萃取塔(脉冲塔)操作及体积传质系数测定

合集下载

实验7脉冲填料萃取塔实验

实验7脉冲填料萃取塔实验

实验7脉冲填料萃取塔实验一、实验目的⒈了解脉冲填料萃取塔的结构。

⒉掌握脉冲填料萃取塔性能的测定方法。

⒊了解填料萃取塔传质效率的强化方法。

二、实验内容观察有无脉冲时塔内液滴变化情况和流动状态;固定两相流量,测定有无脉冲时萃取塔的传质单元数、传质单元高度及总传质系数。

三、实验原理填料萃取塔是石油炼制、化学工业和环境保护等部门广泛应用的一种萃取设备,具有结构简单、便于安装和制造等特点。

塔内填料的作用可以使分散相液滴不断破碎与聚合,以使液滴的表面不断更新,还可以减少连续相的轴向混合。

萃取塔的分离效率可以用传质单元高度或理论级当量高度表示。

影响脉冲填料萃取塔分离效率的因素主要有填料的种类、轻重两相的流量及脉冲强度等。

对一定的实验设备(几何尺寸一定,填料一定),在两相流量固定条件下,脉冲强度增加,传质单元高度降低,塔的分离能力增加。

本实验以水为萃取剂,从煤油中萃取苯甲酸,苯甲酸在煤油中的浓度约为2%(质量)。

水相为萃取相(用字母E表示,在本实验中又称连续相、重相),煤油相为萃余相(用字母R表示,在本实验中又称分散相)。

在萃取过程中苯甲酸部分地从萃余相转移至萃取相。

萃取相及萃余相的进出口浓度由容量分析法测定之。

考虑水与煤油是完全不互溶的,且苯甲酸在两相中的浓度都很低,可认为在萃取过程中两相液体的体积流量不发生变化。

⒈按萃取相计算的传质单元数计算公式为:(8-1)式中:Y Et─苯甲酸在进入塔顶的萃取相中的质量比组成,kg 苯甲酸/kg水;本实验中Y Et=0。

Y Eb─苯甲酸在离开塔底萃取相中的质量比组成,kg苯甲酸/kg水;Y E─苯甲酸在塔内某一高度处萃取相中的质量比组成,kg苯甲酸/kg水;Y E*─与苯甲酸在塔内某一高度处萃余相组成X R成平衡的萃取相中的质量比组成,kg苯甲酸/kg水。

用Y E─X R图上的分配曲线(平衡曲线)与操作线可求得-Y E关系。

再进行图解积分或用辛普森积分可求得N OE。

⒉按萃取相计算的传质单元高度(8-2)式中:H—萃取塔的有效高度,m;—按萃取相计算的传质单元高度,m。

萃取试验

萃取试验

实验6-2 萃取塔实验一、实验目的了解脉冲填料萃取塔的结构;萃取塔性能的测定方法;萃取塔传质效率的强化。

二、实验原理萃取塔的分离效率可以用传质单元高度OE H 或理论级当量高度e h 表示。

影响本实验所选用的脉冲填料萃取塔的有填料的种类、轻重两相的流量及脉冲强度等。

对一定的实验设备(几何尺寸、填料一定),在两相流量固定条件下,脉冲强度加强,传质单元高度降低,塔的分离能力增加。

本试验以水为萃取剂,从煤油中萃取苯甲酸,其中苯甲酸在煤油中浓度约为0.2%(质量)。

水相为萃取相(用E 表示,本试验中又称连续相、重相),煤油相为萃余相(用R 表示,本试验中又称分散相)。

考虑水于煤油是完全不互溶的,且苯甲酸在两相中浓度都很低,可认为在萃取过程中两相液体的体积流量不发生变化。

1.按萃取相计算的传质单元数OE N =⎰-EbEtY Y E EE Y Y dY )(*,其中Y Et 为苯甲酸在进入塔顶的萃取相中的质量比组成,kg 苯甲酸/kg 水(本试验中Y Et =0);Y Eb 为苯甲酸在离开塔底萃取相中的质量比组成,kg 苯甲酸/kg 水;Y E *为与苯甲酸在塔内某一高度处萃余相组成X R 成平衡的萃取相中的质量比组成,kg 苯甲酸/kg 水;Y E 为苯甲酸在塔内某一高度处萃取相中的质量比组成,kg 苯甲酸/kg 水。

用Y E -X R 图上的分配曲线与操作线可求得)(1*E E Y Y --Y E 关系,再进行图解积分或用辛普森积分可求得N OE 。

2.按萃取相计算的传质单元高度OEOE N H H =,其中H 为萃取塔的有效高度,m ;H OE为按萃取相计算的传质单元高度,m 。

3.按萃余相计算的体积总传质速率Ω⋅=OE YE H S a K ,其中S 为萃取相中纯溶剂的流量,kg 水/h ;Ω为萃取塔截面积,m 2;a K YE 为按萃取相计算的体积总传质系数,)(3水苯甲酸苯甲酸kg kg h m kg ⋅⋅同理,本试验也可以按萃余相计算N OR 、H OR 及a K XR 。

萃取塔实验报告

萃取塔实验报告

实验名称:萃取实验一、实验目的①了解转盘萃取塔的结构和特点;②掌握液—液萃取塔的操作;③掌握传质单元高度的测定方法,并分析外加能量对液液萃取塔传质单元高度和通量的影响。

二、实验器材萃取实验装置三、实验原理萃取是利用原料液中各组分在两个液相中的溶解度不同而使原料液混合物得以分离。

将一定量萃取剂加入原料液中,然后加以搅拌使原料液与萃取剂充分混合,溶质通过相界面由原料液向萃取剂中扩散,所以萃取操作与精馏、吸收等过程一样,也属于两相间的传质过程。

与精馏,吸收过程类似,由于过程的复杂性,萃取过程也被分解为理论级和级效率;或传质单元数和传质单元高度,对于转盘塔,振动塔这类微分接触的萃取塔,一般采用传质单元数和传质单元高度来处理。

传质单元数表示过程分离难易的程度。

对于稀溶液,传质单元数可近似用下式表示:nor?式中 nor------萃余相为基准的总传质单元数;x------萃余相中的溶质的浓度,以摩尔分率表示;x*------与相应萃取浓度成平衡的萃余相中溶质的浓度,以摩尔分率表示。

x1、x2------分别表示两相进塔和出塔的萃余相浓度传质单元高度表示设备传质性能的好坏,可由下式表示:hor?hnorlhor??x1dxx?x*x2 kxa?式中 hor------以萃余相为基准的传质单元高度,m; h------ 萃取塔的有效接触高度,m; kxa------萃余相为基准的总传质系数,kg/(m3?h?△x); l------萃余相的质量流量,kg/h;?------塔的截面积,m2;已知塔高度h和传质单元数nor可由上式取得hor的数值。

hor反映萃取设备传质性能的好坏,hor越大,设备效率越低。

影响萃取设备传质性能hor的因素很多,主要有设备结构因素,两相物质性因素,操作因素以及外加能量的形式和大小。

图-1 转盘萃取塔流程1、萃取塔2、轻相料液罐3、轻相采出罐4、水相贮罐5、轻相泵6、水泵1、流程说明:本实验以水为萃取剂,从煤油中萃取苯甲酸。

萃取塔实验装置

萃取塔实验装置

萃取塔(桨叶)实验装置说明书天津大学化工基础实验中心2014.03一、实验目的:1.直观展示转盘萃取塔的基本结构以及实现萃取操作的基本流程;观察萃取塔内桨叶在不同转速下,分散相液滴变化情况和流动状态。

