2020高考数学 导数的11个专题01

合集下载

2020高考数学《导数压轴题》

2020高考数学《导数压轴题》

2020高考数学《导数压轴题》1.已知函数 $f(x)=e^x(1+aln x)$,设 $f'(x)$ 为 $f(x)$ 的导函数。

1) 设 $g(x)=e^xf(x)+x^2-x$ 在区间 $[1,2]$ 上单调递增,求 $a$ 的取值范围;2) 若 $a>2$ 时,函数 $f(x)$ 的零点为 $x$,函数$f'(x)$ 的极小值点为 $x_1$,求证:$x>x_1$。

2.设函数 $f(x)=\frac{x^2-2x+3}{x-1}$,$x\in R$。

1) 求证:当 $x\ge 1$ 时,$f(x)\ge 2$ 恒成立;2) 讨论关于 $x$ 的方程 $f(x)=k$ 的根的个数。

3.已知函数 $f(x)=-x^2+ax+a-e^{-x}+1$,$a\in R$。

1) 当 $a=1$ 时,判断 $g(x)=e^xf(x)$ 的单调性;2) 若函数 $f(x)$ 无零点,求 $a$ 的取值范围。

4.已知函数 $f(x)=\frac{ax+b}{x-1}$,$x\in R$。

1) 求函数 $f(x)$ 的单调区间;2) 若存在 $f(f(x))=x$,求整数 $a$ 的最小值。

5.已知函数 $f(x)=e^{-ln x+ax}$,$a\in R$。

1) 当 $a=-e+1$ 时,求函数 $f(x)$ 的单调区间;2) 当 $a\ge -1$ 时,求证:$f(x)>0$。

6.已知函数 $f(x)=e^x-x^2-ax-1$。

1) 若函数 $f(x)$ 在定义域内单调递增,求实数 $a$ 的范围;2) 设函数 $g(x)=xf(x)-e^x+x^3+x$,若 $g(x)$ 至多有一个极值点,求 $a$ 的取值集合。

7.已知函数 $f(x)=x-1-ln x-a(x-1)^2$,$a\in R$。

1) 讨论函数 $f(x)$ 的单调性;2) 若对 $\forall x\in (0,+\infty)$,$f(x)\ge 0$,求实数$a$ 的取值范围。

2020高考数学函数和导数知识点归纳汇总(含答案解析)

2020高考数学函数和导数知识点归纳汇总(含答案解析)

2020年高考数学(理)函数和导数知识点归纳汇总目录基本初等函数性质及应用 (3)三角函数图象与性质三角恒等变换 (17)函数的图象与性质、函数与方程 (43)导数的简单应用与定积分 (60)利用导数解决不等式问题 (81)利用导数解决函数零点问题 (105)基本初等函数性质及应用题型一 求函数值 【题型要点解析】已知函数的解析式,求函数值,常用代入法,代入时,一定要注意函数的对应法则与自变量取值范围的对应关系,有时要借助函数性质与运算性质进行转化.例1.若函数f (x )=a |2x -4|(a >0,且a ≠1),满足f (1)=19,则f (x )的单调递减区间是( )A .(-∞,2]B .[2,+∞)C .[-2,+∞)D .(-∞,-2]【解析】 由f (1)=19,得a 2=19,解得a =13或a =-13(舍去),即f (x )=4231-⎪⎭⎫⎝⎛x 由于y =|2x -4|在(-∞,2]上递减,在[2,+∞)上递增,所以f (x )在(-∞,2]上递增,在[2,+∞)上递减.【答案】 B例2.已知函数f (x )=⎩⎪⎨⎪⎧3x 2+ln 1+x 2+x ,x ≥0,3x 2+ln 1+x 2-x ,x <0,若f (x -1)<f (2x +1),则x 的取值范围为________.【解析】 若x >0,则-x <0,f (-x )=3(-x )2+ln (1+(-x )2+x )=3x 2+ln (1+x 2+x )=f (x ),同理可得,x <0时,f (-x )=f (x ),且x =0时,f (0)=f (0),所以f (x )是偶函数.因为当x >0时,函数f (x )单调递增,所以不等式f (x -1)<f (2x +1)等价于|x -1|<|2x +1|,整理得x (x +2)>0,解得x >0或x <-2.【答案】 (-∞,-2)∪(0,+∞)例3.已知a >b >1,若log a b +log b a =52,a b=b a ,则a =________,b =________.【解析】 ∵log a b +log b a =log a b +1log a b =52,∴log a b =2或12.∵a >b >1,∴log a b <log a a =1,∴log a b =12,∴a =b 2.∵a b =b a ,∴(b 2)b =bb 2,即b 2b =bb 2.∴2b=b 2,∴b =2,a =4.【答案】 4;2 题组训练一 求函数值1.已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)单调递增.若实数a 满足f (log 2 a )+f (log 12a )≤2f (1),则a 的最小值是( )A.32 B .1C.12D .2【解析】 log 12a =-log 2a ,f (log 2 a )+f (log 12a )≤2f (1),所以2f (log 2a )≤2f (1),所以|log 2 a |≤1,解得12≤a ≤2,所以a 的最小值是12,故选C.【答案】 C2.若函数f (x )=a x -2-2a (a >0,a ≠1)的图象恒过定点⎪⎭⎫⎝⎛31,0x ,则函数f (x )在[0,3]上的最小值等于________.【解析】令x -2=0得x =2,且f (2)=1-2a ,所以函数f (x )的图象恒过定点(2,1-2a ),因此x 0=2,a =13,于是f (x )=⎝ ⎛⎭⎪⎫13x -2-23,f (x )在R 上单调递减,故函数f (x )在[0,3]上的最小值为f (3)=-13.【答案】 -13题型二 比较函数值大小 【题型要点解析】三招破解指数、对数、幂函数值的大小比较问题(1)底数相同,指数不同的幂用指数函数的单调性进行比较; (2)底数相同,真数不同的对数值用对数函数的单调性比较;(3)底数不同、指数也不同,或底数不同、真数也不同的两个数,常引入中间量或结合图象比较大小.例1.已知a =3421-⎪⎭⎫ ⎝⎛,b =5241-⎪⎭⎫ ⎝⎛,c =31251-⎪⎭⎫⎝⎛,则( )A .a <b <cB .b <c <aC .c <b <aD .b <a <c【解析】 因为a =3421-⎪⎭⎫ ⎝⎛=243,b =5241-⎪⎭⎫ ⎝⎛=245,c =31251-⎪⎭⎫⎝⎛=523,显然有b <a ,又a =423<523=c ,故b <a <c .【答案】 D例2.已知a =π3,b =3π,c =e π,则a 、b 、c 的大小关系为( ) A .a >b >c B .a >c >b C .b >c >aD .b >a >c【解析】 ∵a =π3,b =3π,c =e π,∴函数y =x π是R 上的增函数,且3>e>1,∴3π>e π,即b >c >1;设f (x )=x 3-3x ,则f (3)=0,∴x =3是f (x )的零点,∵f ′(x )=3x 2-3x ·ln 3,∴f ′(3)=27-27ln 3<0,f ′(4)=48-81ln 3<0,∴函数f (x )在(3,4)上是单调减函数,∴f (π)<f (3)=0,∴π3-3π<0,即π3<3π,∴a <b ;又∵e π<πe <π3,∴c <a ;综上b >a >c .故选D.【答案】 D题组训练二 比较函数值大小 1.若a >b >1,0<c <1,则( ) A .a c <b cB .ab c <ba cC .a log b c <b log a cD .log a c <log b c【解析】 对A :由于0<c <1,∴函数y =x c 在R 上单调递增,则a >b >1⇔a c >bc ,A 错误;对B :由于-1<c -1<0,∴函数y =x c -1在(1,+∞)上单调递减,又∴a >b >1,∴a c -1<b c -1⇔ba c <ab c ,B 错误;对C :要比较a log b c 和b log a c ,只需比较a ln c lnb 和b lnc ln a ,只需比较ln c b ln b 和ln ca ln a,只需b ln b 和a ln a ;构造函数f (x )=x ln x (x >1),则f ′(x )=ln x +1>1>0,f (x )在(1,+∞)上单调递增,因此f (a )>f (b )>0⇔a ln a >b ln b >0⇔1a ln a <1b ln b ,又由0<c <1得ln c <0,∴ln c a ln a >ln cb ln b⇔b log a c >a log b c ,C 正确;对D :要比较log a c 和log b c ,只需比较ln c ln a 和ln cln b,而函数y =ln x 在(1,+∞)上单调递增,故a >b >1⇔ln a >ln b >0⇔1ln a <1ln b ,又由0<c <1得ln c <0,∴ln c ln a >ln c ln b ⇔log a c >log b c ,D 错误.故选C.【答案】 C2.设函数f (x )=e x +2x -4,g (x )=ln x +2x 2-5,若实数a ,b 分别是f (x ),g (x )的零点,则( )A .g (a )<0<f (b )B .f (b )<0<g (a )C .0<g (a )<f (b )D .f (b )<g (a )<0【解析】 依题意,f (0)=-3<0,f (1)=e -2>0,且函数f (x )是增函数,因此函数f (x )的零点在区间(0,1)内,即0<a <1.g (1)=-3<0,g (2)=ln 2+3>0,函数g (x )的零点在区间(1,2)内,即1<b <2,于是有f (b )>f (1)>0.又函数g (x )在(0,1)内是增函数,因此有g (a )<g (1)<0,g (a )<0<f (b ),选A.【答案】 A题型三 求参数的取值范围 【题型要点解析】利用指、对数函数的图象与性质可以求解的两类热点问题及其注意点 (1)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时、常利用数形结合思想求解.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.(3)注意点:利用对数函数图象求解对数型函数性质及对数方程、不等式问题时切记图象的范围、形状一定要准确,否则数形结合时将误解.对于含参数的指数、指数问题,在应用单调性时,要注意对底数进行讨论.解决对数问题时,首先要考虑定义域,其次再利用性质求解.例1.已知f (x )=⎩⎨⎧(1-2a )x +3a ,x <1,ln x ,x ≥1的值域为R ,那么a 的取值范围是( )A .(-∞,-1]B.⎪⎭⎫ ⎝⎛-21,1C.⎪⎭⎫⎢⎣⎡-21,1D.⎪⎭⎫⎝⎛21,0【解析】 要使函数f (x )的值域为R ,需使⎩⎨⎧1-2a >0,ln 1≤1-2a +3a ,∴⎩⎨⎧a <12,a ≥-1,∴-1≤a <12.故选C.【答案】 C例2.设函数f (x )=⎩⎨⎧x +1,x ≤0,2x,x >0,则满足f (x )+f ⎪⎭⎫ ⎝⎛-21x >1的x 的取值范围是________.【解析】 由题意,当x >12时,f (x )+f ⎪⎭⎫ ⎝⎛-21x =2x +2x -12>1恒成立,即x >12满足题意;当0<x ≤12时,f (x )+f ⎪⎭⎫ ⎝⎛-21x =2x +x -12+1>1恒成立,即0<x ≤12满足题意;当x ≤0时,f (x )+f ⎪⎭⎫ ⎝⎛-21x =x +1+x -12+1>1,解得x >-14,即-14<x ≤0.综上,x 的取值范围是⎪⎭⎫ ⎝⎛+∞,41 【答案】⎪⎭⎫⎝⎛+∞,41题组训练三 求参数的取值范围例1.若函数f (x )=⎩⎨⎧-x +6,x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是________. 【解析】 当x ≤2时,f (x )=-x +6,f (x )在(-∞,2]上为减函数,∴f (x )∈[4+∞).当x >2时,若a ∈(0,1),则f (x )=3+log a x 在(2,+∞)上为减函数,f (x )∈(-∞,3+log a 2),显示不满足题意,∴a >1,此时f (x )在(2,+∞)上为增函数,f (x )∈(3+log a 2,+∞),由题意可知(3+log a 2,+∞)⊆[4,+∞),则3+log a 2≥4,即log a 2≥1,∴1<a ≤2.【答案】 (1,2]例2.设函数f (x )=⎩⎪⎨⎪⎧x 2-2x +a ,x <12,4x-3,x ≥12的最小值为-1,则实数a 的取值范围是________.【解析】 当x ≥12时,4x -3为增函数,最小值为f ⎪⎭⎫⎝⎛21=-1,故当x <12时,x 2-2x +a ≥-1.分离参数得a ≥-x 2+2x -1=-(x -1)2,函数y =-(x -1)2开口向下,且对称轴为x =1,故在⎪⎭⎫ ⎝⎛∞-21,上单调递增,所以函数在x =12处有最大值,最大值为-221⎪⎭⎫⎝⎛-=-14,即a ≥-14.【答案】⎪⎭⎫⎢⎣⎡+∞-,41【专题训练】 一、选择题1.定义在R 上的函数f (x )满足f (-x )=-f (x ),f (x -2)=f (x +2),且x ∈(-1,0)时,f (x )=2x +15,则f (log 220)等于( )A .1B.45 C .-1D .-45【解析】 由f (x -2)=f (x +2),得f (x )=f (x +4),因为4<log 220<5,所以f (log 220)=f (log 220-4)=-f (4-log 220)=-f (log 2 45)=-(2log 245+15)=-1.【答案】C2.定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈(-∞,0)(x 1≠x 2),都有f (x 1)-f (x 2)x 1-x 2<0,则下列结论正确的是( )A .f (0.32)<f (20.3)<f (log 25)B .f (log 25)<f (20.3)<f (0.32)C .f (log 25)<f (0.32)<f (20.3) D .f (0.32)<f (log 25)<f (20.3)【解析】 ∵对任意的x 1,x 2∈(-∞,0), 且x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0,∴f (x )在(-∞,0)上是减函数. 又∵f (x )是R 上的偶函数, ∴f (x )在(0,+∞)上是增函数. ∵0<0.32<20.3<log 25,∴f (0.32)<f (20.3)<f (log 25).故选A. 【答案】 A3.已知f (x )是奇函数,且f (2-x )=f (x ),当x ∈[2,3]时,f (x )=log 2(x-1),则f ⎪⎭⎫⎝⎛31等于( )A .2-log 23B .log 23-log 27C .log 27-log 23D .log 23-2【解析】 因为f (x )是奇函数,且f (2-x )=f (x ),所以f (x -2)=-f (x ),所以f (x -4)=f (x ),所以f ⎪⎭⎫ ⎝⎛31=f ⎪⎭⎫ ⎝⎛-312=f ⎪⎭⎫ ⎝⎛35=-f ⎪⎭⎫ ⎝⎛-354=-f ⎪⎭⎫⎝⎛37.又当x ∈[2,3]时,f (x )=log 2(x -1), 所以f ⎪⎭⎫ ⎝⎛37=log 2⎪⎭⎫⎝⎛-137=log 243=2-log 23,所以f ⎪⎭⎫⎝⎛31=log 23-2,故选D.【答案】 D4.已知函数y =f (x )是R 上的偶函数,设a =ln1π,b =(ln π)2,c =ln π,当对任意的x 1,x 2∈(0,+∞)时,都有(x 1-x 2)·[f (x 1)-f (x 2)]<0,则( ) A .f (a )>f (b )>f (c ) B .f (b )>f (a )>f (c ) C .f (c )>f (b )>f (a )D .f (c )>f (a )>f (b )【解析】 由(x 1-x 2)[f (x 1)-f (x 2)]<0可知,f (x 1)-f (x 2)(x 1-x 2)<0,所以y =f (x )在(0,+∞)上单调递减.又因为函数y =f (x )是R 上的偶函数,所以y =f (x )在(-∞,0)上单调递增,由于a =ln 1π=-lnπ<-1,b =(ln π)2,c =ln π=12ln π,所以|b |>|a |>|c |,因此f (c )>f (a )>f (b ),故选D.【答案】 D5.已知函数y =f (x )的图象关于y 轴对称,且当x ∈(-∞,0)时,f (x )+xf ′(x )<0成立,a =(20.2)·f (20.2),b =(log π3)·f (log π3),c =(log 39)·f (log 39),则a ,b ,c 的大小关系是( )A .b >a >cB .c >a >bC .c >b >aD .a >c >b【解析】 因为函数y =f (x )关于y 轴对称,所以函数y =xf (x )为奇函数.因为[xf (x )]′=f (x )+xf ′(x ),且当x ∈(-∞,0)时,[xf (x )]′=f (x )+xf ′(x )<0,则函数y =xf (x )在(-∞,0)上单调递减;因为y =xf (x )为奇函数,所以当x ∈(0,+∞)时,函数y =xf (x )单调递减.因为1<20.2<2,0<log π3<1,log 39=2,所以0<log π3<20.2<log 39,所以b >a >c ,选A.【答案】 A6.设a =0.23,b =log 0.30.2,c =log 30.2,则a ,b ,c 大小关系正确的是( )A .a >b >cB .b >a >cC .b >c >aD .c >b >a【解析】 根据指数函数和对数函数的增减性知,因为0<a =0.23<0.20=1,b =log 0.30.2>log 0.30.3=1,c =log 30.2<log 31=0,所以b >a >c ,故选B.【答案】B7.对任意实数a ,b 定义运算“Δ”:a Δb =⎩⎨⎧a ,a -b ≤2,b ,a -b >2,设f (x )=3x+1Δ(1-x ),若函数f (x )与函数g (x )=x 2-6x 在区间(m ,m +1)上均为减函数,则实数m 的取值范围是( )A .[-1,2]B .(0,3]C .[0,2]D .[1,3]【解析】 由题意得f (x )=⎩⎨⎧-x +1,x >0,3x +1,x ≤0,∴函数f (x )在(0,+∞)上单调递减,函数g (x )=(x -3)2-9在(-∞,3]上单调递减,若函数f (x )与g (x )在区间(m ,m +1)上均为减函数,则⎩⎨⎧m ≥0,m +1≤3,得0≤m ≤2,故选C.【答案】 C8.已知函数f (x )=a |log 2 x |+1(a ≠0),定义函数F (x )=⎩⎨⎧f (x ),x >0,f (-x ),x <0,给出下列命题:①F (x )=|f (x )|;②函数F (x )是偶函数;③当a <0时,若0<m <n <1,则有F (m )-F (n )<0成立;④当a >0时,函数y =F (x )-2有4个零点.其中正确命题的个数为( )A .0B .1C .2D .3【解析】 ①∵函数f (x )=a |log 2x |+1(a ≠0),定义函数F (x )=⎩⎨⎧f (x ),x >0f (-x ),x <0,∴|f (x )|=|a |log 2x |+1|,∴F (x )≠|f (x )|,①不对;②∵F (-x )=⎩⎨⎧f (-x ),x <0f (x ),x >0=F (x ),∴函数F (x )是偶函数,故②正确;③∵当a <0时,若0<m <n <1,∴|log 2m |>|log 2n |,∴a |log 2m |+1<a |log 2n |+1,即F (m )<F (n )成立,故F (m )-F (n )<0成立,所以③正确;④∵f (x )=a |log 2x |+1(a ≠0),定义函数F (x )=⎩⎨⎧f (x ),x >0,f (-x ),x <0,∴x >0时,(0,1)单调递减,(1,+∞)单调递增, ∴x >0时,F (x )的最小值为F (1)=1, 故x >0时,F (x )与y =-2有2个交点,∵函数F (x )是偶函数,∴x <0时,F (x )与y =-2有2个交点,故当a >0时,函数y =F (x )-2有4个零点,所以④正确.【答案】D 二、填空题1.已知奇函数f (x )在R 上是增函数,g (x )=xf (x ).若a =g (-log 25.1),b =g (20.8),c =g (3),则a ,b ,c 的大小关系为____________.【解析】 依题意a =g (-log 25.1) =(-log 25.1)·f (-log 25.1) =log 25.1f (log 25.1)=g (log 25.1).因为f (x )在R 上是增函数,可设0<x 1<x 2,则f (x 1)<f (x 2). 从而x 1f (x 2)<x 2f (x 2),即g (x 1)<g (x 2). 所以g (x )在(0,+∞)上亦为增函数.又log 25.1>0,20.8>0,3>0,且log 25.1<log 28=3,20.8<21<3,而20.8<21=log 24<log 25.1,所以3>log 25.1>20.8>0,所以c >a >b .【答案】 b <a <c2.已知函数f (x )=⎩⎨⎧2x,x ≤1ln (x -1),1<x ≤2若不等式f (x )≤5-mx 恒成立,则实数m 的取值范围是________.【解析】 设g (x )=5-mx ,则函数g (x )的图象是过点(0,5)的直线.在同一坐标系内画出函数y =f (x )和g (x )=5-mx 的图象,如图所示.∵不等式f (x )≤5-mx 恒成立,∴函数y =f (x )图象不在函数g (x )=5-mx 的图象的上方.结合图象可得,①当m <0时不成立;②当m =0时成立;③当m >0时,需满足当x =2时,g (2)=5-2m ≥0,解得0<m ≤52.综上可得0≤m ≤52.∴实数m 的取值范围是⎣⎢⎡⎦⎥⎤0,52.3.已知函数f (x )=⎩⎨⎧x ln (1+x )+x 2,x ≥0-x ln (1-x )+x 2,x <0,若f (-a )+f (a )≤2f (1),则实数a 的取值范围是( )A .(-∞,-1]∪[1,+∞)B .[-1,0]C .[0,1]D .[-1,1]【解析】 函数f (x )=⎩⎨⎧x ln (1+x )+x 2,x ≥0-x ln (1-x )+x 2,x <0,将x 换为-x ,函数值不变,即有f (x )图象关于y 轴对称,即f (x )为偶函数,有f (-x )=f (x ),当x ≥0时,f (x )=x ln(1+x )+x 2的导数为f ′(x )=ln (1+x )+x 1+x+2x ≥0,则f (x )在[0,+∞)递增,f (-a )+f (a )≤2f (1),即为2f (a )≤2f (1),可得f (|a |))≤f (1),可得|a |≤1,解得-1≤a ≤1.【答案】 D4.已知函数f (x )=⎩⎨⎧(3a -1)x -4a ,(x <1),log a x , (x ≥1)在R 上不是单调函数,则实数a 的取值范围是________.【解析】 当函数f (x )在R 上为减函数时,有3a -1<0且0<a <1且(3a -1)·1+4a ≥log a 1,解得17≤a <13,当函数f (x )在R 上为增函数时,有3a -1>0且a >1且(3a -1)·1+4a ≤log a 1,a 无解.∴当函数f (x )在R 上为单调函数时,有17≤a <13,∴当函数f (x )在R 上不是单调函数时,有a >0且a ≠1且a <17或a ≥13即0<a <17或13≤a <1或a >1.5.定义函数y =f (x ),x ∈I ,若存在常数M ,对于任意x 1∈I ,存在唯一的x 2∈I ,使得f (x 1)+f (x 2)2=M ,则称函数f (x )在I 上的“均值”为M ,已知f (x )=log 2x ,x ∈[1,22 016],则函数f (x )=log 2x 在[1,22 016]上的“均值”为 ________.【解析】 根据定义,函数y =f (x ),x ∈I ,若存在常数M ,对于任意x 1∈I ,存在唯一的x 2∈I ,使得f (x 1)+f (x 2)2=M ,则称函数f (x )在I 上的“均值”为M ,令x 1x 2=1·22 016=22 016,当x 1∈[1,22 016]时,选定x 2=22 016x 1∈[1,22 016],可得M =12log 2(x 1x 2)=1 008.【答案】 1 008三角函数图象与性质三角恒等变换题型一 函数y =A sin(ωx +φ)的解析式与图象 【题型要点解析】解决三角函数图象问题的方法及注意事项(1)已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定φ常根据“五点法”中的五个点求解,其中一般把第一个零点作为突破口,可以从图象的升降找准第一个零点的位置.(2)在图象变换过程中务必分清是先相位变换,还是先周期变换,变换只是相对于其中的自变量x 而言的,如果x 的系数不是1,就要把这个系数提取后再确定变换的单位长度和方向.【例1】函数f (x )=A sin(ωx +φ)+b 的部分图象如图,则S =f (1)+…+f (2017)等于( )A .0 B.4 0312C.4 0352 D.4 0392【解析】由题设中提供的图象信息可知⎩⎪⎨⎪⎧A +b =32,-A +b =12,解得A =12,b =1,T =4⇒ω=2π4=π2,所以f(x)=12sin⎪⎭⎫⎝⎛+ϕπx2+1,又f(0)=12sin⎪⎭⎫⎝⎛+⨯ϕπ2+1=12sinφ+1=1⇒sinφ=0,可得φ=kπ,所以f(x)=12sin⎪⎭⎫⎝⎛+ππkx2+1,由于周期T=4,2017=504×4+1,且f(1)+f(2)+f(3)+f(4)=4,所以S=f(1)+…+f(2016)+f(2017)=2016+f(2017)=2016+f(1)=2016+32=4 0352,故选C.【答案】 C【例2】.