地震波时距曲线共65页
地震波理论时距曲线
1.时距曲线基本概念2.直达波时距曲线3. 反射波时距曲线4. 折射波时距曲线1. 时距曲线的基本概念在地面激发了地震波后,根据地下介质的结构和波的类型(如直达波、折射波和反射波),地震波将具有不同的传播特点。
为了定量地说明不同类型的波在各种介质结构情况下传播的特点,在地震勘探中主要采用“时距曲线”(时距曲线方程)这个概念。
时距曲线:是表示地震波从震源出发,传播到测线上各观测点的旅行时间t,同观测点相对于激发点的水平距离x 之间的关系。
1. 时距曲线的基本概念1.1 时距曲线图a 自激自收,同相轴形态与界面起伏相对应图b 多道接收,同相轴形态与界面起伏不对应1. 时距曲线的基本概念1.2 共炮点和共反射点时距曲线按观测方法的不同分为两种情况:一种是放一炮,在一个多道检波器组成的排列上接收并得到一张地震记录,地下存在反射界面就可以得到相应的反射波时距曲线,称为共炮点反射波时距曲线。
另一种是在许多炮得到的许多张地震记录上,把同属于同一个反射点的道选出来,组成一个共反射点道集,于是可得到界面上某个反射点的共反射点时距曲线。
共炮点记录共反射点记录1.3 几个基本概念•炮检距(offset):炮点到地面各观测点的距离,也称为偏移距。
•初至时间(first break):所有波中最先到达检波器(Geophone)并记录下来的地震波第一波峰时间。
•同相轴(event):各接收点属于同一相位振动的连线。
•共炮点(common shotpoint):所有接收点具有共同的炮点。
•纵测线(inline):激发点和观测点在同一条直线上。
•非纵测线(offline):激发点不在测线上。
1.时距曲线基本概念2.直达波时距曲线3. 反射波时距曲线4. 折射波时距曲线xtxt (x 1,t 1)(x 2,t 2)(x 3,t 3)(x 4,t 4)(x 5,t 5)t10t3t2t4t5x 1x 2x 3x 4x 502. 直达波时距曲线直达波:从震源直接到达检波点的波。
地震波的时距曲线
正常时差:任一接收点的反射波旅行 时间tX 和同一反射界面的t0之差。
tn t x t0 t0
1 X 2 t0 2V 2
t0
正常时差精确公式有时讨论问题不够直观。在一定的条件下,用二项式展开可以得到简 单的近似公式,以后讨论某些问题时经常用到。
tx t0
1
x2 v2t02
越平缓,曲率越小。
从视速度的角度考虑时距曲线的弯曲情况
视速度定理
t
s v
s' v*
s sin
s'
v* vs' v
s sin
A
△ S‘ B
△ t,△s
由此式可见,视速度一方面反映真速
度,另方面又受传播方向影响,故也 成为识别各种地震波的特征之一。
反射波时距曲线
A工区
B工区
什么情况下直达波的时距离曲线不是直线?