2.练习并掌握转盘萃取塔性能的测定方法。

二、实验内容:1.固定两相流量,测定桨叶不同转速下萃取塔的传质单元数NOH 、传质单元高度HOH及总传质单元系数KYE。

2.通过实际操作练习,探索强化萃取塔传质效率的方法。

三、实验原理:对于液体混合物的分离,除可采用蒸馏方法外,还可采用萃取方法。

即在液体混合物(原料液)中加入一种与其基本不相混溶的液体作为溶剂,利用原料液中的各组分在溶剂中溶解度的差异来分离液体混合物。

此即液-液萃取。

简称萃取。

选用的溶剂称为萃取剂,以字母S表示,原料液中易溶于S的组分称为溶质,以字母A表示,原料液中难溶于S的组分称为原溶剂或稀释剂,以字母B表示。

萃取操作一般是将一定量的萃取剂和原料液同时加入萃取器中,在外力作用下充分混合,溶质通过相界面由原料液向萃取剂中扩散。

两液相由于密度差而分层。

一层以萃取剂S为主,溶有较多溶质,称为萃取相,用字母E表示,另一层以原溶剂B为主,且含有未被萃取完的溶质,称为萃余相,以R表示。

萃取操作并未把原料液全部分离,而是将原来的液体混合物分为具有不同溶质组成的的萃取相E和萃余相R。

通常萃取过程中一个液相为连续相,另一个液相以液滴的形式分散在连续的液相中,称为分散相。

液滴表面积即为两相接触的传质面积。

本实验操作中,以水为萃取剂,从煤油中萃取苯甲酸。

所以,水相为萃取相(又称为连续相、重相)用字母E表示,煤油相为萃余相(又称为分散相、轻相)用字母R 表示。

萃取过程中,苯甲酸部分地从萃余相转移至萃取相。

四、实验装置基本情况:1.实验装置流程图(如图1所示)1- 型管 2-电机 3-萃取塔 4-煤油放液阀 5-煤油泵 6-煤油取样阀 7-煤油箱8-煤油泵入口阀9-煤油流量调节阀 10-煤油旁路调节阀 11-放空阀 12-煤油回收箱 13-球形阀 14-水流量调节阀15-水旁路调节阀 16-水箱 17-水泵入口阀 18-水取样阀 19-水放液阀 20-水泵 21-阀门实验装置流程简介:本塔为桨叶式旋转萃取塔,塔身采用硬质硼硅酸盐玻璃管,塔顶和塔底玻璃管端扩口处,通过增强酚醛压塑法兰、橡皮圈、橡胶垫片与不锈钢法兰连结,密封性能好。

萃取塔的操作与萃取传质单元高度的测定实验

萃取塔的操作与萃取传质单元高度的测定实验
b.影响液泛的因素: ① 外加能量的大小; ② 流量、系统的物性。
六.萃取塔的操作与控制
㈠ 开车
㈡ 物料衡算 维持分相界面恒定,可以达到总物料的平衡; 操作中利用Π管来控制总物料平衡。
㈢ 达到稳定操作的时间 稳定时间=3×替代时间 (一般需20min)
七.萃取设备内的传质效果
㈠ 传质单元数和传质单元高度
(2)外加能量的大小 有利:a.增加液液传质面积; b.增加液液传质系数。 不利:a.返混增加,传质推动力下降; b.液滴太小,内循环消失,传质系数下降; c.容易发生液泛,通量下降。
(3)液泛 a.定义: 当连续相速度增加,或分散相速度下降,此时分
散相上升或下降速度为零,对应的连续相速度即为 液泛速度;发生的现象称之为液泛。
NA=K(Ha)ΔCM=G油(CF-CR) H GK油a CΔF CCM R H=HOR·NOR NOR :反映分离的难易 HOR :反映设备的性能
㈡ 影响传质效果的因素 ①操作因素: S ; Xs ; T ②设备因素: 分散相的选择; 外加能量的大小; 设备形式及结构。
㈢ 传质单元高度的测定
H GK油aCΔ F CCMR
液-液萃取塔的操作 及其传质单元高度的测定
<化工原理实验室> <赵培 张秋香>
一.实验目的
⑴掌握萃取塔传质单元高度的测定方法,学会分析 外加能量对液-液萃取塔传质单元高度的影响;
⑵了解引起萃取塔液泛不正常现象出现的原因以及处 理方法;
⑶了解液-液萃取设备的结构和特点。
二.实验原理
萃取是利用液体混合物各组分在溶剂中溶解度的 差异而实现分离的一种方法。溶质A,稀释剂B,溶 剂S,当B、S不互溶时,萃取和吸收一样,均属两相 传质,因此,其传质过程的数学表达式和吸收一样。

试验十二液--液萃取塔的操作试验

试验十二液--液萃取塔的操作试验

实验九液--液萃取塔的操作实验一、实验目的1、了解液--液萃取设备的结构和特点;2、掌握液一液萃取塔的操作;3、掌握传质单元高度及体积总传质系数的测定方法,并分析外加能量对液液萃取塔传质单元高度及通量的影响。

二、实验内容1、以煤油为分散相,水为连续相,进行萃取过程的操作。

2、测定一定转速下转盘式或浆叶式旋转萃取塔的萃取效率(传质单元高度、传质系数)。

三、实验原理萃取是分离混合液体的一种方法,它是一种弥补精馏操作无法实现分离的方法之一,特别适用于稀有分散昂贵金属的冶炼和高沸点多组分分离,它是依据液体混合物各组分在溶剂中溶解度的差异而实现分离的。

但是,萃取单元操作得不到高纯物质,它只是将难以分离的混合液转化为容易分离的混合液,增加了分离设备和途径,导致成本提高。

所以,经济效益是评价萃取单元操作成功于否的标准。

1 、萃取和吸收的区别⑴相同之处:两者均是利用混合物中的各组分在某溶剂中溶解度的不同而达到分离的。

吸收是气液接触传质,萃取是液-液接触传质,两者同属相际传质,因此两者的速率表达式和传质推动力的表达式是相同的。

⑵不同之处:由于液-液萃取体系的特图1. 萃取和吸收的区别点,两相的密度比较接近,界面张力较小,所以,能用于强化过程的推动力不大,加上分散的一相,凝聚分层能力不高;而气液吸收两相密度相差很大,界面张力较大,气液两相分离能力很大,由此,对于气液接触效率较高的设备,用于液-液接触效率不一定高。