已知函数f(x)=sin2ωx-12(ω>0)的周期为π2,若将其图象沿x轴向右平移a个单位(a>1),所得图象关于原点对称,则实数a的最小值为( )A.π4B.3π4C.π2D.π8【解析】∵f(x)=1-cos 2ωx2-12=-12cos 2ωx,2π2ω=π2,解得ω=2,从而f(x)=-12cos 4x.函数f(x)向右平移a个单位后,得到新函数为g(x)=-12cos(4x-4a).∴cos 4a=0,4a=π2+kπ,k∈Z,当k=0时,a的最小值为π8.选D.【答案】 D题组训练一函数y=A sin(ωx+φ)的解析式与图象1.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,且f (α)=1,α∈⎪⎭⎫ ⎝⎛3,0π,则cos ⎪⎭⎫ ⎝⎛+652πα等于( )A.13 B .±223C.223D .-223【解析】由题图可知A =3,易知ω=2,φ=5π6,即f (x )=3sin ⎪⎭⎫ ⎝⎛+652πx . 因为f (α)=3sin ⎪⎭⎫ ⎝⎛+652πα=1,所以sin ⎪⎭⎫⎝⎛+652πα=13, 因为α∈⎪⎭⎫⎝⎛3,0π,所以2α+5π6∈⎪⎭⎫ ⎝⎛+652πα, 所以cos ⎪⎭⎫⎝⎛+652πα=-223,故选D. 【答案】 D2.已知曲线C 1:y =cos x ,C 2:y =sin ⎪⎭⎫⎝⎛+322πx ,则下面结论正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2【解析】因为C 1,C 2函数名不同,所以将C 2利用诱导公式转化成与C 1相同的函数名,则C 2:y =sin ⎪⎭⎫ ⎝⎛+322πx =cos ⎪⎭⎫ ⎝⎛-+2322ππx =cos ⎪⎭⎫ ⎝⎛+62πx ,则由C 1上各点的横坐标缩短到原来的12倍变为y =cos 2x ,再将曲线向左平移π12个单位得到C 2,故选D.【答案】 D3.设函数y =sin ωx (ω>0)的最小正周期是T ,将其图象向左平移14T 后,得到的图象如图所示,则函数y =sin ωx (ω>0)的单调递增区间是( )A.()Z k k k ∈⎥⎦⎤⎢⎣⎡+-24767,24767ππππ B.()Z k k k ∈⎥⎦⎤⎢⎣⎡+-24737,24737ππππ C.()Z k k k ∈⎥⎦⎤⎢⎣⎡+-12737,12737ππππ D.()Z k k k ∈⎥⎦⎤⎢⎣⎡++242167,24767ππππ 【解析】 方法一 由已知图象知,y =sin ωx (ω>0)的最小正周期是2×7π12=7π6,所以2πω=7π6,解得ω=127,所以y =sin 127x .由2k π-π2≤127x ≤2k π+π2得到单调递增区间是()Z k k k ∈⎥⎦⎤⎢⎣⎡+-24767,24767ππππ 方法二 因为T =2πω,所以将y =sin ωx (ω>0)的图象向左平移14T 后,所对应的解析式为y =sin ω⎪⎭⎫ ⎝⎛+ωπ2x .由图象知,ω⎪⎭⎫ ⎝⎛+ωππ2127=3π2,所以ω=127, 所以y =sin127x .由2k π-π2≤127x ≤2k π+π2得到单调递增区间是 ()Z k k k ∈⎥⎦⎤⎢⎣⎡+-24767,24767ππππ(k ∈Z ). 【答案】 A题型二 三角函数的性质 【题型要点】(1)奇偶性的三个规律:①函数y =A sin(ωx +φ)是奇函数⇔φ=k π(k ∈Z ),是偶函数⇔φ=k π+π2(k ∈Z ); ②函数y =A cos(ωx +φ)是奇函数⇔φ=k π+π2(k ∈Z ),是偶函数⇔φ=k π(k ∈Z );③函数y =A tan(ωx +φ)是奇函数⇔φ=k π(k ∈Z ).(2)对称性的三个规律①函数y =A sin(ωx +φ)的图象的对称轴由ωx +φ=k π+π2(k ∈Z )解得,对称中心的横坐标由ωx +φ=k π(k ∈Z )解得; ②函数y =A cos(ωx +φ)的图象的对称轴由ωx +φ=k π(k ∈Z )解得,对称中心的横坐标由ωx +φ=k π+π2(k ∈Z )解得; ③函数y =A tan(ωx +φ)的图象的对称中心的横坐标由ωx +φ=k π2(k ∈Z )解得.(3)三角函数单调性:求形如y=A sin(ωx+φ)(或y=A cos(ωx+φ))(A、ω、φ为常数,A≠0,ω>0)的单调区间的一段思路是令ωx+φ=z,则y=A sin z(或y=A cos z),然后由复合函数的单调性求得.(4)三角函数周期性:函数y=A sin(ωx+φ)(或y=A cos(ωx+φ))的最小正周期T=2π|ω|.应特别注意y=|A sin(ωx+φ)|的周期为T=π|ω|.【例3】设函数f(x)=sinωx·cosωx-3cos2ωx+32(ω>0)的图象上相邻最高点与最低点的距离为π2+4.(1)求ω的值;(2)若函数y=f(x+φ)(0<φ<π2)是奇函数,求函数g(x)=cos(2x-φ)在[0,2π]上的单调递减区间.【解】(1)f(x)=sinωx·cosωx-3cos2ωx+3 2=12sin2ωx-3(1+cos 2ωx)2+32=12sin2ωx-32cos2ωx=sin⎪⎭⎫⎝⎛-32πωx,设T为f(x)的最小正周期,由f(x)的图象上相邻最高点与最低点的距离为π2+4,得∴22⎪⎭⎫⎝⎛T+[2f(x)max]2=π2+4,∵f(x)max=1,∴22⎪⎭⎫⎝⎛T+4=π2+4,整理得T=2π.又ω>0,T=2π2ω=2π,∴ω=12.(2)由(1)可知f (x )=sin ⎪⎭⎫ ⎝⎛-3πx ,∴f (x +φ)=sin ⎪⎭⎫ ⎝⎛-+3πϕx .∵y =f (x +φ)是奇函数,则sin ⎪⎭⎫ ⎝⎛-3πϕ=0,又0<φ<π2,∴φ=π3, ∴g (x )=cos(2x -φ)=cos ⎪⎭⎫ ⎝⎛-32πx .令2k π≤2x -π3≤2k π+π,k ∈Z ,则k π+π6≤x ≤k π+2π3,k ∈Z , ∴单调递减区间是⎥⎦⎤⎢⎣⎡++32,6ππππk k k ∈Z . 又∵x ∈[0,2π],∴当k =0时,递减区间是⎥⎦⎤⎢⎣⎡32,6ππ;当k =1时,递减区间是⎥⎦⎤⎢⎣⎡35,67ππ∴函数g (x )在[0,2π]上的单调递减区间是⎥⎦⎤⎢⎣⎡32,6ππ,⎥⎦⎤⎢⎣⎡35,67ππ.【例4】.已知函数f (x )=sin(ωx +π6)(ω>0)的最小正周期为4π,则( )A .函数f (x )的图象关于原点对称B .函数f (x )的图象关于直线x =π3对称C .函数f (x )图象上的所有点向右平移π3个单位长度后,所得的图象关于原点对称D .函数f (x )在区间(0,π)上单调递增【解析】2πω=4π⇒ω=12,所以f (x )=sin ⎪⎭⎫⎝⎛+62πx 不是奇函数,图象不关于原点对称;x =π3时f (x )=32不是最值,图象不关于直线x =π3对称; 所有点向右平移π3个单位长度后得y =sin ⎥⎦⎤⎢⎣⎡+-6)3(21ππx =sin 12x 为奇函数,图象关于原点对称;因为x ∈(0,π)⇒12x +π6∈⎪⎭⎫⎝⎛32,6ππ,所以函数f (x )在区间(0,π)上有增有减,综上选C.【答案】 C【例5】.已知函数f (x )=2sin(ωx +φ)(ω>0),x ∈⎥⎦⎤⎢⎣⎡-32,12ππ的图象如图所示,若f (x 1)=f (x 2),且x 1≠x 2,则f (x 1+x 2)等于( )A .1 B. 2 C. 3D .2【解析】 根据函数f (x )=2sin(ωx +φ),x ∈[-π12,2π3]的图象知,3T 4=2π3-⎪⎭⎫ ⎝⎛-12π=3π4,∴T =π,∴ω=2πT =2; 又x =-π12时,2×⎪⎭⎫⎝⎛-12π+φ=0,解得φ=π12, ∴f (x )=2sin ⎪⎭⎫ ⎝⎛+62πx ;又f (x 1)=f (x 2),且x 1≠x 2,不妨令x 1=0,则x 2=π3, ∴x 1+x 2=π3,∴f (x 1+x 2)=2sin ⎪⎭⎫⎝⎛+⨯632ππ=1.故选A. 【答案】 A题组训练二 三角函数的性质1.如图是函数y =A sin(ωx +φ)⎪⎭⎫ ⎝⎛≤>>2,0,0πϕωA 图象的一部分.为了得到这个函数的图象,只要将y =sin x (x ∈R )的图象上所有的点( )A .向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变B .向左平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C .向左平移π6个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变D .向左平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变【解析】 观察图象知,A =1,T =2⎪⎭⎫⎝⎛-365ππ=π,ω=2πT =2,即y =sin(2x +φ);将点⎪⎭⎫ ⎝⎛0,3π代入得⎪⎭⎫⎝⎛+⨯ϕπ32sin =0,结合|φ|≤π2,得φ=π3,所以y =sin ⎪⎭⎫ ⎝⎛+32πx .故选A. 【答案】 A2.已知函数f (x )=cos 2ωx 2+32sin ωx -12(ω>0),x ∈R ,若f (x )在区间(π,2π)内没有零点,则ω的取值范围是( )A.⎥⎦⎤⎝⎛125,0π B.⎥⎦⎤ ⎝⎛125,0π∪⎪⎭⎫⎢⎣⎡1211,65 C.⎥⎦⎤ ⎝⎛65,0π D.⎥⎦⎤ ⎝⎛125,0π∪⎥⎦⎤⎢⎣⎡1211,65 【解析】 函数f (x )=cos 2ωx 2+32sin ωx -12=12cos ωx +32sin ωx =sin ⎪⎭⎫ ⎝⎛+6πωx ,可得T =2πω≥π,0<ω≤2,f (x )在区间(π,2π)内没有零点,函数的图象如图两种类型,结合三角函数可得:⎩⎪⎨⎪⎧ωπ+π6≥02ωπ+π6≤π或⎩⎪⎨⎪⎧πω+π6≥π2ωπ+π6≤2π,解得ω∈⎥⎦⎤ ⎝⎛125,0π∪⎪⎭⎫⎢⎣⎡1211,65.故选B.【答案】 B题型三 三角恒等变换 【题型要点解析】三角函数恒等变换“四大策略”(1)常值代换:特别是“1”的代换,1=sin 2θ+cos 2θ=tan 45°等; (2)项的分拆与角的配凑:如sin 2α+2cos 2α=(sin 2α+cos 2α)+cos 2α,α=(α-β)+β等;(3)降次与升次:正用二倍角公式升次,逆用二倍角公式降次; (4)弦、切互化:一般是切化弦.【例6】如图,圆O 与x 轴的正半轴的交点为A ,点C ,B 在圆O 上,且点C位于第一象限,点B 的坐标为⎪⎭⎫⎝⎛-135,1312,∠AOC =α.若|BC |=1,则3cos 2α2-sin α2·cos α2-32的值为________.【解析】由题意得|OC |=|OB |=|BC |=1, 从而△OBC 为等边三角形,所以sin ∠AOB =sin ⎪⎭⎫ ⎝⎛-απ3=513,又因为3cos 2α2-sinα2cos α2-32=3·1+cos α2-sin α2-32=-12sin α+32cos α=sin ⎪⎭⎫ ⎝⎛-απ3=513.【答案】513【例7】.已知sin ⎪⎭⎫ ⎝⎛-8πα=45,则cos ⎪⎭⎫ ⎝⎛+83πα等于( ) A .-45B.45 C .-35D.35【解析】 ∵sin ⎪⎭⎫ ⎝⎛-8πα=45,则cos ⎪⎭⎫⎝⎛+83πα=cos ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+82παπ=-sin ⎪⎭⎫ ⎝⎛-8πα=-45,故选A.【答案】 A【例8】.已知cos α=35,cos(α-β)=7210,且0<β<α<π2,那么β等于( )A.π12B.π6C.π4D.π3【解析】 cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β),由已知cos α=35,cos(α-β)=7210,0<β<α<π2,可知sinα=45,sin(α-β)=210 ,代入上式得cos β=35×7210+45×210=25250=22,所以β=π4,故选C.【答案】 C题组训练三 三角恒等变换1.若sin α+3sin ⎪⎭⎫⎝⎛+απ2=0,则cos 2α的值为( )A .-35B.35 C .-45D.45【解析】 由sin α+3sin ⎪⎭⎫⎝⎛+απ2=0,则sin α+3cos α=0,可得:tan α=sin αcos α=-3; 则cos 2α=cos 2α-sin 2α=1-tan 2αtan 2α+1=1-91+9=-45.故选C. 【答案】 C2.已知cos ⎪⎭⎫ ⎝⎛-3πx =13,则cos ⎪⎭⎫ ⎝⎛-352πx +sin 2⎪⎭⎫⎝⎛-x 3π的值为( ) A .-19B.19 C.53D .-53【解析】 cos ⎪⎭⎫ ⎝⎛-352πx +sin 2⎪⎭⎫⎝⎛-x 3π =-cos ⎪⎭⎫ ⎝⎛-322πx +sin 2⎪⎭⎫ ⎝⎛-3πx =1-2cos 2⎪⎭⎫ ⎝⎛-3πx +1-cos 2⎪⎭⎫ ⎝⎛-3πx=2-3cos 2⎪⎭⎫ ⎝⎛-3πx =53. 【答案】 C3.已知cos ⎪⎭⎫ ⎝⎛+απ6·cos ⎪⎭⎫ ⎝⎛-απ3=-14,α∈⎪⎭⎫⎝⎛2,3ππ.则sin 2α=________.【解析】 cos ⎪⎭⎫ ⎝⎛+απ6·cos ⎪⎭⎫⎝⎛-απ3=cos ⎪⎭⎫ ⎝⎛+απ6·sin ⎪⎭⎫ ⎝⎛+απ6=12sin ⎪⎭⎫ ⎝⎛+32πα=-14,即sin ⎪⎭⎫ ⎝⎛+32πα=-12.∵α∈⎪⎭⎫⎝⎛2,3ππ,∴2α+π3∈⎪⎭⎫ ⎝⎛34,ππ, ∴cos ⎪⎭⎫ ⎝⎛+32πα=-32,∴sin 2α=sin ⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛+332ππα=sin ⎪⎭⎫ ⎝⎛+32παcos π3-cos ⎪⎭⎫ ⎝⎛+32παsin π3=12.【答案】12题型四 三角函数性质的综合应用 【题型要点】研究三角函数的性质的两个步骤第一步:先借助三角恒等变换及相应三角函数公式把待求函数转化为y =A sin(ωx +φ)+B 的形式;第二步:把“ωx +φ”视为一个整体,借助复合函数性质求y =A sin(ωx +φ)+B 的单调性及奇偶性、最值、对称性等问题.【例9】设函数f (x )=sin ⎪⎭⎫ ⎝⎛-6πωx +sin ⎪⎭⎫ ⎝⎛-2πωx ,其中0<ω<3.已知f⎪⎭⎫⎝⎛6π=0. (1)求ω;(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数y =g (x )的图象,求g (x )在⎥⎦⎤⎢⎣⎡-43,4ππ上的最小值. 【解析】 (1)因为f (x )=sin ⎪⎭⎫ ⎝⎛-6πωx +sin ⎪⎭⎫ ⎝⎛-2πωx ,所以f (x )=32sin ωx -12cos ωx -cos ωx =32sin ωx -32cos ωx =3⎪⎪⎭⎫ ⎝⎛-x x ωωcos 23sin 21 =3⎪⎭⎫ ⎝⎛-3sin πωx由题设知f ⎪⎭⎫⎝⎛6π=0,所以ωπ6-π3=k π,k ∈Z .故ω=6k +2,k ∈Z ,又0<ω<3,所以ω=2.(2)由(1)得f (x )=3sin ⎪⎭⎫ ⎝⎛-32πx所以g (x )=3sin ⎪⎭⎫ ⎝⎛-+34ππx =3sin ⎪⎭⎫ ⎝⎛-12πx因为x ∈⎥⎦⎤⎢⎣⎡-43,4ππ,所以x -π12∈⎥⎦⎤⎢⎣⎡-32,3ππ,当x -π12=-π3, 即x =-π4时,g (x )取得最小值-32.【答案】 -32题组训练四 三角函数性质的综合应用已知函数f (x )=sin 2x -cos 2x -23sin x cos x (x ∈R ).(1)求f ⎪⎭⎫⎝⎛32π的值.(2)求f (x )的最小正周期及单调递增区间. 【解析】 (1)由sin 2π3=32,cos 2π3=-12,f ⎪⎭⎫⎝⎛32π=223⎪⎪⎭⎫ ⎝⎛-221⎪⎭⎫ ⎝⎛--23×32×⎪⎭⎫ ⎝⎛-21得f ⎪⎭⎫⎝⎛32π=2. (2)由cos 2x =cos 2x -sin 2x 与sin 2x =2sin x cos x 得f (x )=-cos 2x -3sin 2x =-2si ⎪⎭⎫⎝⎛+62πx 所以f (x )的最小正周期是π 由正弦函数的性质得π2+2k π≤2x +π6≤3π2+2k π,k ∈Z . 解得π6+k π≤x ≤2π3+k π,k ∈Z .所以f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤π6+k π,2π3+k πk ∈Z .【专题训练】一、选择题1.已知α满足sin α=13,则cos ⎪⎭⎫ ⎝⎛+απ4cos ⎪⎭⎫⎝⎛-απ4=( )A.718B.2518 C .-718D .-2518【解析】 cos ⎪⎭⎫ ⎝⎛+απ4cos ⎪⎭⎫ ⎝⎛-απ4=22()cos α-sin α·22()cos α+sin α=12()cos 2α-sin 2α=12(1-2sin 2α)=12⎪⎭⎫ ⎝⎛⨯-9121=718,选A. 【答案】 A2.若函数f (x )=4sin ωx ·sin 2⎪⎭⎫⎝⎛+42πωx +cos2ωx -1(ω>0)在⎥⎦⎤⎢⎣⎡-32,2ππ上是增函数,则ω的取值范围是( )A .[0,1)B.⎪⎭⎫⎢⎣⎡+∞,43 C .[1,+∞)D.⎥⎦⎤ ⎝⎛43,0 【解析】 由题意,因为f (x )=4sin ωx ·sin 2⎪⎭⎫⎝⎛+42πωx +cos2ωx -1=4sin ωx ·1-cos ⎝⎛⎭⎪⎫ωx +π22+cos2ωx -1=2sin ωx (1+sin ωx )+cos2ωx-1=2sin ωx 所以⎥⎦⎤⎢⎣⎡-ωπωπ2,2表示函数含原点的递增区间,又因为函数在⎥⎦⎤⎢⎣⎡-32,2ππ上是增函数,所以⎥⎦⎤⎢⎣⎡-32,2ππ⊆⎣⎢⎡⎦⎥⎤-π2ω,π2ω,即⎩⎪⎨⎪⎧-π2ω≤-π2π2ω≥2π3⇒⎩⎨⎧ω≤1ω≤34,又ω>0,所以0<ω≤34,故选D.【答案】 D3.函数f (x )=A sin(ωx +φ)(A >0,ω>0)在x =1和x =-1处分别取得最大值和最小值,且对于∀x 1,x 2∈[-1,1](x 1≠x 2)都有f (x 1)-f (x 2)x 1-x 2>0,则函数f (x +1)一定是( )A .周期为2的偶函数B .周期为2的奇函数C .周期为4的奇函数D .周期为4的偶函数【解析】 由题意可得,[-1,1]是f (x )的一个增区间,函数f (x )的周期为2×2=4,∴2πω=4,ω=π2, ∴f (x )=A sin ⎪⎭⎫ ⎝⎛+ϕπ2x .再根据f (1)=A sin ⎪⎭⎫ ⎝⎛+ϕπ2=A ,可得sin ⎪⎭⎫⎝⎛+ϕπ2=cos φ=1,故φ=2k π,k ∈Z ,∴f (x +1)=A sin ⎥⎦⎤⎢⎣⎡++ππk x 2)1(2=A sin ⎪⎭⎫ ⎝⎛+ϕπ2x =A cos π2x ,∴f (x +1)是周期为4的偶函数,故选D. 【答案】D4.函数f (x )=sin(ωx +φ)(ω>0,|φ|<π2)的最小正周期是π,若其图象向左平移π3个单位后得到的函数为奇函数,则函数f (x )的图象( )A .关于点⎪⎭⎫⎝⎛0,12π对称B .关于直线x =π12对称C .关于点⎪⎭⎫⎝⎛0,6π对称D .关于直线x =π6对称【解析】 由于函数最小正周期为π,所以ω=2,即f (x )=sin(2x +φ).向左平移π3得到sin ⎪⎭⎫⎝⎛++ϕπ322x 为奇函数,故2π3+φ=π,φ=π3,所以f (x )=sin ⎪⎭⎫ ⎝⎛+322πx .f ⎪⎭⎫⎝⎛12π=sin π2=1,故x =π12为函数的对称轴,选B. 【答案】 B5.函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图,f ⎪⎭⎫⎝⎛-2413π=( )A .-62 B .-32C .-22D .-1【解析】 根据函数f (x )=A sin(ωx +φ)的部分图象知,A =2,T 4=7π12-π3=π4,∴T =2πω=π,解得ω=2; ∴f (x )=2sin(2x +φ). 由五点法画图知,ω×π3+φ=2π3+φ=π,解得φ=π3,∴f (x )= 2 sin(2x +π3),∴f ⎪⎭⎫ ⎝⎛-2413π=2sin(-13π12+π3)=2sin(-3π4)=-1,故选D. 【答案】 D6.函数f (x )=2sin(ωx +φ)⎪⎭⎫ ⎝⎛<<<2,120πϕω,若f (0)=-3,且函数f (x )的图象关于直线x =-π12对称,则以下结论正确的是( )A .函数f (x )的最小正周期为π3B .函数f (x )的图象关于点⎪⎭⎫⎝⎛0,97π对称 C .函数f (x )在区间⎪⎭⎫⎝⎛2411,4ππ上是增函数D .由y =2cos 2x 的图象向右平移5π12个单位长度可以得到函数f (x )的图象 【解析】 函数f (x )=2sin(ωx +φ)⎪⎭⎫ ⎝⎛<<<2,120πϕω,∵f (0)=-3,即2sin φ=-3,∵-π2<φ<π2, ∴φ=-π3又∵函数f (x )的图象关于直线x =-π12对称,∴-ω×π12-π3=π2+k π,k ∈Z . 可得ω=12k -10,∵0<ω<12.∴ω=2.∴f (x )的解析式为:f (x )=2sin ⎪⎭⎫ ⎝⎛-32πx .最小正周期T =2π2=π,∴A 不对. 当x =7π9时,可得y ≠0,∴B 不对. 令-π2≤2x -π3≤π2,可得-π12≤x ≤5π12,∴C 不对.函数y =2cos 2x 的图象向右平移5π12个单位, 可得2cos 2⎪⎭⎫ ⎝⎛-125πx =2cos ⎪⎭⎫ ⎝⎛-652πx=2sin ⎪⎭⎫ ⎝⎛+-2652ππx =2sin ⎪⎭⎫ ⎝⎛-32πx . ∴D 项正确.故选D. 【答案】 D 二、填空题7.已知函数f (x )=A sin(ωx +φ)⎪⎭⎫ ⎝⎛<><2,0,0πϕωA 的图象与y 轴的交点为(0,1),它在y 轴右侧的第一个最高点和第一个最低点的坐标分别为(x 0,2)和(x 0+2π,-2),则f (x )=________.【解析】 由题意可得A =2,T 2=2π,T =4π,∴ω=2πT =2π4π=12,∴f (x )=2sin ⎪⎭⎫⎝⎛+ϕ2x ,∴f (0)=2sin φ=1.由|φ|<π2,∴φ=π6,∴f (x )=2sin ⎪⎭⎫⎝⎛+62πx . 【答案】 2sin ⎪⎭⎫⎝⎛+62πx8.已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R .若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为________.【解析】 f (x )=sin ωx +cos ωx =2sin ⎪⎭⎫ ⎝⎛+4πωx ,因为f (x )在区间(-ω,ω)内单调递增,且函数图象关于直线x =ω对称,所以f (ω)必为一个周期上的最大值,所以有ω·ω+π4=2k π+π2,k ∈Z ,所以ω2=π4+2k π,k ∈Z .又ω-(-ω)≤2πω2,即ω2≤π2,则ω2=π4,所以ω=π2.【答案】π29.已知sin ⎪⎭⎫ ⎝⎛-απ3=13⎪⎭⎫ ⎝⎛<<20πα,则sin ⎪⎭⎫⎝⎛+απ6=________.【解析】 ∵sin ⎪⎭⎫ ⎝⎛-απ3=13,∴cos ⎪⎭⎫ ⎝⎛+απ6=cos ⎥⎦⎤⎢⎣⎡--)3(2αππ=sin ⎪⎭⎫ ⎝⎛-απ3=13;又0<α<π2,∴π6<π6+α<2π3, ∴sin ⎪⎭⎫ ⎝⎛+απ6=223.【答案】22310.已知π2<β<α<34π,cos(α-β)=1213,sin(α+β)=-35,则sin2α=__________A.5665 B .-5665 C.6556D .-6556【解析】由题意得π2<β<α<3π4,则0<α-β<π4,π<α+β<3π2,由cos(α-β)=1213⇒sin(α-β)=513,sin(α+β)=-35⇒cos(α+β)=-45,则sin2α=sin[(α-β)+(α+β)]=sin(α-β)cos(α+β)+cos(α-β)sin(α+β)=513×(-45)+1213×(-35)=-5665,故选B.【答案】 B 三、解答题11.已知函数f (x )=sin ωx cos ωx -3cos 2ωx +32(ω>0)图象的两条相邻对称轴为π2.(1)求函数y =f (x )的对称轴方程;(2)若函数y =f (x )-13在(0,π)上的零点为x 1,x 2,求cos(x 1-x 2)的值.【解析】 (1)函数f (x )=sin ωx ·cos ωx -3cos 2ωx +32.化简可得f (x )=12sin 2ωx -32cos 2ωx =sin ⎪⎭⎫ ⎝⎛-32πωx ,由题意可得周期T =π,∴π=2π2ω∴w =1∴f (x )=sin ⎪⎭⎫ ⎝⎛-32πx故函数y =f (x )的对称轴方程为2x -π3=k π+π2(k ∈Z ),即x =k π2+5π12(k ∈Z )(2)由函数y =f (x )-13在(0,π)上的零点为x 1,x 2,可知sin ⎪⎭⎫ ⎝⎛-321πx =sin ⎪⎭⎫ ⎝⎛-322πx =13>0,且0<x 1<5π12<x 2<2π3. 易知(x 1,f (x 1))与(x 2,f (x 2))关于x =5π12对称, 则x 1+x 2=5π6,∴cos(x 1-x 2)=cos ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--1165x x π=cos ⎪⎭⎫ ⎝⎛-6521πx =cos ⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-2321ππx=sin ⎪⎭⎫ ⎝⎛-321πx =13.12.已知函数f (x )=23sin ⎪⎭⎫ ⎝⎛+6πωx cos ωx (0<ω<2),且f (x )的图象过点⎪⎪⎭⎫⎝⎛23,125π(1)求ω的值及函数f (x )的最小正周期; (2)将y =f (x )的图象向右平移π6个单位,得到函数y =g (x )的图象,已知g ⎪⎭⎫ ⎝⎛2α=536,求cos ⎪⎭⎫ ⎝⎛-32πα的值.【解】 (1)f (x )=23sin ⎪⎭⎫ ⎝⎛+6πωx cos ωx =3sin ωx cos ωx +3cos 2ωx =32sin2ωx +32cos2ωx +32=3sin ⎪⎭⎫ ⎝⎛+62πωx +32, 因为函数y =f (x )的图象过点⎪⎪⎭⎫⎝⎛23,125π,。