共炮点反射
同一炮点不同接收点 上的反射波,即单炮 记录,也称同炮点道 集。在野外的数据采 集原始记录中,常以 这种记录形式。
可分单边放炮和中间 放炮。
共反射点反射 另一种方式是在许多炮得到的许多张地震记录 上,把同属于某一个反射点的道选出来,组成 一个共反射点道集,于是可得到界面上某个反 射点的共反射点记录。
t0
1
x2 2v2t02
Leabharlann t0x2 2v2t0
x 1 vt0
x2 tn tx t0 2v2t0
结论:
a)、炮检距越大正常时差越大;
b)、反射深度越深正常时差越小;
c)、速度越大正常时差越小。
2-1地震波的时距方程与时距曲线
二)直达波的时距方程和理论时距曲线图
从震源O点出发,没有经过界面的反射和透射直接传播 到达,各道检波点的地震波叫直达波。直达波从震源发出沿 地面方向在W1介质中以V1速度传播,未经过分界面R的反、 透波与反射界面R和W2介质无关,因此它带来的地下信息 是很有限的。 当震源在地表面(此时h = 0),直达波的入射角α=90º, 按视速度定理V*=V1。直达波以V1速度先后到达各到检波点。 把直达波到达各个道的时间用直线连结起来,则就是一条通 过坐标原点的直线。这条直线就是直达波的时距曲线。 我们可以从这条时距曲线中找到波传播距离X和所用时间t 的函数关系,直达波到达各道检波点的时间 ti = Xi / V1,这 个公式是一个直线方程。
t
V1
V1
( 2h ) X i
t 2V 21 4h 2 X 2
经过变形 ,上式可以变成为反射波的标准方程式——双曲线方 程标准式 :
X2 Y2 2 1 2 a b
相比,也可以认定反射波的时距方程式是标准双曲线方程。
三)三维空间的时距方程与曲线: 如图所示,设地面为平面Q,平界面的反射界面R与地面的 夹角(界面倾角)ψ,波速为υ为,测线沿X 轴方向,X轴与 地层界面的倾向夹角为α(又叫测线方位角,取震源O 为坐 标原点,Z 轴的方向垂直向下。在测线上任意一点S进行观 测时,所观测到的反射波的射线路径为OBS。根据斯奈尔 定律,
探的方法,也是按照检 波器接收的有效地震波的种类来命名。反射波法就是利用检 波器接收的从地下岩层介质和分界面反射回来的地震波,使 用计算机对地震波带来的各种信息的分析处理,得到被勘察 场地的地层分布和构造变化的地震勘察方法。如果接收和处 理的是折射波、面波就是折射波法、面波法。 其实折射波法是最早进入工程地震勘察的方法,这个时间 大概是上个世纪四十年代末第二次世界大战结束以后的城市 重建浪潮开始的。但这种方法本身的局限性,限制了它的发 展和应用。近些年,特别是上世纪八、九十年代末开始,随 着我国国民经济的持续高速发展,防震减灾法的公布与实施, 我国城市化进程的发展不断加速,城市规模不断扩展,
物探精品课程 第二章 第二节 地震波时距曲线
2 zu V1
cosi
根据视速度定理有
(2-10) (2-11)
代入(2-11)式得
T *
V1
d sin i
(2-12)
t x
d
Td* t0d
(2-13)
图2-13 折射波相遇时距曲线图
第二节 地震波时距曲线
同样方法亦可得到O2激发,O2O1区间接收时的时距曲线方程:
式中
tu
在图2-12中,我们还可以看到直达波、折射波和反射波三者之间的关系, 这为选择最佳观测段提供了依据。
第二节 地震波时距曲线
四、绕射波和多次反射波时距曲线
1.绕射波
地震波在传播过程中,当遇到断层的
棱角、地层尖灭点、不整合面的突起点
或侵入体如上所述,绕射波将以这些点
为新震源向周围传播。如图2-19所示,
点)左侧时,上式取负号。
由方程可见,该时距曲线为一条过原点O的直线,该直线斜率的倒数即为
V*。即
V * x / t
(2.2.2)
当忽略震源深度时,一般可近似认为V*等于表层层速度V1。其时距曲线
参见图 2-12所示。显然,在一定观测范围内,直达波最先到达接收点。
第二节 地震波时距曲线
2、折射波时距曲线
若以T=t2,X=x2为变量作图,式(2-19)变成斜率为和截距为的直线,如图2-17
所示。利用这一关系可确定反射界面之上地层的速度值V。
根据反射波时距曲线方程式(2-17),可求得沿测线变化的视速度:
V*
dx dt
V
1 4H2 x2
(2-20)
分析式(2-20)可以看出,在爆炸点附近(x→0),V趋于无穷大,而在无穷远处
地震波时距曲线综述
在地面激发了地震波后,根据地下介质的结构 和波的类型(如直达波、折射波和反射波), 地震波将具有不同的传播特点。
4
2019/3/12
一、时距曲线的概念(T-X Curve Conception)
为了定量地说明不同类型的波在各种介质结构 情况下传播的特点,在地震勘探中主要采用 “时距曲线” (时距曲线方程)这个概念。时 间和距离的关系是通过速度联系的。
7
3.
4.