为了提高液-液相际传质设备的效率,常常需外加能量,如搅拌、脉动、振动等。

另外,为了让分散的液滴凝聚,实现两相的分离,需要有足够的停留时间也即凝聚空间,简称分层分离空间。

2、 萃取塔结构特征由于液-液萃取体系的特点,从而使萃取塔的结构发生了根本性变化: ⑴需要适度的外加能量;⑵需要足够大的分层分离空间。

3、萃取塔的操作特点 ⑴分散相的选择a 、容易分散的一相为分散相:在现实操作过程中,很易转相,为了避免此类情况发生,宜选择容易分散的一相为分散相。

01萃取塔操作及体积传质系数测定

01萃取塔操作及体积传质系数测定

x% 0.1786 0.2348 0.4230 0.6550 0.6330
y——水相中苯甲酸重量百分数。
与平衡组成的偏差程度是传质过程的推动力,在装置的顶部,推动力是线段 PP’:
YR YR* YS
(4)
在塔的下部推动力是线段 QQ’: YF YF* YE
传质过程的平均推动力,在操作线和平衡线为直线的条件下为:
(2)
3.3 萃取过程的质量传递 不平衡的萃取相与萃余相在塔的任一截面上接触,两相之间发生质量传递。物质 A 以
扩散的方式由
萃余相进入萃取相,该过程的界限是达到相间平衡,相平衡的相间关系为:
Y * kX
(3)
k 为分配系数,只有在较简单体系中,k 才是常数,一般情况下均为变数。本实验给出 如下表 1 所示的系统平衡数据,用来求取 X 与 Y 之间的对应关系。
F ——溶液密度, g / l 。
xR 亦用同样的方法测定:
xR

Na 'M a R
(20)
式中:
N
a
'

V2 ' Nb V1 '
(21)
V1 ' 、V2 ' ——分别为试样的体积数与滴定所耗的 NaOH 溶液的体积数。
4 操作方法和实验步骤
4.1 转盘萃取塔 1) 原料液储槽内为煤油-苯甲酸溶液。 2) 将萃取剂(蒸馏水)加入萃取剂贮槽中。 3) 启动萃取剂输送泵,调节流量,先向塔内加入萃取剂,充满全塔,并调至所需流 量。 4) 启动原料液输送泵,调节流量。在实验过程中保持流量不变,并通过调节萃取液 出口阀门,使油、水相分界面控制在萃取剂进口与萃余液出口之间。 5) 调节转盘轴转速的大小,在操作中逐渐增大转速,设定转速,一般取100-600转/ 分。 6) 水在萃取塔内流动运行5min后,开启分散相—油相管路,调节两相流量约510L/h,待分散相在塔顶凝聚一定厚度的液层后,再通过调节连续相出口阀,以保 持安静区中两相分界面的恒定。 7) 每次实验稳定时间约30分钟,然后打开取样阀取样分析,用NaOH标准液中和滴 定法(添加非离子型表面活性剂)测定原料液及萃余液的组成,同时记录转速。 8) 改变转速,重复上述实验。 9) 实验结束后,将实验装置恢复原样。

萃取塔实验报告

萃取塔实验报告

一、实验目的1. 理解萃取塔的基本结构和工作原理。

2. 掌握萃取塔的操作方法和注意事项。

3. 研究不同操作条件对萃取效果的影响。

4. 测定萃取塔的传质系数和传质效率。

二、实验原理萃取塔是一种用于混合物分离的设备,其原理是利用两种互不相溶的溶剂之间的溶解度差异,将混合物中的组分分离。

在萃取塔中,一种溶剂(称为萃取剂)与混合物接触,使混合物中的某一组分转移到萃取剂中,从而达到分离的目的。

三、实验仪器与药品1. 实验仪器:萃取塔、冷凝器、加热器、温度计、流量计、分液漏斗、烧杯、量筒等。

2. 实验药品:有机溶剂、混合物(如苯和甲苯)、萃取剂等。

四、实验步骤1. 将混合物加入萃取塔中,并设定萃取塔的初始温度和压力。

2. 打开加热器,使萃取塔内的温度和压力达到实验要求。

3. 调节萃取剂流量,观察萃取塔内两相的流动状况。

4. 记录萃取塔内两相的温度、压力、流量等参数。

5. 观察并记录萃取塔内两相的颜色变化和分层情况。

6. 根据实验数据,计算萃取塔的传质系数和传质效率。

7. 改变萃取塔的操作条件(如温度、压力、萃取剂流量等),重复实验步骤,观察萃取效果的变化。

五、实验结果与分析1. 萃取塔内两相的流动状况:在实验过程中,观察到萃取塔内两相的流动状况与萃取剂流量和温度有关。

当萃取剂流量较大、温度较高时,两相流动较为剧烈;反之,两相流动较为缓慢。

2. 萃取塔内两相的颜色变化和分层情况:在实验过程中,观察到萃取剂与混合物接触后,混合物中的某一组分会转移到萃取剂中,导致萃取剂的颜色发生变化。

同时,两相在萃取塔内分层,有机相(萃取剂)在上层,水相在下层。

3. 萃取塔的传质系数和传质效率:根据实验数据,计算得出萃取塔的传质系数和传质效率。

结果表明,随着萃取剂流量和温度的升高,传质系数和传质效率均有所提高。

4. 不同操作条件对萃取效果的影响:改变萃取塔的操作条件(如温度、压力、萃取剂流量等),观察萃取效果的变化。

实验结果表明,在一定的操作条件下,提高萃取剂流量和温度可以提高萃取效果。

萃取塔(脉冲塔)操作及体积传质系数测定

萃取塔(脉冲塔)操作及体积传质系数测定

实验报告课程名称:过程工程原理实验(甲)Ⅱ成绩:_________________实验名称:萃取塔(脉冲塔)操作及体积传质系数测定同组学生姓名:一、实验目的和要求1.了解转盘萃取塔和脉冲萃取塔的基本结构、操作方法及萃取的工艺流程。

2.观察转盘萃取塔转盘转速变化时或脉冲萃取塔的脉冲强度(脉冲幅度及脉冲频率)变化时,萃取塔内轻、重两相流动状况,了解萃取操作的主要影响因素,研究萃取操作条件对萃取过程的影响。

3.测量每米萃取高度的传质单元数、传质单元高度和体积传质系数K YV,关联传质单位高度与脉冲萃取过程操作变量的关系。

4.计算萃取率二、实验装置2.1 转盘萃取塔主要设备是转盘萃取塔,塔体是内径为50mm玻璃管,塔顶电机连接转轴,转轴上固定有圆盘,塔壁固定有圆环,圆环与圆盘交错布置,转盘萃取流程图见下图11.原料贮槽(苯甲酸-煤油)2.收集槽(萃余液)3.电机4.控制柜5.转盘萃取塔6.9.转子流量计7.萃取剂贮罐(水)8.10. 输送泵11.排出液(萃取液)管12.转速测定仪A.B.C 取样口图1 转盘萃取实验流程图2.2 脉冲萃取塔主要设备是脉冲萃取塔,塔体是内径为50mm玻璃管,内装不锈钢丝网填料,脉冲萃取流程图见下图21.原料贮槽(苯甲酸-煤油)2.收集槽(萃余液)3.脉冲系统4.控制柜5.填料(脉冲)萃取塔6.9.转子流量计7.萃取剂贮罐(水)8.10 输送泵 11.排出液(萃取液)管 A.B.C 取样口图2 脉冲萃取实验流程图三、实验内容和原理萃取是分离和提纯物质的重要单元操作之一,是利用混合物中各个组分在外加溶剂中的溶解度的差异而实现组分分离的单元操作。