2020版高考数学导数及其应用 Word版含解析

2020版高考数学导数及其应用  Word版含解析

第2课时 导数与方程题型一 求函数零点个数例1 已知函数f (x )=2a 2ln x -x 2(a >0). (1)求函数f (x )的单调区间;(2)讨论函数f (x )在区间(1,e 2)上零点的个数(e 为自然对数的底数). 解 (1)∵f (x )=2a 2ln x -x 2,∴f ′(x )=2a 2x -2x =2a 2-2x 2x =-2(x -a )(x +a )x ,∵x >0,a >0,当0<x <a 时,f ′(x )>0, 当x >a 时,f ′(x )<0.∴f (x )的单调增区间是(0,a ),单调减区间是(a ,+∞). (2)由(1)得f (x )max =f (a )=a 2(2ln a -1). 讨论函数f (x )的零点情况如下:①当a 2(2ln a -1)<0,即0<a <e 时,函数f (x )无零点,在(1,e 2)上无零点;②当a 2(2ln a -1)=0,即a =e 时,函数f (x )在(0,+∞)内有唯一零点a ,而1<a =e<e 2,∴f (x )在(1,e 2)内有一个零点;③当a 2(2ln a -1)>0,即a >e 时,由于f (1)=-1<0,f (a )=a 2(2ln a -1)>0,f (e 2)=2a 2ln(e 2)-e 4=4a 2-e 4=(2a -e 2)(2a +e 2),当2a -e 2<0,即e<a <e 22时,1<e<a <e 22<e 2,f (e 2)<0,由函数f (x )的单调性可知,函数f (x )在(1,a )内有唯一零点x 1,在(a ,e 2)内有唯一零点x 2, ∴f (x )在(1,e 2)内有两个零点.当2a -e 2≥0,即a ≥e 22>e 时,f (e 2)≥0,而且f (e)=2a 2·12-e =a 2-e>0,f (1)=-1<0,由函数的单调性可知,无论a ≥e 2,还是a <e 2,f (x )在(1,e)内有唯一的零点,在(e ,e 2)内没有零点,从而f (x )在(1,e 2)内只有一个零点.综上所述,当0<a <e 时,函数f (x )在区间(1,e 2)上无零点;当a =e 或a ≥e 22时,函数f (x )在区间(1,e 2)上有一个零点;当e<a <e 22时,函数f (x )在区间(1,e 2)上有两个零点.思维升华 (1)可以通过构造函数,将两曲线的交点问题转化为函数零点问题.(2)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,并借助函数的大致图象判断方程根的情况. 跟踪训练1 设函数f (x )=ln x +mx,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3的零点的个数.解 (1)由题设,当m =e 时,f (x )=ln x +ex ,则f ′(x )=x -ex2(x >0),由f ′(x )=0,得x =e.∴当x ∈(0,e)时,f ′(x )<0,f (x )在(0,e)上单调递减, 当x ∈(e ,+∞)时,f ′(x )>0,f (x )在(e ,+∞)上单调递增, ∴当x =e 时,f (x )取得极小值f (e)=ln e +ee =2,∴f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x ≥0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,因此x =1也是φ(x )的最大值点, ∴φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图象(如图),可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.题型二 根据函数零点情况求参数范围例2 (2018·南京联合体调研)已知f (x )=12x 2-a ln x ,a ∈R .(1)求函数f (x )的单调增区间;(2)若函数f (x )有两个零点,求实数a 的取值范围,并说明理由. (参考求导公式:[f (ax +b )]′=af ′(ax +b ))解 (1)由题知f ′(x )=x -a x =x 2-ax,x >0,当a ≤0时,f ′(x )>0,函数f (x )的增区间为(0,+∞); 当a >0时,f ′(x )=(x +a )(x -a )x ,令f ′(x )>0,因为x >0,所以x +a >0,所以x >a , 所以函数f (x )的单调增区间为(a ,+∞). 综上,当a ≤0时,f (x )的单调增区间为(0,+∞); 当a >0时,f (x )的单调增区间为(a ,+∞).(2)由(1)知,若a ≤0,f (x )在(0,+∞)上为增函数,函数f (x )至多有一个零点,不合题意. 若a >0,当x ∈(0,a )时,f ′(x )<0,f (x )在(0,a )上为减函数; 当x ∈(a ,+∞)时,f ′(x )>0,f (x )在(a ,+∞)上为增函数, 所以f (x )min =f (a )=12a -12a ln a =12a (1-ln a ).要使f (x )有两个零点,则f (x )min =12a (1-ln a )<0,所以a >e. 下面证明:当a >e 时,函数f (x )有两个零点.因为a >e ,所以1∈(0,a ),而f (1)=12>0,所以f (x )在(0,a )上存在唯一零点.方法一 又f (e a )=12e a 2-a ⎝⎛⎭⎫12+ln a =12a (e a -1-2ln a ), 令h (a )=e a -1-2ln a ,a >e ,h ′(a )=e -2a >0,所以h (a )在(e ,+∞)上单调递增, 所以h (a )>h (e)=e 2-3>0,所以f (x )在(a ,+∞)上也存在唯一零点. 综上,当a >e 时,函数f (x )有两个零点.所以当f (x )有两个零点时,实数a 的取值范围为(e ,+∞). 方法二 先证x ∈(1,+∞)有ln x <x -1, 所以f (x )=12x 2-a ln x >12x 2-ax +a .因为a >e ,所以a +a 2-2a >a >a .因为12(a +a 2-2a )2-a (a +a 2-2a )+a =0.所以f (a +a 2-2a )>0,所以f (x )在(a ,+∞)上也存在唯一零点;综上,当a >e 时,函数f (x )有两个零点.所以当f (x )有两个零点时,实数a 的取值范围为(e ,+∞).思维升华 函数的零点个数可转化为函数图象的交点个数,确定参数范围时要根据函数的性质画出大致图象,充分利用导数工具和数形结合思想.跟踪训练2 已知函数f (x )=x ln x ,g (x )=-x 2+ax -3(a 为实数),若方程g (x )=2f (x )在区间⎣⎡⎦⎤1e ,e 上有两个不等实根,求实数a 的取值范围. 解 由g (x )=2f (x ),可得2x ln x =-x 2+ax -3,a =x +2ln x +3x ,设h (x )=x +2ln x +3x(x >0),所以h ′(x )=1+2x -3x 2=(x +3)(x -1)x 2.所以x 在⎣⎡⎦⎤1e ,e 上变化时,h ′(x ),h (x )的变化情况如下表:又h ⎝⎛⎭⎫1e =1e +3e -2,h (1)=4,h (e)=3e +e +2. 且h (e)-h ⎝⎛⎭⎫1e =4-2e +2e<0. 所以h (x )min =h (1)=4,h (x )max =h ⎝⎛⎭⎫1e =1e +3e -2, 所以实数a 的取值范围为4<a ≤e +2+3e ,即a 的取值范围为⎝⎛⎦⎤4,e +2+3e .1.已知函数f (x )=a +x ·ln x (a ∈R ),试求f (x )的零点个数. 解 f ′(x )=(x )′ln x +x ·1x =x (ln x +2)2x ,令f ′(x )>0,解得x >e -2, 令f ′(x )<0,解得0<x <e -2, 所以f (x )在(0,e -2)上单调递减, 在(e -2,+∞)上单调递增. f (x )min =f (e -2)=a -2e,显然当a >2e 时,f (x )min >0,f (x )无零点,当a =2e 时,f (x )min =0,f (x )有1个零点,当a <2e 时,f (x )min <0,f (x )有2个零点.2.已知f (x )=1x +e x e -3,F (x )=ln x +e xe -3x +2.(1)判断f (x )在(0,+∞)上的单调性; (2)判断函数F (x )在(0,+∞)上零点的个数.解 (1)f ′(x )=-1x 2+e x e =x 2e x-ee x 2,令f ′(x )>0,解得x >1,令f ′(x )<0,解得0<x <1, 所以f (x )在(0,1)上单调递减, 在(1,+∞)上单调递增. (2)F ′(x )=f (x )=1x +e xe -3,由(1)得∃x 1,x 2,满足0<x 1<1<x 2,使得f (x )在(0,x 1)上大于0,在(x 1,x 2)上小于0,在(x 2,+∞)上大于0, 即F (x )在(0,x 1)上单调递增,在(x 1,x 2)上单调递减,在(x 2,+∞)上单调递增, 而F (1)=0,x →0时,F (x )→-∞, x →+∞时,F (x )→+∞, 画出函数F (x )的草图,如图所示.故F (x )在(0,+∞)上的零点有3个.3.已知函数f (x )=ax 2(a ∈R ),g (x )=2ln x ,且方程f (x )=g (x )在区间[2,e]上有两个不相等的解,求a 的取值范围.解 由已知可得方程a =2ln xx2在区间[2,e]上有两个不等解,令φ(x )=2ln xx 2,由φ′(x )=2(1-2ln x )x 3易知,φ(x )在(2,e)上为增函数,在(e ,e)上为减函数, 则φ(x )max =φ(e)=1e ,由于φ(e)=2e 2,φ(2)=ln 22,φ(e)-φ(2)=2e 2-ln 22=4-e 2ln 22e 2=24e 2ln e ln 22e-<ln 81-ln 272e 2<0, 所以φ(e)<φ(2). 所以φ(x )min =φ(e),如图可知φ(x )=a 有两个不相等的解时,需ln 22≤a <1e.即f (x )=g (x )在[2,e]上有两个不相等的解时,a 的取值范围为⎣⎡⎭⎫ln 22,1e .4.已知函数f (x )=(x -2)e x +a (x -1)2有两个零点. (1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2.(1)解 f ′(x )=(x -1)e x +2a (x -1)=(x -1)(e x +2a ). ①设a =0,则f (x )=(x -2)e x ,f (x )只有一个零点. ②设a >0,则当x ∈(-∞,1)时,f ′(x )<0; 当x ∈(1,+∞)时,f ′(x )>0,所以f (x )在(-∞,1)内单调递减,在(1,+∞)内单调递增. 又f (1)=-e ,f (2)=a ,取b 满足b <0且b <ln a2,则f (b )>a2(b -2)+a (b -1)2=a ⎝⎛⎭⎫b 2-32b >0, 故f (x )存在两个零点.③设a <0,由f ′(x )=0得x =1或x =ln(-2a ). 若a ≥-e2,则ln(-2a )≤1,故当x ∈(1,+∞)时,f ′(x )>0,因此f (x )在(1,+∞)内单调递增. 又当x ≤1时,f (x )<0,所以f (x )不存在两个零点.若a <-e2,则ln(-2a )>1,故当x ∈(1,ln(-2a ))时,f ′(x )<0;当x ∈(ln(-2a ),+∞)时,f ′(x )>0.因此f (x )在(1,ln(-2a ))内单调递减,在(ln(-2a ),+∞)内单调递增. 又当x ≤1时,f (x )<0,所以f (x )不存在两个零点. 综上,a 的取值范围为(0,+∞).(2)证明 不妨设x 1<x 2,由(1)知,x 1∈(-∞,1),x 2∈(1,+∞),2-x 2∈(-∞,1), f (x )在(-∞,1)内单调递减, 所以x 1+x 2<2等价于f (x 1)>f (2-x 2), 即f (2-x 2)<0. 由于222222(2)e(1)x f x x a x --=-+-,而()22222(2)e (1)0xf x x a x =-+-=, 所以222222(2)e(2)e .x x f x x x --=---设g(x)=-x e2-x-(x-2)e x,则g′(x)=(x-1)(e2-x-e x).所以当x>1时,g′(x)<0.而g(1)=0,故当x>1时,g(x)<0.从而g(x2)=f(2-x2)<0,故x1+x2<2.5.(2018·南通模拟)已知函数f (x )=e x -|x -a |,其中a ∈R . (1)若f (x )在R 上单调递增,求实数a 的取值范围;(2)若函数有极大值点x 2和极小值点x 1,且f (x 2)-f (x 1)≥k (x 2-x 1)恒成立,求实数k 的取值范围.解 (1)因为f (x )=e x -|x -a |=⎩⎪⎨⎪⎧e x -x +a ,x ≥a ,e x+x -a ,x <a ,则f ′(x )=⎩⎪⎨⎪⎧e x-1,x ≥a ,e x +1,x <a .因为f (x )在R 上单调递增, 所以f ′(x )≥0恒成立,当x <a 时,f ′(x )=e x +1>1>0恒成立; 当x ≥a 时,要使f ′(x )=e x -1≥0恒成立, 所以f ′(a )≥0,即a ≥0.所以实数a 的取值范围为[0,+∞).(2)由(1)知,当a ≥0时,f (x )在R 上单调递增,不符合题意, 所以有a <0.此时,当x <a 时,f ′(x )=e x +1>1>0,f (x )单调递增; 当x ≥a 时,f ′(x )=e x -1,令f ′(x )=0,得x =0, 所以f ′(x )<0在(a,0)上恒成立,f (x )在(a,0)上单调递减, f ′(x )>0在(0,+∞)上恒成立,f (x )在(0,+∞)上单调递增. 所以f (x )极大值=f (a )=e a ,f (x )极小值=f (0)=1+a ,即a <0符合题意. 由f (x 2)-f (x 1)≥k (x 2-x 1)恒成立, 可得e a -a -1≥ka 对任意a <0恒成立.设g (a )=e a -(k +1)a -1,求导得g ′(a )=e a -(k +1).①当k ≤-1时,g ′(a )>0恒成立,g (a )在(-∞,0)上单调递增,又因为g (-1)=1e+k <0,与g (a )≥0矛盾. ②当k ≥0时,g ′(a )<0在(-∞,0)上恒成立,g (a )在(-∞,0)上单调递减, 又因为当a →0时,g (a )→0,所以此时g (a )>0恒成立,符合题意. ③当-1<k <0时,g ′(a )>0在(-∞,0)上的解集为(ln(k +1),0), 即g (a )在(ln(k +1),0)上单调递增,又因为当a →0时,g (a )→0,所以g (ln(k +1))<0,不合题意.综上,实数k 的取值范围为[0,+∞).。