2019/3/12
一、时距曲线的概念(T-X Curve Conception)
单道记录与多道记录
自接 自收 方式 单炮多道 接收方式
多炮 多道 接收 方式
2019/3/12 8
一、时距曲线的概念(T-X Curve Conception)
各种观测方式震源和接收之间的排列
按一定的规律分布称观测系统,在地 震资料采集一章详细描述。 炮检距--激发点到接收点的距离叫炮 检距,也叫偏移距。可有最小炮检距 和最大炮检距。 波传播旅行时--从激发到被接收到所 需的时间即为传播时间
11
2019/3/12
一、时距曲线的概念(T-X Curve Conception)
1 。时距曲线 (T-X Curve):表示地震波的传播时间 t 和爆炸点与检波点之间的距离x的关系曲线, t-x曲线, 简称时距曲线。 2 。 共 炮 点 时 距 曲 线 Common Shoot Point Time Distance Curve : 由一点激发,若干接收点接收, 所记录的时距曲线; 3 。共中心点 ( 共反射点 ) 时距曲线 Common Middle Point Time Distance Curve :炮点与接收点以某一中 心点对称所记录的时距曲线;
第三章地震波的时距关系
2
Va下
Va上
1 (sin 1 V1 sin 1 V1 )
2
Va下
Va上
利用上式就可以求出临界角i和界面倾角φ。 (4)互换时间
互换原理:O1激发、O2接收,同O2激发、O1接收,路径都是 O1ABO2,两个特定点处折射波的旅行时间完全相等。
两点时间用T表示,称互换时间。
在上下倾方向分别激发和接收,称相遇观测,得到的二支时 距曲线称相遇时距曲线。 (5)界面倾角的影响
2 cosiຫໍສະໝຸດ 由此,可用直达波和折射波时距曲线得出V1、V2、t0,按式上式 计算出震源点下界面埋深h。
此外,盲区为 X m 2htgi
2.
三层模型如图表示:
V3>V2>V1 图中,OABCDS是在界面R2上 产生折射波的射线路程。在B点形成
折射波,则入射角必须满足界面R2的 临界角,据斯奈定律得
X2 V2
t02
t0
1 X 2 t 0 2V 2
正常时差:任一接收点的反射波旅行时间tX 和同一反射界面的
双程垂直时间t0的差
X2
t n t x t 0 t 0
1 t 0 2V 2
t0
当t02V2 ﹥﹥X2时,即2h﹥﹥X时,二项式展开,略高次项
上式tn表明t0,[1正常12时(t差0X2可V2 用2 )抛物81 函( t0数X2V逼2 2近) 2。 ] t0
当h2=7.5m 时,P1、P121、P12321三条曲线交于A点,过A点后 (h2≤7.5m),折射波再不能以初至波的形式出现,即中间层 由初至层蜕变为隐伏层。
因而从初至波时距曲线看,也只是假两层的情况。和低速夹层的 影响相似,同样不可能进行正确的解释。
四、倾斜界面折射波时距曲线
地震勘探-地震波的时距曲线
2
地震波由震源激发,经过地下岩层反射、折射等 传播路径,被地面检波器接收,形成地震记录。
3
对地震记录进行处理和解释,可以得到地下构造 的图像,为油气勘探和开发提供重要依据。
常用地震勘探方法概述
反射法
利用地震波在地下岩层界面处的反射现象,通过观测反射 波的传播时间和振幅等信息,推断地下岩层的形态和性质 。
供依据。
曲线拟合
根据初至时间和速度信 息,采用合适的数学方 法进行曲线拟合,得到
时距曲线。
质量控制
对绘制的时距曲线进行 质量控制,确保其准确
性和可靠性。
03
地震勘探技术与方法
地震勘探原理简介
1
利用地震波在不同介质中传播速度的差异,通过 观测和分析地震波在地层中的传播规律,推断地 下岩层的性质和形态。
04
时距曲线在地震资料解 释中应用
层位标定与追踪技术
层位标定
利用已知地质信息和钻井资料,将地 震反射层与地质层位进行对应,确定 地震反射层的地质时代和岩性特征。
追踪技术
在地震剖面上,沿着目的层位连续追 踪其反射波,通过反射波的连续性、 振幅、频率等特征,判断层位的横向 变化。
断层识别与描述技术
01
02
数据预处理
对采集到的原始数据进行去噪、滤波 、静校正等预处理操作,提高数据质 量。
03
速度分析
利用预处理后的数据进行速度分析, 得到地下岩层的速度模型。
解释与评价