进行液-液萃取操作时,两种液体在塔内作逆流流动,其中一液体作为分散相,以液滴的形式通过另一作为连续相的液体,两种液相浓度在设备内作微分式的连续变化,并依靠密度差在塔的两端实现两液相的间的分离。

当轻相作为分散相时,相界面出现在塔的上部;反之相界面出现在塔的下端。

桨叶式萃取塔实验报告

桨叶式萃取塔实验报告

实验日期成绩同组人×××(2)、×××(3)、×××(4)、×××(5)、×××(6)闽南师范大学应用化学专业实验报告题目:桨叶式萃取塔实验12应化 1××××B1 组0序言实验目的: 1、认识脉冲填料萃取塔的构造和特色;2、熟习萃取操作的工艺流程,掌握液 - 液萃取装置操作方法; 3、掌握脉冲填料萃取塔性能的测定方法; 4、认识填料萃取塔传质效率的加强方法。

[1]实验原理:萃取是分别液体混淆物的一种常用操作,其工作原理是在待分别的混淆液中加入与之不互溶(或部分相溶)的萃取剂,形成共存的两个液相,并利用原溶剂与萃取剂对原混淆液中各组分的溶解度的差异,使原溶液中的组分获得分别。

桨叶式旋转萃取塔也是一种外加能量的萃取设施。

在塔内由环行隔板将塔分成若干段,每段的旋转轴上装设有桨叶。

在萃取过程中因为桨叶的搅动,增添了分别相的分别程度,促使了相际接触表面积的更新与扩大。

隔板的作用在必定程度上克制了轴向返混,因此桨叶式旋转萃取塔的效率较高。

桨叶转速若太高,也会致使两相乳化,难以分相。

本实验以水为萃取剂,从煤油中萃取苯甲酸?。

水相为萃取相 (? 用字母 E 表示,本实验又称连续相、重相?) 。

煤油相为萃余相(? 用字母 ?R?表示,本实验中又称分散相、轻相 ) 。

轻相进口处,苯甲酸在煤油中的浓度应保持在0.0015-0.0020(kg 苯甲酸/ kg 煤油 ) 之间为宜。

轻相由塔底进入,作为分别相向上流动,经塔顶分别段分别后由塔顶流出;重相由塔顶进入作为连续相向下贱动至塔底经π形管流出;轻重两相在塔内呈逆向流动。

在萃取过程中,苯甲酸部分地从萃余相转移至萃取相。

萃取相及萃余相出进口浓度由容量剖析法测定。

考虑水与煤油是完整不互溶的,且苯甲酸在两相中的浓度都很低,可以为在萃取过程中两相液体的体积流量不发生变化。

萃取塔实验报告

萃取塔实验报告

实验名称:萃取实验一、实验目的①了解转盘萃取塔的结构和特点;②掌握液—液萃取塔的操作;③掌握传质单元高度的测定方法,并分析外加能量对液液萃取塔传质单元高度和通量的影响。

二、实验器材萃取实验装置三、实验原理萃取是利用原料液中各组分在两个液相中的溶解度不同而使原料液混合物得以分离。

将一定量萃取剂加入原料液中,然后加以搅拌使原料液与萃取剂充分混合,溶质通过相界面由原料液向萃取剂中扩散,所以萃取操作与精馏、吸收等过程一样,也属于两相间的传质过程。

与精馏,吸收过程类似,由于过程的复杂性,萃取过程也被分解为理论级和级效率;或传质单元数和传质单元高度,对于转盘塔,振动塔这类微分接触的萃取塔,一般采用传质单元数和传质单元高度来处理。

传质单元数表示过程分离难易的程度。

对于稀溶液,传质单元数可近似用下式表示:nor?式中 nor------萃余相为基准的总传质单元数;x------萃余相中的溶质的浓度,以摩尔分率表示;x*------与相应萃取浓度成平衡的萃余相中溶质的浓度,以摩尔分率表示。

x1、x2------分别表示两相进塔和出塔的萃余相浓度传质单元高度表示设备传质性能的好坏,可由下式表示:hor?hnorlhor??x1dxx?x*x2 kxa?式中 hor------以萃余相为基准的传质单元高度,m; h------ 萃取塔的有效接触高度,m; kxa------萃余相为基准的总传质系数,kg/(m3?h?△x); l------萃余相的质量流量,kg/h;?------塔的截面积,m2;已知塔高度h和传质单元数nor可由上式取得hor的数值。

hor反映萃取设备传质性能的好坏,hor越大,设备效率越低。

影响萃取设备传质性能hor的因素很多,主要有设备结构因素,两相物质性因素,操作因素以及外加能量的形式和大小。

图-1 转盘萃取塔流程1、萃取塔2、轻相料液罐3、轻相采出罐4、水相贮罐5、轻相泵6、水泵1、流程说明:本实验以水为萃取剂,从煤油中萃取苯甲酸。

液―液萃取塔的操作及传质单元高度的测定实验【精选】

液―液萃取塔的操作及传质单元高度的测定实验【精选】
萃取过程的条件: 1. 两个接触的液相完全不互溶或部分互溶; 2. 溶剂S对A和B的溶解能力不一样,溶剂具有选择性
1
萃取与吸收的比较
相同点: 1)添加物系S 2)溶解度的差异
不同点: 1)吸收有惰性组分,萃取各部分都有一定溶解度 2)吸收气液系统,密度差大,液液系统密度差小,需 要外加能量
权衡利弊两方面的因素,外界能量应适度,对于 某一具体萃取过程,一般应通过实验寻找合适的 能量输入量。
9
液泛
在连续逆流萃取操作中,萃取塔的通量 (单位时间内的通过量)取决于连续相的 流速,其上限为最小的分散相液滴处于相 对静止状态时的连续相速度。这时塔刚处 于液泛点(即为液泛速度)。
在实验操作中,连续相的流速应在液泛速 度以下。
1 KG 1 kA
kc kD
C.借助外加能量,如转盘塔,振动塔,脉动塔,离心萃取器等。
液滴的尺寸除与物性有关外,主要决定于外加能量的大小。
8
外加能量的问题
液液传质设备引入外界能量促进液体分散。改善 两相流动条件,这些均有利于传质,从而提高萃 取效率,降低萃取过程的传质单元高度,但应该 注意,过度的外加能量将大大增加设备内的轴向 混合,减小过程的推动力。此外过度分散的液滴, 滴内内循环将消失。这些均是外加能量带来的不 利因素。
6
液一液萃取塔的操作
1.分散相的选择:一相充满设备中的主要空间,并呈连续流动,称为连续 相;另一相以液滴的形式,分散在连续相中,称为分散相。
a. 为了增加相际接触面积,一般将流量大的一相作为分散相; b. 应充分考虑界面张力变化对传质面积的影响,对于正系统,即系统的界
面张力随溶质浓度增加而增加的系统;当溶质从液滴向连续相传递时,液滴 的稳定性较差,容易破碎,而液膜的稳定性较好,液滴不易合并,所以形成 的液滴平均直径较小,相际接触表面较大;当溶质从连续相向液滴传递时, 情况刚好相反。 c. 对于某些萃取设备如填料塔和筛板塔等,连续相优先润湿填料或筛板是相 当重要的。此时,宜将不易润湿填料或筛板的一相作为分散相。 d. 分散相液滴在连续相中的沉降速度,与连续相的粘度有很大关系。为了减 小塔径,提高二相分离的效果,应将粘度大的一相作为分散相。 e. 此外,从成本、安全考虑,应将成本高的,易燃、易爆物料作为分散相。

