基于matlab的倒立摆仿真设计
基于matlab的一级倒立摆系统仿真研究
![基于matlab的一级倒立摆系统仿真研究](https://img.taocdn.com/s3/m/c55fa1cf6bd97f192379e92e.png)
第一章绪论1.1倒立摆系统的简介1.1.1倒立摆系统的研究背景及意义倒立摆系统的最初分析研究开始于二十世纪五十年代,是一个比较复杂的不稳定、多变量、带有非线性和强耦合特性的高阶机械系统,它的稳定控制是控制理论应用的一个典型范例[1]。
倒立摆系统存在严重的不确定性,一方面是系统的参数的不确定性,一方面是系统的受到不确定因素的干扰。
通过对它的研究不仅可以解决控制中的理论问题,还将控制理论涉及的相关主要学科:机械、力学、数学、电学和计算机等综合应用。
在多种控制理论与方法的研究和应用中,特别是在工程中,存在一种可行性的实验问题,将其理论和方法得到有效的验证,倒立摆系统可以此提供一个从控制理论通过实践的桥梁。
近些年来,国内外不少专家、学者一直将它视为典型的研究对象,提出了很多控制方案,对倒立摆系统的稳定性和镇定问题进行了大量研究,都在试图寻找不同的控制方法实现对倒立摆的控制,以便检查或说明该方法的严重非线性和绝对不稳定系统的控制能力,其控制方法在军工、航天、机械人领域和一般工业过程中都有着广泛的用途,如精密仪器的加工、机器人行走过程中的平衡控制、火箭发射中的垂直度控制、导弹拦截控制、航空对接控制、卫星飞行中的姿态控制等方面均涉及到倒置问题。
因此,从控制这个角度上讲,对倒立摆的研究在理论和方法论上均有着深远意义。
倒立摆系统是一个典型的自不稳定系统,其中摆作为一个典型的振动和运动问题,可以抽象为许多问题来研究。
随着非线性科学的发展,以前的采用线性化方法来描述非线性的性质,固然无可非议,但这种方法是很有局限性,非线性的一些本质特征往往不是用线性的方法所能体现的。
非线性是造成混乱、无序或混沌的核心因素,造成混乱、无序或混沌并不意味着需要复杂的原因,简单的非线性就会产生非常的混乱、无序或混沌。
在倒立摆系统中含有极其丰富和复杂的动力学行为,如分叉、分形和混沌动力学,这方面的问题也值得去探讨和研究。
无论哪种类型的倒立摆系统都具有如下特性[2]:(1)非线性倒立摆是一个典型的非线性复杂系统。
基于MATLAB的单级旋转倒立摆建模与控制仿真
![基于MATLAB的单级旋转倒立摆建模与控制仿真](https://img.taocdn.com/s3/m/38467acbaa00b52acfc7ca93.png)
基于MATLAB的单级旋转倒立摆建模与控制仿真一、分析课题,选择数据源外文数据库多种多样,对于工程应用所研究的课题,通常选取比较常用的数据库为:IEEE Xplore(/Xplore/home.jsp)、Google学术搜索(/)以及SpringerLink(/)。
二、选取检索词单级旋转倒立摆的英文名称为:single rotational inverted pendulum,故以此为检索词进行检索。
三、构造检索式Single (and)rotational inverted pendulum四、实施检索,调整检索策略由于搜索步骤较多,此处只详细给出使用IEEE Xplore数据库的检索过程,另外两个数据库提供大概检索过程及结果截图。
由于搜索结果只有9条,数量较少,故调整检索词,过程如下:Google学术搜索:SpringerLink数据库:五、检索结果1、题目:Analysis of human gait using an Inverted Pendulum Model基于倒立摆模型的人体步态分析Zhe Tang ; Meng Joo Er ; Chien, C.-J. Fuzzy Systems, 2008. FUZZ-IEEE 2008. (IEEE World Congress on Computational Intelligence). IEEE International Conference onAbstract: IPM(Inverted Pendulum Model) has been widely used for modeling of human motion gaits. There is a common condition in most of these models, the reaction force between the floor and the humanoid must go through the CoG (Center of Gravity) of the a humanoid or human being. However, the recent bio-mechanical studies show that there are angular moments around the CoG of a human being during human