数凑出23,且把它们分为四个数,应该是两个两位数,两个⼀位数.观察发现,45与67相差22,8与9相差1,加起来正巧是23,所以本题的⼀个答案是: 123+45-67+8-9=100 如果这个数是89,则它的前⾯⼀定是加号,等式变为1234567+89=100,为满⾜要求,1234567=11,在中间要添⼀个加号和两个减号,且把它变成四个数,观察发现,⽆论怎样都不能满⾜要求。
答案与解析: 本题的⼀个答案是:123+45-67+8-9=100 补充说明:⼀般在解题时,如果没有特别说明,只要得到⼀个正确的解答就可以了。
在例5这类限制⽐较多的题⽬的解决过程中,要时时注意按照题⽬的要求去做,由于题⽬的要求⽐较⾼,所以解决的⽅法⽐较少。
【第⼆篇】练习题:在下⾯算式适当的地⽅添上加号,使算是成⽴。
1 1 1 1 1 1 1 1=1000 分析:这道题,1000是⼤数,先找⼀个离1000最近的数,就是1111, 那么多了111怎么办呢?那么就要“-111” 这时已经是1000了,还有⼀个1怎么办呢? 会想到:(1111-111)÷1=1000【第三篇】练习题:在下⾯算式适当的地⽅添上加号,使算式成⽴。
奥数第二讲巧填算符
三年级奥数第二讲巧填算符巧填算符是一种数学游戏,主要能有效地培养我们的观察能力、推理能力、分析能力等多元思维能力。
巧填运算符号的主要方法有两种:(1)逆推法,即从等号左边最后一个数字开始逐步向前推想,最终使等式成立;(2)凑数法,即先用式子中的一些数字凑出一个与结果比较接近的数,然后再对式子中剩下的数字做适当的调整和运算,使等式成立。
逆推法适用于数字少,结果小的题目;凑数法适用于数字多、结果大的题目。
有时将两种方法结合起来使用,问题解决得会更简便。
例1 在+”“-”“×”“÷”,使算式成立。
(1) 2(2)8 8(3)4=4 4例2 在下面算式中添上“+”“-”“×”“÷”或小括号,使等式成立。
(1)1 2 3 4 5=10 (2)1 2 3 4 5=10(3)1 2 3 4 5=10 (4)1 2 3 4 5=10例3 在下面的数字之间添上运算符号和小括号,使等式成立。
1 2 3 4 5 6 7 8 9=60例4 小明在抄题时丢了小括号,但结果是正确的,请你给小明的算式添上小括号。
6+42÷6-4×2-1=4例5 只允许添两个“-”号、一个“+”号和一个小括号,不改变数字顺序,把1,2,3,4,5,6,7,8,9这9个数字连成结果为100的算式。
1 2 3 4 5 6 7 8 9=100小试身手:1、用各种运算符号把3个相同的数字连接起来,使结果等于56。
(1)7 7 7=56 (2)8 8 8=562、你能在算式中添上运算符号,使等式成立吗?(1) 1 (2)43、在下面各算式中添上适当的运算符号和小括号,使等式成立。
(1)3 4 5 6 8=8(2)3 4 5 6 8=84、巧添运算符号及小括号,使等式成立。
(1)3 3 3 3=1(2)3 3 3 3=2(3)3 3 3 3=35、在下面的数字之间添上“+”“-”“×”“÷”和小括号,使等式成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
巧算算符
根据题目给定的条件和要求,填运算符号或括号,使等式成立,这是一种很有趣的游戏,这种游戏需要动脑筋找规律,讲究方法。
填运算符号问题,通常采用尝试探索法,主要尝试方法有两种:
1、逆推法,如果题目的数字比较简单,可以从等式的结果入手,推想那些算式能得到这个结果,然后拼凑出所求的式子。
2、凑数法,如果题目中的数字比较多,结果也较大,可以考虑先用几个数字凑出比较接近于等式结果的数,然后再进行调整,使等式成立。
通常情况下,要根据题目的特点,选择方法,有时将以上两种方法组合起来使用,更有助于问题的解决。
【例1】在下面4个4之间填上+、-、×、÷或括号,使等式成立
4444=8
【例2】在下面各题中添上+、-、×、÷、(),使等式成立。
12345=10
【例3】拿出都是8的四张牌,添上+、-、×、÷或(),使等式成立,你能试一试吗?
8888=08888=1
8888=28888=3
【例4】在下面算式适当的地方添上加号,使算式成立。
8 8 8 8 8 8 8 8 = 1000
【例5】在下面算式中合适的地方,只添两个加号和两个减号使等式成立。
1 2 3 4 5 6 7 8 9=100
【例6】在下面算式合适的地方添上+、-、×,使等式成立。
12345678=1
课后训练
1、巧填运算符号,使等式成立。
(1)3333= 1
(2)4444= 2
(3)5555= 3
2、在下面的各数之间,填上适当的运算符号+、-、×、÷和括号,使运算成立。
(1)4 4 4 4 = 5
(2)1 2 3 4 5=100
3、在下面算式适当的地方添上加号,使算是成立。
1 1 1 1 1 1 1 1 = 1000
4、在下列各式中填入符号+、-、×、÷或(),使得等式成立:
(1)123=1
(2)1234=1
(3)12345=1
(4)123456=1
(5)1234567=1
(6)12345678=1。