化工原理实验报告-转盘萃取塔传质系数的测定

化工原理实验报告-转盘萃取塔传质系数的测定

化工原理实验报告——转盘萃取塔传质系数的测定姓名: XXX学号: XXXXXXXXXXX学院:化学与化工学院专业:化学工程与工艺年级: 20XX 级实验日期: 20XX年XX月XX日实验条件:水3.6L/h、煤油5.6L/h、转速500r/min福建师范大学Fujian Normal University转盘萃取塔传质系数的测定一、实验目的1、了解液-液萃取原理及萃取操作的基本流程;2、了解转盘萃取塔的基本结构和操作方法;3、掌握萃取塔传质系数的测定方法,了解强化萃取塔传质效率的方法。

二、实验内容本实验以水为萃取剂,萃取煤油中的苯甲酸,在不同条件下,测定塔顶、塔底轻重相中苯甲酸的浓度,并计算萃取塔传质系数。

三、实验原理1、萃取原理(1)液液萃取在欲分离的液体混合物(原料液)中加入一种与其不互溶或部分互溶的液体溶剂,形成两相系统,利用混合液中各组分在两相中分配差异的性质,易溶组分较多的进入溶剂相从而实现混合物分离的操作称为液液萃取。

(2)在萃取过程中,所用的溶剂称为萃取剂(记为S),原料液中欲分离的组分称为溶质(记为A),原料液中的溶剂称为稀释剂(记为B)。

萃取剂应对溶质具有较大的溶解能力,与稀释剂应不互溶或小部分互溶。

(3)简单萃取过程图1 萃取过程示意图图 1 是一种简单萃取过程示意图。

将萃取剂加到混合液中,搅拌使其互相混合,因溶质在两相间不呈平衡,溶质在萃取剂中的平衡浓度高于其实际浓度,于是溶质从混合液向萃取剂中扩散,使溶质与混合液中的其他组分分离。

两液相由于密度差而分层,一层以萃取剂S 为主,溶有较多溶质,称为萃取相(记为E),另一层以原溶剂B 为主,且含有未被萃取完的溶质,称为萃余相(记为R)。

萃取操作并未把原料液全部分离,而是将原来的液体混合物分为具有不同溶质组成的萃取相E 和萃余相R。

(4)本实验设计本实验操作中,以水为萃取剂,从煤油中萃取苯甲酸。

所以,水相为萃取相E(又称为连续相、重相),煤油相为萃余相R(又称为分散相、轻相)。

转盘塔萃取操作及体积传质系数测定实验报告

转盘塔萃取操作及体积传质系数测定实验报告

装订线课程名称:过程工程原理实验指导老师:叶向群成绩:_________________实验名称:转盘塔萃取实验实验类型同组学生姓名: _一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的和要求1、了解转盘萃取塔的基本结构、操作方法及萃取的工艺流程。

2、观察转盘转速变化时,萃取塔内轻、重两相流动状况,了解萃取操作的主要影响因素,研究萃取操作条件对萃取过程的影响。

3、测量每米萃取高度的传质单元数、传质单元高度和体积传质系数KYV,关联传质单元高度与脉冲萃取过程操作变量的关系。

4、计算萃取率η。

二、实验内容和原理萃取是分离和提纯物质的重要单元操作之一,是利用混合物中各个组分在外加溶剂中的溶解度的差异而实现组分分离的单元操作。

1、萃取的物料衡算萃取计算中各项组成可用操作线方程相关联,操作线方程的P(XR,YS)h和点Q(XF,YE)与装置的上下部相对应。

在第一溶剂B与萃取剂S完全不互溶时,萃取过程的操作线在X~Y坐标上时直线,其方程式如下形式:RSRFSEXXYYXXYY--=--(1)由上式得:()SSXXmYY-=-,其中RFSEXXYYm--=单位时间内从第一溶剂中萃取出的纯物质A的量M,可由物料衡算确定:()()SERFYYSXXBM-=-=(2)2、萃取过程的质量传递不平衡的萃取相与萃余相在塔的任一截面上接触,两相之间发生质量传递。

物质A以扩散的方式由萃余相进入萃取相,该过程的界限是达到相间平衡,相平衡的相间关系为:kXY=*(3)实验报告专业:化学工程与工艺姓名:学号:日期:2015.12.23地点:教10-2210装订线装订线k为分配系数,只有在较简单体系中,k才是常数,一般情况下均为变数。

本实验已给出平衡数据,见附表。

与平衡组成的偏差程度是传质过程的推动力,在装置的顶部,推动力是:SRRYYY-=∆*(4)在塔的下部是:EFFYYY-=∆*(5)传质过程的平均推动力,在操作线和平衡线为直线的条件下为:RFRFmYYYYY∆∆∆-∆=∆ln(6)物质A由萃余相进入萃取相的过程的传质动力学方程式为:mYYAKM∆=(7)式中:YK——单位相接触面积的传质系数,()kgkgsmkg//2⋅;A——相接触表面积,2m。

萃取实验

萃取实验

选择可通过实验室实验或工业中试验确定,也可以根据以下原则考虑:
(1)为了增加相际接触面积,一般可将流量大的一相作为分散相,但如果
两相的流量相差很大,且选用的设备具有较大的轴向返混现象,则应将流量较小
的一相作为分散相,以减少轴向返混。 (2)应充分考虑界面张力变化对传质面积的影响,对于正系统( dσ > 0 ), dx
相作为分散相时,应使分散相在塔顶分层段凝聚,在两相界面维持适当高度后,
再开启分散相出口阀门,使轻相液体从塔内排出。同时,依靠重相出口的Π形管
自动调节界面高度。当重相作为分散相时,则分散相液滴在塔底的分层段凝聚,
两相界面应维持在塔底分层段的某一位置上。
(三)萃取塔传质单元高度
与精馏、吸收等气液传质过程类似,在萃取过程的设计计算中,一般将所需
传质。
(3)对于某些萃取设备,如填料塔和筛板塔等,连续相优先润湿填料或筛板
是相当重要的。此时,宜将不易润湿填料或塔板的一相作为分散相。
(4)分散相液滴在连续相中的相对沉降速度,与连续相的粘度有很大关系。
为了减小塔径,提高两相分离的效果,应将粘度大的一相作为分散相。
(5)此外,从成本、安全考虑,应将成本高的、易燃、易爆的物料作为分散
(3)借助于外加能量,如转盘塔、振动塔、脉动塔和离心萃取塔等。液滴 的尺寸除与物性有关外,主要取决于外加能量的大小。
3.外加能量 在液-液传质分离过程中引入外加能量,能促进液体分散,改善两相流动接 触状况,这有利于过程传质,从而提高传质效率,降低萃取设备的高度。但也要
注意,若外加能量过大,将使设备内两相液体的轴向返混加剧,使过程传质推动
即系统的界面张力随溶质浓度增加而增加的系统,当溶质从液滴向连续相传递