对偏移成像结果进行解释和评价,识 别地下构造的形态和性质,为油气勘 探和开发提供决策依据。
05
04
偏移成像
基于速度模型对地震数据进行偏移处 理,得到地下构造的偏移成像结果。
地震勘探原理课件—— 地震波的时距曲线
第二章 地震波的时距曲线在地震勘探工作中,每激发一次人工地震,都要在多个检波点接收地震信号。
炮点和检波点都沿一条直测线布置,炮点到任意检波点的距离称炮检距x ,相邻检波点的距离叫道间距Δx ,来自同一界面的地震波沿不同路径先后到达各检波点,从而形成一张如图所示的地震记录。
图中横坐标表示地震波旅行时间t ,纵坐标表示炮点到任意检波点的距离称炮检距x ,每一条波动曲线是一道地震记录,它反映出一个检波点的振动过程。
来自同一界面的反射波(或折射波)以一定的视速度规律依次到达个检波点,在地震记录中表现为振动极值的规则排列,各道地震记录波按一定规则排列,形成同相轴(它是相同相位点的连线形成的图形)。
同相轴反映出地震波的旅行时间t 与炮检距x 的函数关系。
将它表示在t-x 直角坐标系中,称为地震波的时距曲线。
不同种类的地震波,其时距曲线的形状不同。
如图中的直达波、反射波、折射波、地滚波、声波等都有自己特有的形状。
每一类特定的时距曲线,其曲线参数与地下介质的纵波速度v 及地震界面的产状有着直接的关系。
第一节 反射波的时距曲线一、 两层介质的直达波和反射波时距曲线(一)直达波的时距曲线从震源出发,不经过反射或折射而直线前进到各检波点的地震波成为直达波。
当震源深度为零时,直达波沿测线传播,旅行时间t 与炮检距x 的函数关系为)1.1.2(1v x t ±= 是两条经过原点的、斜率为1/v 1的两条直线。
如图2.1-1,根据直达波时距曲线的斜率,可以求取界面上层介质的波速v 1。
图2.1-1 直达波与水平界面反射波时距曲线(二)水平界面的反射波时距曲线和正常时差由图2.1-1,若界面埋深为h, 炮点0为激发点,到达界面R 点后反射到地面的s 点,设s 点的炮检距为x ,为计算方便,做炮点0关于界面的镜像点0*,称为虚震源,根据图2.1-1的几何关系,反射波旅行时间t 与炮检距x 的函数关系为)2.1.2(4102211*x h v v RS t +== 将反射波在炮点的反射时间称为反射回声时间,102v h t = 则(2.1.1)式可改写为)2.1.2()(2122022120′+=+=v x t t v x t t 或 式(2.1.2)就是水平界面反射波的时距曲线,可化简为以下的标准双曲线方程)2.1.2(1422202′′=−h x t t综上所述:1.反射波时距曲线在x-t 坐标系是双曲线,其极小点在炮点正上方;2.在x 2-t 2坐标系,反射波时距曲线是直线,直线的斜率为1/v 12, 利用直线的斜率可求界面上方介质的速度;3.反射波时距曲线以直达波时距曲线为其渐近线。
时距曲线
S OSA S O SA OS O S , OA O A
* *
*
波由O 入射到A 再反射回S 点所走过的路 程就好象由点直接传播到S 点一样,在地 震勘探中,把这种讨论地震波反射路径的 简便作图方法称为虚震源原理。
O* S 1 2 1 2 2 2 t x (2h0 ) x 4h0 v v v
由震源出发向外传播,没有遇到分界面直接 到达接收点的波叫直达波。一个纵波入射到 反射面时 ,即产生反射纵波和反射横波,也 产生透射纵波和透射横波。与入射波类型相 同的反射波或透射波称为同类波。改变了类 型的反射波或透射波称为转换波。入射角不 大,转换波很小,垂直入射不产生转换波。
㈢按波所能传播的空间范围: 体波:
1 2h x 4hx sin x x 4h 4hx sin 1 , 当 1时 v v 4h 2h x 4hx sin t t 1 8h x 4hx sin t t 1 , t 为O点处自激自收时间 8h t x sin 2 x sin vt t t t sin h v 2x
纵波和横波可以在介质的整个立体空间 中传播,合称为体波。
面波:
沿自由表面或分界面传播的波叫面波。其 强度随离开界面的距离加大而迅速衰减。
R
2v2 1v1 2v2 1v1
R:反射系数(由介质1入射到分界面时界
面的反射系数)。
在界面产生反射波条件:分界面两边介 质的波阻抗不相等。 波阻抗界面才是反射界面,速度界面不 一定是反射界面。 进行反射波法地震勘探时(目前主要利用反 射纵波),习惯上把这种被我们利用的波称 为有效波,妨碍记录有效波的其它波都称为 干扰波。