2020高考数学-导数压轴题型归类总结(解析版)

2020高考数学-导数压轴题型归类总结(解析版)

导数压轴题型归类总结目 录一、导数单调性、极值、最值的直接应用 (1) 二、交点与根的分布 (23) 三、不等式证明 (31)(一)作差证明不等式(二)变形构造函数证明不等式 (三)替换构造不等式证明不等式四、不等式恒成立求字母范围 (51)(一)恒成立之最值的直接应用 (二)恒成立之分离常数(三)恒成立之讨论字母范围五、函数与导数性质的综合运用 (70) 六、导数应用题 (84)七、导数结合三角函数 (85)书中常用结论⑴sin ,(0,)x x x π<∈,变形即为sin 1xx<,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+ ⑶ln(1)x x >+ ⑷ln ,0x x x e x <<>.一、导数单调性、极值、最值的直接应用1. (切线)设函数a x x f -=2)(.(1)当1=a 时,求函数)()(x xf x g =在区间]1,0[上的最小值;(2)当0>a 时,曲线)(x f y =在点)))((,(111a x x f x P >处的切线为l ,l 与x 轴交于点)0,(2x A 求证:a x x >>21.解:(1)1=a 时,x x x g -=3)(,由013)(2=-='x x g ,解得33±=x .所以当33=x 时,)(x g 有最小值932)33(-=g . (2)证明:曲线)(x f y =在点)2,(211a x x P -处的切线斜率112)(x x f k ='=曲线)(x f y =在点P 处的切线方程为)(2)2(1121x x x a x y -=--. 令0=y ,得12122x a x x +=,∴12111211222x x a x x a x x x -=-+=-∵a x >1,∴02121<-x x a ,即12x x <. 又∵1122x a x ≠,∴a x ax x a x x a x x =⋅>+=+=11111212222222 所以a x x >>21.2. (2009天津理20,极值比较讨论)已知函数22()(23)(),x f x x ax a a e x =+-+∈R 其中a ∈R ⑴当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜率; ⑵当23a ≠时,求函数()f x 的单调区间与极值. 解:本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力及分类讨论的思想方法。

2020-2021学年高考数学(理)考点:导数的概念及运算

2020-2021学年高考数学(理)考点:导数的概念及运算

A. x y 1 0 B. 2x y 2 1 0 C. 2x y 2 1 0 D. x y 1 0 【答案】C 【解析】由 y 2sin x cos x ,得 y 2 cos x sin x ,
y |x 2 cos sin 2 , 曲线 y 2sin x cos x 在点 ( , 1) 处的切线方程为 y 1 2(x ) ,
6.(2018•新课标Ⅰ)设函数 f (x) x3 (a 1)x2 ax .若 f (x) 为奇函数,则曲线 y f (x) 在点
(0, 0) 处的切线方程为 ( )
A. y 2x
B. y x
C. y 2x
D. y x
【答案】D 【解析】函数 f (x) x3 (a 1)x2 ax ,若 f (x) 为奇函数, f (x) f (x) ,
f′(x)=axln a 1
f′(x)=x 1
f′(x)=xln a
4.导数的运算法则
若 f′(x),g′(x)存在,则有
(1)[f (x)±g(x)]′=f′(x)±g′(x);
(2)[f (x)·g(x)]′=f′(x)g(x)+f (x)g′(x);
[ ]f x f′xgx-f xg′x
(3) gx ′=
D. a e1 , b 1
由在点 (1, ae) 处的切线方程为 y 2x b ,
可得 ae 1 0 2 ,解得 a e1 ,
又切点为 (1,1) ,可得1 2 b ,即 b 1 ,
故选 D . 5.(2018•全国)若函数 f (x) ax2 1图象上点 (1 , f (1) ) 处的切线平行于直线 y 2x 1 ,则
B. y lnx
C. y ex
D. y x3
【答案】A

2020年高考数学 导数 解答题专项练习(含答案详解)

2020年高考数学 导数 解答题专项练习(含答案详解)

2020年高考数学导数解答题专项练习(含答案解析)1.已知函数f(x)=x2-mln x,h(x)=x2-x+a.(1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,求实数m的取值范围;(2)当m=2时,若函数k(x)=f(x)-h(x)在区间(1,3)上恰有两个不同零点,求实数a的取值范围.2.设函数已知函数f(x)=ae x-x+1.(1)求函数f(x)的单调区间;(2)若f(x)在(0,3) 上只有一个零点,求a的取值范围;3.已知函数f(x)=lnx+a(x-1)2(a>0).(1)讨论f(x)的单调性;(2)若f(x)在区间(0,1)内有唯一的零点x0,证明:.4.已知函数f(x)=ae2x+(a﹣2) e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.5.已知函数f(x)=2lnx-2mx+x2(m>0).(1)讨论函数f(x)的单调性;(2)当时,若函数f(x)的导函数f/(x)的图象与x轴交于A,B两点,其横坐标分别为x1,x2(x1<x2),线段AB的中点的横坐标为x0,且x1,x2恰为函数h(x)=lnx-cx2-bx的零点.求证:.6.已知函数,g(x)=mx.(1)求函数f(x)的单调区间;(2)当a=0时,f(x)≤g(x)恒成立,求实数m的取值范围;(3)当a=1时,求证:当x>1时,.7.已知函数f(x)=x-alnx+a-1(a∈R).(I)讨论f(x)的单调性;(Ⅱ)若x∈[e a,+∞]时,f(x)≥0恒成立,求实数a的取值范围.8.已知函数R.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求实数a的取值范围.9.已知函数f(x)=ln x-kx,其中k∈R为常数.(1)讨论函数f(x)的单调性;(2)若f(x)有两个相异零点x1,x2(x1<x2),求证:ln x2>2-ln x1.10.已知函数f(x)=x-alnx,a∈R.(1)研究函数f(x)的单调性;(2)设函数f(x)有两个不同的零点x1,x2,且x1<x2.①求a的取值范围;②求证:x1x2>e2.11.设函数f(x)=ex-1-x-ax2.(1)若a=0,求f(x)的单调区间;(2)若当x≥0时f(x)≥0恒成立,求a的取值范围.12.已知函数f(x)=lnx-mx2,g(x)=0.5mx2+x,mϵR,令F(x)=f(x)+g(x).(1)求函数f(x)的单调区间;(2)若关于x的不等式F(x)≤mx-1恒成立,求整数m的最小值.13.已知函数f(x)=lnx-mx(m为常数).(1)讨论函数f(x)的单调区间;(2)当时, 设g(x)=2f(x)+x2的两个极值点x1,x2(x1<x2)恰为h(x)=lnx-cx2-bx的零点, 求的最小值.14.设函数f(x)=(x-1)e x-kx2.(1)当k=1时,求函数f(x)的单调区间;(2)若f(x)在x∈[0,+∞)上是增函数,求实数k的取值范围.15.已知函数f(x)=ln x+-1.(1)求函数f(x)的单调区间;(2)设m∈R,对任意的a∈(-1,1),总存在x0∈[1,e],使得不等式ma-f(x0)<0成立,求实数m的取值范围.16.已知函数.(1)求的单调区间;(2)设,若对任意,均存在,使得,求的取值范围.17.设函数f(x)=alnx﹣bx2.(1)当b=1时,讨论函数f(x)的单调性;(2)当a=1,b=0时,函数g(x)=f(x)﹣kx,k为常数,若函数g(x)有两个相异零点x1,x2,证明:.18.已知函数f(x)=axlnx﹣x+1(a≥0).(1)当a=1时,求f(x)的最小值;(3)证明:当m>n>1时,m n﹣1<n m﹣1.19.已知函数在处的切线与轴平行,()(1)试讨论f(x)在上的单调性;(2)①设,求g(x)的最小值;②证明:.20.已知函数f(x)=(x﹣1)2+a(lnx﹣x+1)(其中a∈R,且a为常数)(1)当a=4时,求函数y=f(x)的单调区间;(2)若对于任意的x∈(1,+∞),都有f(x)>0成立,求a的取值范围;(3)若方程f(x)+a+1=0在x∈(1,2)上有且只有一个实根,求a的取值范围.2020年高考数学 导数 解答题专项练习(含答案解析)答案解析1.解:(1)由f(x)≥h(x),得m ≤x ln x 在(1,+∞)上恒成立.令g(x)=x ln x ,则g ′(x)=ln x -1ln x 2,当x ∈(1,e)时,g ′(x)<0;当x ∈(e ,+∞)时,g ′(x)>0,所以g(x)在(1,e)上递减,在(e ,+∞)上递增.故当x=e 时,g(x)的最小值为g(e)=e.所以m ≤e.即m 的取值范围是(-∞,e].(2)由已知可得k(x)=x-2ln x-a.函数k(x)在(1,3)上恰有两个不同零点,相当于函数φ(x)=x-2ln x 与直线y=a 有两个不同的交点.φ′(x)=1-2x =x -2x ,当x ∈(1,2)时,φ′(x)<0,φ(x)递减,当x ∈(2,3)时,φ′(x)>0,φ(x)递增.又φ(1)=1,φ(2)=2-2ln 2,φ(3)=3-2ln 3,要使直线y=a 与函数φ(x)=x-2ln x 有两个交点,则2-2ln 2<a <3-2ln 3.即实数a 的取值范围是(2-2ln 2,3-2ln 3).2.解:3.解:4.解:5.解:6.解:7.解:8.解:9.解:10.解:11.解:(1)a=0时,f(x)=e x-1-x,f′(x)=e x-1.当x∈(-∞,0)时,f′(x)<0;当x∈(0,+∞)时,f′(x)>0.故f(x)在(-∞,0)单调减少,在(0,+∞)单调增加(2)f′(x)=e x-1-2ax.由(1)知e x≥1+x,当且仅当x=0时等号成立.故f′(x)≥x-2ax=(1-2a)x,从而当1-2a≥0,即a≤0.5时,f′(x)≥0(x≥0),而f(0)=0,于是当x≥0时,f(x)≥0.由e x>1+x(x≠0)得e-x>1-x(x≠0),从而当a>时,f′(x)<e x-1+2a(e-x-1)=e-x(e x-1)(e x-2a),故当x∈(0,ln2a)时, f′(x)<0,而f(0)=0,于是当x∈(0,ln2a)时,f(x)<0,综上可得a的取值范围为(-∞,0.5].12.解:13.解:14.15.16.17.18.19.解:20.解:。

专题01 集合的含义及运算-名师揭秘2020年高考数学(文)一轮总复习之集合函数导数 Word版含解析

专题01 集合的含义及运算-名师揭秘2020年高考数学(文)一轮总复习之集合函数导数 Word版含解析

专题01 集合的含义及运算一、本专题要特别小心:1.元素与集合,集合与集合关系混淆陷阱;2.造成集合中元素重复陷阱;3.隐含条件陷阱;4.代表元变化陷阱;5.分类讨论陷阱;6.子集中忽视空集陷阱;7.新定义问题;8.任意、存在问题中的最值陷阱.二、【学习目标】1.了解集合的含义、元素与集合的“属于”关系,能用自然语言、图形语言、集合语言(列举法或描述法)来描述不同的具体问题,理解集合中元素的互异性;2.理解集合之间包含和相等的含义,能识别给定集合的子集,了解在具体情境中全集与空集的含义;3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集,理解在给定集合中一个子集的补集的含义,会求给定子集的补集;4.能使用韦恩(V enn)图表达集合间的关系与运算.三、【知识要点】1.集合的含义与表示(1)一般地,我们把研究对象统称为元素,把一些元素组成的总体叫集合,简称集.(2)集合中的元素的三个特征:确定性、互异性、无序性.(3)集合的表示方法有:描述法、列举法、区间法、图示法.(4)集合中元素与集合的关系分为属于与不属于两种,分别用“∈”或“∉”来表示.(5)常用的数集:自然数集N;正整数集N*(或N+);整数集Z;有理数集Q;实数集R.2.集合之间的关系(1)一般地,对于两个集合A,B.如果集合A的任何一个元素都是集合B的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集,记作A⊆B;若A⊆B,且A≠B,,我们就说A是B的真子集.(2)不含任何元素的集合叫做空集,记作φ,它是任何一个集合的子集,是任何一个非空集合的真子集。

3.集合的基本运算(1)并集:A∪B={x|x∈A或x∈B};(2)交集:A∩B={x|x∈A且x∈B};(3)补集:∁U A=.4.集合的运算性质(1)A∩B=A⇔A⊆B,A∩A=A,A∩∅=∅;(2)A∪B=A⇔A⊇B,A∪A=A,A∪∅=A;(3)A⊆B,B⊆C,则A⊆C;(4)∁U(A∩B)=∁U A∪∁U B,∁U(A∪B)=∁U A∩∁U B,A∩∁U A=∅,A∪∁U A=U,∁U(∁U A)=A;(5)A⊆B,B⊆A,则A=B.四.题型方法规律总结(一)集合的含义与表示例1.已知集合,则中元素的个数为A.9 B.8 C.5 D.4【答案】A【解析】,当时,;当时,;当时,;所以共有9个,选A.练习1.给出下列四个关系式:(1);(2);(3);(4),其中正确的个数是()A.1 B.2 C.3 D.4【答案】B【解析】(1)R为实数集,为实数,所以正确;(2)Z、Q分别为两个集合,集合间不能用属于符号,所以错误;(3)空集中没有任何元素,所以错误;(4)空集为任何集合的子集,所以正确.故选B.练习2.若A={1,2},B={(x,y)|x∈A,y∈A},则集合B中元素的个数为()A.1 B.2 C.3 D.4【答案】D【解析】由题意得集合,所以集合B中共有4个元素.故选D.(二)集合中代表元易错点揭秘例2.已知集合A满足条件:若a∈A,则∈A,那么集合A中所有元素的乘积为() A.-1 B.1 C.0 D.±1【答案】B【解析】由题意,当时,,令代入,则,则,则,即,所以,故选B.练习1.若集合A={x|mx2+2x+m=0,m∈R}中有且只有一个元素,则m的取值集合是A.{1}B.{}C.{0,1}D.{,0,1}【答案】D【解析】时,,满足题意;时,,.综上的取值集合是.练习2.用列举法表示集合=________.【答案】{-11,-6,-3,-2,0,1,4,9}.【解析】,为的因数则则答案为练习3.集合{|y y ∈N =用列举法可表示为__________.【答案】{}1,2,4,8 【解析】∵,1x x ∈≠N ,∴当0x =时, 8y =-,不符合题意, 当2x =时, 8y =,符合题意, 当3x =时, 4y =,符合题意, 当4x =时, 83y =,不符合题意, 当5x =时, 2y =,符合题意,当6x =时, 85y =,不符合题意, 当7x =时, 86y =,不符合题意,当8x =时, 87y =,不符合题意,当9x =时, 1y =,符合题意,则y =,不符合题意.∴用列举法可表示为{}1,2,4,8. (三)集合的基本关系 例3.已知集合,,若,则实数的取值集合为( )A .B .C .D .【答案】D【解析】∵集合M={x|x 2=1}={﹣1,1},N={x|ax=1},N ⊆M ,∴当a=0时,N=∅,成立; 当a≠0时,N={}, ∵N ⊆M ,∴或=1.解得a=﹣1或a=1,综上,实数a 的取值集合为{1,﹣1,0}.故选:D.练习1.已知集合,,则的真子集的个数为()A.3 B.4 C.7 D.8【答案】C【解析】由题意得,,∴,∴的真子集的个数为个.故选C.练习2.若函数在区间内没有最值,则的取值范围是()A.B.C.D.【答案】B【解析】函数的单调区间为,由,得.∵函数在区间内没有最值,∴函数在区间内单调,∴,∴,解得.由,得.当时,得;当时,得,又,故.综上得的取值范围是.故选B.练习3.已知集合,,若,则实数的取值范围是( ) A.B.C.D.【答案】A【解析】由已知得,由,则,又,所以.故选A.(四)子集中常见错误例4. 已知集合,,若,则实数的取值范围是( )A.B.C.D.【答案】C【解析】当集合时,,解得,此时满足;当,即时,应有:,据此可得:,则,综上可得:实数的取值范围是.本题选择C选项.练习1.Z(M)表示集合M的子集个数,设集合A=,B=,则= A.3 B.4 C.5 D.7【答案】B【解析】;B=∴;集合的子集有:∴Z(A∩B)=4.故选:B练习2.设集合,不等式的解集为B.(Ⅰ)当时,求集合A,B;(Ⅱ)当,求实数的取值范围.【答案】(Ⅰ),;(Ⅱ)或.【解析】(Ⅰ)当时,,.(Ⅱ)①若,即时,可得, 满足,故符合题意.②当时,由,可得,且等号不能同时成立, 解得. 综上可得或.∴实数的取值范围是.练习3.设全集U=R ,集合A={x|1≤x <4},B={x|2a≤x <3-a}.(1)若a=-2,求B∩A ,B∩(∁U A);(2)若A ∪B=A ,求实数a 的取值范围. 【答案】(1)B ∩A =[1,4),B ∩(∁U A )= [-4,1)∪[4,5);(2) .【解析】(1)∵A ={x |1≤x <4},∴∁U A ={x |x <1或x ≥4},∵B ={x |2a ≤x <3-a },∴a =-2时,B ={-4≤x <5},所以B ∩A =[1,4), B ∩(∁U A )={x |-4≤x <1或4≤x <5}=[-4,1)∪[4,5). (2)A ∪B =A ⇔B ⊆A , ①B =∅时,则有2a ≥3-a ,∴a ≥1, ②B ≠∅时,则有,∴,综上所述,所求a 的取值范围为.(五)集合的基本运算 例5.已知,,则()R AB ð中的元素个数为( )A .1B .2C .6D .8【答案】B【解析】解:{1x x =<,或3}x ≥,,,的元素个数为2个.故选:B .练习1.已知集合,,若A B A ⋂=,则实数a 的取值范围是( )A .(],3-∞-B .(),3-∞-C .(],0-∞D .[)3,+∞ 【答案】A【解析】由已知得[]3,3A =-,由A B A ⋂=,则A B ⊆,又[),B a =+∞,所以3a ≤-.故选A.练习2.集合,,若,则的取值范围是( )A .B .C .D .【答案】B 【解析】根据题意,可得,,要使,则,故选B.练习3.设全集是实数集,,则图中阴影部分所表示的集合是________.【答案】【解析】∵,∴, ∴.(六)集合的应用例6.学校先举办了一次田径运动会,某班共有8名同学参赛,又举办了一次球类运动会,这个班有12名同学参赛,两次运动会都参赛的有3人.两次运动会中,这个班总共的参赛人数为( ) A .20 B .17C .14D .23【答案】B【解析】因为参加田径运动会的有8名同学,参加球类运动会的有12名同学,两次运动会都参加的有3人,所以两次运动会中,这个班总共的参赛人数为.故选B练习1.已知集合.给定一个函数,定义集合若对任意的成立,则称该函数具有性质“”(I)具有性质“”的一个一次函数的解析式可以是_____;(Ⅱ)给出下列函数:①;②;③,其中具有性质“”的函数的序号是____.(写出所有正确答案的序号)【答案】(答案不唯一)①②【解析】(I)对于解析式:,因为,,…符合。

2020年 高考数学(文科)常考基础题、易错题 提分必刷题之 导数的概念及运算

2020年 高考数学(文科)常考基础题、易错题 提分必刷题之 导数的概念及运算

第1讲导数的概念及运算一、填空题1.设y=x2e x,则y′=________.解析y′=2x e x+x2e x=(2x+x2)e x.答案(2x+x2)e x2.已知函数f(x)的导函数为f′(x),且满足f(x)=2x·f′(1)+ln x,则f′(1)=________.解析由f(x)=2xf′(1)+ln x,得f′(x)=2f′(1)+1 x,∴f′(1)=2f′(1)+1,则f′(1)=-1.答案-13.曲线y=sin x+e x在点(0,1)处的切线方程是________.解析y′=cos x+e x,故切线斜率为k=2,切线方程为y=2x+1,即2x -y+1=0.答案2x-y+1=04.(2017·苏州调研)已知曲线y=ln x的切线过原点,则此切线的斜率为________.解析y=ln x的定义域为(0,+∞),且y′=1x,设切点为(x0,ln x0),则y′|x=x0=1x0,切线方程为y-ln x0=1x0(x-x0),因为切线过点(0,0),所以-ln x0=-1,解得x0=e,故此切线的斜率为1 e.答案1 e5.若曲线y=ax2-ln x在点(1,a)处的切线平行于x轴,则a=________.解析因为y′=2ax-1x,所以y′|x=1=2a-1.因为曲线在点(1,a)处的切线平行于x轴,故其斜率为0,故2a-1=0,解得a=1 2.答案1 26.(2017·南师附中月考)如图,y=f(x)是可导函数,直线l:y=kx+2是曲线y=f(x)在x=3处的切线,令g(x)=xf(x),其中g′(x)是g(x)的导函数,则g′(3)=________.解析由图形可知:f(3)=1,f′(3)=-13,∵g′(x)=f(x)+xf′(x),∴g′(3)=f(3)+3f′(3)=1-1=0. 答案07.(2017·苏北四市模拟)设曲线y=1+cos xsin x在点⎝⎛⎭⎪⎫π2,1处的切线与直线x-ay+1=0平行,则实数a=________.解析∵y′=-1-cos xsin2x,∴由条件知1a=-1,∴a=-1.答案-18.(2015·全国Ⅱ卷)已知曲线y=x+ln x在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=________.解析由y=x+ln x,得y′=1+1x,得曲线在点(1,1)处的切线的斜率为k=y′|x=1=2,所以切线方程为y-1=2(x-1),即y=2x-1.又该切线与y=ax2+(a+2)x+1相切,消去y,得ax2+ax+2=0,∴a≠0且Δ=a2-8a=0,解得a=8.答案8二、解答题9.已知点M是曲线y=13x3-2x2+3x+1上任意一点,曲线在M处的切线为l,求:(1)斜率最小的切线方程;(2)切线l 的倾斜角α的取值范围.解 (1)y ′=x 2-4x +3=(x -2)2-1≥-1,所以当x =2时,y ′=-1,y =53,所以斜率最小的切线过点⎝ ⎛⎭⎪⎫2,53,斜率k =-1, 所以切线方程为3x +3y -11=0.(2)由(1)得k ≥-1,所以tan α≥-1,所以α∈⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π. 10.已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限.(1)求P 0的坐标;(2)若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程.解 (1)由y =x 3+x -2,得y ′=3x 2+1,由已知令3x 2+1=4,解之得x =±1.当x =1时,y =0;当x =-1时,y =-4.又∵点P 0在第三象限,∴切点P 0的坐标为(-1,-4).(2)∵直线l ⊥l 1,l 1的斜率为4,∴直线l 的斜率为-14.∵l 过切点P 0,点P 0的坐标为(-1,-4),∴直线l 的方程为y +4=-14(x +1),即x +4y +17=0.11.(2016·山东卷改编)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质,下列函数:①y =sin x ;②y =ln x ;③y =e x ;④y =x 3.其中具有T 性质的是________(填序号).解析 若y =f (x )的图象上存在两点(x 1,f (x 1)),(x 2,f (x 2)),使得函数图象在这两点处的切线互相垂直,则f ′(x 1)·f ′(x 2)=-1.对于①:y ′=cos x ,若有cos x 1·cos x 2=-1,则当x 1=2k π,x 2=2k π+π(k∈Z)时,结论成立;对于②:y′=1x,若有1x1·1x2=-1,即x1x2=-1,∵x1>0,x2>0,∴不存在x1,x2,使得x1x2=-1;对于③:y′=e x,若有e x1·e x2=-1,即e x1+x2=-1.显然不存在这样的x1,x2;对于④:y′=3x2,若有3x21·3x22=-1,即9x21x22=-1,显然不存在这样的x1,x2.答案①12.(2017·合肥模拟改编)点P是曲线x2-y-ln x=0上的任意一点,则点P到直线y=x-2的最小距离为________.解析点P是曲线y=x2-ln x上任意一点,当过点P的切线和直线y=x-2平行时,点P到直线y=x-2的距离最小,直线y=x-2的斜率为1,令y=x2-ln x,得y′=2x-1x=1,解得x=1或x=-12(舍去),故曲线y=x2-ln x上和直线y=x-2平行的切线经过的切点坐标为(1,1),点(1,1)到直线y=x-2的距离等于2,∴点P到直线y=x-2的最小距离为 2.答案 213.若函数f(x)=12x2-ax+ln x存在垂直于y轴的切线,则实数a的取值范围是________.解析∵f(x)=12x2-ax+ln x,∴f′(x)=x-a+1x(x>0).∵f(x)存在垂直于y轴的切线,∴f′(x)存在零点,即x+1x-a=0有解,∴a=x+1x≥2(当且仅当x=1时取等号).答案[2,+∞)14.已知函数f(x)=x-2x,g(x)=a(2-ln x)(a>0).若曲线y=f(x)与曲线y=g(x)在x=1处的切线斜率相同,求a的值,并判断两条切线是否为同一条直线.解根据题意有f′(x)=1+2x2,g′(x)=-ax.曲线y=f(x)在x=1处的切线斜率为f′(1)=3,曲线y=g(x)在x=1处的切线斜率为g′(1)=-a,所以f′(1)=g′(1),即a=-3.曲线y=f(x)在x=1处的切线方程为y-f(1)=3(x-1).所以y+1=3(x-1),即切线方程为3x-y-4=0.曲线y=g(x)在x=1处的切线方程为y-g(1)=3(x-1),所以y+6=3(x-1),即切线方程为3x-y-9=0,所以,两条切线不是同一条直线.。

2020年高考数学(理)总复习:导数的简单应用与定积分(解析版)

2020年高考数学(理)总复习:导数的简单应用与定积分(解析版)