萃取塔操作及体积传质系数测定

萃取塔操作及体积传质系数测定

萃取塔操作及体积传质系数测定萃取塔是一种常见的传质设备,通过液相和气相之间的接触,将溶解在液相中的物质传递到气相中。

在操作萃取塔时,需要考虑一些重要因素,如溶液的进料方式、溶剂的选择、速度和温度的控制等。

此外,还需要进行体积传质系数的测定,以评估塔的传质性能。

首先,操作萃取塔时需要考虑的因素包括溶液的进料方式和溶剂的选择。

进料方式通常有两种,即逆流和共流。

逆流是溶液与溶剂相反方向流动,通常用于高效传质的要求较高的情况。

共流是溶液与溶剂同向流动,适用于传质要求较低的情况。

对于溶剂的选择,需要考虑溶质的溶解度和选择性。

溶解度代表着溶质在溶剂中的溶解程度,溶质的溶解度越高,则使用该溶剂萃取效果越好。

选择性则表示溶剂对溶质的选择程度,选择性越大,溶剂对目标物质的提取效果越好。

其次,操作萃取塔时需要控制溶液和溶剂的流速和温度。

流速的控制直接影响到物质在界面上的传质速度。

一般来说,流速越大,传质速度越快,但也会带来较大的液相压降和气相液滴带走。

因此,需要根据具体情况,在保证传质效果的前提下,控制适当的流速。

温度对传质过程有重要影响。

一般情况下,温度升高有利于物质的传质,因为温度升高可以使溶质分子的动力学能量增加,传质速度加快。

但在一些特定情况下,如萃取过程中产生的热敏物质,需要控制温度以避免对物质产生不利影响。

除了操作萃取塔,还需要进行体积传质系数的测定,以评估塔的传质性能。

体积传质系数是描述溶质在液相和气相之间传递速度的参数。

测定体积传质系数的方法有很多,常见的方法包括池形发酵法、测定液相浓度变化法和测定气相浓度变化法等。

池形发酵法是一种较为简便的测定方法。

首先,将装有溶液的池放入压力容器中,并通过两端的通气管道使气相从底部通过,溶液则以底部为基准线,在不同高度处进行取样。

然后,通过测定取样液中溶质浓度的变化,计算出体积传质系数。

测定液相浓度变化法和测定气相浓度变化法则是通过对液相或气相中溶质浓度的变化进行连续监测,以获得体积传质系数。

转盘塔萃取操作及体积传质系数测定实验报告

转盘塔萃取操作及体积传质系数测定实验报告

转盘塔萃取操作及体积传质系数测定实验报告Last revision on 21 December 2020课程名称:过程工程原理实验指导老师:叶向群成绩:_________________实验名称:转盘塔萃取实验实验类型同组学生姓名:_一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的和要求1、了解转盘萃取塔的基本结构、操作方法及萃取的工艺流程。

2、观察转盘转速变化时,萃取塔内轻、重两相流动状况,了解萃取操作的主要影响因素,研究萃取操作条件对萃取过程的影响。

3、测量每米萃取高度的传质单元数、传质单元高度和体积传质系数KYV,关联传质单元高度与脉冲萃取过程操作变量的关系。

4、计算萃取率η。

二、实验内容和原理萃取是分离和提纯物质的重要单元操作之一,是利用混合物中各个组分在外加溶剂中的溶解度的差异而实现组分分离的单元操作。

1、萃取的物料衡算实验报告专业化学工程与工艺姓名学号日期地点教10-2210萃取计算中各项组成可用操作线方程相关联,操作线方程的P (XR ,YS )h 和点Q (XF ,YE )与装置的上下部相对应。

在第一溶剂B 与萃取剂S 完全不互溶时,萃取过程的操作线在X~Y 坐标上时直线,其方程式如下形式: R SR F S E X X Y Y X X Y Y --=-- (1)由上式得:()S S X X m Y Y -=-,其中RF S E X X Y Y m --=单位时间内从第一溶剂中萃取出的纯物质A 的量M ,可由物料衡算确定:()()S E R F Y Y S X X B M -=-= (2)2、萃取过程的质量传递不平衡的萃取相与萃余相在塔的任一截面上接触,两相之间发生质量传递。

物质A 以扩散的方式由萃余相进入萃取相,该过程的界限是达到相间平衡,相平衡的相间关系为:kX Y =* (3)k 为分配系数,只有在较简单体系中,k 才是常数,一般情况下均为变数。

液―液萃取塔的操作及传质单元高度的测定实验教材课程

液―液萃取塔的操作及传质单元高度的测定实验教材课程
权衡利弊两方面的因素,外界能量应适度,对于 某一具体萃取过程,一般应通过实验寻找合适的 能量输入量。
9
液泛
在连续逆流萃取操作中,萃取塔的通量 (单位时间内的通过量)取决于连续相的 流速,其上限为最小的分散相液滴处于相 对静止状态时的连续相速度。这时塔刚处 于液泛点(即为液泛速度)。
在实验操作中,连续相的流速应在液泛速 度以下。
3.待分散相在塔顶分断层凝聚一定厚度的液体后,通过 连续相出口的II型管,将两相界面调节至适当高度
4.在某一电压(转速)下维持重轻两相界面某一高度,约20 min后,取萃余相约40 mL分析滴定XR
%xF xR10% 0
xF
13
振动筛板塔实验装置示意图及流程
14
转盘塔实验装置示意图及流程
15
实验数据记录及数据处理
(一). 设备参数:
填料塔直径D: ;塔有效高度H: mm;电压(转速):
(二). 操作参数:
F / S =1:1 ;相平衡常数:K = 2.25 ;
(三).原始数据记录:
萃取过程的条件: 1. 两个接触的液相完全不互溶或部分互溶; 2. 溶剂S对A和B的溶解能力不一样,溶剂具有选择性
1
萃取与吸收的比较
相同点: 1)添加物系S 2)溶解度的差异
不同点: 1)吸收有惰性组分,萃取各部分都有一定溶解度 2)吸收气液系统,密度差大,液液系统密度差小,需 要外加能量
2
微分接触和级式接触萃取设备
3
液―液萃取塔类型
振动筛板塔 将筛板连成串,由装于塔顶 上方的机械装置带动,在垂 直方向作往复运动,借此搅 动液流,起着搅拌作用。
4
液―液萃取塔的操作及传质单元高 度的测定实验
实验目的 1.了解液―液萃取设备的结构和特点 2.掌握液―液萃取塔的操作 3.掌握传质单元高度的测定方法并分析外加能量对液―液萃