地震时距曲线
将⑦式代回t2的表达式:
t 2 ( 2t i ) 2 2 2t i t i vi2
i 1 i 1 i 1 n
x2 ( 2t i vi2 ) 2
i 1 n
t t
2 2 0
x2
t v
i 1 n
n
t
2 0
x2
2 t v i i i 1 n n
2 i i
t
i 1
①
xm 上
2h sin(C ) cos(C )
2h sin(C ) xm下 cos(C )
②
O * M V1t m MN O * M sin( C ) MN xm cos( )
* * 2 * 2 MO*2 4h 2 xm t 2
A
1 2 ( x xm ) 2 4 h 2 xm v
t
1 2 x 2 xxm 4h 2 v 又 xm 2h sin 1 2 x 4h 2 4hx sin v
t
倾斜界面反射波时距曲线方程(上倾方向与x 正向一致)。
n
由透射定律:
sin sin P 1 2
sin1 sin 2 P 1 2
sin i Pi
cosi 1 p 2 vi 2
tg i
n
pvi 1 p vi
2 2
x 2
i 1
pvi hi 1 p vi
2
t 2
i 1
地震波时距曲线概述
几何地震学— 研究地震波的运动学特征, 研究波在介质中传播的空间位置与传播时 间的几何关系。 正演问题— 已知地下界面的产状和介质速 度参数等资料求取地震波的时距关系。 反演问题— 根据地震工作获得的时距关系, 求取地下界面的几何形态。 同相轴— 记录中各条波动曲线上波峰的规 则排列,称为同相轴。
地震勘探地震波的时距曲线
tn t x t0 t0
1 X 2 t0 2V 2
t0
tx t0
1
x2 v2t02
t0
1
x2 2v2t02
t0
x2 2v2t0
tn
tx
t0
x2 2v2t0
结:
a)、炮检距越大正常时差越大;
b)、反射深度越深正常时差越小;
c)、速度越大正常时差越小。
4、正常时差(NMO, Normal MoveOut)
t0时间:时距曲线在t轴上的截距: t0
2h V
表示波沿界面法线传播的双程旅行时间,自激自收时间。
t
X 2 ( 2h)2 V2 V
X2 V2
t02
t0
1 X 2 t0 2V 2
正常时差:任一接收点的反射波旅 行时间tX 和同一反射界面的双程垂 直时间t0之差。
时距曲线的弯曲情况
对两个界面:
深层反射波返回地表的α角比浅层的要小 (α深<α浅),Va相对变大,斜率变小,曲 线变缓,则深层的时距曲线比浅层平缓。
反射界面埋藏越深,反射波时距曲线越平 缓,反正,则越陡!!
时距曲线的弯曲情况
曲率大
曲率小
4、倾斜界面的反射波时距曲线
1.反射波时距方程
R为倾斜界面,倾角为 ,界面 以上波速为V。 先求取时距方程。为讨论简便, 采用镜象法。
视速度定理:
t OA AS 2
V
V
h2
(X
2)2
1 V
4h2 X 2
Va
dX dt
V
地震波典型时距曲线
地震波典型时距曲线
地震波时距曲线是地震勘探中的一种重要工具,它形象地表示了地震波从震源出发,传播到测线上各观测点的传播时间与观测点相对于激发点的距离之间的关系。
这种关系可以由公式t=f (x)来表达,其中t代表传播时间,x代表炮检距。
地震波的类型和地下地质结构的不同,都会对地震波的时距曲线产生影响。
例如,直达波的时距曲线就是当地震波没有遇到反射界面,直接从激发点传播到接收点的情形下产生的。
在均匀各向同性的地下介质中,如果一点激发多道接收,并且激发点和多个接收点的连线在一条直线上,那么共炮点的直达波的传播时间就是炮间距x除以传播速度v。
因此,直达波的时距曲线是一条过炮点的直线,其斜率为1/v。
这意味着,我们可以通过测量直达波的时距曲线来确定地下介质的速度。
另一种常见的地震波是反射波,它是当地震波遇到反射界面后返回到地表的地震波。
反射波的时距曲线在x-t 坐标系中呈现为双曲线,其极小点在炮点正上方;而在x2-t2坐标系中,反射波时距曲线是直线,利用该直线的斜率可以求得界面上方介质的速度;同时,反射波时距曲线以直达波时距曲线为其渐近线。
通过分析反射波的时距曲线,我们可以推测出地下构造的特点。
第章一个界面地震波时距曲线-PPT课件
3.