2020年高考数学(理)总复习:导数的简单应用与定积分题型一 导数的几何意义及导数的运算 【题型要点解析】(1)曲线y =f (x )在点x =x 0处导数f ′(x 0)的几何意义是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,即k =f ′(x 0),由此当f ′(x 0)存在时,曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为y -f (x 0)=f ′(x 0)(x -x 0).(2)过P 点的切线方程的切点坐标的求解步骤:①设出切点坐标;①表示出切线方程;①已知点P 在切线上,代入求得切点坐标的横坐标,从而求得切点坐标.(3)①分式函数的求导,要先观察函数的结构特征,可化为整式函数或较为简单的分式函数;①对数函数的求导,可先化为和、差的形式;①三角函数的求导,先利用三角函数的公式转化为和或差的形式;①复合函数的求导过程就是对复合函数由外层逐层向里求导.所谓最里层是指此函数已经可以直接引用基本初等函数导数公式进行求导.例1.函数f (x )=14 ln x +x 2-bx +a (b >0,a ①R )的图象在点(b ,f (b ))处的切线的倾斜角为α,则倾斜角α 的取值范围是( )A.⎪⎭⎫⎝⎛2,4ππ B.⎪⎭⎫⎢⎣⎡2,4ππ C.⎪⎭⎫⎢⎣⎡ππ,43 D.⎪⎭⎫⎝⎛ππ,43 【解析】】 依题意得f ′(x )=14x +2x -b ,f ′(b )=14b+b ≥214b ·b =1(b >0),当且仅当14b =b >0,即b =12时取等号,因此有tan α≥1,即π4≤α<π2,即倾斜角α 的取值范围是⎪⎭⎫⎢⎣⎡2,4ππ,选B.【答案】 B例2.若实数a ,b ,c ,d 满足(b +a 2-3ln a )2+(c -d +2)2=0,则(a -c )2+(b -d )2的最小值为( ) A. 2 B .2 C .2 2D .8【解析】 因为实数a ,b ,c ,d 满足(b +a 2-3ln a )2+(c -d +2)2=0,所以b +a 2-3ln a =0,设b =y ,a =x ,则有y =3ln x -x 2,由c -d +2=0,设d =y ,c =x ,则有y =x +2,所以(a -c )2+(b -d )2就是曲线y =3lnx -x 2与直线y =x +2之间的最小距离的平方值,对曲线y =3ln x -x 2求导:y ′=3x -2x 与平行y =x +2平行的切线斜率k =1=3x -2x ,解得x =1或x =-32(舍去),把x =1代入y =3ln x -x 2,解得y =-1,即切点(1,-1),则切点到直线y =x +2的距离为L =|1+1+2|2=22,所以L 2=8,即(a -c )2+(b -d )2的最小值为8,故选D.【答案】 D题组训练一 导数的几何意义及导数的运算1.若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln (x +1)的切线,则b =( ) A .1 B.12C .1-ln 2D .1-2ln 2【解析】 对于函数y =ln x +2,切点为(r ,s ),y ′=1x ,k =1r ,对于函数y =ln (x +1),切点为(p ,q ),y ′=1x +1,k =1p +1,1r =1p +1①r =p +1, 斜率k =1r =1p +1=q -s p -r =(ln r +2)-ln (p +1)r -p ,解得:⎩⎪⎨⎪⎧k =2r =12,p =-12,s =ln r +2=ln 12+2=2-ln 2,s =q +2代入y =2x +b,2-ln 2=2×(12)+b ,得:b =1-ln 2.【答案】 C2.在直角坐标系xOy 中,设P 是双曲线C :xy =1(x >0)上任意一点,l 是曲线C 在点P 处的切线,且l 交坐标轴于A 、B 两点,则以下结论正确的是( )A .①OAB 的面积为定值2 B .①OAB 的面积有最小值为3C .①OAB 的面积有最大值为4D .①OAB 的面积的取值范围是[3,4]【解析】 设P 是双曲线xy =1上任意一点,其坐标为P (x 0,y 0),经过P 点的切线方程为y =kx +b .双曲线化为y =1x 形式,y 对x 的导数为y ′=-1x2,在P 点处导数为-1x 20,切线方程为(y -y 0)=-1x 20(x -x 0),令x =0,y =y 0+1x 0=x 0·y 0+1x 0=2x 0=2y 0,(其中x 0·y 0=1),则切线在y 轴截距为2y 0,令y =0,x =2x 0,则切线在x 轴截距为2x 0,设切线与两坐标轴相交于A 、B 两点构成的三角形为OAB .S ①OAB =12|OA |·|OB |=12|2x 0|·|2y 0|=2|x 0·y 0|=2,故切线与两坐标轴构成的三角形面积定值为2.【答案】 A题型二 利用导数研究函数的单调性 【题型要点解析】求解或讨论函数单调性有关问题的解题策略讨论函数的单调性其实就是讨论不等式的解集的情况.大多数情况下,这类问题可以归结为一个含有参数的一元二次不等式的解集的讨论:(1)在能够通过因式分解求出不等式对应方程的根时依据根的大小进行分类讨论. (2)在不能通过因式分解求出根的情况时根据不等式对应方程的判别式进行分类讨论. 【提醒】 讨论函数的单调性是在函数的定义域内进行的,千万不要忽视了定义域的限制. 例1.已知函数f (x )=x 2+a ln x .(1)当a =-2时,求函数f (x )的单调区间;(2)若g (x )=f (x )+2x ,在[1,+∞)上是单调函数,求实数a 的取值范围.【解】 (1)f ′(x )=2x -2x,令f ′(x )>0,得x >1;令f ′(x )<0,得0<x <1,所以f (x )的单调递增区间是(1,+∞), 单调递减区间是(0,1).(2)由题意g (x )=x 2+a ln x +2x ,g ′(x )=2x +a x -2x2,若函数g (x )为[1,+∞)上的单调增函数,则g ′(x )≥0在[1,+∞)上恒成立, 即a ≥2x -2x 2在[1,+∞)上恒成立,设φ(x )=2x -2x 2.①φ(x )在[1,+∞)上单调递减,①φ(x )max =φ(1)=0, ①a ≥0;若函数g (x )为[1,+∞)上的单调减函数,则g ′(x )≤0在[1,+∞)上恒成立,不可能. ①实数a 的取值范围为[0,+∞).题组训练二 利用导数研究函数的单调性 设函数f (x )=3x 2+ax e x(a ①R ).(1)若f (x )在x =0处取得极值,确定a 的值,并求此时曲线y =f (x )在点(1,f (1))处的切线方程; (2)若f (x )在[3,+∞)上为减函数,求a 的取值范围. 【解析】 (1)对f (x )求导得f ′(x )=(6x +a )e x -(3x 2+ax )e x(e x )2=-3x 2+(6-a )x +a e x因为f (x )在x =0处取得极值,所以f ′(0)=0,即a =0.当a =0时,f (x )=3x 2e x ,f ′(x )=-3x 2+6x e x,故f (1)=3e ,f ′(1)=3e ,从而f (x )在点(1,f (1))处的切线方程为y -3e =3e(x -1),化简得3x -e y =0. (2)由(1)知f ′(x )=-3x 2+(6-a )x +ae x .令g (x )=-3x 2+(6-a )x +a ,由g (x )=0,解得x 1=6-a -a 2+366,x 2=6-a +a 2+366当x <x 1时,g (x )<0,即f ′(x )<0,故f (x )为减函数; 当x 1<x <x 2时,g (x )>0,即f ′(x )>0, 故f (x )为增函数;当x >x 2时,g (x )<0,即f ′(x )<0,故f (x )为减函数.由f (x )在[3,+∞)上为减函数,知x 2=6-a +a 2+366≤3,解得a ≥-92,故a 的取值范围为⎪⎭⎫⎢⎣⎡+∞-,29题型三 利用导数研究函数的极值(最值)问题 【题型要点解析】(1)利用导数研究函数的极值的一般思想:①求定义域;①求导数f ′(x );①解方程f ′(x )=0,研究极值情况;①确定f ′(x 0)=0时x 0左右的符号,定极值.(2)求函数y =f (x )在[a ,b ]上最大值与最小值的步骤:①求函数y =f (x )在(a ,b )内的极值;①将函数y =f (x )的极值与端点处的函数值f (a ),f (b )比较,其中最大的一个是最大值,最小的一个是最小值.(3)当极值点和给定的自变量范围关系不明确时,需要分类求解,在求最值时,若极值点的函数值与区间端点的函数值大小不确定时需分类求解.例1.设函数G (x )=x ln x +(1-x )·ln (1-x ). (1)求G (x )的最小值;(2)记G (x )的最小值为c ,已知函数f (x )=2a ·e x +c +a +1x -2(a +1)(a >0),若对于任意的x ①(0,+∞),恒有f (x )≥0成立,求实数a 的取值范围.【解】 (1)由已知得0<x <1,G ′(x )=ln x -ln (1-x )=lnx 1-x.令G ′(x )<0,得0<x <12;令G ′(x )>0,得12<x <1,所以G (x )的单调减区间为⎪⎭⎫ ⎝⎛21,0,单调增区间为⎪⎭⎫⎝⎛1,21.从而G (x )min =G ⎪⎭⎫⎝⎛21=ln 12=-ln 2.(2)由(1)中c =-ln 2,得f (x )=a ·e x+a +1x -2(a +1).所以f ′(x )=ax 2·e x -(a +1)x 2.令g (x )=ax 2·e x -(a +1),则g ′(x )=ax (2+x )e x >0,所以g (x )在(0,+∞)上单调递增, 因为g (0)=-(a +1),且当x →+∞时,g (x )>0,所以存在x 0①(0,+∞),使g (x 0)=0,且f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增.因为g (x 0)=ax 20·e x 0-(a +1)=0,所以ax 20·e x 0=a +1,即a ·e x 0=a +1x 20,因为对于任意的x ①(0,+∞),恒有f (x )≥0成立,所以f (x )min =f (x 0)=a ·e x 0+a +1x 0-2(a +1)≥0,所以a +1x 20+a +1x 0-2(a +1)≥0,即1x 20+1x 0-2≥0,即2x 20-x 0-1≤0,所以-12≤x 0≤1.因为ax 20·e x 0=a +1,所以x 20·e x 0=a +1a >1.又x 0>0,所以0<x 0≤1,从而x 20·e x 0≤e ,所以1<a +1a ≤e ,故a ≥1e -1.题组训练三 利用导数研究函数的极值(最值)问题已知函数f (x )=ax 2+bx +ce x (a >0)的导函数y =f ′(x )的两个零点为-3和0.(1)求f (x )的单调区间;(2)若f (x )的极小值为-e 3,求f (x )在区间[-5,+∞)上的最大值. 【解】 (1)f ′(x )=(2ax +b )e x -(ax 2+bx +c )e x (e x )2=-ax 2+(2a -b )x +b -ce x .令g (x )=-ax 2+(2a -b )x +b -c ,因为e x >0,所以y =f ′(x )的零点就是g (x )=-ax 2+(2a -b )x +b -c 的零点且f ′(x )与g (x )符号相同. 又因为a >0,所以当-3<x <0时,g (x )>0,即f ′(x )>0,当x <-3或x >0时,g (x )<0,即f ′(x )<0, 所以f (x )的单调递增区间是(-3,0), 单调递减区间是(-∞,-3),(0,+∞). (2)由(1)知,x =-3是f (x )的极小值点,所以有⎩⎪⎨⎪⎧9a -3b +c e -3=-e 3,g (0)=b -c =0,g (-3)=-9a -3(2a -b )+b -c =0,解得a =1,b =5,c =5,所以f (x )=x 2+5x +5e x .因为f (x )的单调递增区间是(-3,0), 单调递减区间是(-∞,-3),(0,+∞), 所以f (0)=5为函数f (x )的极大值,故f (x )在区间[-5,+∞)上的最大值取f (-5)和f (0)中的最大者,而f (-5)=5e -5=5e 5>5=f (0),所以函数f (x )在区间[-5,+∞)上的最大值是5e 5.题型四 定积分 【题型要点解析】(1)求简单定积分最根本的方法就是根据微积分定理找到被积函数的原函数,其一般步骤:①把被积函数变为幂函数、正弦函数、余弦函数、指数函数与常数的和或差;①利用定积分的性质把所求定积分化为若干个定积分的和或差;①分别用求导公式找到F (x ),使得F ′(x )=f (x );①利用牛顿——莱布尼兹公式求出各个定积分的值;①计算所求定积分的值.有些特殊函数可根据其几何意义,求其围成的几何图形的面积,即其对应的定积分.(2)求由函数图象或解析几何中曲线围成的曲边图形的面积,一般转化为定积分的计算与应用,但一定找准积分上限、积分下限及被积函数,且当图形的边界不同时,要讨论解决,其一般步骤:①画出图形,确定图形范围;①解方程组求出图形交点范围,确定积分上、下限;①确定被积函数,注意分清函数图象的上、下位置;①计算下积分,求出平面图形的面积.例1.设f (x )=⎩⎨⎧1-x 2,x ①[-1,1)x 2-1,x ①[1,2],则⎰-21f (x )d x 的值为( )A.π2+43 B.π2+3 C.π4+43D.π4+3【解析】⎰-21f (x )d x =⎰-211-x 2d x +⎰-21(x 2-1)d x =12π×12+⎪⎭⎫ ⎝⎛-x x 331⎪⎪⎪21=π2+43,故选A.【答案】 A例2.⎰1⎪⎭⎫ ⎝⎛+-212x x d x =________.【解析】⎰1⎪⎭⎫ ⎝⎛+-212x x d x =⎰101-x 2d x +⎰112x d x ,⎰112x d x =14,⎰11-x 2d x 表示四分之一单位圆的面积,为π4,所以结果是π+14.【答案】π+14例3.由曲线y =x 2+1,直线y =-x +3,x 轴正半轴与y 轴正半轴所围成图形的面积为( ) A .3 B.103 C.73D.83【解析】 由题可知题中所围成的图形如图中阴影部分所示,由⎩⎪⎨⎪⎧ y =x 2+1y =-x +3,解得⎩⎪⎨⎪⎧ x =-2y =5(舍去)或⎩⎪⎨⎪⎧x =1,y =2,即A (1,2),结合图形可知,所求的面积为⎰1(x 2+1)d x +12×22=⎪⎭⎫⎝⎛+x x 331|10+2=103,选B. 【答案】 B 题组训练四 定积分1.已知1sin φ+1cos φ=22,若φ①⎪⎭⎫⎝⎛2,0π,则⎰-ϕtan 1(x 2-2x )d x =( )A.13 B .-13C.23D .-23【解析】 依题意,1sin φ+1cos φ=22①sin φ+cos φ=22sin φcos φ①2sin(φ+π4)=2sin2φ,因为φ①(0,π2),所以φ=π4,故⎰-ϕtan 1(x 2-2x )d x =⎰-ϕtan 1-1(x 2-2x )d x =(x 33-x 2)|1-1=23.选C.【答案】 C 2.函数y =⎰t(sin x +cos x sin x )d x 的最大值是________.【解析】 y =⎰t(sin x +cos x sin x )d x=⎰t⎪⎭⎫⎝⎛+x x 2sin 21sin d x =⎪⎭⎫ ⎝⎛--x x 2cos 41cos ⎪⎪⎪t 0=-cos t -14cos 2t +54=-cos t -14(2cos 2 t -1)+54=-12(cos t +1)2+2,当cos t =-1时,y max =2. 【答案】 2 【专题训练】 一、选择题1.已知变量a ,b 满足b =-12a 2+3ln a (a >0),若点Q (m ,n )在直线y =2x +12上,则(a -m )2+(b -n )2的最小值为( )A .9 B.353C.95D .3【解析】令y =3ln x -12x 2及y =2x +12,则(a -m )2+(b -n )2的最小值就是曲线y =3ln x -12x 2上一点与直线y =2x +12的距离的最小值,对函数y =3ln x -12x 2求导得:y ′=3x -x ,与直线y =2x +12平行的直线斜率为2,令2=3x -x 得x =1或x =-3(舍),则x =1,得到点(1,-12)到直线y =2x +12的距离为355,则(a -m )2+(b -n )2的最小值为(355)=95.【答案】C2.设a ①R ,若函数y =e ax +3x ,x ①R 有大于零的极值点,则( ) A .a >-3 B .a <-3 C .a >-13D .a <-13【解析】 y ′=a e ax +3=0在(0,+∞)上有解,即a e ax =-3,①e ax >0,①a <0.又当a <0时,0<e ax <1,要使a e ax =-3,则a <-3,故选B.【答案】 B3.已知函数f (x )=x 3-tx 2+3x ,若对于任意的a ①[1,2],b ①(2,3],函数f (x )在区间[a ,b ]上单调递减,则实数t 的取值范围是( )A .(-∞,3]B .(-∞,5]C .[3,+∞)D .[5,+∞)【解析】 ①f (x )=x 3-tx 2+3x ,①f ′(x )=3x 2-2tx +3,由于函数f (x )在[a ,b ]上单调递减,则有f ′(x )≤0在[a ,b ]上恒成立,即不等式3x 2-2tx +3≤0在[a ,b ]上恒成立,即有t ≥32⎪⎭⎫ ⎝⎛+x x 1在[a ,b ]上恒成立,而函数y =32⎪⎭⎫ ⎝⎛+x x 1在[1,3]上单调递增,由于a ①[1,2],b ①(2,3],当b =3时,函数y =32⎪⎭⎫ ⎝⎛+x x 1取得最大值,即y max =32⎪⎭⎫ ⎝⎛+313=5,所以t ≥5,故选D.【答案】 D4.已知函数f (x )=e x -ln(x +a )(a ①R )有唯一的零点x 0,(e =2.718…)则( ) A .-1<x 0<-12B .-12<x 0<-14C .-14<x 0<0D .0<x 0<12【解析】 函数f (x )=e x -ln(x +a )(a ①R ),则x >-a ,可得f ′(x )=e x -1x +a ,f ″(x )=e x +1(x +a )2恒大于0,f ′(x )是增函数,令f ′(x 0)=0,则e x 0=1x 0+a,有唯一解时,a =1e x 0-x 0,代入f (x )可得:f (x 0)=e x 0-ln(x 0+a )=e x 0-ln(1e x 0)=e x 0+x 0,由于f (x 0)是增函数,f (-1)≈-0.63,f (-12)≈0.11,所以f (x 0)=0时,-1<x 0<-12.故选A.【答案】 A5.定义在(0,+∞)上的函数f (x )满足f (x )>2(x +x )f ′(x ),其中f ′(x )为f (x )的导函数,则下列不等式中,一定成立的是( )A .f (1)>f (2)2>f (3)3B.f (1)2>f (4)3>f (9)4 C .f (1)<f (2)2<f (3)3D.f (1)2<f (4)3<f (9)4【解析】 ①f (x )>2(x +x )f ′(x ), ①f (x )>2x (x +1)f ′(x ), ①f (x )12x>(x +1)f ′(x ).①f ′(x )(x +1)-f (x )12x <0,①(f (x )x +1)′<0,设g (x )=f (x )x +1,则函数g (x )在(0,+∞)上递减, 故g (1)>g (4)>g (9),①f (1)2>f (4)3>f (9)4.故选B.【答案】 B6.已知函数f (x )在R 上可导,其导函数为f ′(x ),若f ′(x )满足f ′(x )-f (x )x -1>0,y =f (x )e x 关于直线x =1对称,则不等式f (x 2-x )e x 2-x<f (0)的解集是( )A .(-1,2)B .(1,2)C .(-1,0)①(1,2)D .(-∞,0)①(1,+∞)【解析】 令g (x )=f (x )e x ,则g ′(x )=f ′(x )-f (x )e x .①f ′(x )-f (x )x -1>0,当x >1时,f ′(x )-f (x )>0,则g ′(x )>0,①g (x )在(1,+∞)上单调递增; 当x <1时,f ′(x )-f (x )<0,则g ′(x )<0, ①g (x )在(-∞,1)上单调递减. ①g (0)=f (0),①不等式f (x 2-x )e x 2-x <f (0)即为不等式g (x 2-x )<g (0).①y =f (x )e x 关于直线x =1对称,①|x 2-x |<2,①0<x 2-x <2,解得-1<x <0或1<x <2,故选C. 【答案】 C7.已知偶函数f (x )(x ≠0)的导函数为f ′(x ),且满足f (1)=0,当x >0时,xf ′(x )<2f (x ),则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)①(0,1)B .(-∞,-1)①(1,+∞)C .(-1,0)①(1,+∞)D .(-1,0)①(0,1)【解析】 根据题意,设函数g (x )=f (x )x 2(x ≠0),当x >0时,g ′(x )=f ′(x )·x -2·f (x )x 3<0,说明函数g (x )在(0,+∞)上单调递减,又f (x )为偶函数,所以g (x )为偶函数,又f (1)=0,所以g (1)=0,故g (x )在(-1,0)①(0,1)上的函数值大于零,即f (x )在(-1,0)①(0,1)上的函数值大于零.【答案】D8.定义在⎪⎭⎫⎝⎛2,0π上的函数f (x ),f ′(x )是它的导函数,且恒有f (x )<f ′(x )·tan x 成立,则( ) A.3f ⎪⎭⎫⎝⎛4π>2f ⎪⎭⎫ ⎝⎛3π B .f (1)<2f ⎪⎭⎫⎝⎛6πsin 1C.2f ⎪⎭⎫⎝⎛6π>f ⎪⎭⎫ ⎝⎛4π D.3f ⎪⎭⎫⎝⎛6π<f ⎪⎭⎫⎝⎛3π 【解析】 构造函数F (x )=f (x )sin x.则F ′(x )=f ′(x )sin x -f (x )cos x sin 2x >0,x ①⎪⎭⎫⎝⎛2,0π, 从而有F (x )=f (x )sin x 在⎪⎭⎫ ⎝⎛2,0π上为增函数,所以有F ⎪⎭⎫ ⎝⎛6π<F ⎪⎭⎫ ⎝⎛3π,3sin36sin 6ππππ⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛f f ①3f ⎪⎭⎫ ⎝⎛6π<f ⎪⎭⎫⎝⎛3π,故选D.【答案】 D 二、填空题9.已知曲线f (x )=a cos x 与曲线g (x )=x 2+bx +1在交点(0,m )处有公切线,则实数a +b 的值为____________.【解析】 因为两个函数的交点为(0,m ),①m =a cos0,m =02+b ×0+1,①m =1,a =1,①f (x ),g (x )在(0,m )处有公切线,①f ′(0)=g ′(0),①-sin 0=2×0+b ,①b =0,①a +b =1.【答案】 110.已知函数f (x )是定义在R 上的奇函数,且当x ①(0,+∞)时,都有不等式f (x )+xf ′(x )>0成立,若a =40.2f (40.2),b =(log 43)f (log 43),c =⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛1614log 1614log f ,则a ,b ,c 的大小关系是________. 【解析】 根据题意,令g (x )=xf (x ),则a =g (40.2),b =g (log 43),c =g (log 4116)有g (-x )=(-x )f (-x )=(-x )[-f (x )]=xf (x ),则g (x )为偶函数,又由g ′(x )=(x )′f (x )+xf ′(x )=f (x )+xf ′(x ),又由当x ①(0,+∞)时,都有不等式f (x )+xf ′(x )>0成立,则当x ①(0,+∞)时,有g ′(x )>0,即g (x )在(0,+∞)上为增函数,分析可得|log 4116|>|40.2|>|log 43|,则有c >a >b ;故答案为:c >a >b .【答案】 c >a >b11.已知函数f (x )=x (ln x -ax )有两个极值点,则实数a 的取值范围是________.【解析】 令f ′(x )=ln x -ax +x ⎪⎭⎫⎝⎛-a x 1=ln x -2ax +1=0,得ln x =2ax -1.因为函数f (x )=x (ln x -ax )有两个极值点,所以f ′(x )=ln x -2ax +1有两个零点,等价于函数y =ln x 与y =2ax -1的图象有两个交点,在同一个坐标系中作出它们的图象,过点(0,-1)作y =ln x 的切线,设切点为(x 0,y 0),则切线的斜率k =1x 0,切线方程为y =1x 0x -1.切点在切线y =1x 0x -1上,则y 0=x 0x 0-1=0,又切点在曲线y =ln x 上,则ln x 0=0,①x 0=1,即切点为(1,0),切线方程为y =x -1.再由直线y =2ax -1与曲线y =ln x 有两个交点,知直线y =2ax -1位于两直线y =0和y =x -1之间,其斜率2a 满足0<2a <1,解得实数a 的取值范围是⎪⎭⎫ ⎝⎛21,0.【答案】 ⎪⎭⎫ ⎝⎛21,012.曲线y =2sin x (0≤x ≤π)与直线y =1围成的封闭图形的面积为________.【解析】 令2sin x =1,得sin x =12,当x ①[0,π]时,得x =π6或x =5π6,所以所求面积S =∫5π6(2sin x -1)d x=(-2cos x -x )π6⎪⎪⎪5π6π6=23-2π3. 【答案】 23-2π3三、解答题13.已知函数f (x )=a e 2x +(a -2)e x -x . (1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.【解析】 (1)f (x )的定义域为(-∞,+∞),f ′(x )=2a e 2x +(a -2)e x -1=(a e x -1)(2e x +1), (i)若a ≤0,则f ′(x )<0,所以f (x )在(-∞,+∞)单调递减. (ii)若a >0,则由f ′(x )=0得x =-ln a .当x ①(-∞,-ln a )时,f ′(x )<0;当x ①(-ln a ,+∞)时,f ′(x )>0,所以f (x )在(-∞,-ln a )单调递减,在(-ln a ,+∞)单调递增.(2)(i)若a ≤0,由(1)知,f (x )至多有一个零点.(ii)若a >0,由(1)知,当x =-ln a 时,f (x )取得最小值,最小值为f (-ln a )=1-1a +ln a .①当a =1时,由于f (-ln a )=0,故f (x )只有一个零点; ①当a ①(1,+∞)时,由于1-1a +ln a >0,即f (-ln a )>0,故f (x )没有零点;①当a ①(0,1)时,1-1a+ln a <0,即f (-ln a )<0.又f (-2)=a e -4+(a -2)e -2+2>-2e -2+2>0,故f (x )在(-∞,-ln a )有一个零点. 设正整数n 0满足n 0>ln (3a-1),则f (n 0)=e n 0(a e n 0+a -2)-n 0>e n 0-n 0>2r 0-n 0>0.由于ln (3a -1)>-ln a ,因此f (x )在(-ln a ,+∞)有一个零点.综上,a 的取值范围为(0,1).14.已知函数f (x )=e ax (其中e =2.71828…),g (x )=f (x )x .(1)若g (x )在[1,+∞)上是增函数,求实数a 的取值范围; (2)当a =12时,求函数g (x )在[m ,m +1](m >0)上的最小值.【解析】 (1)由题意得g (x )=f (x )x =eaxx在[1,+∞)上是增函数,故'⎪⎪⎭⎫ ⎝⎛x e ax =e ax (ax -1)x 2≥0在[1,+∞)上恒成立,即ax -1≥0在[1,+∞)恒成立,a ≥1x 在x ①[1,+∞)上恒成立,而1x ≤1,①a ≥1; (2)当a =12时,g (x )=e x 2x ,g ′(x )=e x 2(x2-1)x 2,当x >2时,g ′(x )>0,g (x )在[2,+∞)递增, 当x <2且x ≠0时,g ′(x )<0,即g (x )在(0,2),(-∞,0)递减,又m >0,①m +1>1,故当m ≥2时,g (x )在[m ,m +1]上递增,此时,g (x )min =g (m )=e m 2m ,当1<m <2时,g (x )在[m,2]递减,在[2,m +1]递增,此时,g (x )min =g (2)=e2,当0<m ≤1时,m +1≤2,g (x )在[m ,m +1]递减,此时,g (x )min =g (m +1)=e m +12m +1,综上,当0<m ≤1时,g (x )min =g (m +1)=e m +12m +1,当1<m <2时,g (x )min =g (2)=e2,m ≥2时,g (x )min =g (m )=e m 2m .。

2020年高考数学压轴题函数与导数专项(解析版)

2020年高考数学压轴题函数与导数专项(解析版)