萃取实验

萃取实验

萃取塔的操作和萃取传质单元高度的测定实验一、实验目的1.了解液-液萃取设备的一般结构和特点;2.掌握液-液萃取塔的操作方法;3.学习和掌握液-液萃取塔传质单元高度的测定原理和方法,分析外加能量对液-液萃取塔传质单元高度及通量的影响。

二、实验原理萃取是利用原料液中各组分在两个液相中的溶解度不同而使原料液混合物得以分离。

将一定量萃取剂加入原料液中,然后加以搅拌使原料液与萃取剂充分混合,溶质通过相界面由原料液向萃取剂中扩散,所以萃取操作规程与精馏、吸收等过程一样,也属于两相间的传质过程。

与精馏、吸收过程类似,由于过程的复杂性,萃取过程也被分解为理论级和级效率;或传质单元数和传质单元高度,对于转盘塔,填料塔这类微分接触的萃取塔,一般采用传质单元数和传质单元高度来处理。

传质单元数表示过程分离难易的程度。

(1)对于稀溶液,传质单元数可近似用下式表示:按萃取相计算的传质单元数OE N 计算公式为:()⎰-=EbEtY Y EEEOE Y YdY N *式中:Y Et ——苯甲酸进入塔顶的萃取相中的质量比组成,kg 苯甲酸/kg 水;本实验中Y Et =0。

Y Eb ——苯甲酸在离开塔底萃取相中的质量比组成,kg 苯甲酸/kg 水; Y E ——苯甲酸在塔内某一高度处萃取相中质量比组成,kg 苯甲酸/kg 水;Y E*——与苯甲酸在塔内某一高度处萃余相组成R X 成平衡的萃取相中的质量比组成,kg 苯甲酸/kg 水;(2)传质单元高度表示设备传质性能的好坏,可由下式不表示:按萃取相计算的传质单元高度OE HOE OEN HH=式中:H —萃取塔的有效高度,m ;OE H —按萃取相计算的传质单元高度,m 。

(3) 按萃取相计算的体积总传质系数AH S a K OE YE ⋅=式中:S —萃取相中纯溶剂的流量,kg 水/ h ; A —萃取塔截面积,m 2;a K YE —按萃取相计算的体积总传质系数,)水苯甲酸苯甲酸kg kg h m kg ⋅⋅3(已知塔高度H 和传质单元数N OG 可由上式取得H OE 的数值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告课程名称:过程工程原理实验(甲)Ⅱ成绩:_________________实验名称:萃取塔(脉冲塔)操作及体积传质系数测定同组学生姓名:一、实验目的和要求1.了解转盘萃取塔和脉冲萃取塔的基本结构、操作方法及萃取的工艺流程。

2.观察转盘萃取塔转盘转速变化时或脉冲萃取塔的脉冲强度(脉冲幅度及脉冲频率)变化时,萃取塔内轻、重两相流动状况,了解萃取操作的主要影响因素,研究萃取操作条件对萃取过程的影响。

3.测量每米萃取高度的传质单元数、传质单元高度和体积传质系数K YV,关联传质单位高度与脉冲萃取过程操作变量的关系。

4.计算萃取率二、实验装置2.1 转盘萃取塔主要设备是转盘萃取塔,塔体是内径为50mm玻璃管,塔顶电机连接转轴,转轴上固定有圆盘,塔壁固定有圆环,圆环与圆盘交错布置,转盘萃取流程图见下图11.原料贮槽(苯甲酸-煤油)2.收集槽(萃余液)3.电机4.控制柜5.转盘萃取塔6.9.转子流量计7.萃取剂贮罐(水)8.10. 输送泵11.排出液(萃取液)管12.转速测定仪A.B.C 取样口图1 转盘萃取实验流程图2.2 脉冲萃取塔主要设备是脉冲萃取塔,塔体是内径为50mm玻璃管,内装不锈钢丝网填料,脉冲萃取流程图见下图21.原料贮槽(苯甲酸-煤油)2.收集槽(萃余液)3.脉冲系统4.控制柜5.填料(脉冲)萃取塔6.9.转子流量计7.萃取剂贮罐(水)8.10 输送泵 11.排出液(萃取液)管 A.B.C 取样口图2 脉冲萃取实验流程图三、实验内容和原理萃取是分离和提纯物质的重要单元操作之一,是利用混合物中各个组分在外加溶剂中的溶解度的差异而实现组分分离的单元操作。

进行液-液萃取操作时,两种液体在塔内作逆流流动,其中一液体作为分散相,以液滴的形式通过另一作为连续相的液体,两种液相浓度在设备内作微分式的连续变化,并依靠密度差在塔的两端实现两液相的间的分离。

当轻相作为分散相时,相界面出现在塔的上部;反之相界面出现在塔的下端。

本实验以轻相为分散相,相界面出现在塔的上部。

计算微分逆流萃取塔的塔高时,主要是采取传质单元法。

即以传质单元数和传质单元高度来表征,传质单元数表示过程分离程度的难易,传质单元高度表示设备传质性能的好坏。

3.1 萃取的基本符号3.2 萃取的物料衡算图3 物料衡算示意图 图4 平均推动力计算示意图如上图所示,萃取计算中各项组成可用操作线方程相关联,操作线方程的P (X R ,Y S )和点Q (X F ,Y E )与装置的上下部相对应。

在第一溶剂B 与萃取剂S 完全不互溶时,萃取过程的操作线在X~Y 坐标上时直线,其方程式如下形式:RS R F S E X X Y Y X X Y Y --=-- (1)由上式得:()SS X X m Y Y -=-, 其中: RF S E X X Y Y m --=单位时间内从第一溶剂中萃取出的纯物质A 的量M ,可由物料衡算确定:()()S E R F Y Y S X X B M -=-= (2)3.3 萃取过程的质量传递不平衡的萃取相与萃余相在塔的任一截面上接触,两相之间发生质量传递。

物质A 以扩散的方式由萃余相进入萃取相,该过程的界限是达到相间平衡,相平衡的相间关系为:kX Y =* (3)k 为分配系数,只有在较简单体系中,k 才是常数,一般情况下均为变数。

本实验给出如下表1所示的系统平衡数据,用来求取X 与Y 之间的对应关系。

表1 煤油—苯甲酸—水系统在室温下的平衡数据表其中:x ——油相中苯甲酸重量百分数;y ——水相中苯甲酸重量百分数。

本实验为低浓度过程,故 、.与平衡组成的偏差程度是传质过程的推动力,在装置的顶部,推动力是线段PP ’:S R R Y Y Y -=∆* (4)在塔的下部推动力是线段QQ ’: E F F Y Y Y -=∆* (5)传质过程的平均推动力,在操作线和平衡线为直线的条件下为:RFR F m Y Y Y Y Y ∆∆∆-∆=∆ln (6)物质A 由萃余相进入萃取相的过程的传质动力学方程式为:m Y Y A K M ∆= (7)式中:Y K ——单位相接触面积的传质系数,()kg kg s m kg //2⋅;A ——相接触表面积,2m 。