4.
2019/3/1
一、时距曲线的概念(T-X Curve Conception)
单道记录与多道记录
自接 自收 方式 单炮多道 接收方式
多炮 多道 接收 方式
2019/3/1 8
一、时距曲线的概念(T-X Curve Conception)
各种观测方式震源和接收之间的排列
按一定的规律分布称观测系统,在地 震资料采集一章详细描述。 炮检距--激发点到接收点的距离叫炮 检距,也叫偏移距。可有最小炮检距 和最大炮检距。 波传播旅行时--从激发到被接收到所 需的时间即为传播时间
2019/3/1
4
一、时距曲线的概念(T-X Curve Conception)
地震记录的基本方式
2019/3/1
地震记录--以测线方式记录地震波的反射或 折射波。
5
一、时距曲线的概念(T-X Curve Conception)
地震测线--观测点(接收点)以线性方式排 列成线。一个震源用一条测线接收,称二维 地震观测;用多条测线接收称三维观测。 一般炮点和接收点都放在同一测线上,叫纵 测线,炮点与接收点不在同一线上,叫非纵 2019/3/1 6 测线。二维观测大多用纵测线方式。
2019/3/1 3
一、时距曲线的概念(T-X Curve Conception)
为了定量地说明不同类型的波在各种介质结构 情况下传播的特点,在地震勘探中主要采用 “时距曲线” (时距曲线方程)这个概念。时 间和距离的关系是通过速度联系的。
震源激发的波在地下传播时会产生各种波的速 度不同的波。由于到时出不同,会有各种波的 时距曲线。
第二章 几何地震学
一个分界面情况下反射 波的时距曲线
物探--7地震时距曲线、野外工作处理解释
线,其斜率为1/v2,延长线与T轴 的交点称交叉时,与界面的法
向深度有关。
三、折射波时距曲线
下面我们来看一下直达 波、折射波、反射波 之间的关系:
三种波在时距曲线上
A
到达时间是不同的
盲
B
反射波法勘探应在 A点以内观测;
区
折射波法勘探应在 B点以外观测。
四、绕射波时距曲线
地层中,当存在断层、直立地层的棱角、地层尖灭点等 不连续点时,可以产生绕射现象。(狭义绕射)
下面我们简单介绍反射波法地震资料的采集、处理和解释。
一、地震资料采集 1、测线布置与观测系统
地震测线的布置一般要求与构造走向垂直。 地震测线一般为直线,有时为折线或弧线,随地质条件
而定。地震测线分为纵测线和非纵测线。见图。 在二维地震测量中,常采用纵测线。 在三维地震测量中,常采用纵测线
和非纵测线同时并用。
多次波:地震波遇到波阻抗分界面时,除产生一次 反射外,还会产生一些来往于分界面之间几次反 射的波,这种波称为多次反射波。
多次波的类型:全程多次反射 波、短程多次反射波、微曲多
次反射波、虚反射。
二、多次反射波时距曲线
只有在反射系数较大的反射界面产生的多次反射, 才能够形成较强的多次波。
这样的界面有:基岩面、不整合 面、火成岩面、低速带底界面、 海水面和海底面等。
面波(也叫地滚波ground roll):低频、强振幅、低速, 野外可用检波器排列压制。
工业电干扰(50Hz):陷波压制。
多次波(multiples):与初次反射有同样的速度,可利用 预测反褶积消除。
边部散射波(side-scattered noise):水底不平,散射点
不对称
平