2020年高考数学压轴必刷题专题01函数概念与基本初等函数(理科数学)1.【2019年天津理科08】已知a ∈R .设函数f (x )={x 2−2ax +2a ,x ≤1,x −alnx ,x >1.若关于x 的不等式f (x )≥0在R 上恒成立,则a 的取值范围为( ) A .[0,1]B .[0,2]C .[0,e ]D .[1,e ]【解答】解:当x =1时,f (1)=1﹣2a +2a =1>0恒成立;当x <1时,f (x )=x 2﹣2ax +2a ≥0⇔2a ≥x 2x−1恒成立,令g (x )=x 2x−1=−x 21−x =−(1−x−1)21−x =−(1−x)2−2(1−x)+11−x =−(1﹣x +11−x−2)≤﹣(2√(1−x)⋅11−x−2)=0, ∴2a ≥g (x )max =0,∴a >0.当x >1时,f (x )=x ﹣alnx ≥0⇔a ≤xlnx 恒成立,令h (x )=xlnx ,则h ′(x )=lnx−x⋅1x (lnx)2=lnx−1(lnx)2, 当x >e 时,h ′(x )>0,h (x )递增, 当1<x <e 时,h ′′(x )<0,h (x )递减, ∴x =e 时,h (x )取得最小值h (e )=e , ∴a ≤h (x )min=e ,综上a 的取值范围是[0,e ]. 故选:C .2.【2019年新课标3理科11】设f (x )是定义域为R 的偶函数,且在(0,+∞)单调递减,则( ) A .f (log 314)>f (2−32)>f (2−23)B .f (log 314)>f (2−23)>f (2−32)C .f (2−32)>f (2−23)>f (log 314)D .f (2−23)>f (2−32)>f (log 314)【解答】解:∵f (x )是定义域为R 的偶函数 ∴f(log 314)=f(log 34),∵log 34>log 33=1,<0<2−32<2−23<20=1, ∴0<2−32<2−23<log 34f (x )在(0,+∞)上单调递减, ∴f(2−32)>f(2−23)>f(log 314),故选:C .3.【2019年全国新课标2理科12】设函数f (x )的定义域为R ,满足f (x +1)=2f (x ),且当x ∈(0,1]时,f (x )=x (x ﹣1).若对任意x ∈(﹣∞,m ],都有f (x )≥−89,则m 的取值范围是( ) A .(﹣∞,94]B .(﹣∞,73]C .(﹣∞,52]D .(﹣∞,83]【解答】解:因为f (x +1)=2f (x ),∴f (x )=2f (x ﹣1),∵x ∈(0,1]时,f (x )=x (x ﹣1)∈[−14,0],∴x ∈(1,2]时,x ﹣1∈(0,1],f (x )=2f (x ﹣1)=2(x ﹣1)(x ﹣2)∈[−12,0]; ∴x ∈(2,3]时,x ﹣1∈(1,2],f (x )=2f (x ﹣1)=4(x ﹣2)(x ﹣3)∈[﹣1,0], 当x ∈(2,3]时,由4(x ﹣2)(x ﹣3)=−89解得m =73或m =83, 若对任意x ∈(﹣∞,m ],都有f (x )≥−89,则m ≤73.故选:B .4.【2019年浙江09】设a ,b ∈R ,函数f (x )={x ,x <0,13x 3−12(a +1)x 2+ax ,x ≥0.若函数y =f (x )﹣ax ﹣b 恰有3个零点,则( ) A .a <﹣1,b <0B .a <﹣1,b >0C .a >﹣1,b <0D .a >﹣1,b >0【解答】解:当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x =b1−a ;y =f (x )﹣ax ﹣b 最多一个零点;当x ≥0时,y =f (x )﹣ax ﹣b =13x 3−12(a +1)x 2+ax ﹣ax ﹣b =13x 3−12(a +1)x 2﹣b , y ′=x 2﹣(a +1)x ,当a +1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上递增,y =f (x )﹣ax ﹣b 最多一个零点.不合题意;当a +1>0,即a <﹣1时,令y ′>0得x ∈[a +1,+∞),函数递增,令y ′<0得x ∈[0,a +1),函数递减;函数最多有2个零点;根据题意函数y =f (x )﹣ax ﹣b 恰有3个零点⇔函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点, 如右图: ∴b 1−a<0且{−b >013(a +1)3−12(a +1)(a +1)2−b <0, 解得b <0,1﹣a >0,b >−16(a +1)3. 故选:C .5.【2018年新课标1理科09】已知函数f(x)={e x,x≤0lnx,x>0,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)【解答】解:由g(x)=0得f(x)=﹣x﹣a,作出函数f(x)和y=﹣x﹣a的图象如图:当直线y=﹣x﹣a的截距﹣a≤1,即a≥﹣1时,两个函数的图象都有2个交点,即函数g(x)存在2个零点,故实数a的取值范围是[﹣1,+∞),故选:C.6.【2018年新课标3理科12】设a=log0.20.3,b=log20.3,则()A.a+b<ab<0B.ab<a+b<0C.a+b<0<ab D.ab<0<a+b【解答】解:∵a=log0.20.3=lg0.3−lg5,b=log20.3=lg0.3lg2,∴a+b=lg0.3lg2−lg0.3lg5=lg0.3(lg5−lg2)lg2lg5=lg0.3lg52lg2lg5,ab=−lg0.3lg2⋅lg0.3lg5=lg0.3⋅lg103lg2lg5,∵lg 103>lg52,lg0.3lg2lg5<0,∴ab<a+b<0.故选:B.7.【2018年上海16】设D是含数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转π6后与原图象重合,则在以下各项中,f (1)的可能取值只能是( )A .√3B .√32C .√33D .0【解答】解:由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转π6个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f (1)=√3,√33,0时, 此时得到的圆心角为π3,π6,0,然而此时x =0或者x =1时,都有2个y 与之对应, 而我们知道函数的定义就是要求一个x 只能对应一个y , 因此只有当x =√32,此时旋转π6,此时满足一个x 只会对应一个y , 因此答案就选:B . 故选:B .8.【2017年新课标1理科11】设x 、y 、z 为正数,且2x =3y =5z ,则( ) A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z【解答】解:x 、y 、z 为正数, 令2x =3y =5z =k >1.lgk >0. 则x =lgk lg2,y =lgk lg3,z =lgklg5. ∴3y =lgk lg √33,2x =lgk lg √2,5z =lgklg √55. ∵√33=√96>√86=√2,√2=√3210>√2510=√55. ∴lg √33>lg √2>lg √55>0. ∴3y <2x <5z . 另解:x 、y 、z 为正数, 令2x =3y =5z =k >1.lgk >0. 则x =lgklg2,y =lgklg3,z =lgklg5. ∴2x 3y=23×lg3lg2=lg9lg8>1,可得2x >3y ,5z 2x=52×lg2lg5=lg25lg52>1.可得5z >2x .综上可得:5z >2x >3y .解法三:对k 取特殊值,也可以比较出大小关系. 故选:D .9.【2017年北京理科08】根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080,则下列各数中与MN 最接近的是( )(参考数据:lg 3≈0.48) A .1033B .1053C .1073D .1093【解答】解:由题意:M ≈3361,N ≈1080, 根据对数性质有:3=10lg 3≈100.48, ∴M ≈3361≈(100.48)361≈10173, ∴M N≈101731080=1093,故选:D .10.【2017年天津理科08】已知函数f (x )={x 2−x +3,x ≤1x +2x,x >1,设a ∈R ,若关于x 的不等式f (x )≥|x 2+a |在R 上恒成立,则a 的取值范围是( ) A .[−4716,2]B .[−4716,3916] C .[﹣2√3,2]D .[﹣2√3,3916]【解答】解:当x ≤1时,关于x 的不等式f (x )≥|x 2+a |在R 上恒成立, 即为﹣x 2+x ﹣3≤x2+a ≤x 2﹣x +3, 即有﹣x 2+12x ﹣3≤a ≤x 2−32x +3,由y =﹣x 2+12x ﹣3的对称轴为x =14<1,可得x =14处取得最大值−4716;由y =x 2−32x +3的对称轴为x =34<1,可得x =34处取得最小值3916,则−4716≤a ≤3916①当x >1时,关于x 的不等式f (x )≥|x2+a |在R 上恒成立,即为﹣(x +2x )≤x 2+a ≤x +2x ,即有﹣(32x +2x )≤a ≤x 2+2x ,由y =﹣(32x +2x )≤﹣2√3x 2⋅2x =−2√3(当且仅当x =2√31)取得最大值﹣2√3;由y =12x +2x ≥2√12x ⋅2x =2(当且仅当x =2>1)取得最小值2. 则﹣2√3≤a ≤2②由①②可得,−4716≤a ≤2.另解:作出f (x )的图象和折线y =|x2+a |当x ≤1时,y =x 2﹣x +3的导数为y ′=2x ﹣1, 由2x ﹣1=−12,可得x =14, 切点为(14,4516)代入y =−x 2−a ,解得a =−4716; 当x >1时,y =x +2x的导数为y ′=1−22, 由1−2x 2=12,可得x =2(﹣2舍去), 切点为(2,3),代入y =x2+a ,解得a =2. 由图象平移可得,−4716≤a ≤2. 故选:A .11.【2016年新课标2理科12】已知函数f (x )(x ∈R )满足f (﹣x )=2﹣f (x ),若函数y =x+1x 与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑ m i=1(x i +y i )=( ) A .0B .mC .2mD .4m【解答】解:函数f (x )(x ∈R )满足f (﹣x )=2﹣f (x ),即为f (x )+f (﹣x )=2, 可得f (x )关于点(0,1)对称,函数y =x+1x ,即y =1+1x 的图象关于点(0,1)对称, 即有(x 1,y 1)为交点,即有(﹣x 1,2﹣y 1)也为交点, (x 2,y 2)为交点,即有(﹣x 2,2﹣y 2)也为交点, …则有∑ m i=1(x i +y i )=(x 1+y 1)+(x 2+y 2)+…+(x m +y m )=12[(x 1+y 1)+(﹣x 1+2﹣y 1)+(x 2+y 2)+(﹣x 2+2﹣y 2)+…+(x m +y m )+(﹣x m +2﹣y m )] =m . 故选:B .12.【2016年上海理科18】设f (x )、g (x )、h (x )是定义域为R 的三个函数,对于命题:①f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均为增函数,则f (x )、g (x )、h (x )中至少有一个增函数;②若f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均是以T 为周期的函数,则f (x )、g (x )、h (x )均是以T 为周期的函数,下列判断正确的是( ) A .①和②均为真命题 B .①和②均为假命题 C .①为真命题,②为假命题D .①为假命题,②为真命题 【解答】解:①不成立.可举反例:f (x )={2x ,x ≤1−x +3,x >1.g (x )={2x +3,x ≤0−x +3,0<x <12x ,x ≥1,h (x )={−x ,x ≤02x ,x >0.②∵f (x )+g (x )=f (x +T )+g (x +T ),f (x )+h (x )=f (x +T )+h (x +T ),h (x )+g (x )=h (x +T )+g (x +T ),前两式作差可得:g (x )﹣h (x )=g (x +T )﹣h (x +T ),结合第三式可得:g (x )=g (x +T ),h (x )=h (x +T ),同理可得:f (x )=f (x +T ),因此②正确. 故选:D .13.【2016年天津理科08】已知函数f (x )={x 2+(4a −3)x +3a ,x <0log a (x +1)+1,x ≥0(a >0,且a ≠1)在R 上单调递减,且关于x 的方程|f (x )|=2﹣x 恰好有两个不相等的实数解,则a 的取值范围是( ) A .(0,23]B .[23,34]C .[13,23]∪{34}D .[13,23)∪{34}【解答】解:y =log a (x +1)+1在[0,+∞)递减,则0<a <1, 函数f (x )在R 上单调递减,则:{3−4a2≥00<a <102+(4a −3)⋅0+3a ≥log a (0+1)+1; 解得,13≤a ≤34;由图象可知,在[0,+∞)上,|f (x )|=2﹣x 有且仅有一个解, 故在(﹣∞,0)上,|f (x )|=2﹣x 同样有且仅有一个解, 当3a >2即a >23时,联立|x 2+(4a ﹣3)x +3a |=2﹣x , 则△=(4a ﹣2)2﹣4(3a ﹣2)=0, 解得a =34或1(舍去),当1≤3a ≤2时,由图象可知,符合条件, 综上:a 的取值范围为[13,23]∪{34},故选:C .14.【2015年新课标2理科10】如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )A .B .C .D .【解答】解:当0≤x ≤π4时,BP =tan x ,AP =2+BP 2=√4+tan 2x , 此时f (x )=√4+tan 2x +tan x ,0≤x ≤π4,此时单调递增,当P 在CD 边上运动时,π4≤x ≤3π4且x ≠π2时,如图所示,tan ∠POB =tan (π﹣∠POQ )=tan x =﹣tan ∠POQ =−PQ OQ =−1OQ, ∴OQ =−1tanx, ∴PD =AO ﹣OQ =1+1tanx ,PC =BO +OQ =1−1tanx , ∴P A +PB =√(1−1tanx )2+1+√(1+1tanx )2+1, 当x =π2时,P A +PB =2√2, 当P 在AD 边上运动时,3π4≤x ≤π,P A +PB =√4+tan 2x −tan x ,由对称性可知函数f (x )关于x =π2对称, 且f (π4)>f (π2),且轨迹为非线型,排除A ,C ,D , 故选:B .15.【2015年浙江理科07】存在函数f(x)满足,对任意x∈R都有()A.f(sin2x)=sin x B.f(sin2x)=x2+xC.f(x2+1)=|x+1|D.f(x2+2x)=|x+1|【解答】解:A.取x=0,则sin2x=0,∴f(0)=0;取x=π2,则sin2x=0,∴f(0)=1;∴f(0)=0,和1,不符合函数的定义;∴不存在函数f(x),对任意x∈R都有f(sin2x)=sin x;B.取x=0,则f(0)=0;取x=π,则f(0)=π2+π;∴f(0)有两个值,不符合函数的定义;∴该选项错误;C.取x=1,则f(2)=2,取x=﹣1,则f(2)=0;这样f(2)有两个值,不符合函数的定义;∴该选项错误;D.令x+1=t,则f(x2+2x)=|x+1|,化为f(t2﹣1)=|t|;令t2﹣1=x,则t=±√x+1;∴f(x)=√x+1;即存在函数f(x)=√x+1,对任意x∈R,都有f(x2+2x)=|x+1|;∴该选项正确.故选:D.16.【2015年北京理科07】如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集是()A.{x|﹣1<x≤0}B.{x|﹣1≤x≤1}C.{x|﹣1<x≤1}D.{x|﹣1<x≤2}【解答】解:由已知f(x)的图象,在此坐标系内作出y=log2(x+1)的图象,如图满足不等式f(x)≥log2(x+1)的x范围是﹣1<x≤1;所以不等式f(x)≥log2(x+1)的解集是{x|﹣1<x≤1};故选:C.17.【2015年北京理科08】汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油D.甲车以80千米/小时的速度行驶1小时,消耗10升汽油【解答】解:对于A,由图象可知当速度大于40km/h时,乙车的燃油效率大于5km/L,∴当速度大于40km /h 时,消耗1升汽油,乙车的行驶距离大于5km ,故A 错误;对于B ,由图象可知当速度相同时,甲车的燃油效率最高,即当速度相同时,消耗1升汽油,甲车的行驶路程最远,∴以相同速度行驶相同路程,三辆车中,甲车消耗汽油最少,故B 错误;对于C ,由图象可知当速度小于80km /h 时,丙车的燃油效率大于乙车的燃油效率,∴用丙车比用乙车更省油,故C 正确;对于D ,由图象可知当速度为80km /h 时,甲车的燃油效率为10km /L ,即甲车行驶10km 时,耗油1升,故行驶1小时,路程为80km ,燃油为8升,故D 错误.故选:C .18.【2015年天津理科07】已知定义在R 上的函数f (x )=2|x ﹣m |﹣1(m 为实数)为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为( )A .a <b <cB .a <c <bC .c <a <bD .c <b <a【解答】解:∵f (x )为偶函数;∴f (﹣x )=f (x );∴2|﹣x ﹣m |﹣1=2|x ﹣m |﹣1;∴|﹣x ﹣m |=|x ﹣m |;(﹣x ﹣m )2=(x ﹣m )2;∴mx =0;∴m =0;∴f (x )=2|x |﹣1;∴f (x )在[0,+∞)上单调递增,并且a =f (|log 0.53|)=f (log 23),b =f (log 25),c =f (0); ∵0<log 23<log 25;∴c <a <b .故选:C .19.【2015年天津理科08】已知函数f (x )={2−|x|,x ≤2(x −2)2,x >2,函数g (x )=b ﹣f (2﹣x ),其中b ∈R ,若函数y =f (x )﹣g (x )恰有4个零点,则b 的取值范围是( )A .(74,+∞)B .(﹣∞,74)C .(0,74)D .(74,2) 【解答】解:∵g (x )=b ﹣f (2﹣x ),∴y =f (x )﹣g (x )=f (x )﹣b +f (2﹣x ),由f (x )﹣b +f (2﹣x )=0,得f (x )+f (2﹣x )=b ,设h (x )=f (x )+f (2﹣x ),若x ≤0,则﹣x ≥0,2﹣x ≥2,则h (x )=f (x )+f (2﹣x )=2+x +x 2,若0≤x ≤2,则﹣2≤﹣x ≤0,0≤2﹣x ≤2,则h (x )=f (x )+f (2﹣x )=2﹣x +2﹣|2﹣x |=2﹣x +2﹣2+x =2,若x >2,﹣x <﹣2,2﹣x <0,则h (x )=f (x )+f (2﹣x )=(x ﹣2)2+2﹣|2﹣x |=x 2﹣5x +8.即h (x )={x 2+x +2,x ≤02,0<x ≤2x 2−5x +8,x >2,作出函数h (x )的图象如图:当x ≤0时,h (x )=2+x +x 2=(x +12)2+74≥74,当x >2时,h (x )=x 2﹣5x +8=(x −52)2+74≥74,故当b =74时,h (x )=b ,有两个交点,当b =2时,h (x )=b ,有无数个交点,由图象知要使函数y =f (x )﹣g (x )恰有4个零点,即h (x )=b 恰有4个根,则满足74<b <2, 故选:D .20.【2014年上海理科18】设f(x)={(x−a)2,x≤0x+1x+a,x>0,若f(0)是f(x)的最小值,则a的取值范围为()A.[﹣1,2]B.[﹣1,0]C.[1,2]D.[0,2]【解答】解;当a<0时,显然f(0)不是f(x)的最小值,当a≥0时,f(0)=a2,由题意得:a2≤x+1x+a,解不等式:a2﹣a﹣2≤0,得﹣1≤a≤2,∴0≤a≤2,故选:D.21.【2013年新课标1理科11】已知函数f(x)={−x2+2x,x≤0ln(x+1),x>0,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0]【解答】解:由题意可作出函数y=|f(x)|的图象,和函数y=ax的图象,由图象可知:函数y=ax的图象为过原点的直线,当直线介于l和x轴之间符合题意,直线l为曲线的切线,且此时函数y=|f(x)|在第二象限的部分解析式为y=x2﹣2x,求其导数可得y′=2x﹣2,因为x≤0,故y′≤﹣2,故直线l的斜率为﹣2,故只需直线y=ax的斜率a介于﹣2与0之间即可,即a∈[﹣2,0]故选:D.22.【2013年天津理科08】已知函数f(x)=x(1+a|x|).设关于x的不等式f(x+a)<f(x)的解集为A,若[−12,12]⊆A,则实数a的取值范围是()A.(1−√52,0)B.(1−√32,0)C.(1−√52,0)∪(0,1+√32)D.(−∞,1−√52)【解答】解:取a=−12时,f(x)=−12x|x|+x,∵f(x+a)<f(x),∴(x−12)|x−12|+1>x|x|,(1)x<0时,解得−34<x<0;(2)0≤x≤12时,解得0≤x≤12;(3)x>12时,解得12<x<54,综上知,a=−12时,A=(−34,54),符合题意,排除B、D;取a=1时,f(x)=x|x|+x,∵f(x+a)<f(x),∴(x+1)|x+1|+1<x|x|,(1)x<﹣1时,解得x>0,矛盾;(2)﹣1≤x≤0,解得x<0,矛盾;(3)x>0时,解得x<﹣1,矛盾;综上,a=1,A=∅,不合题意,排除C,故选:A.23.【2011年新课标1理科12】函数y=11−x的图象与函数y=2sinπx,(﹣2≤x≤4)的图象所有交点的横坐标之和等于()A.8B.6C.4D.2【解答】解:函数y1=11−x,y2=2sinπx的图象有公共的对称中心(1,0),作出两个函数的图象,如图,当1<x≤4时,y1<0而函数y2在(1,4)上出现1.5个周期的图象,在(1,32)和(52,72)上是减函数; 在(32,52)和(72,4)上是增函数. ∴函数y 1在(1,4)上函数值为负数,且与y 2的图象有四个交点E 、F 、G 、H相应地,y 1在(﹣2,1)上函数值为正数,且与y 2的图象有四个交点A 、B 、C 、D且:x A +x H =x B +x G =x C +x F =x D +x E =2,故所求的横坐标之和为8.故选:A .24.【2011年北京理科08】设A (0,0),B (4,0),C (t +4,4),D (t ,4)(t ∈R ).记N (t )为平行四边形ABCD 内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则函数N (t )的值域为( )A .{9,10,11}B .{9,10,12}C .{9,11,12}D .{10,11,12}【解答】解:当t =0时,▱ABCD 的四个顶点是A (0,0),B (4,0),C (4,4),D (0,4),符合条件的点有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共九个,N (t )=9,故选项D 不正确.当t =1时,▱ABCD 的四个顶点是A (0,0),B (4,0),C (5,4),D (1,4),同理知N (t )=12,故选项A 不正确.当t =2时,▱ABCD 的四个顶点是A (0,0),B (4,0),C (6,4),D (2,4),同理知N (t )=11,故选项B 不正确.故选:C .25.【2011年天津理科08】对实数a 与b ,定义新运算“⊗”:a ⊗b ={a ,a −b ≤1b ,a −b >1.设函数f (x )=(x 2﹣2)⊗(x ﹣x 2),x ∈R .若函数y =f (x )﹣c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( )A .(−∞,−2]∪(−1,32)B .(−∞,−2]∪(−1,−34)C .(−∞,14)∪(14,+∞)D .(−1,−34)∪[14,+∞) 【解答】解:∵a ⊗b ={a ,a −b ≤1b ,a −b >1.,∴函数f (x )=(x 2﹣2)⊗(x ﹣x 2)={x 2−2,−1≤x ≤32x −x 2,x <−1或x >32, 由图可知,当c ∈(−∞,−2]∪(−1,−34)函数f (x ) 与y =c 的图象有两个公共点,∴c 的取值范围是 (−∞,−2]∪(−1,−34),故选:B .26.【2010年新课标1理科11】已知函数f(x)={|lgx|,0<x ≤10−12x +6,x >10,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( )A .(1,10)B .(5,6)C .(10,12)D .(20,24)【解答】解:作出函数f (x )的图象如图,不妨设a <b <c ,则−lga =lgb =−12c +6∈(0,1)ab =1,0<−12c +6<1则abc =c ∈(10,12).故选:C .27.【2010年上海理科17】若x 0是方程(12)x =x 13的解,则x 0属于区间( ) A .(23,1) B .(12,23) C .(13,12) D .(0,13) 【解答】解:∵(12)13>(13)13,(12)12<(12)13,∴x 0属于区间(13,12). 故选:C .28.【2019年江苏14】设f (x ),g (x )是定义在R 上的两个周期函数,f (x )的周期为4,g (x )的周期为2,且f (x )是奇函数.当x ∈(0,2]时,f (x )=√1−(x −1)2,g (x )={k(x +2),0<x ≤1,−12,1<x ≤2,其中k >0.若在区间(0,9]上,关于x 的方程f (x )=g (x )有8个不同的实数根,则k 的取值范围是 .【解答】解:作出函数f (x )与g (x )的图象如图,由图可知,函数f (x )与g (x )=−12(1<x ≤2,3<x ≤4,5<x ≤6,7<x ≤8)仅有2个实数根; 要使关于x 的方程f (x )=g (x )有8个不同的实数根,则f (x )=√1−(x −1)2,x ∈(0,2]与g (x )=k (x +2),x ∈(0,1]的图象有2个不同交点, 由(1,0)到直线kx ﹣y +2k =0的距离为1,得√k 2+1=1,解得k =√24(k >0), ∵两点(﹣2,0),(1,1)连线的斜率k =13,∴13≤k <√24. 即k 的取值范围为[13,√24). 故答案为:[13,√24). 29.【2018年浙江15】已知λ∈R ,函数f (x )={x −4,x ≥λx 2−4x +3,x <λ,当λ=2时,不等式f (x )<0的解集是 .若函数f (x )恰有2个零点,则λ的取值范围是 .【解答】解:当λ=2时函数f (x )={x −4,x ≥2x 2−4x +3,x <2,显然x ≥2时,不等式x ﹣4<0的解集:{x |2≤x <4};x <2时,不等式f (x )<0化为:x 2﹣4x +3<0,解得1<x <2,综上,不等式的解集为:{x |1<x <4}.函数f(x)恰有2个零点,函数f(x)={x−4,x≥λx2−4x+3,x<λ的草图如图:函数f(x)恰有2个零点,则1<λ≤3或λ>4.故答案为:{x|1<x<4};(1,3]∪(4,+∞).30.【2018年上海11】已知常数a>0,函数f(x)=2x2x+ax的图象经过点P(p,65),Q(q,−15).若2p+q=36pq,则a=.【解答】解:函数f(x)=2x2x+ax的图象经过点P(p,65),Q(q,−15).则:2p2p+ap +2q2q+aq=65−15=1,整理得:2p+q+2p aq+2q ap+2p+q2p+q+2p aq+2q ap+a2pq=1,解得:2p+q=a2pq,由于:2p+q=36pq,所以:a2=36,由于a>0,故:a=6.故答案为:631.【2018年天津理科14】已知a>0,函数f(x)={x2+2ax+a,x≤0−x2+2ax−2a,x>0.若关于x的方程f(x)=ax恰有2个互异的实数解,则a的取值范围是.【解答】解:当x≤0时,由f(x)=ax得x2+2ax+a=ax,得x2+ax+a=0,得a(x+1)=﹣x2,得a=−x2x+1,设g(x)=−x2x+1,则g′(x)=−2x(x+1)−x2(x+1)2=−x2+2x(x+1)2,由g′(x)>0得﹣2<x<﹣1或﹣1<x<0,此时递增,由g′(x)<0得x<﹣2,此时递减,即当x=﹣2时,g(x)取得极小值为g(﹣2)=4,当x>0时,由f(x)=ax得﹣x2+2ax﹣2a=ax,得x2﹣ax+2a=0,得a(x﹣2)=x2,当x=2时,方程不成立,当x≠2时,a=x2 x−2设h(x)=x2x−2,则h′(x)=2x(x−2)−x2(x−2)2=x2−4x(x−2)2,由h′(x)>0得x>4,此时递增,由h′(x)<0得0<x<2或2<x<4,此时递减,即当x=4时,h(x)取得极小值为h(4)=8,要使f(x)=ax恰有2个互异的实数解,则由图象知4<a<8,故答案为:(4,8)32.【2017年江苏14】设f (x )是定义在R 上且周期为1的函数,在区间[0,1)上,f (x )={x 2,x ∈Dx ,x ∉D ,其中集合D ={x |x =n−1n ,n ∈N *},则方程f (x )﹣lgx =0的解的个数是 . 【解答】解:∵在区间[0,1)上,f (x )={x 2,x ∈D x ,x ∉D,第一段函数上的点的横纵坐标均为有理数, 又f (x )是定义在R 上且周期为1的函数, ∴在区间[1,2)上,f (x )={(x −1)2,x ∈D x −1,x ∉D,此时f (x )的图象与y =lgx 有且只有一个交点;同理:区间[2,3)上,f (x )的图象与y =lgx 有且只有一个交点; 区间[3,4)上,f (x )的图象与y =lgx 有且只有一个交点; 区间[4,5)上,f (x )的图象与y =lgx 有且只有一个交点; 区间[5,6)上,f (x )的图象与y =lgx 有且只有一个交点; 区间[6,7)上,f (x )的图象与y =lgx 有且只有一个交点; 区间[7,8)上,f (x )的图象与y =lgx 有且只有一个交点; 区间[8,9)上,f (x )的图象与y =lgx 有且只有一个交点; 在区间[9,+∞)上,f (x )的图象与y =lgx 无交点;故f (x )的图象与y =lgx 有8个交点,且除了(1,0),其他交点横坐标均为无理数; 即方程f (x )﹣lgx =0的解的个数是8, 故答案为:833.【2017年新课标3理科15】设函数f (x )={x +1,x ≤02x ,x >0,则满足f (x )+f (x −12)>1的x 的取值范围是 .【解答】解:若x ≤0,则x −12≤−12,则f (x )+f (x −12)>1等价为x +1+x −12+1>1,即2x >−12,则x >−14, 此时−14<x ≤0,当x >0时,f (x )=2x >1,x −12>−12,当x −12>0即x >12时,满足f (x )+f (x −12)>1恒成立, 当0≥x −12>−12,即12≥x >0时,f (x −12)=x −12+1=x +12>12,此时f (x )+f (x −12)>1恒成立, 综上x >−14, 故答案为:(−14,+∞).34.【2017年浙江17】已知a ∈R ,函数f (x )=|x +4x−a |+a 在区间[1,4]上的最大值是5,则a 的取值范围是 .【解答】解:由题可知|x +4x −a |+a ≤5,即|x +4x −a |≤5﹣a ,所以a ≤5, 又因为|x +4x−a |≤5﹣a , 所以a ﹣5≤x +4x −a ≤5﹣a , 所以2a ﹣5≤x +4x ≤5, 又因为1≤x ≤4,4≤x +4x ≤5, 所以2a ﹣5≤4,解得a ≤92, 故答案为:(﹣∞,92].35.【2016年江苏11】设f (x )是定义在R 上且周期为2的函数,在区间[﹣1,1)上,f (x )={x +a ,−1≤x <0|25−x|,0≤x <1,其中a ∈R ,若f (−52)=f (92),则f (5a )的值是 .【解答】解:f (x )是定义在R 上且周期为2的函数,在区间[﹣1,1)上,f (x )={x +a ,−1≤x <0|25−x|,0≤x <1,∴f (−52)=f (−12)=−12+a , f (92)=f (12)=|25−12|=110,∴a =35,∴f(5a)=f(3)=f(﹣1)=﹣1+35=−25,故答案为:−2 536.【2016年浙江理科12】已知a>b>1,若log a b+log b a=52,ab=b a,则a=,b=.【解答】解:设t=log b a,由a>b>1知t>1,代入log a b+log b a=52得t+1t=52,即2t2﹣5t+2=0,解得t=2或t=12(舍去),所以log b a=2,即a=b2,因为a b=b a,所以b2b=b a,则a=2b=b2,解得b=2,a=4,故答案为:4;2.37.【2015年江苏13】已知函数f(x)=|lnx|,g(x)={0,0<x≤1|x2−4|−2,x>1,则方程|f(x)+g(x)|=1实根的个数为.【解答】解:由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1.g(x)与h(x)=﹣f(x)+1的图象如图所示,图象有2个交点g(x)与φ(x)=﹣f(x)﹣1的图象如图所示,图象有两个交点;所以方程|f (x )+g (x )|=1实根的个数为4. 故答案为:4.38.【2015年北京理科14】设函数f (x )={2x −a ,x <14(x −a)(x −2a),x ≥1,①若a =1,则f (x )的最小值为 ;②若f (x )恰有2个零点,则实数a 的取值范围是 . 【解答】解:①当a =1时,f (x )={2x −1,x <14(x −1)(x −2),x ≥1,当x <1时,f (x )=2x ﹣1为增函数,f (x )>﹣1,当x >1时,f (x )=4(x ﹣1)(x ﹣2)=4(x 2﹣3x +2)=4(x −32)2﹣1, 当1<x <32时,函数单调递减,当x >32时,函数单调递增, 故当x =32时,f (x )min =f (32)=﹣1,②设h (x )=2x ﹣a ,g (x )=4(x ﹣a )(x ﹣2a ) 若在x <1时,h (x )=与x 轴有一个交点,所以a >0,并且当x =1时,h (1)=2﹣a >0,所以0<a <2, 而函数g (x )=4(x ﹣a )(x ﹣2a )有一个交点,所以2a ≥1,且a <1, 所以12≤a <1,若函数h (x )=2x ﹣a 在x <1时,与x 轴没有交点, 则函数g (x )=4(x ﹣a )(x ﹣2a )有两个交点,当a ≤0时,h (x )与x 轴无交点,g (x )无交点,所以不满足题意(舍去),当h (1)=2﹣a ≤0时,即a ≥2时,g (x )的两个交点满足x 1=a ,x 2=2a ,都是满足题意的, 综上所述a 的取值范围是12≤a <1,或a ≥2.39.【2014年江苏13】已知f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=|x 2﹣2x +12|,若函数y =f (x )﹣a 在区间[﹣3,4]上有10个零点(互不相同),则实数a 的取值范围是 . 【解答】解:f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=|x 2﹣2x +12|,若函数y =f (x )﹣a 在区间[﹣3,4]上有10个零点(互不相同),在同一坐标系中画出函数f (x )与y =a 的图象如图:由图象可知a ∈(0,12). 故答案为:(0,12).40.【2014年天津理科14】已知函数f (x )=|x 2+3x |,x ∈R ,若方程f (x )﹣a |x ﹣1|=0恰有4个互异的实数根,则实数a 的取值范围为 .【解答】解:由y =f (x )﹣a |x ﹣1|=0得f (x )=a |x ﹣1|, 作出函数y =f (x ),y =g (x )=a |x ﹣1|的图象,当a ≤0,两个函数的图象不可能有4个交点,不满足条件, 则a >0,此时g (x )=a |x ﹣1|={a(x −1)x ≥1−a(x −1)x <1,当﹣3<x <0时,f (x )=﹣x 2﹣3x ,g (x )=﹣a (x ﹣1), 当直线和抛物线相切时,有三个零点, 此时﹣x 2﹣3x =﹣a (x ﹣1), 即x 2+(3﹣a )x +a =0,则由△=(3﹣a )2﹣4a =0,即a 2﹣10a +9=0,解得a =1或a =9, 当a =9时,g (x )=﹣9(x ﹣1),g (0)=9,此时不成立,∴此时a =1,要使两个函数有四个零点,则此时0<a<1,若a>1,此时g(x)=﹣a(x﹣1)与f(x),有两个交点,此时只需要当x>1时,f(x)=g(x)有两个不同的零点即可,即x2+3x=a(x﹣1),整理得x2+(3﹣a)x+a=0,则由△=(3﹣a)2﹣4a>0,即a2﹣10a+9>0,解得a<1(舍去)或a>9,综上a的取值范围是(0,1)∪(9,+∞),方法2:由f(x)﹣a|x﹣1|=0得f(x)=a|x﹣1|,若x=1,则4=0不成立,故x≠1,则方程等价为a=f(x)|x−1|=|x2+3x||x−1|=|(x−1)2+5(x−1)+4x−1|=|x﹣1+4x−1+5|,设g(x)=x﹣1+4x−1+5,当x>1时,g(x)=x﹣1+4x−1+5≥2√(x−1)4x−1+5=4+5=9,当且仅当x﹣1=4x−1,即x=3时取等号,当x<1时,g(x)=x﹣1+4x−1+5≤5−2√[−(x−1)]⋅−4x−1=5﹣4=1,当且仅当﹣(x﹣1)=−4x−1,即x=﹣1时取等号,则|g(x)|的图象如图:若方程f(x)﹣a|x﹣1|=0恰有4个互异的实数根,则满足a>9或0<a<1,故答案为:(0,1)∪(9,+∞)41.【2013年上海理科12】设a为实常数,y=f(x)是定义在R上的奇函数,当x<0时,f(x)=9x+a2x+7.若f(x)≥a+1对一切x≥0成立,则a的取值范围为.【解答】解:因为y=f(x)是定义在R上的奇函数,所以当x=0时,f(x)=0;当x>0时,则﹣x<0,所以f(﹣x)=﹣9x−a2x+7因为y=f(x)是定义在R上的奇函数,所以f(x)=9x+a2x−7;因为f(x)≥a+1对一切x≥0成立,所以当x=0时,0≥a+1成立,所以a≤﹣1;当x>0时,9x+a2x−7≥a+1成立,只需要9x+a2x−7的最小值≥a+1,因为9x +a 2x −7≥2√9x ⋅a 2x−7=6|a |﹣7, 所以6|a |﹣7≥a +1, 解得a ≥85或a ≤−87, 所以a ≤−87. 故答案为:a ≤−87.42.【2013年上海理科14】对区间I 上有定义的函数g (x ),记g (I )={y |y =g (x ),x ∈I }.已知定义域为[0,3]的函数y =f (x )有反函数y =f ﹣1(x ),且f ﹣1([0,1))=[1,2),f ﹣1((2,4])=[0,1).若方程f (x )﹣x =0有解x 0,则x 0= .【解答】解:因为g (I )={y |y =g (x ),x ∈I },f ﹣1([0,1))=[1,2),f ﹣1(2,4])=[0,1),所以对于函数f (x ),当x ∈[0,1)时,f (x )∈(2,4],所以方程f (x )﹣x =0即f (x )=x 无解; 当x ∈[1,2)时,f (x )∈[0,1),所以方程f (x )﹣x =0即f (x )=x 无解; 所以当x ∈[0,2)时方程f (x )﹣x =0即f (x )=x 无解, 又因为方程f (x )﹣x =0有解x 0,且定义域为[0,3],故当x ∈[2,3]时,f (x )的取值应属于集合(﹣∞,0)∪[1,2]∪(4,+∞), 故若f (x 0)=x 0,只有x 0=2, 故答案为:2.43.【2012年江苏10】设f (x )是定义在R 上且周期为2的函数,在区间[﹣1,1]上,f (x )={ax +1,−1≤x <0bx+2x+1,0≤x ≤1其中a ,b ∈R .若f(12)=f(32),则a +3b 的值为 .【解答】解:∵f (x )是定义在R 上且周期为2的函数,f (x )={ax +1,−1≤x <0bx+2x+1,0≤x ≤1,∴f (32)=f (−12)=1−12a ,f (12)=b+43;又f(12)=f(32),∴1−12a =b+43① 又f (﹣1)=f (1), ∴2a +b =0,②由①②解得a=2,b=﹣4;∴a+3b=﹣10.故答案为:﹣10.44.【2012年江苏13】已知函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的不等式f(x)<c的解集为(m,m+6),则实数c的值为.【解答】解:∵函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),∴f(x)=x2+ax+b=0只有一个根,即△=a2﹣4b=0,则4b=a2不等式f(x)<c的解集为(m,m+6),即为x2+ax+b<c解集为(m,m+6),则x2+ax+b﹣c=0的两个根x1,x2分别为m,m+6∴两根之差为|x1﹣x2|=|m+6﹣m|=6根据韦达定理可知:x1+x2=−a1=−ax1x2=b−c1=b﹣c∵|x1﹣x2|=6∴√(x1+x2)2−4x1x2=6∴√(−a)2−4(b−c)=6∴√4b−4b+4c=6解得c=9故答案为:945.【2012年北京理科14】已知f(x)=m(x﹣2m)(x+m+3),g(x)=2x﹣2,若同时满足条件:①∀x∈R,f(x)<0或g(x)<0;②∃x∈(﹣∞,﹣4),f(x)g(x)<0.则m的取值范围是.【解答】解:对于①∵g(x)=2x﹣2,当x<1时,g(x)<0,又∵①∀x∈R,f(x)<0或g(x)<0∴f(x)=m(x﹣2m)(x+m+3)<0在x≥1时恒成立则由二次函数的性质可知开口只能向下,且二次函数与x轴交点都在(1,0)的左面则{m<0−m−3<1 2m<1∴﹣4<m<0即①成立的范围为﹣4<m<0又∵②x∈(﹣∞,﹣4),f(x)g(x)<0∴此时g(x)=2x﹣2<0恒成立∴f(x)=m(x﹣2m)(x+m+3)>0在x∈(﹣∞,﹣4)有成立的可能,则只要﹣4比x1,x2中的较小的根大即可,(i)当﹣1<m<0时,较小的根为﹣m﹣3,﹣m﹣3<﹣4不成立,(ii)当m=﹣1时,两个根同为﹣2>﹣4,不成立,(iii)当﹣4<m<﹣1时,较小的根为2m,2m<﹣4即m<﹣2成立.综上可得①②成立时﹣4<m<﹣2.故答案为:(﹣4,﹣2).46.【2012年天津理科14】已知函数y=|x2−1|x−1的图象与函数y=kx﹣2的图象恰有两个交点,则实数k的取值范围是.【解答】解:y=|x2−1|x−1={x+1,x≤−1或x>1−x−1,−1<x<1,作出函数y=|x2−1|x−1与y=kx﹣2的图象如图所示:∵函数y=|x2−1|x−1的图象与函数y=kx﹣2的图象恰有两个交点,∴0<k<1或1<k<4.故答案为:(0,1)∪(1,4).47.【2011年江苏11】已知实数a ≠0,函数f (x )={2x +a ,x <1−x −2a ,x ≥1,若f (1﹣a )=f (1+a ),则a 的值为 .【解答】解:当a >0时,1﹣a <1,1+a >1∴2(1﹣a )+a =﹣1﹣a ﹣2a 解得a =−32舍去当a <0时,1﹣a >1,1+a <1∴﹣1+a ﹣2a =2+2a +a 解得a =−34故答案为−3448.【2011年上海理科13】设g (x )是定义在R 上,以1为周期的函数,若函数f (x )=x +g (x )在区间[3,4]上的值域为[﹣2,5],则f (x )在区间[﹣10,10]上的值域为 .【解答】解:法一:∵g (x )为R 上周期为1的函数,则g (x )=g (x +1)又∵函数f (x )=x +g (x )在[3,4]的值域是[﹣2,5]令x +6=t ,当x ∈[3,4]时,t =x +6∈[9,10]此时,f (t )=t +g (t )=(x +6)+g (x +6)=(x +6)+g (x )=[x +g (x )]+6所以,在t ∈[9,10]时,f (t )∈[4,11] (1)同理,令x ﹣13=t ,在当x ∈[3,4]时,t =x ﹣13∈[﹣10,﹣9]此时,f (t )=t +g (t )=(x ﹣13)+g (x ﹣13)=(x ﹣13)+g (x )=[x +g (x )]﹣13所以,当t ∈[﹣10,﹣9]时,f (t )∈[﹣15,﹣8] (2)…由(1)(2)…得到,f (x )在[﹣10,10]上的值域为[﹣15,11]故答案为:[﹣15,11]法二:由题意f (x )﹣x =g (x ) 在R 上成立故 f (x +1)﹣(x +1)=g (x +1)所以f (x +1)﹣f (x )=1由此知自变量增大1,函数值也增大1故f (x )在[﹣10,10]上的值域为[﹣15,11]故答案为:[﹣15,11]49.【2010年江苏11】已知函数f(x)={x 2+1,x ≥01x <0,则满足不等式f (1﹣x 2)>f (2x )的x 的范围是 . 【解答】解:由题意,可得{1−x 2>2x 1−x 2>0⇒x ∈(−1,√2−1) 故答案为:(−1,√2−1)50.【2010年天津理科16】设函数f (x )=x 2﹣1,对任意x ∈[32,+∞),f (x m )﹣4m 2f (x )≤f (x ﹣1)+4f (m )恒成立,则实数m 的取值范围是 .【解答】解:依据题意得x 2m 2−1﹣4m 2(x 2﹣1)≤(x ﹣1)2﹣1+4(m 2﹣1)在x ∈[32,+∞)上恒定成立, 即1m 2−4m 2≤−3x 2−2x +1在x ∈[32,+∞)上恒成立. 当x =32时,函数y =−3x 2−2x +1取得最小值−53, ∴1m −4m 2≤−53,即(3m 2+1)(4m 2﹣3)≥0,解得m ≤−√32或m ≥√32,故答案为:(−∞,−√32]∪[√32,+∞). 2020年高考数学压轴必刷题专题02函数概念与基本初等函数(文科数学)1.【2019年天津文科08】已知函数f (x )={2√x ,0≤x ≤1,1x,x >1.若关于x 的方程f (x )=−14x +a (a ∈R )恰有两个互异的实数解,则a 的取值范围为( )A .[54,94]B .(54,94]C .(54,94]∪{1}D .[54,94]∪{1}【解答】解:作出函数f (x )={2√x ,0≤x ≤1,1x ,x >1.的图象,以及直线y =−14x 的图象,关于x 的方程f (x )=−14x +a (a ∈R )恰有两个互异的实数解,即为y =f (x )和y =−14x +a 的图象有两个交点,平移直线y =−14x ,考虑直线经过点(1,2)和(1,1)时,有两个交点,可得a =94或a =54,考虑直线与y =1x 在x >1相切,可得ax −14x 2=1,由△=a 2﹣1=0,解得a =1(﹣1舍去),综上可得a 的范围是[54,94]∪{1}.故选:D .2.【2019年新课标3文科12】设f (x )是定义域为R 的偶函数,且在(0,+∞)单调递减,则() A .f (log 314)>f (2−32)>f (2−23)B .f (log 314)>f (2−23)>f (2−32)C .f (2−32)>f (2−23)>f (log 314)D .f (2−23)>f (2−32)>f (log 314)【解答】解:∵f (x )是定义域为R 的偶函数∴f(log 314)=f(log 34),∵log 34>log 33=1,<0<2−32<2−23<20=1,∴0<2−32<2−23<log 34f (x )在(0,+∞)上单调递减,∴f(2−32)>f(2−23)>f(log 314), 故选:C .3.【2018年新课标2文科12】已知f (x )是定义域为(﹣∞,+∞)的奇函数,满足f (1﹣x )=f (1+x ),若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)=( )A .﹣50B .0C .2D .50【解答】解:∵f (x )是奇函数,且f (1﹣x )=f (1+x ),∴f (1﹣x )=f (1+x )=﹣f (x ﹣1),f (0)=0,则f (x +2)=﹣f (x ),则f (x +4)=﹣f (x +2)=f (x ),即函数f (x )是周期为4的周期函数,∵f (1)=2,∴f (2)=f (0)=0,f (3)=f (1﹣2)=f (﹣1)=﹣f (1)=﹣2,f (4)=f (0)=0,则f (1)+f (2)+f (3)+f (4)=2+0﹣2+0=0,则f (1)+f (2)+f (3)+…+f (50)=12[f (1)+f (2)+f (3)+f (4)]+f (49)+f (50)=f (1)+f (2)=2+0=2,故选:C .4.【2018年新课标1文科12】设函数f (x )={2−x ,x ≤01,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(﹣∞,﹣1]B .(0,+∞)C .(﹣1,0)D .(﹣∞,0) 【解答】解:函数f (x )={2−x ,x ≤01,x >0,的图象如图: 满足f (x +1)<f (2x ),可得:2x <0<x +1或2x <x +1≤0,解得x ∈(﹣∞,0).故选:D .5.【2017年北京文科08】根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080,则下列各数中与M N 最接近的是( ) (参考数据:lg 3≈0.48)A .1033B .1053C .1073D .1093【解答】解:由题意:M ≈3361,N ≈1080,根据对数性质有:3=10lg 3≈100.48,∴M ≈3361≈(100.48)361≈10173,∴M N ≈1017310=1093,故选:D .6.【2017年天津文科08】已知函数f (x )={|x|+2,x <1x +2x ,x ≥1.,设a ∈R ,若关于x 的不等式f (x )≥|x 2+a |在R 上恒成立,则a 的取值范围是( )A .[﹣2,2]B .[−2√3,2]C .[−2,2√3]D .[−2√3,2√3] 【解答】解:根据题意,函数f (x )={|x|+2,x <1x +2x ,x ≥1.的图象如图: 令g (x )=|x 2+a |,其图象与x 轴相交与点(﹣2a ,0), 在区间(﹣∞,﹣2a )上为减函数,在(﹣2a ,+∞)为增函数,若不等式f (x )≥|x 2+a |在R 上恒成立,则函数f (x )的图象在g(x)上的上方或相交,则必有f(0)≥g(0),即2≥|a|,解可得﹣2≤a≤2,故选:A.7.【2016年新课标2文科12】已知函数f(x)(x∈R)满足f(x)=f(2﹣x),若函数y=|x2﹣2x﹣3|与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(x m,y m),则∑m i=1x i=()A.0B.m C.2m D.4m【解答】解:∵函数f(x)(x∈R)满足f(x)=f(2﹣x),故函数f(x)的图象关于直线x=1对称,函数y=|x2﹣2x﹣3|的图象也关于直线x=1对称,故函数y=|x2﹣2x﹣3|与y=f(x)图象的交点也关于直线x=1对称,故∑m i=1x i=m2×2=m,故选:B.8.【2016年北京文科08】某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段,表中为10名学生的预赛成绩,其中有三个数据模糊.学生序号1 2 3 4 5 67 89 10立定跳远1.96 1.92 1.82 1.80 1.78 1.76 1.74 1.72 1.68 1.60(单位:米)63a7560 6372 70a﹣1 b65 30秒跳绳(单位:次)在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则()A.2号学生进入30秒跳绳决赛B.5号学生进入30秒跳绳决赛C.8号学生进入30秒跳绳决赛D.9号学生进入30秒跳绳决赛【解答】解:∵这10名学生中,进入立定跳远决赛的有8人,故编号为1,2,3,4,5,6,7,8的学生进入立定跳远决赛,又由同时进入立定跳远决赛和30秒跳绳决赛的有6人,则3,6,7号同学必进入30秒跳绳决赛,剩下1,2,4,5,8号同学的成绩分别为:63,a,60,63,a﹣1有且只有3人进入30秒跳绳决赛,故成绩为63的同学必进入30秒跳绳决赛,故选:B.9.【2015年新课标1文科12】设函数y=f(x)的图象与y=2x+a的图象关于y=﹣x对称,且f(﹣2)+f (﹣4)=1,则a=()A.﹣1B.1C.2D.4【解答】解:∵与y=2x+a的图象关于y=x对称的图象是y=2x+a的反函数,y=log2x﹣a(x>0),即g(x)=log2x﹣a,(x>0).∵函数y=f(x)的图象与y=2x+a的图象关于y=﹣x对称,∴f(x)=﹣g(﹣x)=﹣log2(﹣x)+a,x<0,∵f(﹣2)+f(﹣4)=1,∴﹣log22+a﹣log24+a=1,。