该方程式中的萃取塔内相接触表面积A 不能确定,因此通常采用另一种方式。

相接触表面积A 可以表示为:h a aVA Ω== (8)式中:a ——相接触比表面积,32/m m ;V ——萃取塔有效操作段体积,3m ;Ω——萃取塔横截面积,2m ;h ——萃取塔操作部分高度,m 。

这时,m YV m Y Y V K Y aV K M ∆=∆= (9)式中:a K KY YV=——体积传质系数,()kg kg s m kg //3⋅。

根据(2)、(7)、(8)和(9)式,可得OE OE m SE YV N H Y Y Y K Sh ⋅=∆-⋅Ω=(10)在该方程中:Ω=YV OEK S H ,称为萃取相传质单元高度;mS E OEY Y Y N∆-=,称为萃取相总传质单元数。

Y K 、YV K 、OE H 是表征质量交换过程特性的,Y K 、YV K 越大,OE H 越小,则萃取过程进行的越快。

()mS E m YV Y V Y Y S Y V M K ∆-=∆=(11) 3.4 萃取率%100⨯=的量原料液中组分的量被萃取剂萃取的组分A A η所以 ()%100⨯-=FS E BX Y Y S η (12)或 ()%1001%100⨯⎪⎪⎭⎫ ⎝⎛-=⨯-=F R FR F X X BX X X B η (13) 3.5 质量流量和组成(1)第一溶剂的质量流量B()()F F F F x V x F B -=-=11ρ (14)式中:F ——料液的质量流量,h kg /; F V ——料液的体积流量,h m /3;Fρ——料液的密度,3/m kg ;F x ——料液中组分A 的含量,kg kg /。

液体流量计校正:FV 由下式计算:()()FNf F F f NF V V V ρρρρρρρρ000≈--= (15)式中:NV ——转子流量计读数,min /ml 或h m /3;f ρ——转子密度,3/m kg ;0ρ——20 ℃时水的密度,3/m kg 。

所以, ()F F Nx V B -=10ρρ (16)(2)萃取剂(水)的质量流量SSS V S ρ= (17)式中 — 萃取剂质量流量(水) h kg /;— 萃取剂体积流量(水), h m /3;— 萃取剂的密度(水), 3/m kg ;(3)原料液及萃余液的组成F x 、Rx 对于煤油、苯甲酸、水体系,采用酸碱中和的方法可测定进料液组成Fx 、萃余相组成Rx ,E y 可通过物料衡算而得。

四、操作方法和实验步骤4.1 转盘萃取塔1.原料液储槽内为煤油-苯甲酸溶液。

2.将萃取剂(水)加入萃取剂贮槽中。

3.启动萃取剂输送泵,调节流量,先向塔内加入萃取剂,充满全塔,并调至所需流量。

4.启动原料液输送泵,调节流量。

在实验过程中保持流量不变,并通过调节萃余液出口阀门,使油、水相分界面稳定在萃取剂进口与萃余液出口之间。

5.调节转盘轴转速的大小,设定转速,逐渐增大,一般取100-600转/分。

6.每次实验稳定时间约30分钟,然后打开取样阀取样,用NaOH 标准液中和滴定法测定原料液及萃余液的组成,记录转速。

7.改变转速,重复上述实验。

8.实验结束后,将实验装置恢复原样。

4.2 脉冲萃取塔1.原料液储槽内为煤油-苯甲酸溶液。

2.将萃取剂(水)加入萃取剂贮槽中。

3.启动萃取剂输送泵,调节流量,先向塔内加入萃取剂充满全塔,并调至所需流量。

4.启动原料液输送泵,调节流量。

在实验过程中保持流量不变,并通过调节萃余液出口阀门,使油、水相分界面稳定在萃取剂进口与萃余液出口之间。

5.启动脉冲泵,设定所需脉冲频率(或周期)。

6.调节两相流量在100-200ml/min ,每次实验稳定时间约30分钟,然后打开取样阀取样,用NaOH 标准液中和滴定测定原料液及萃余液的组成,记录脉冲参数。

7.改变脉冲参数,重复上述实验。

8.实验结束后,将实验装置恢复原样。

五、实验数据处理 5.1 原始数据记录萃取塔内径:0.05m ,有效萃取高度0.51m ,标准碱浓度0.01M 。

表 1原始实验数据记录表塔横截面积Ω=0.001963m2,有效操作体积V=0.001001m3,苯甲酸摩尔质量122g/mol,水的密度在实验条件下为1000kg/m3,20℃水的密度998.2kg/m3。

利用煤油-苯甲酸-水系统在室温下的平衡数据表,由内插值法可得苯甲酸浓度。

表2 数据处理表计算示例:以第1组实验数据为例:水质量流量S=V Nρ=150ml/min*1000g/l=15g/min=0.15kg/min原料液体积流量V F=V N(ρ0/ρF)1/2=150ml/min * (998.2/792.0)1/2=168.40ml/min原料液质量分数x F=V2N b M A/(ρF*V1)=6.5863ml*0.01mol/l*122g/mol/(792.0g/l*10ml)=0. 001015光谱分析原料质量分数 X=0.232/(0.792*100-0.232)=0.002938原料液质量比X F=0.001015/(1-0.001015)=0.001016第一溶剂质量流量B=V FρF(1-x F)=168.4ml/min*792.0kg/m3*(1-0.001015)=0.13324kg/mi n内插法求得平衡质量分数y F*=0.00074平衡质量比Y F*= y F*/(1- y F*)=0.00074/(1-0.00074)=0.00074萃余液质量分数x R= V2、N b M A/(ρR*V1、)=5.5752*0.01*122/(788*10)=0.00086光谱分析萃余液质量分数 X=0.168/(0.788*100-0.168)=0.002137萃余液质量比X R=0.00086/(1-0.001501)=0.00086平衡质量分数y R*=0.00069平衡液质量比Y R*=0.00069/(1-0.00069)=0.00069萃取相质量比Y E=B(X F-X R)/S=0.13324*(0.00102-0.00086)/0.15=0.00013ΔY R= Y R*- Ys=0.00069ΔY F= Y F*-Y E=0.00074-0.00013=-0.00061ΔYm=(ΔY R-ΔY F)/ln(ΔY R/ΔY F)=0.00065K YV=S(Y E- Ys)/( V*ΔY m)= 0.15(0.00013-0)/( 0.00101*0.00065)=31.0729kg/(min*m3) H OE=S/(Ω*K YV)=0.15/(0.001963*31.0729)=2.45917mN OE= Y E/ΔY m=0.00013/0.00065=0.20736萃取率η=(1-X R/X F)*100%=(1-0.00086/0.00102)*100%=14.94%六、实验结果与分析1、从实验结果来看,打开脉冲后,体积传质系数K YV明显增大而传质单元高度H OE减小,总传质单元数N OE增大,且萃取率增大。

相关文档
最新文档