高考数学复习考点知识与题型专题讲解11--- 导数-恒成立问题(解析版)

高考数学复习考点知识与题型专题讲解11--- 导数-恒成立问题(解析版)

1 / 31高考数学复习考点知识与题型专题讲解专题11导数-恒成立问题1.高考对本部分的考查一般有三个层次:(1)主要考查求导公式,求导法则与导数的几何意义; (2)导数的简单应用,包括求函数的单调区间、极值、最值等;(3)综合考查,如零点、证明不等式、恒成立问题、求参数等,包括解决应用问题,将导数内容和传统内容中有关不等式、数列及函数单调性有机结合,设计综合题. 2.恒成立问题的解法(1)若()f x 在区间D 上有最值,则恒成立:()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<; (2)若能分离常数,即将问题转化为()a f x >(或()a f x <),则 恒成立:()()max a f x a f x >⇔>;()()min a f x a f x <⇔<.1.已知函数()sin ,[0,],0x f x ae x x x a π=++∈<. (1)证明:当1a =-时,函数()f x 有唯一的极大值; (2)当()21f x x <-恒成立,求实数a 的取值范围.【试题来源】百师联盟2020-2021学年高三下学期开年摸底联考考试卷(全国Ⅰ卷) 【答案】(1)证明见解析;(2)1a <-.【分析】(1)对函数求导,讨论函数的单调区间,进而可证明结果.(2)构造函数()e sin 10=+-+<x h x a x x ,只需函数最大值小于0即可得出结果.【解析】(1)证明:()e cos 1x f x a x '=++, 因为[]0,x π∈,所以1cos 0x +≥, 当1a =-时,()cos 1x f x e x '=-++, 令()e cos 1,()e sin 0x x g x x g x x '=-++=--<,()g x 在区间[]0,π上单调递减;(0)121,()e 0g g ππ=-+==-<, 存在()00,π∈x ,使得()00f x '=,所以函数()f x 递增区间是[]00,x ,递减区间是[]0,x π. 所以函数()f x 存在唯一的极大值()0f x . (2)由()21f x x <-,即令()e sin 10,0,()e cos 10'=+-+<<∴=+-<x x h x a x x a h x a x ,()h x ∴在区间[]0,π上单调减函数,()(0)1≤=+h x h a ,只要10a +<即可,即1a <-.2.已知函数()()2112f x x alnx a x =-+-. (1)讨论函数()f x 的单调性;(2)若()22a f x >恒成立,求正实数a 的取值范围、【试题来源】吉林省长春市2021届高三质量监测(二)【答案】(1)当0a ≤时,()f x 在定义域(0,)+∞上单调递增;当0a >时,()f x 在()0,a 上单调递减,在(,)a +∞上单调递增;(2)01a <<. 【分析】(1)求出导函数()()()1x x a f x x+-'=,讨论0a ≤或0a >,利用函数的单调性与导数之间的关系即可求解.(2)令()()2 2a g x f x =-,结合(1)不等式等价于()0g a >,只需10lna a +-<,令()1h x lnx x =+-,根据函数为增函数即可求解.3 / 31【解析】()1定义域为()0,-∞, ()()()()2111x a x a x x a af x x a x x x+--+-'=-+-==当0a ≤时,在(0,)+∞上()0,f x '≥所以()f x 在定义域(0,)+∞上单调递增; 当0a >时,令()'0f x >有,x a >令()'0f x <有0,x a << 所以()f x 在()0,a 上单调递减,在(,)a +∞上单调递增.()2令()()2 2a g x f x =-,由()1及a 为正数知,()()22ag x f x =-在x a =处取最小值,所以()22a f x >恒成立等价于()0g a >,即()10alna a a -+->,整理得10lna a +-<,令()1h x lnx x =+-, 易知()h x 为增函数,且()10,h =所以10lna a +-<的a 的取值范围是01a <<.3.已知函数1()ln ()f x a x a R x=+∈.(1)讨论函数()f x 在区间[1,2]上的最小值;(2)当1a =时,求证:对任意(0,)x ∈+∞,恒有cos ()x e xf x x+<成立.【试题来源】河北省张家口市2021届高三一模 【答案】(1)答案见解析;(2)证明见解析. 【解析】(1)函数1()ln =+f x a x x的定义域是(0,)+∞, 2211()a ax f x x x x-'=-=.当0a 时,2110,0ax ax x --<<,则()0f x '<,则函数()f x 在(0,)+∞上单调递减,即函数()f x 在区间[1,2]上单调递减, 故函数()f x 在区间[1,2]上的最小值为1(2)ln 22f a =+. 当0a >时,令()0f x '<,得10x a <<;令()0f x '>,得1x a>;故函数()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增.当11a,即1a 时,函数()f x 在区间[1,2]上单调递增, 故函数()f x 在区间[1,2]上的最小值为(1)1f =; 当12a,即102a <时,函数()f x 在区间[1,2]上单调递减,故函数()f x 在区间[1,2]上的最小值为1(2)ln 22f a =+; 当112a <<,即112a <<时,函数()f x 在11,a ⎡⎫⎪⎢⎣⎭上单调递减,在1,2a ⎛⎤ ⎥⎝⎦上单调递增, 此时函数()f x 在区间[1,2]上的最小值为11ln f a a a a ⎛⎫=+ ⎪⎝⎭.综上,当12a时,函数()f x 在区间[1,2]上的最小值为1(2)ln 22f a =+;当112a <<时,函数()f x 在区间[1,2]上的最小值为11ln f a a a a ⎛⎫=+ ⎪⎝⎭;当1a 时,函数()f x 在区间[1,2]上的最小值为(1)1f =. (2)当1a =时,1()ln f x x x=+, 要证cos ()x e x f x x +<,即证1cos ln x e xx x x++<,因为0x >,所以两边同时乘x ,得ln 1cos x x x e x +<+, 即证ln cos 1x x x e x <+-.当01x <时,ln 0x x ,而cos 11cos11cos10x e x +->+-=>,所以ln cos 1xx x e x <+-成立,即cos ()x e xf x x+<成立.当1x >时,令()cos ln 1(1)x h x e x x x x =+-->, 则()sin ln 1x h x e x x '=---.5 / 31设()sin ln 1(1)xg x e x x x =--->,,则因为1()cos x g x e x x'=--.因为1x >,所以1()cos 110xg x e x e x'=-->-->,所以当1x >时,()g x 单调递增,所以()sin110g x e >-->,即()0h x '>,所以()h x 在(1,)+∞上单调递增,所以()cos110h x e >+->,即cos ()x e xf x x +<成立.综上,对任意(0,)x ∈+∞,恒有cos ()x e xf x x+<成立.【名师点睛】此题考查导数的应用,利用导数求函数的最值,考查分类讨论的数学思想,第2问解题的关键是把cos ()x e x f x x+<等价转化为ln cos 1x x x e x <+-,然后构造函数,利用导数证明即可,属于中档题 4.已知函数f (x )=ax -ln x -1. (1)若f (x )≥0恒成立,求a 的最小值;(2)求证:xe x-+x +ln x -1≥0;(3)已知k (x e -+x 2)≥x -x ln x 恒成立,求k 的取值范围. 【试题来源】2021年高考二轮复习讲练测(浙江专用) 【答案】(1)1;(2)证明见解析;(3)[1,+∞).【解析】(1)f (x )≥0等价于a ≥ln 1x x+. 令g (x )=ln 1x x+ (x >0),则g ′(x )=2ln xx -,所以当x ∈(0,1)时,g ′(x )>0,当x ∈(1,+∞)时,g ′(x )<0,则g (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以g (x )max =g (1)=1,则a ≥1, 所以a 的最小值为1.(2)证明:当a =1时,由(1)得x ≥ln x +1,即t ≥ln t +1(t >0).令x e x -=t ,则-x -ln x =ln t ,所以x e x -≥-x -ln x +1,即x e x -+x +ln x -1≥0.(3)因为k (xe -+x 2)≥x -x ln x 恒成立,即k x e x x -⎛⎫+ ⎪⎝⎭≥1-ln x 恒成立, 所以k ≥1ln xx e x x--+=-ln 1xx e x x x e x x--++-++1,由(2)知x e x-+x +ln x -1≥0恒成立,所以-+ln 1x x ex x x ex x--+-++1≤1,所以k ≥1.故k 的取值范围为[1,+∞).【名师点睛】不等式证明问题是近年高考命题的热点,利用导数证明不等主要方法有两个,一是比较简单的不等式证明,不等式两边作差构造函数,利用导数研究函数的单调性,求出函数的最值即可;二是较为综合的不等式证明,要观察不等式特点,结合已解答的问题把要证的不等式变形,并运用已证结论先行放缩,然后再化简或者进一步利用导数证明. 5.已知函数()()1ln 2f x x mx m R =-∈,()()0ag x x a x=->. (1)求函数()f x 的单调区间. (2)若212m e=,对2122,2,x x e ⎡⎤∀∈⎣⎦都有()()12g x f x ≥成立,求实数a 的取值范围. 【试题来源】2021年高考数学二轮复习讲练测 【答案】(1)答案见解析;(2)(]0,3.【分析】(1)函数的定义域为()0,∞+,求导得()1'2f x m x=-,再分0m ≤和0m >两种情况讨论求解即可;(2)根据题意,问题转化为对2122,2,x x e ⎡⎤∀∈⎣⎦都满足()()min max g x f x ≥,再根据导数研究函数的最值即可. 【解析】(1)()()1ln ,02f x x mx m R x =-∈>,所以()1'2f x m x=-, 当0m ≤时,()0f x >′,()f x 在()0,∞+上单调递增.7 / 31当0m >时,由()0f x '=得12x m=; 由()'00f x x ⎧>⎨>⎩得102x m <<;由()'00f x x ⎧<⎨>⎩得12x m >.综上所述,当0m ≤时,()f x 的单调递增区间为()0,∞+;当0m >时,()f x 的单调递增区间为10,2m ⎛⎫ ⎪⎝⎭,单调递减区间为1,2m ⎛⎫+∞⎪⎝⎭. (2)若212m e =,则()211ln 22f x x x e =-. 对2122,2,x x e ⎡⎤∀∈⎣⎦都有()()12g x f x ≥成立,等价于对2122,2,x x e ⎡⎤∀∈⎣⎦都()()min max g x f x ≥,由(1)知在22,e ⎡⎤⎣⎦上单调递增,在22,2e e ⎡⎤⎣⎦上单调递减,所以()f x 的最大值为()212f e =, ()()2'100a g x a x=+>>,22,2x e ⎡⎤∈⎣⎦, 函数()g x 在22,2e ⎡⎤⎣⎦上是增函数,()()222mina g x g -==, 所以1222a -≥,解得3a ≤,又0a >,所以(]0,3a ∈.所以实数a 的取值范围是(]0,3.【名师点睛】本题考查利用导数研究函数单调区间,不等式恒成立问题,考查运算求解能力,回归转化思想,分类讨论思想,是中档题.本题第二问解题的关键在于根据已知将问题转化为对2122,2,x x e ⎡⎤∀∈⎣⎦都满足()()min max g x f x ≥,再研究函数的最值求解.6.已知函数()axf x e x =-.(1)若曲线()y f x =在点()()0,0f 处切线的斜率为1,求()f x 的单调区间;(2)若不等式()2ln ax f x e x ax ≥-对(]0,x e ∈恒成立,求a 的取值范围.【试题来源】云南西南名校2021届高三下学期联考【答案】(1)单调递减区间为ln 2,2⎛⎫-∞- ⎪⎝⎭,单调递增区间为ln 2,2⎛⎫-+∞ ⎪⎝⎭;(2)1,e ⎡⎫+∞⎪⎢⎣⎭.【分析】(1)由题设()1axf x ae '=-,根据导数的几何意义有()01f '=,可求a ,即()221x f x e '=-,进而可求()f x 的单调区间;(2)由题意,函数不等式恒成立可转化为(]0,x e ∈上ln 1ln 1ax ax xe e x --≥恒成立,构造函数()ln 1x g x x -=,应用导数研究其单调性可得ln x a x ≥在(]0,x e ∈上恒成立,即在(]0,x e ∈上max ln ()xa x≥即可求a 的取值范围. 【解析】(1)()1axf x ae '=-,则()011f a '=-=,即2a =. 所以()221xf x e '=-,令0fx ,得ln 22x =-. 当ln 22x <-时,0f x ;当ln 22x >-时,0f x .故()f x 的单调递减区间为ln 2,2⎛⎫-∞- ⎪⎝⎭,单调递增区间为ln 2,2⎛⎫-+∞ ⎪⎝⎭.(2)由()2ln ax f x e x ax ≥-,即()2ln 1ax ax x e x -≥-,有1ln 1ax a x e x x --≥,故仅需ln 1ln 1ax axxe e x --≥即可. 设函数()ln 1x g x x -=,则ln 1ln 1ax axxe e x --≥等价于()()axg e g x ≥. 因为()22ln x g x x -'=, 所以当(]0,x e ∈时,0g x ,则()g x 在(]0,e 上单调递增,所以当(]0,x e ∈时,()()axg e g x ≥等价于当(]0,x e ∈时,()()ax g e g x ≥,ax e x ≥,即ln xa x≥恒成立. 设函数()ln x h x x =,(]0,x e ∈,则()21ln 0xh x x -'=≥, 即()h x 在(]0,x e ∈递增,所以()()max 1h x h e e==,则1a e ≥即可,所以a 的取值范围为1,e ⎡⎫+∞⎪⎢⎣⎭.【名师点睛】(1)应用导数的几何意义求参数值,进而讨论对应函数的单调性确定单调9 / 31区间;(2)构造函数()ln 1x g x x-=,将不等式恒成立问题转化为利用函数()g x 单调性得ax e x ≥,应用参变分离判断(]0,x e ∈上max ln ()xa x≥,确定参数范围. 7.设函数()1()x xa a f x e -=+>. (1)求证:()f x 有极值点;(2)设()f x 的极值点为0x ,若对任意正整数a 都有()0,x m n ∈,其中,m n Z ∈,求n m -的最小值.【试题来源】江苏省盐城市、南京市2021届高三下学期第一次模拟考试 【答案】(1)证明见解析;(2)2.【解析】(1)由题意得()ln x xf x a a e -'=-,所以()()2ln 0x x f x a a e -''=+>,所以函数()f x '单调递增,由()0f x '=,得()()ln 1,1ln xxae a ae a==. 因为1a >,所以1ln 0a>,所以1log ln ae x a =.当1log ln aex a >时,()()0,f x f x '>单调递增; 当1log ln ae x a<时,()()0,f x f x '<单调递减.因此,当1log ln ae x a=时函数()f x 有极值.(2)由(1)知,函数()f x 的极值点0x (即函数()f x '的零点)唯一, 因为ln (1)af e a'-=-.令()ln a g a a =,则()21ln 0a a g a '-==,得a e =. 当a e >时,()()0,g a g a '<单调递减;当0a e <<时,()()0,g a g a '>单调递增, 所以()()1g a g e e ≤=,所以()ln 10af ae '-=-<. 而()0ln 1f a '=-,当2a =时,()00f '<,当3a ≥时,()00f '>.又()1ln 1a ef a '=-.因为a 为正整数且2a ≥时,所以ln 2ln 121a a e≥>>. 当2a ≥时,()10f '>.即对任意正整数1a >,都有()10f '-<,()10f '>,所以()01,1x ∈-恒成立, 且存在2a =,使()00,1x ∈,也存在3a =,使()01,0x ∈-. 所以n m -的最小值为2.【名师点睛】本题考查导数的应用,解题的关键是利用导数结合零点存在性定理得出()10f '-<,()10f '>,得出,m n 的可能值. 8.已知函数2()2ln 43()f x x ax ax a a =+-+∈R . (1)讨论函数()f x 的单调性;(2)对(1,)x ∈+∞,都有()0f x >成立,求实数a 的取值范围. 【试题来源】山西省晋中市2021届高三下学期二模 【答案】(1)答案见解析;(2)01a .【分析】(1)求出函数的导数,令2()21(0)g x ax ax x =-+>,分段讨论a 的值,判断()g x 的正负情况可得出单调性;(2)可得当01a 时,()f x 在(1,)+∞上单调递增,所以()(1)0f x f >=成立;当0a <时,可得存在x ,使得()(1)0f x f <=,即可得出结论.【解析】(1)()22212()24(0)ax ax f x ax a x x x'-+=+-=>,令2()21(0)g x ax ax x =-+>, ①当0a =时,()10g x =>,在(0,)+∞上,()0f x '>,所以()f x 单调递增.②当0a <时,2444(1)0a a a a ∆=-=->,令()0g x =,得12x x ==,且120x x >>,11 / 31所以当()10,x x ∈时,()0f x '>,所以()f x 单调递增; 当()1,x x ∈+∞时,()0f x '<,所以()f x 单调递减. ③当0a >时,4(1)a a ∆=-, 当01a <时,4(1)0a a ∆=-,在(0,)+∞上,()0f x '>,所以()f x 单调递增. 当1a >时,2444(1)0a a a a ∆=-=->,令()0g x =,得12a a x x a a==,且120x x <<, 所以当()10,x x ∈或()2,x x ∈+∞时,()0f x '>,所以()f x 单调递增; 当()12,x x x ∈时,()0f x '<,所以()f x 单调递减.综上可得当0a <时,()f x 在()10,x 上单调递增,在()1,x +∞上单调递减; 当01a 时,()f x 在(0,)+∞上单调递增;当1a >时,()f x 在()()120,,,x x +∞上单调递增,在()12,x x 上单调递减.(2)因为(1)0f =,根据(1)的讨论可知,当01a 时,()f x 在(0,)+∞上单调递增,所以()f x 在(1,)+∞上单调递增,所以()(1)0f x f >=成立. 当0a <时,()f x 在()1,x +∞上单调递减,x →+∞时,()f x →-∞, 所以存在()1,x x ∈+∞使得()0f x <,故此时不成立.当1a >时,()f x 在()()120,,,x x +∞上单调递增;在()12,x x 上单调递减,而121x x =<<=,所以当()21,x x ∈时,()f x 单调递减,此时()(1)0f x f <=,不合题意.综上可得01a .【名师点睛】本题考查利用导数讨论含参函数的单调性问题,解题的关键是根据导数情况观察参数,对参数进行分段讨论,便于得出导数正负. 9.已知函数()e ln ax f x x x =-,其中e 是自然对数的底数,0a >.(1)若曲线()y f x =在点(1,(1))f 处的切线斜率为21e -,求a 的值; (2)对于给定的常数a ,若()1f x bx ≥+对(0,)x ∈+∞恒成立,求证:b a ≤. 【试题来源】江苏省苏州市2021届高三下学期期初 【答案】(1)1a =;(2)证明见解析.【分析】(1)求出()'f x ,根据导数的几何意义可得(1)21k f e '==-建立方程,求解方程即可得到答案.(2)不等式()1f x bx ≥+对(0,)x ∈+∞恒成立,即ln 1ln 1ax axx xe x b e x x x--≤--=对(0,)x ∈+∞恒成立,先证明1t e t ≥+恒成立,由此结论可得ln ln 1ln 1ax ax x xe x e x a x x+----=≥,从而可证明.【解析】(1)因为1()(1)axf x ax e x'=+-,所以切线斜率为(1)(1)121a k f a e e '==+-=-,即(1)20a a e e +-=.设()(1)2x h x x e e =+-, 由于()(2)0xh x x e '=+>,所以()h x 在(0,)+∞上单调递增,又(1)0h =,由(1)()02a a e h a e +-==可得1a =. (2)设()1t u t e t =--,则()1t u t e '=-, 当0t >时,()0u t '>,当0t <时,()0u t '<,所以()u t 在(,0)-∞上单调递减,在(0,)+∞上单调递增, 所以min()(0)0u t u ==,即()0u t ≥,所以1(*)t e t ≥+.若()1f x bx ≥+对(0,)x ∈+∞恒成立,即ln 1ax xe x bx --≥对(0,)x ∈+∞恒成立,即ln 1ln 1ax axx xe x b e x x x--≤--=对(0,)x ∈+∞恒成立.13 / 31设ln 1()ax xe x g x x--=,由(*)可知ln ln 1ln 1ln 1ln 1()ax ax x xe x e x ax x x g x a x x x+----++--==≥=,当且仅当()ln 0x ax x ϕ=+=时等号成立. 由()1()00x a x xϕ'=+>>,所以()ϕx 在()0+∞,上单调递增, 又()()1aaa eaea a e ϕ---=-=-,由0a >,所以10a e --<,即()0a e ϕ-<()10a ϕ=>,则存在唯一()0,1a x e -∈使得0()=0x ϕ即方程()ln 0x ax x ϕ=+=有唯一解()0,1ax e -∈,即()g x a ≥(对于给定的常数a ,当0x x =,()0,1ax e -∈时取等号)由ln 1ln 1ax axx xe x b e x x x--≤--=对(0,)x ∈+∞恒成立, 所以b a ≤.【名师点睛】本题考查根据切线的斜率求参数和利用导数证明不等式,解答本题的关键是先证明辅助不等式1te t ≥+,然后将问题转化为由ln 1ln 1ax axx xe x b e x x x--≤--=对(0,)x ∈+∞恒成立,由辅助不等式可得ln ln 1ln 1ln 1ln 1ax ax x xe x e x ax x x a x x x+----++--=≥=,从而使得问题得证,属于难题.10.已知函数3()2x f x e x mx =+++.(1)若x 轴为曲线()y f x =的切线,试求实数m 的值;(2)已知()()xg x f x e =-,若对任意实数x ,均有()1e ()x g g x +,求m 的取值范围.【试题来源】福建省名校联盟优质校2021届高三大联考 【答案】(1)e 3m =--;(2)[1,)m ∈-+∞ 【解析】(1)由2()e 3x f x x m '=++,设曲线()y f x =与x 轴相切于()0,0P x ,则()00f x =,()00f x '=.所以0030020e 20e 30x x x mx x m ⎧+++=⎪⎨++=⎪⎩,代入整理得()()020001e 210x x x x ⎡⎤-+++=⎣⎦, 由0e 0x >,22000131024x x x ⎛⎫++=++> ⎪⎝⎭,所以01x =,此时e 3m =--.经检验,当e 3m =--时,x 轴为曲线()y f x =的切线.(2)由3()()e 2x g x f x x mx =-=++,记1()e x h x x +=-,1()e 1x h x +'=-(,1)x ∈-∞-时,()0h x '<;(1,)x ∈-+∞时,()0h x '>,故()y h x =在(,1)-∞-上单调递减,在(1,)-+∞上单调递增. 所以()(1)2h x h ≥-=,不妨设1e x x t +-=(2t ≥),则()1e ()()()x g g x g x t g x +-=+-()33()()22x t m x t x mx ⎡⎤=++++-++⎣⎦221324t t x t m ⎡⎤⎛⎫=+++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦因为[2,)t ∈+∞时,要满足()()g x t g x +≥恒成立,则2222121331212424t x t ⎛⎫⎛⎫++≥⨯-++⨯= ⎪ ⎪⎝⎭⎝⎭(2t =时,1x =-,能同时取等号).即10m +≥即可,解得[1,)m ∈-+∞. 综上,[1,)m ∈-+∞时符合题意.【名师点睛】本题考查根据曲线的切线方程求参数值及根据不等式恒成立求参数的取值范围问题,难度较大,解答的主要思路如下:(1)当已知曲线的切线方程时,可先设切点的坐标为()00,x y ,然后格据导数的几何意义使()0f x '与所给切线的斜率相等,使点()00,x y 在所给切线上,列出方程组求解即可;(2)当已知不等式恒成立求解参数的取值范围时,可直接构造函数,利用导数分析函数的最值,使其最值符合条件即可;也可以15 / 31采用参数分离法,将问题转化为讨论不含参函数的最值问题求解. 11.已知实数0a ≠,设函数()e ax f x ax =-. (1)当1a =时,求函数()f x 的极值; (2)当12a >时,若对任意的[1,)x ∈-+∞,均有()2()12a f x x ≥+,求a 的取值范围. 【试题来源】广西桂林、崇左市2021届高三联合调研考试(二模) 【答案】(1)极小值(0)1f =,无极大值;(2)122a <≤. 【分析】(1)由1a =,求导()1x f x e =-',再利用极值的定义求解; (2)将()2()12a f x x ≥+,转化为2(1)2axa e x ≥+,易知0x =,1x =-时,a 的范围,当(1,)x ∈-+∞时,两边取对数,转化为2ln(1)ln 2aax x ≥++恒成立,令()2ln(1)ln 2aF x x ax =+-+,用导数法由()0F x ≤在(1,)-+∞内恒成立求解即可.【解析】(1)当1a =时,由()10x f x e '=-=,解得0x =. 当(0,)x ∈+∞时,()0f x '>,故()f x 在(0,)+∞内单调递增; 当(,0)x ∈-∞时,()0f x '<,故()f x 在(,0)-∞内单调递减.∴函数()f x 在0x =取得极小值(0)1f =,无极大值. (2)由()2()12a f x x ≥+,则有2(1)2axa e x ≥+. 令0x =,得11,222a a ≥<≤.当1x =-时,不等式2(1)2ax a e x ≥+显然成立,当(1,)x ∈-+∞时,两边取对数,即2ln(1)ln 2aax x ≥++恒成立. 令函数()2ln(1)ln2a F x x ax =+-+, 即()0F x ≤在(1,)-+∞内恒成立.由22(1)()011a x F x a x x '-+=-==++,得211x a =->-.故当21,1x a ⎛⎫∈-- ⎪⎝⎭时,()0,()F x F x '>单调递增;当21,x a ⎛⎫∈-+∞ ⎪⎝⎭时,()0,()F x F x '<单调递减.因此22()12ln 2ln 2ln 22a a F x F a a a a ⎛⎫≤-=-++=-- ⎪⎝⎭.令函数()2ln 2ag a a =--,其中122a <≤, 则11()10a g a a a='-=-=,得1a =, 故当1,12a ⎛⎫∈ ⎪⎝⎭时,()0,()g a g a '<单调递减;当(1,2]a ∈时,()0,()g a g a '>单调递增.又13ln 40,(2)022g g ⎛⎫=-<= ⎪⎝⎭,故当122a <≤时,()0g a ≤恒成立,因此()0F x ≤恒成立, 即当122a <≤时,对任意的[1,)x ∈-+∞,均有()2()12a f x x ≥+成立. 12.已知函数()2()2ln 1f x x x =--,()()21g x k x =-.(1)当1k =时,求函数()()()F x f x g x =-的极值;(2)若存在01x >,使得当()01,x x ∈时,()()f x g x >恒成立,求实数k 的取值范围. 【试题来源】云南省昆明市第一中学2021届高三第六次复习检测 【答案】(1)()0F x =极大值,()F x 无极小值;(2)(),1-∞. 【分析】(1)2()2ln 1F x x x =-+,求导得22(1)(1)()2x x F x x x x-+-'=-=,显然()0,1x ∈时,()F x 为增函数,()1,x ∈+∞时,()F x 为减函数,所以()F x 在1x =处取得极大值,无极小值,然后计算()1F 即可;(2)()()f x g x >恒成立即()()0f x g x ->恒成立,也即()0F x >恒成立,结合(1)的结论对k 分类讨论,当1k 时,不存在01x >,使得当()01,x x ∈时,()()f x g x >恒成立;当1k <时,22(1)1()x k x F x x⎡⎤-+--⎣⎦'=,令()0F x '=,得211(1)40k k x ---+=<,17 /3121x =>,可证得函数()F x 在()21,x 上是增函数,所以存在021x x <≤,使得当()01,x x ∈时,()()10F x F >=.【解析】(1)当1k =时,22()2ln (1)2(1)2ln 1F x x x x x x =----=-+,()F x 的定义域为()0,∞+,22(1)(1)()2x x F x x x x-+-'=-=, 当()0,1x ∈时,()0F x '>,()F x 为增函数, 当()1,x ∈+∞时,()0F x '<,()F x 为减函数, 所以()()10F x F ==极大值,()F x 无极小值;(2)由(1)可知,若1k =,则当1x >时,()()10F x F <=,即()()f x g x <, 所以不存在01x >,使得当()01,x x ∈时,()()f x g x >恒成立,若1k >,则当1x >时,22()2ln (1)2(1)2ln (1)2(1)0F x x x k x x x x =----<----<, 即不存在01x >,使得当()01,x x ∈时,()()f x g x >恒成立; 若1k <,2()2ln (1)2(1)F x x x k x =----,22(1)12()222x k x F x x k x x⎡⎤-+--⎣⎦'=-+-=, 令()0F x '=,得10x =<,21x =>,所以当()20,x x ∈时,()0F x '>,()F x 为增函数, 即函数()F x 在()21,x 上是增函数,所以存在021x x <≤,使得当()01,x x ∈时,()()10F x F >=, 即()()f x g x >成立,综上,所以实数k 的取值范围是(),1-∞.13.已知函数()ln a ef x x x-=+,其中e 是自然对数的底数. (1)设直线22y x e=-是曲线()()1y f x x =>的一条切线,求a 的值;(2)若a R ∃∈,使得()0f x ma +≥对()0x ∀∈+∞,恒成立,求实数m 的取值范围. 【试题来源】备战2021年高考数学全真模拟卷(山东高考专用)【答案】(1)0a =;(2)1m e≥-.【分析】(1)设切点坐标为()()00,x f x ,根据题意只需满足()02f x e'=,()00002ln 2a e f x x x x e-=+=-,然后求解方程组得出a 的值及0x 的值; (2)记()()ln a eg x f x ma x ma x-=+=++,求导讨论函数()g x 的单调性,确定最值,使()min 0g x ≥成立,得到关于参数m 的不等式,然后利用参数分离法求解参数m 的取值范围.【解析】(1)设切点为()()00,x f x ,其中01x >, 有()020012a e f x x x e -'=-=,且()00002ln 2a e f x x x x e-=+=- 得0021x a e x e -=-,所以004ln 30x x e+-=,易解得0x e =,则0a =; (2)记()()ln a e g x f x ma x ma x -=+=++,有()2x a eg x x -+'=, 当a e ≤,()20x a eg x x -+'=>恒成立,则函数()g x 在()0,∞+上递增,无最小值,不符合题意;当a e >时,当(),x a e ∈-+∞时,()0g x '>,当()0,x a e ∈-时,()0g x '<,所以函数()g x 在()0,a e -上递减,在(),a e -+∞上递增,所以()g x 在x a e =-处取得最小值,()()()min ln 10g x g a e a e ma =-=-++≥, 则有()1ln a e m a +--≤,记()()()1ln a e h a a e a+-=>,19 / 31有()()2ln ea e a e h a a ---'=, 易知()h a 在(),2e e 单调递增,在()2,e +∞单调递减,则()()max 12h a h e e ==,所以1m e-≤,得1m e ≥-.【名师点睛】本题考查导数的几何意义,考查根据不等式恒成立问题求参数的取值范围,求解的一般方法如下:(1)直接构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;(2)采用参数分离法,然后构造函数,直接将问题转化为函数最值的求解即可.14.已知函数()()2ln 21f x x mx m x =+++,其中0m <.(1)若()f x 在区间()2,+∞上单调递减,求m 的取值范围; (2)若不等式()f x n ≤对0x >恒成立,证明:30n m ->.【试题来源】“超级全能生”2021届高三全国卷地区1月联考试题(丙卷)【答案】(1)14m ≤-;(2)证明见解析.【分析】(1)对函数求导,求出单调减区间,列不等式,即可的出结果.(2)求出函数求导,求出单调减区间,求出函数的最大值,列不等式12f n m ⎛⎫-≤ ⎪⎝⎭,211111ln 222222⎛⎫⎛⎫⇒-≥--+-+ ⎪ ⎪⎝⎭⎝⎭n m m m m m ,记102t m=->,构造函数()21ln 2g t t t t t =+-, 求出()g t 最小值()200012=--g t t t ,()0 2n g t m -≥,()()0312g t g >=-,即可得出结果. 【解析】(1)函数()()2ln 21f x x mx m x =+++,其中0m <,0x >,()()()211122?1mx x f x mx m x x++'=+++=. 令()0f x '<得12x m>-.令122m -≤,解得14m ≤-. (2)函数()()2ln 21f x x mx m x =+++,其中0m <,0x >,()()()121x mx f x x++'=.令()0f x '=得12x m=-, 当102x m<<-时,()0f x '>,()f x 是增函数: 当12x m>-时,()0f x '<,()f x 是减函数,. 所以当12x m=-时,()f x 既是极大值也是最大值,11121ln 2242m f m m m m +⎛⎫⎛⎫-=-+- ⎪ ⎪⎝⎭⎝⎭11ln 124m m⎛⎫=--- ⎪⎝⎭. 令12f n m ⎛⎫-≤ ⎪⎝⎭,所以211111ln 222222n m m m m m⎛⎫⎛⎫-≥--+-+ ⎪ ⎪⎝⎭⎝⎭成立. 记102t m=->,()21ln 2g t t t t t =+-,()ln g t t t '=+,当0t >时,()g t '是增函数,1110g e e ⎛⎫'=-+< ⎪⎝⎭,()110g '=>,所以存在()00,1t ∈使000()ln 0g t t t '=+=. 当00t t <<时,()0g t '<,()g t 是减函数: 当0t t >时,()0g t '>,()g t 是增函数,所以当t t =0时,()g t 既是极小值也是最小值,()000001ln 2g t t t t t =+-. 又00ln t t =-,所以()200012=--g t t t ,则()0 2ng t m-≥成立, 当001t <<时,()0g t 是减函数, 所以()()0312g t g >=-,则322n m ->-,所以30n m ->. 【名师点睛】12f n m ⎛⎫-≤ ⎪⎝⎭211111ln 222222⎛⎫⎛⎫⇒-≥--+-+ ⎪ ⎪⎝⎭⎝⎭n m m m m m ,记102t m=->,构造函数()21ln 2g t t t t t =+-是解题的关键.本题考查了运算求解能力和逻辑推理能力,属于难题.15.已知函数()()()2(ln ,)xf x x kx k Rg x x e =-∈=-.(1)若()f x 有唯一零点,求k 的取值范围;21 / 31(2)若()()1g x f x -≥恒成立,求k 的取值范围. 【试题来源】山东省菏泽市2021届高三下学期3月一模【答案】(1)1k e=或0k ≤;(2)1k .【分析】(1)转化为ln x k x =有唯一实根,构造函数()ln x h x x=,利用导数研究函数的性质,得到函数的图象,根据图象可得结果;(2)转化为1ln 2xx k e x+≥-+恒成立,构造函数()1ln 2x xx e xϕ+=-+,利用导数求出其最大值,利用最大值可得解. 【解析】(1)由()ln f x x kx =-有唯一零点,可得方程ln 0x kx -=,即ln xk x=有唯一实根, 令()ln x h x x =,则()21ln ,xh x x -'=由()0h x '>,得0,x e <<由()0h x '<,得,x e >()h x ∴在()0,e 上单调递增,在(,)e +∞上单调递减.()()1h x h e e∴≤=, 又()10,h =所以当01x <<时,()0h x <; 又当x e >时,()ln 0,xh x x=>由()ln x h x x =得图象可知,1k e=或0k ≤. (2)()2ln 1()xx e x kx ---≥恒成立,且0x >,1ln 2xx k e x+∴≥-+恒成立, 令()1ln 2xx x e xϕ+=-+,则()22221(l l n n 1)x x x x e x x x e x x ϕ--'⋅==-+-,令()2ln x x x x e μ=--,则211()(2)(2)0x x xx xe x e xe x x xμ'=--+=--+<(0)x >,()x μ∴在(0,)+∞单调递减,又()12110,10e e e e μμ-⎛⎫=->=-< ⎪⎝⎭,由零点存在性定理知,存在唯一零点01,1x e ⎛⎫∈ ⎪⎝⎭,使()0,o x μ=即0200ln xx x e -=,两边取对数可得()000ln ln 2ln ,x x x -=+即()()0000ln ln ln ln ,x x x x -+-=+ 由函数ln y x x =+为单调增函数,可得00ln x x =-,所以当00x x <<时,()0x μ>,()0x ϕ'>,当0x x >时,()0x μ<,()0x ϕ'<, 所以()x ϕ在()00,x 上单调递增,在0(,)x +∞上单调递减,()()00000001ln 11221x x x x x e x x x ϕϕ+-∴≤=-+=-+=, 所以()1,o k x ϕ≥=即k 的取值范围为1k .16.已知函数f (x )=2e x +a ln(x +1)-2.(1)当a =-2时,讨论f (x )的单调性;(2)当x ∈[0,π]时,f (x )≥sin x 恒成立,求a 的取值范围.【试题来源】2021年高考数学二轮复习热点题型精选精练(新高考地区专用) 【答案】(1)函数()f x 在(-1,0)单调递减,在()0,∞+单调递增;(2)[)1,-+∞. 【分析】(1)将2a =-代入,求出导函数,利用导数与函数单调性之间的关系即可求解.(2)令()()()[]sin 2ln 12sin ,0,xg x f x x e a x x x π=-=++--∈,等价于()()00g x g ≥=恒成立,求出()g x ',讨论0a ≥或0a <,判断函数的单调性,其中0a <时,可得()0211g a a '=+-=+,讨论10a +≥或10+<a ,证明函数的单调性即可证明.【解析】(1)当2a =-时()(),22ln 12,1x f x e x x =-+->-.23 / 31()()22,1x f x e f x x '+'=-在()1,-+∞单调递增,且()00.f '= 当()1,0x ∈-时,()0f x '<;当()0,x ∈+∞时(),0f x '>. 所以函数()f x 在(-1,0)单调递减,在()0,∞+单调递增.(2)令()()()[]sin 2ln 12sin ,0,xg x f x x e a x x x π=-=++--∈当[]0,x π∈时,()sin f x x ≥恒成立等价于()()00g x g ≥=恒成立.由于()()[]cos 2cos ,0,1xag x f x x e x x x π=-=+-∈+'', 所以(1)当0a ≥时,()210,xg x e '≥->函数()y g x =在[]0,π单调递增,所以()()00g x g ≥=,在区间[]0,π恒成立,符合题意.(2)当0a <时,()2cos 1xag x e x x =+-+'在[]0,π单调递增,()0211g a a '=+-=+. ①当10a +即10a -≤<时,()()010,g x g a ≥=+≥''函数()y g x =在[]0,π单调递增,所以()()00g x g =在[]0,π恒成立,符合题意.②当10+<a 即1a <-时()(),010,211ag a g e πππ=+<=++'+', 若()0g π'≤,即()()121a e ππ≤-++时(),g x '在()0,π恒小于0则()g x 在()0,π单调递减,()()00g x g <=,不符合题意.若()0,g π'>即()()1211e a ππ-++<<-时,存在()00,x π∈使得()00.g x '=所以当()00,x x ∈时,()0,g x '<则()g x 在()00,x 单调递减,()()00,g x g <=不符合题意. 综上所述,a 的取值范围是[)1,.∞-+【名师点睛】本题考查了利用导数研究函数的单调性,利用导数研究不等式恒成立,解题的关键是构造函数()()[]2ln 12sin ,0,xg x e a x x x π=++--∈,不等式等价转化为()()00g x g ≥=恒成立,考查了分析能力、计算能力以及分类讨论的思想. 17.设()()ln a f x ax x =+,()11ln xg x b e x x-=⋅+,其中,a b ∈R ,且0a ≠.(1)试讨论()f x 的单调性;(2)当1a =时,()()ln f x xg x x -≥恒成立,求实数b 的取值范围. 【试题来源】广西玉林市2021届高三下学期第一次适应性测试 【答案】(1)答案见解析;(2)(],e -∞.【分析】(1)分别在0a <和0a >两种情况下,结合定义域,根据导函数的正负可确定原函数的单调性;(2)将不等式化为11ln xbxex x-≤-,利用导数和复合函数单调性可确定min 11ln 1x x ⎛⎫-= ⎪⎝⎭,进而转化为x e b x≤,利用导数可求得()x em x x =的最小值,由()min b m x ≤可得结果.【解析】(1)()221a x af x x x x'-=-=, ①当0a <时,由0ax >得0x <,即()f x 定义域为(),0-∞;∴当(),x a ∈-∞时,()0f x '<;当(),0x a ∈时,()0f x '>;()f x ∴在(),a -∞上单调递减,在(),0a 上单调递增; ②当0a >时,由0ax >得0x >,即()f x 定义域为()0,∞+;∴当()0,x a ∈时,()0f x '<;当(),x a ∈+∞时,()0f x '>;()f x ∴在()0,a 上单调递减,在(),a +∞上单调递增;综上所述:当0a <时,()f x 在(),a -∞上单调递减,在(),0a 上单调递增;当0a >时,()f x 在()0,a 上单调递减,在(),a +∞上单调递增.(2)由()()ln f x xg x x -≥得11ln ln ln x x bxe x x x -+--≥,即11ln x bxe x x -≤-, 设()ln h t t t =-,则()111t h t t t-'=-=,∴当()0,1t ∈时,()0h t '>;当()1,t ∈+∞时,()0h t '<;()h t ∴在()0,1上单调递增,在()1,+∞上单调递减;25 / 31又1t x=在()0,∞+上单调递减, 11ln y x x ∴=-在()0,1上单调递减,在()1,+∞上单调递增,min 11ln 1ln11xx ⎛⎫∴-=-= ⎪⎝⎭;1xbxe -∴≤在()0,∞+上恒成立,xe b x ∴≤;设()xe m x x =,则()()21x e x m x x-'=, ∴当()0,1x ∈时,()0m x '<;当()1,x ∈+∞时,()0m x '>;()m x ∴在()0,1上单调递减,在()1,+∞上单调递增, ()()min 1m x m e ∴==,b e ∴≤, 即实数b 的取值范围为(],e -∞.【名师点睛】本题考查恒成立问题的求解,解题关键是能够通过分离变量的方式,将问题转化为函数最值的求解问题,进而利用导数求解函数最值得到结果.18.已知函数()()1ln x af x x e x -=--.(1)当1a =时,求()f x 的最小值;(2)证明:当01a <≤时,()ln f x a ≥恒成立.【试题来源】湖北省武汉市2021届高三下学期3月质量检测 【答案】(1)0;(2)证明见解析. 【分析】(1)1a =时,1()(1)ln x f x x ex -=--,求导1)1(x xe xf x -'=-,利用导函数研究函数的单调区间,从而求出函数的最小值;(2)要证当01a <≤时,()ln f x a ≥恒成立,即证(1)ln ln 0x a x e x a ----≥,构造函数()(1)ln ln x a h a x e x a -=---,即证()0h a ≥恒成立,研究该函数在(0,)+∞上单调区间,求函数()0h a ≥.【解析】(1)1a =时,1()(1)ln x f x x e x -=--,定义域为(0,)+∞,求导1)1(x xe x f x -'=-,设()()g x f x '=, 121(1)0()x g x x e x-+=+'>,()f x '∴在(0,)+∞单调递增.又()10f '=,故当01x <<时,()0f x '<,()f x ∴单调递减; 当1x >时,'()0f x >,()f x 单调递增. 故()f x 在1x =处取得最小值()10f =. (2)设()(1)ln ln x a h a x e x a -=---,求导()(1)11(1)x a xaa x e e x e e a e h a a '⎡⎤-=-=--⎢⎥⎣⎦. 设()()1xs x x e =-,()xe t x x=,()0x s x xe '=-<,所以0x >时,()s x 单调递减,()()01s x s <=.21()xx t x e x-'=,令()0t x '=,得1x =, 当01x <<时,()0t x '<,()t x 单调递减;当1x >时,()0t x '>,()t x 单调递增,()()1t x t e ∴≥=,故0a >,0x >时,()11axe x e e a-<<≤.即()0h a '<,()h a ∴在(0,)+∞上单调递减, 则01a <≤时,()()()111ln x h a h x e x -≥=--.由(1)知,()11ln 0x x e x ---≥,故01a <≤时,()0h a ≥.即()1ln ln x ax ex a ---≥恒成立.【名师点睛】本题考查利用导数研究函数的最小值及利用导数证明不等式,利用导数证明不等式的方法:证明()()),,(f x g x x a b <∈,可以构造函数()()()F x f x g x =-,如果()0F x '<,则()F x 在(,)a b 上是减函数,同时若()0F a ≤,由减函数的定义可知,(,)x a b ∈时,有()0F x <,即证明了()()f x g x <.19.已知函数()()22x f x xe ax ax a =--∈R .27 / 31(1)当0a >时,讨论()f x 的单调性;(2)若关于x 的不等式()()f x f x ≥--在(),-∞+∞上恒成立,求实数a 的取值范围. 【试题来源】2021年高考二轮复习讲练测(浙江专用) 【答案】(1)答案见解析;(2)(],1-∞【分析】(1)先求出()f x ',令()0f x '=,比较两根大小,结合二次函数图象,即可判断()f x 的单调性;(2)将()f x 代入化简得到()220x x x e e ax ---≥,对x 进行分类讨论,易知0x =,a R ∈,0x ≠,令x e t =,根据()()0,1g t t ≥≠恒成立,对a 进行分类讨论即可求解. 【解析】(1)()()22x f x xe ax ax a =--∈R ,()()()2212x x x f x e xe ax a x e a '∴=+--=+-,x ∈R ,当0a >时,令()0f x '=,解得ln 2x a =或1x =-, 当ln 21a <-,即102a e<<, 则当(),ln 2x a ∈-∞时,()0f x '>,()f x 单调递增; 当()ln 2,1x a ∈-时,()0f x '<,()f x 单调递减; 当()1,x ∈-+∞时,()0f x '>,()f x 单调递增; 当ln 21a =-,即12a e=, 则()0f x '≥,等号不恒成立,()f x 在R 上单调递增; 当ln 21a >-,即12a e>, 则当(),1x ∈-∞-时,()0f x '>,()f x 单调递增; 当()1,ln 2x a ∈-时,()0f x '<,()f x 单调递减; 当()ln 2,x a ∈+∞时,()0f x '>,()f x 单调递增. 综上所述:当102a e<<时,()f x 在(),ln2a -∞上单调递增,在()ln 2,1a -上单调递减,在()1,-+∞上单调递增;当12a e=时,()f x 在R 上单调递增; 当12a e>时,()f x 在(),1-∞-上单调递增,在()1,ln 2a -上单调递减,在()ln2,a +∞上单调递增;(2)()()f x f x ≥--,即()2222x x xe ax ax xe a x ax -⎡⎤--≥----+⎣⎦, 即()220x x x e e ax ---≥,即()22x x x e e ax --≥①, 当0x =时,①式恒成立,a ∈R ; 当0x >时,x x e e ->,()0x x x e e -->, 当0x <时,x x e e -<,()0x x x e e -->, 故当0a ≤时,①式恒成立,;以下求当0x ≠时,不等式20x x e e ax ---≥恒成立时正数a 的取值范围, 令x e t =,则()()0,11,t ∈+∞,()12ln g t t a t t=--, 则()22212211a t at g t t t t -+'=+-=,令()221h t t at =-+,则244a ∆=-,当01a <≤时,0∆≤,()2210h t t at =-+≥,()0g t '≥,等号不恒成立,故()g t 在()0,∞+上单调递增,又()10g =,故1t >,()()10g t g >=,01t <<时,()()10g t g <=, 即当01a <≤时,①式恒成立;当1a >时,0∆>,()010h =>,()1220h a =-<, 故()h t 的两个零点,即()g t '的两个零点()10,1t ∈和()21,t ∈+∞,在区间()12,t t 上,()0h t <,()0g t '<,()g t 是减函数,。

2020年全国卷1函数与导数压轴题一题多解,深度解析

2020年全国卷1函数与导数压轴题一题多解,深度解析

全国卷1导数题一题多解,深度解析1、2020年全国卷1理科数学第21题的解析已知函数f(x) = e x +ax2-x.(1)当时,讨论/(x)的单调性:(2)当.总0时,.f(X)>yA J+l,求“的取值范囤.。

2. 2020年全国卷1文科数学第20题的解析已知函数f(x) = e x-a(x + 2)・(1)当“ =1时,讨论/(x)的单调性:(2)若/(x)有两个零点,求"的取值范围・。

3. 2020年新高考1卷(山东考卷)第21题已知函数f (%) = - In x + In a(1).当a=e时,求曲线y=f(x)在点(l,f(l))处的切线与两坐标轴围城的三角形的面积;(2)若f(x) > 1,求a的取值范围。

1、2020年全国卷1理科数学第21题的解析已知函数f(x) = e x +ax2-x.(1)当时,讨论/(x)的单调性:(2 )当XR时,./'(X)>y A J+1 ,求"的取值范围・。

解析:(1)单调性,常规题,a已知,求一个特左函数f(x)的单调性。

若一次求导不见底,则可二次或多次淸仓,即二次求导或多次求导,然后逐层返回。

通常二次求导的为多。

(2)怛成立,提髙题,在恒成立情况下,求参数的取值范囤。

常常是把恒成立化成最值问题。

由于这里的a只在一项中出现,故可以优先考虑分离参数法。

这里介绍了两种方法。

解:(1)当a=l 时,/(x) = c'+F_x,定义域为R,/'(x) = 7+2%-1,易知f,(x)是单调递增函数。

而f' (0)=0,.・.当xG (-8, 0), f,(x)V0当xW (O,+8), f (x)>0•当xW (-8, 0), f(x)单调递减:当xW (0,+8), f(x)单调递增。

2—.V+ JV +1 — K (A* — 2)(—x" + x +1 — 0*)令g(x)= --------- ;---- ,则gd)=—丄「 --------------------X X再令//(x) = -x2+x + l-,2到了这里发现,由(1)可得的e x+x2-x>\(x>0),不能引用。

2020年高考数学导数题(含答案)

2020年高考数学导数题(含答案)

2020年高考数学导数题卷一理科 21.(12分)已知函数f (x )=e x +ax 2-x.(1)当a=1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.21.解 (1)当a=1时,f (x )=e x +x 2-x ,f'(x )=e x +2x -1. 故当x ∈(-∞,0)时,f'(x )<0;当x ∈(0,+∞)时,f'(x )>0. 所以f (x )在(-∞,0)单调递减,在(0,+∞)单调递增. (2)f (x )≥12x 3+1等价于(12x 3-ax 2+x +1)e -x ≤1. 设函数g (x )=(12x 3-ax 2+x +1)e -x (x ≥0), 则g'(x )=- 12x 3-ax 2+x+1-32x 2+2ax -1e -x =-12x [x 2-(2a+3)x+4a+2]e -x =-12x (x -2a -1)(x -2)e -x .①若2a+1≤0,即a ≤-12,则当x ∈(0,2)时,g'(x )>0.所以g (x )在(0,2)单调递增,而g (0)=1, 故当x ∈(0,2)时,g (x )>1,不合题意.②若0<2a+1<2,即-12<a<12,则当x ∈(0,2a+1)∪(2,+∞)时,g'(x )<0;当x ∈(2a+1,2)时,g'(x )>0.所以g (x )在(0,2a+1),(2,+∞)单调递减,在(2a+1,2)单调递增.由于g (0)=1,所以g (x )≤1当且仅当g (2)=(7-4a )e -2≤1,即a ≥7-e 24.所以当7-e 24≤a<12时,g (x )≤1. ③若2a+1≥2,即a ≥12,则g (x )≤12x 3+x+1e -x .由于0∈7-e 24,12,故由②可得(12x 3+x +1)e -x ≤1.故当a ≥12时,g (x )≤1. 综上,a的取值范围是[7-e 24,+∞).卷一文科15.曲线y=ln x+x+1的一条切线的斜率为2,则该切线的方程为 .15.y=2x 设切点坐标为(x 0,y 0).对y=ln x+x+1求导可得y'=1x +1. 由题意得,1x 0+1=2,解得x 0=1,故y 0=ln 1+1+1=2,切线方程为y -2=2(x -1),即y=2x.20.(12分)已知函数f (x )=e x -a (x+2).(1)当a=1时,讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.20.解 (1)当a=1时,f (x )=e x -x -2,则f'(x )=e x -1. 当x<0时,f'(x )<0;当x>0时,f'(x )>0.所以f (x )在(-∞,0)单调递减,在(0,+∞)单调递增. (2)f'(x )=e x -a.当a ≤0时,f'(x )>0,所以f (x )在(-∞,+∞)单调递增,故f (x )至多存在1个零点,不合题意. 当a>0时,由f'(x )=0可得x=ln a.当x ∈(-∞,ln a )时,f'(x )<0;当x ∈(ln a ,+∞)时f'(x )>0.所以f (x )在(-∞,ln a )单调递减,在(ln a ,+∞)单调递增,故当x=ln a 时,f (x )取得最小值,最小值为f (ln a )=-a (1+ln a ).①若0<a ≤1e ,则f (ln a )≥0,f (x )在(-∞,+∞)至多存在1个零点,不合题意. ②若a>1e ,则f (ln a )<0.由于f (-2)=e -2>0,所以f (x )在(-∞,ln a )存在唯一零点. 由(1)知,当x>2时,e x -x -2>0, 所以当x>4且x>2ln(2a )时,f (x )=e x2·e x2-a (x+2)>e ln(2a )·(x2+2)-a (x+2)=2a>0. 故f (x )在(ln a ,+∞)存在唯一零点. 从而f (x )在(-∞,+∞)有两个零点. 综上,a 的取值范围是(1e ,+∞).卷二理科 21.(12分)已知函数f (x )=sin 2x sin 2x.(1)讨论f (x )在区间(0,π)的单调性; (2)证明:|f (x )|≤3√38; (3)设n ∈N*,证明:sin 2x sin 22x sin 24x …sin 22n x ≤3n4n.21.(1)解 f'(x )=cos x (sin x sin 2x )+sin x (sin x sin 2x )' =2sin x cos x sin 2x+2sin 2x cos 2x =2sin x sin 3x.当x ∈(0,π3)∪(2π3,π)时,f'(x )>0;当x ∈(π3,2π3)时,f'(x )<0. 所以f (x )在区间(0,π3),(2π3,π)单调递增,在区间π3,2π3单调递减.(2)证明 因为f (0)=f (π)=0,由(1)知,f (x )在区间[0,π]的最大值为f (π3)=3√38,最小值为f (2π3)=-3√38. 而f (x )是周期为π的周期函数,故|f (x )|≤3√38. (3)证明 由于(sin 2x sin 22x …sin 22nx )32=|sin 3x sin 32x …sin 32n x|=|sin x||sin 2x sin 32x …sin 32n -1x sin 2n x||sin 22n x| =|sin x||f (x )f (2x )…f (2n -1x )||sin 22n x| ≤|f (x )f (2x )…f (2n -1x )|, 所以sin 2x sin 22x …sin 22n x ≤(3√38)2n 3=3n4n .卷二文科 21.(12分)已知函数f (x )=2ln x+1.(1)若f (x )≤2x+c ,求c 的取值范围; (2)设a>0,讨论函数g (x )=f (x )-f (a )x -a的单调性. 21.解 设h (x )=f (x )-2x -c ,则h (x )=2ln x -2x+1-c , 其定义域为(0,+∞),h'(x )=2x-2.(1)当0<x<1时,h'(x )>0;当x>1时,h'(x )<0.所以h (x )在区间(0,1)单调递增,在区间(1,+∞)单调递减.从而当x=1时,h (x )取得最大值,最大值为h (1)=-1-c.故当且仅当-1-c ≤0,即c ≥-1时,f (x )≤2x+c. 所以c 的取值范围为[-1,+∞).(2)g (x )=f (x )-f (a )x -a=2(lnx -lna )x -a,x ∈(0,a )∪(a ,+∞). g'(x )=2(x -ax +lna -lnx )(x -a )2=2(1-a x +ln ax )(x -a )2.取c=-1得h (x )=2ln x -2x+2,h (1)=0,则由(1)知,当x ≠1时,h (x )<0,即1-x+ln x<0.故当x ∈(0,a )∪(a ,+∞)时,1-ax +ln ax <0,从而g'(x )<0.所以g (x )在区间(0,a ),(a ,+∞)单调递减. 卷三理科 21.(12分)设函数f (x )=x 3+bx+c ,曲线y=f (x )在点12,f (12)处的切线与y 轴垂直.(1)求b ;(2)若f (x )有一个绝对值不大于1的零点,证明:f (x )所有零点的绝对值都不大于1.21.(1)解 f'(x )=3x 2+b ,依题意得f'(12)=0,即34+b=0. 故b=-34.(2)证明 由(1)知f (x )=x 3-34x+c ,f'(x )=3x 2-34. 令f'(x )=0,解得x=-12或x=12. f'(x )与f (x )-∞,-12-12,1212,+∞ 因为f (1)=f (-12)=c+14,所以当c<-14时,f (x )只有大于1的零点.因为f (-1)=f (12)=c -14,所以当c>14时,f (x )只有小于-1的零点. 由题设可知-14≤c ≤14.当c=-14时,f (x )只有两个零点-12和1. 当c=14时,f (x )只有两个零点-1和12.当-14<c<14时,f (x )有三个零点x 1,x 2,x 3,且x 1∈-1,-12,x 2∈-12,12,x 3∈12,1.综上,若f (x )有一个绝对值不大于1的零点,则f (x )所有零点的绝对值都不大于1. 卷三文科 20.(12分)已知函数f (x )=x 3-kx+k 2. (1)讨论f (x )的单调性;(2)若f (x )有三个零点,求k 的取值范围.20.解 (1)f'(x )=3x 2-k.当k=0时,f (x )=x 3,故f (x )在(-∞,+∞)单调递增;当k<0时,f'(x )=3x 2-k>0,故f (x )在(-∞,+∞)单调递增.当k>0时,令f'(x )=0,得x=±√3k3.当x ∈-∞,-√3k3时,f'(x )>0; 当x ∈-√3k 3,√3k3时,f'(x )<0;当x ∈√3k3,+∞时,f'(x )>0.故f (x )在-∞,-√3k3,√3k3,+∞单调递增,在-√3k 3,√3k3单调递减.(2)由(1)知,当k ≤0时,f (x )在(-∞,+∞)单调递增,f (x )不可能有三个零点. 当k>0时,x=-√3k3为f (x )的极大值点,x=√3k3为f (x )的极小值点.此时,-k -1<-√3k3<√3k3<k+1且f (-k -1)<0,f (k+1)>0,f (-√3k3)>0.根据f (x )的单调性,当且仅当f (√3k3)<0,即k 2-2k √3k9<0时,f (x )有三个零点,解得k<427.因此k 的取值范围为0,427.山东卷 21.(12分)已知函数f (x )=a e x -1-ln x+ln a.(1)当a=e 时,求曲线y=f (x )在点(1,f (1))处的切线与两坐标轴围成的三角形的面积; (2)若f (x )≥1,求a 的取值范围.21.解f (x )的定义域为(0,+∞),f'(x )=a e x -1-1x .(1)当a=e 时,f (x )=e x -ln x+1,f'(1)=e -1,曲线y=f (x )在点(1,f (1))处的切线方程为y -(e +1)=(e -1)(x -1),即y=(e -1)x+2.直线y=(e -1)x+2在x 轴,y 轴上的截距分别为-2e -1,2.因此所求三角形的面积为2e -1. (2)由题意a>0,当0<a<1时,f (1)=a+ln a<1. 当a=1时,f (x )=e x -1-ln x ,f'(x )=e x -1-1x .当x ∈(0,1)时,f'(x )<0;当x ∈(1,+∞)时,f'(x )>0.所以当x=1时,f (x )取得最小值,最小值为f (1)=1,从而f (x )≥1. 当a>1时,f (x )=a e x -1-ln x+ln a ≥e x -1-ln x ≥1. 综上,a 的取值范围是[1,+∞). 天津卷 20.(16分)已知函数f (x )=x 3+k ln x (k ∈R ),f'(x )为f (x )的导函数. (1)当k=6时,①求曲线y=f (x )在点(1,f (1))处的切线方程;②求函数g (x )=f (x )-f'(x )+9x 的单调区间和极值;(2)当k ≥-3时,求证:对任意的x 1,x 2∈[1,+∞),且x 1>x 2,有f '(x 1)+f '(x 2)2>f (x 1)-f (x 2)x 1-x 2. 20.(1)解①当k=6时,f (x )=x 3+6ln x ,故f'(x )=3x 2+6x.可得f (1)=1,f'(1)=9,所以曲线y=f (x )在点(1,f (1))处的切线方程为y -1=9(x -1),即y=9x -8.②依题意,g (x )=x 3-3x 2+6lnx+3x ,x ∈(0,+∞).从而可得g'(x )=3x2-6x+6x −3x 2,整理可得g'(x )=3(x -1)3(x+1)x 2.令g'(x )=0,解得x=1.当x 变化时,g'(x ),g (x )所以,函数g (x )的单调递减区间为(0,1),单调递增区间为(1,+∞);g (x )的极小值为g (1)=1,无极大值.(2)证明由f (x )=x 3+k ln x ,得f'(x )=3x 2+kx . 对任意的x 1,x 2∈[1,+∞),且x 1>x 2,令x1x 2=t (t>1),则(x 1-x 2)[f'(x 1)+f'(x 2)]-2[f (x 1)-f (x 2)]=(x 1-x 2)3x 12+k x 1+3x 22+kx2-2x 13−x 23+k ln x1x 2=x 13−x 23-3x 12x 2+3x 1x 22+kx 1x 2−x 2x 1-2k ln x1x 2=x 23(t 3-3t 2+3t -1)+k t -1t -2ln t .①令h (x )=x -1x -2ln x ,x ∈[1,+∞). 当x>1时,h'(x )=1+1x 2−2x=(1-1x )2>0,由此可得h (x )在[1,+∞)单调递增,所以当t>1时,h (t )>h (1),即t -1t-2ln t>0. 因为x 2≥1,t 3-3t 2+3t -1=(t -1)3>0,k ≥-3,所以,x 23(t 3-3t 2+3t -1)+k t -1t -2ln t ≥(t 3-3t 2+3t -1)-3t -1t -2ln t =t 3-3t 2+6ln t+3t -1.② 由(1)②可知,当t>1时,g (t )>g (1),即t 3-3t 2+6ln t+3t >1,故t 3-3t 2+6ln t+3t -1>0. ③由①②③可得(x 1-x 2)[f'(x 1)+f'(x 2)]-2[f (x 1)-f (x 2)]>0. 所以,当k ≥-3时,对任意的x 1,x 2∈[1,+∞),且x 1>x 2,有f '(x 1)+f '(x 2)2>f (x 1)-f (x 2)x 1-x 2.。

高考数学 第三章 导数及其应用 专题11 导数与定积分考场高招大全

高考数学 第三章 导数及其应用 专题11 导数与定积分考场高招大全

专题11 导数与定积分考点22 导数的几何意义考场高招1 导数的几何意义应用规律1.解读高招2.典例指引1(1)(2017河南百校联盟质检)设曲线f(x)=e x sin x在(0,0)处的切线与直线x+my+1=0平行,则m= .(2)若点P是函数y=e x-e-x-3x图象上任意一点,且在点P处切线的倾斜角为α,则α的最小值是.【答案】(1)-1(2)3.亲临考场1.(2014课标Ⅱ,理8)设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0B.1C.2D.3【答案】D【解析】∵y=ax-ln(x+1),∴y'=a-.∴y'|x=0=a-1=2,得a=3.2.(2016课标Ⅱ,理16)若直线y=kx+b是曲线y=ln x+2的切线,也是曲线y=ln(x+1)的切线,则b= .ln 2【答案】 1-3.(2017广西河池二模)已知曲线f(x)=a cos x与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,则实数a+b 的值为.【答案】 1【解析】∵两曲线的交点为(0,m), ∴m=a cos 0,m=02+b×0+1.∴m=1,a=1.∵曲线f(x),g(x)在(0,m)处有公切线, ∴f'(0)=g'(0).∴-sin 0=2×0+b.∴b=0,∴a+b=1.考场高招2 求曲线y=f(x)的切线方程看清“在”与“过”1.解读高招y-y1=f'(x1)(x-x1),化简即得所求的切线方程2.典例指引2(1)(2017山西临汾五校三联)已知函数f(x)是奇函数,当x<0时,f(x)=x ln(-x)+x+2,则曲线y=f(x)在x=1处的切线方程为()A.y=2x+3B.y=2x-3C.y=-2x+3D.y=-2x-3(2)经过原点(0,0)作函数f(x)=x3+3x2的图象的切线,则切线方程为.【答案】 (1)B(2)y=0或9x+4y=03.亲临考场1.(2016课标Ⅲ,理15)已知f(x)为偶函数,当x<0时,f(x)=ln(-x)+3x,则曲线y=f(x)在点(1,-3)处的切线方程是.【答案】y=-2x-1【解析】当x>0时,-x<0, 则f(-x)=ln x-3x.因为f(x)为偶函数,所以f(x)=f(-x)=ln x-3x,所以f'(x)=1x-3,f'(1)=-2.故所求切线方程为y+3=-2(x-1), 即y=-2x-1.2.(2014江西,理13)若曲线y=e-x上点P处的切线平行于直线2x+y+1=0,则点P的坐标是.【答案】 (-ln 2,2)【解析】设点P的坐标是(x0,),则由题意知,y'=-=-2,得x0=-ln2,又=e ln2=2,故点P的坐标是(-ln2,2).3.(2017北京,理19)已知函数f(x)=e x cos x-x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间上的最大值和最小值.考点23 定积分的计算与应用考场高招3 求定积分的常用方法1.解读高招2.典例指引3(1)(2017中原名校三评)已知函数f(x)=f(x)d x= .(2)sin2d x= .(3)定积分(|x|-1)d x= .(4)计算:(x3cos x)d x= .【答案】(1)6+(2)(3)-1(4)03.亲临考场1.(2014陕西,理3)定积分(2x+e x)d x的值为()A.e+2B.e+1C.eD.e-1【答案】C【解析】因为(x2+e x)'=2x+e x,所以(2x+e x)d x=(x2+e x)=(1+e1)-(0+e0)=e.2. (2015湖南,理11)(x-1)d x= .【答案】0【解析】(x-1)d x==0.3.(2017湖北荆州模拟)计算:d x= .【答案】【解析】因为F'(x)= '=2x-,所以d x=F(3)-F(1)=9+-1-1=.考场高招4 利用定积分求平面图形面积的步骤1.解读高招2.典例指引4求曲线y=,y=2-x,y=-x所围成图形的面积.3.亲临考场1.(2015天津,理11)曲线y=x2与直线y=x所围成的封闭图形的面积为. 【答案】故所求面积S=(x-x2)d x=.2.(2017河北唐山模拟)曲线y=x3与y=所围成的封闭图形的面积为.【答案】5 12【解析】由题意,知所围成的封闭图形的面积为-x3)d x=.。

专题11 函数中的同构问题(学生版) -2025年高考数学压轴大题必杀技系列导数

专题11 函数中的同构问题(学生版) -2025年高考数学压轴大题必杀技系列导数

专题11 函数中的同构问题近年来同构函数频频出现在模拟试卷导数解答题中,高考真题中也出现过同构函数的身影,同构法是将不同的式子通过变形,转化为形式结构相同或者相近的式子,通过整体思想或换元等将问题转化的方法,这体现了转化思想.此方法常用于求解具有对数、指数等混合式子结构的等式、不等式问题中,或利用函数单调性定义确定函数单调性,利用此方法求解某些导数压轴题往往能起到秒杀效果.(一)同构函数揭秘同构式是指除了变量不同,其余地方均相同的表达式,导数中同构函数问题大多属于指对跨阶问题,比如e x x +与x x ln +属于“跨阶函数”,而e ln x x +属于“跳阶函数”,对于指对跳阶的函数问题,直接求解,一般是通过隐零点代换来简化,并且有很大局限性,有些题若采用指对跨阶函数进行同构,可将跳阶函数问题转化为跨阶函数问题,从而使计算降阶,通常构造的同构函数有以下几类:()()e ,ln ,x f x x f x x x ==()()e ,ln x f x x f x x x =+=+,()()e ,ln x f x x a f x x x a =-+=-+等,在一些求参数的取值范围、零点个数、不等式证明、双变量问题中,利用复合函数单调性,复合函数零点个数等问题中常通过构造同构函数求解.利用同构函数解题要注意一些常见的凑形技巧,如;ln ln ln e e ,ln e ,e e,e xxxxx xx x x x x x+-====等.【例1】(2024届江苏省苏州市高三下学期三模)已知函数()ln 1,f x x ax a =++ÎR .(1)讨论()f x 的单调性;(2)当2a £时,证明:()2e x f x x£.【解析】(1)函数()ln 1,R f x x ax a =++Î的定义域为()0,¥+,且()1f x a x'=+.当0a ³时,()()10,,0x f x a x"Î+¥=+>'恒成立,所以()f x 在区间()0,¥+上单调递增;当a<0时,令()110ax f x a x x+=+==',解得1x a =-,当10,x a æöÎ-ç÷èø时,()()0,f x f x '>在区间10,a æö-ç÷èø上单调递增,当1,x a Î-+¥æöç÷èø时,()()0,f x f x '<在区间1,a ¥æö-+ç÷èø上单调递减.综上所述,当0a ³时,()f x 在区间()0,¥+上单调递增;当0a <时,()f x 在区间10,a æö-ç÷èø上单调递增,在区间1,a ¥æö-+ç÷èø上单调递减.(2)当2a £时,因为0x >,所以要证()2e x f x x£,只要证明2ln 21e xx x x++£即可,即要证2ln 21e x x x x ++£,等价于2ln e ln 21x x x x +³++(*).令()e 1x g x x =--,则()e 1xg x '=-,在区间(),0¥-上,()()0,g x g x '<单调递减;在区间()0,¥+上,()()0,g x g x '>单调递增,所以()()00e 010g x g ³=--=,所以e 1x x ³+(当且仅当0x =时等号成立),所以(*)成立,当且仅当2ln 0x x +=时,等号成立.又()2ln h x x x =+在()0,¥+上单调递增,()1210,120e eh h æö=-<=>ç÷èø,所以存在01,1x e æöÎç÷èø,使得002ln 0x x +=成立.综上所述,原不等式成立.【例2】(2024届重庆市南开中学高三上学期第质量检测)已知函数()2ln f x x x ax =++在1x =处的切线l 和直线0x y +=垂直.(1)求实数a 的值;(2)若对任意的(]12,0,2x x Î,12x x ¹,都有12221212()()e ex x f x f x x x m --+>-成立(其中e 为自然对数的底数),求实数m 的取值范围.【解析】(1)由函数()2ln f x x x ax =++,可得1()2f x x a x=++',可得()13f a '=+因为函数在1x =处的切线l 和直线0x y +=垂直,所以()11f '=,即31a +=,解得2a =-.(2)解:不妨设1202x x <<£,则12e e 0x x -<,因为对任意的(]12,0,2x x Î,12x x ¹,都有12221212()()x x f x f x x x m e e --+>-成立,可得()12221212()()e e x x f x f x x x m --+<-,即12221122()e ()e x x f x x m f x x m --<--,设()()2e xg x f x x m =--,则12()()g x g x <,故()g x 在(]0,2单调递增,从而有1()2e 0x g x m x =--³',即1e 2x m x -æö£-ç÷èø在(]0,2上恒成立,设1()e 2x h x x -æö=-ç÷èø,则()min m h x £,因为2221121()e 2e e (02)xx x x x h x x x x x -----æöæö=--+×-=×<£ç÷ç÷èø'èø,令()0h x '>,即()()2212110x x x x --=+->,解得12x <£,令()0h x '<,即()()2212110x x x x --=+-<,解得01x <<,所以()h x 在()0,1单调递减,在(]1,2单调递增,又因为1(1)h e =-,故()h x 在(]0,2上最小值min 1()h x e=-,所以1m e £-,实数m 的取值范围是1,e æù-¥-çúèû.(二) e x x 型同构【例3】(2024届广西贵港市高考模拟预测)已知函数ln ln 1()e axx a f x a x++=-.(1)当1a =时,请判断()f x 的极值点的个数并说明理由;(2)若2()2f x a a ³-恒成立,求实数a 的取值范围.【解析】(1)当1a =时,1ln ()e xxf x x+=-,,()0x Î+¥,所以222ln e ln ()e x xx x x f x x x +'=+=,令2()ln xh x x e x =+,则21()(2)e x h x x x x '=++,当,()0x Î+¥时,()0h x '>,()h x \在(0,)+¥上单调递增,又1()ln 202h =<Q ,(1)e h =,()h x \存在唯一零点0x ,且01(,1)2x Î,当0(0,)x x Î时,()0f x '<,()f x 在()00,x 上单调递减,当0(,)x x Î+¥时,()0f x '>,()f x 在()0,x ¥+单调递增.()f x \有一个极小值点0x ,无极大值点.(2)2ln ln 1()e 2axx a f x a a a x++=--Q ≥恒成立,2e [ln()1]2ax ax ax a x ax \-+-≥恒成立,2e [ln()1]2ax ax ax ax a x \-++≥恒成立.令t ax =,则(0,)t Î+¥,ln 12e 1tt a t+\£-+恒成立.设ln 1()e xx g x x+=-,由(1)可知()g x 的最小值为0()g x .又02000()e ln 0xh x x x =+=﹡)设()e x m x x =,当0x >时,()(1)e 0x m x x '=+>,()m x \在(0,)+¥上单调递增,01(,1)2x ÎQ ,00x \>,0ln 0x ->,00000001ln 11()e 1x x x g x x x x +-\=-=-=,2112a \£+=,1a \£,又0a >,\a 的取值范围为(]0,1.(三)()ln x a x +型同构【例4】(2023届福建省宁德市高三高考前最后一卷)已知函数()()ln R xf x m m x=+Î.(1)讨论函数()f x 的零点的个数﹔(2)当0m =时,若对任意0x >,恒有()()()2e 112ax a f x x ++≥,求实数a 的取值范围.【解析】(1)令()ln 0,x f x m x =+=则ln xm x =-,记()ln x g x x =,则()21ln x g x x -'=,当e x >时,()0g x '<,此时()g x 在()e,+¥单调递减,当0e x <<时,()0g x '>,此时()g x 在()0,e 单调递增,故当e x =时,()g x 取极大值也是最大值()1e eg =,又()10g =,而当1x <时,()0g x >,故当01x <<时,()0g x <,当1x <时,()0g x > ,作出()g x 的图象如下:因此当1e m ->时,即1em <-,()g x m =-无交点,此时()f x 无零点,当1e m -=或0m -£时,即1m e=-或0m ³,()g x m =-有一个交点,此时()f x 有一个零点,当10e m <-<时,即10em -<<,()g x m =-有两个交点,此时()f x 有2个零点,综上可知:当1em <-时, ()f x 无零点,当1m e =-或0m ³()f x 有一个零点,当10e m -<<,()f x 有2个零点,(2)当0m =时,若对任意0x >,恒有()()()2e 112ax a f x x ++≥等价于:对任意0x >,恒有()()22e 1ln 1ax ax x x ++≥,令()()1ln F x x x =+,则不等式等价于()()2e axF F x ³,由于()1ln x F x x x+'=+,令()()221111ln ,x x m x x m x x x x x+-'=+=-=,当()()01,0,x m x m x '<<<单调递减,当()()1,0,x m x m x '>>单调递增,所以()()()120F x m x m '=³=>,故()F x 在()0,¥+单调递增,由()()2eaxF F x ³得2eaxx ³对任意0x >恒成立,两边取对数得ln 2ln 2a xax x x³Þ³对任意0x >恒成立,故()max 2a g x ³,所以122e e a a ³Þ³,故a 的范围为2e a ³。

2020-2022年全国新高考导数说题

2020-2022年全国新高考导数说题

【解析】
法一:在曲线 y ex 上任取一点 P t,et ,对函数 y ex 求导得 y ex ,
所以,曲线 y ex 在点 P 处的切线方程为 y et et x t ,即 y et x 1t et , 由题意可知,点 a,b 在直线 y et x 1tet 上,可得 b aet 1tet a 1tet , 令 f t a 1tet ,则 f t a tet . 当 t a 时, f t 0 ,此时函数 f t 单调递增, 当 t a 时, f t 0 ,此时函数 f t 单调递减, 所以, f t f a ea ,
p2m p1 p2m

又 p1 1,
p2
1,, p2m 1 ,
p1 p2m
p2 p2m1
p1 p2m
H (Y ) H (X ) 0 ,H (X ) H (Y ) ,故 D 错误.故选: AC
5.(2022 年第 7 题)设 a 0.1e0.1, b 1,c ln 0.9 ,则( ) 9
2、(2022·新高考Ⅰ卷 T15)若曲线 y (x a)ex 有两条过坐标原点的切线,则 a
的取值范围是______________. 【分析】此题考查导数的几何意义,充分体现了数学运算核心素养,属于中档题。
【解析】∵ y ( x a)ex ,∴ y (x 1 a)ex ,
设切点为 x0, y0 ,则 y0 x0 aex0 ,切线斜率 k x0 1 aex0 , 切线方程为: y x0 aex0 x0 1 aex0 x x0 , ∵切线过原点,∴ x0 aex0 x0 1 aex0 x0 ,
最为简单。在注意到敏感数字 0.1,故将三个数用 0.1 来表示得:
b= 1 9
1 10 1

2020高考数学 导数的11个专题

2020高考数学    导数的11个专题

目录导数专题一、单调性问题 (2)导数专题二、极值问题 (38)导数专题三、最值问题 (53)导数专题四、零点问题 (77)导数专题五、恒成立问题和存在性问题 (118)导数专题六、渐近线和间断点问题 (170)导数专题七、特殊值法判定超越函数的零点问题 (190)导数专题八、避免分类讨论的参变分离和变换主元 (201)导数专题九、公切线解决导数中零点问题 (214)导数专题十、极值点偏移问题 (219)导数专题十一、构造函数解决导数问题 (227)导数专题一、单调性问题【知识结构】【知识点】一、导函数代数意义:利用导函数的正负来判断原函数单调性;二、分类讨论求函数单调性:含参函数的单调性问题的求解,难点是如何对参数进行分类讨论,讨论的关键在于导函数的零点和定义域的位置关系.三、分类讨论的思路步骤:第一步、求函数的定义域、求导,并求导函数零点;第二步、以导函数的零点存在性进行讨论;当导函数存在多个零点的时,讨论他们的大小关系及与区间的位置关系(分类讨论);第三步、画出导函数的同号函数的草图,从而判断其导函数的符号(画导图、标正负、截定义域);第四步、(列表)根据第五步的草图列出f '(x),f (x)随x 变化的情况表,并写出函数的单调区间;第五步、综合上述讨论的情形,完整地写出函数的单调区间,写出极值点,极值与区间端点函数值比较得到函数的最值.四、分类讨论主要讨论参数的不同取值求出单调性,主要讨论点:1.最高次项系数是否为0;2.导函数是否有极值点;3.两根的大小关系;4.根与定义域端点讨论等。

五、求解函数单调性问题的思路:(1)已知函数在区间上单调递增或单调递减,转化为f '(x) ≥ 0 或f '(x) ≤ 0 恒成立;(2)已知区间上不单调,转化为导函数在区间上存在变号零点,通常利用分离变量法求解参变量的范围;(3)已知函数在区间上存在单调递增或单调递减区间,转化为导函数在区间上大于零或小于零有解.六、原函数单调性转化为导函数给区间正负问题的处理方法(1)参变分离;(2)导函数的根与区间端点直接比较;(3)导函数主要部分为一元二次时,转化为二次函数根的分布问题.这里讨论的以一元二次为主。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 / 243
(3) 导函数主要部分为一元二次时,转化为二次函数根的分布问题.这里讨论的以一元二次 为 主。 七、求解函数单调性问题方法提炼:
(1)将函数 f x 单调增(减)转化为导函数 f x 0 恒成立; (2) f x g x h x ,由 g x 0 (或 g x 0 )可将 f x 0 恒成立转化为 h x 0 (或 h x 0 )恒成立;
(3)由“分离参数法”或“分类讨论”,解得参数取值范围。
3 / 243
【考点分类】 考点一、分类讨论求解函数单调性;
【例 1-1】(2015-2016 朝阳一模理 18)已知函数 f (x) x a ln x, a R .
(Ⅰ)求函数 f (x) 的单调区间;
(Ⅱ)当 x 1, 2时,都有 f (x) 0 成立,求 a 的取值范围;
2. 导函数是否有极值点; 3. 两根的大小关系; 4. 根与定义域端点讨论等。 五、求解函数单调性问题的思路:
(1) 已知函数在区间上单调递增或单调递减,转化为 f (x) 0 或 f (x) 0 恒成立;
(2) 已知区间上不单调,转化为导函数在区间上存在变号零点,通常利用分离变量法求解 参 变量的范围; (3) 已知函数在区间上存在单调递增或单调递减区间,转化为导函数在区间上大于零或小 于 零有解. 六、原函数单调性转化为导函数给区间正负问题的处理方法 (1) 参变分离; (2) 导函数的根与区间端点直接比较;
第四步、(列表)根据第五步的草图列出 f ' x , f x 随 x 变化的情况表,并写出函数的
单调区间; 第五步、综合上述讨论的情形,完整地ห้องสมุดไป่ตู้出函数的单调区间,写出极值点,极值与区间端点 值比较得到函数的最值. 四、分类讨论主要讨论参数的不同取值求出单调性,主要讨论点:
函数
1. 最高次项系数是否为 0;
(Ⅲ)试问过点 P(1,3) 可作多少条直线与曲线 y f (x) 相切?并说明理由.
【答案】(Ⅰ)函数 f (x) 的定义域为 x x 0 . f (x) 1 a x a .
xx (1)当 a 0 时, f (x) 0 恒成立,函数 f (x) 在(0, ) 上单调递增;
1 / 243
导数专题一、单调性问题
【知识结构】
【知识点】 一、导函数代数意义:利用导函数的正负来判断原函数单调性; 二、分类讨论求函数单调性:含参函数的单调性问题的求解,难点是如何对参数进行分类讨 论, 讨论的关键在于导函数的零点和定义域的位置关系. 三、分类讨论的思路步骤: 第一步、求函数的定义域、求导,并求导函数零点; 第二步、以导函数的零点存在性进行讨论;当导函数存在多个零点的时,讨论他们的大小关系及与 区间的位置关系(分类讨论); 第三步、画出导函数的同号函数的草图,从而判断其导函数的符号(画导图、标正负、截定义域);
目录
导数专题一、单调性问题....................................................................................................................... 2 导数专题二、极值问题......................................................................................................................... 38 导数专题三、最值问题......................................................................................................................... 53 导数专题四、零点问题......................................................................................................................... 77 导数专题五、恒成立问题和存在性问题........................................................................................... 118 导数专题六、渐近线和间断点问题................................................................................................... 170 导数专题七、特殊值法判定超越函数的零点问题........................................................................... 190 导数专题八、避免分类讨论的参变分离和变换主元....................................................................... 201 导数专题九、公切线解决导数中零点问题....................................................................................... 214 导数专题十、极值点偏移问题........................................................................................................... 219 导数专题十一、构造函数解决导数问题........................................................................................... 227
相关文档
最新文档