motion. In other words, the reaction force does not necessarily pass through the CoG. In this paper, the motion of IPM is analyzed by taking into consideration two kinds of rotational moments, namely around the pivot and around the CoG. The human motion has been decomposed into the sagittal plane and front plane in the double support phase and single support phase. The motions of the IPM in these four different phases are derived by solving four differential equations with boundary conditions. Simulation results show that a stable human gait is synthesized by using our proposed IPM.摘要:IPM(倒立摆模型)已被广泛用于人体运动步态建模。
基于MATLAB-GUI的一级倒立摆控制仿真软件设计
![基于MATLAB-GUI的一级倒立摆控制仿真软件设计](https://img.taocdn.com/s3/m/ad878dc005a1b0717fd5360cba1aa81144318ffb.png)
基于MATLAB-GUI的一级倒立摆控制仿真软件设计基于MATLAB/GUI的一级倒立摆控制仿真软件设计摘要:本文介绍了一种基于MATLAB/GUI的一级倒立摆控制仿真软件的设计方法。
倒立摆是一个经典的控制系统问题,通过控制摆杆使其保持垂直状态。
本文使用MATLAB作为仿真平台,并通过GUI界面设计,使得用户可以方便地输入参数、观察系统状态和结果。
通过该仿真软件,可以有效地学习和研究控制系统的设计与应用。
关键词:MATLAB;倒立摆;控制系统;仿真软件;GUI一、引言倒立摆是一种非线性、强耦合且不稳定的控制系统,是控制理论中经典的问题之一。
倒立摆控制系统受到广泛的研究关注,其在机器人、飞行器、自动驾驶等领域有着重要的应用。
为了帮助学习者理解控制系统的原理和特点,设计了一种基于MATLAB/GUI的一级倒立摆控制仿真软件。
二、仿真软件设计1. 系统模型建立使用MATLAB工具箱中的Simulink建立倒立摆的系统模型。
系统包含两个部分:摆杆和电机控制器。
摆杆模型包括质量、长度、角度等参数;电机控制器模型包括电压、电流、转速等参数。
连接两个模块,构建完整的倒立摆控制系统。
2. GUI界面设计使用MATLAB的GUI工具进行界面设计,用户可以通过界面方便地输入参数、选择控制算法和观察系统状态。
界面包括输入参数框、按钮、图表等控件。
3. 控制算法设计通过GUI界面,用户可以选择不同的控制算法,如PID控制、模糊控制、自适应控制等。
根据选择的算法,修改Simulink模型中的控制器参数,并进行仿真分析。
4. 仿真结果可视化在GUI界面中添加图表,可以实时显示倒立摆的角度、位置等参数。
用户可以通过修改参数和算法,观察系统的响应结果并进行分析。
三、应用实例以PID控制算法为例,进行系统仿真。
用户可以通过GUI界面输入摆杆的质量、长度、角度等参数。
选择PID控制算法后,可以调节PID参数的值,观察系统响应和稳定性。
matlab仿真毕设--倒立摆现代控制理论研究
![matlab仿真毕设--倒立摆现代控制理论研究](https://img.taocdn.com/s3/m/38529ff75ff7ba0d4a7302768e9951e79b896988.png)
内蒙古科技大学本科生毕业设计说明书(毕业论文)题目:倒立摆现代控制理论研究倒立摆现代控制理论研究摘要倒立摆系统是一个复杂的非线性、强耦合、多变量和自不稳定系统。
在控制工程中,它能有效地反映诸如可镇定性、鲁棒性、随动性以及跟踪性等许多控制中的关键问题,是检验各种控制方法的理想工具。
理论是工程的先导,它对倒立摆系统的控制研究具有重要的工程背景,单级倒立摆与火箭的飞行有关,二级倒立摆与双足机器人的行走有相似性,日常生活中的任何重心在上,支点在下的问题都与倒立摆的控制有极大的相似性,所以对倒立摆的稳定控制有重大的现实意义。
迄今,人们已经利用古典控制理论、现代控制理论及多重智能控制理论实现了多种倒立摆系统的稳定控制[5]。
倒立摆的控制方法有很多,如状态反馈控制,经典PID控制,神经网络控制,遗传算法控制,自适应控制,模糊控制等。
其控制方法已经在军工、航天、机器人和一般工业过程等领域得到了应用。
因此对倒立摆系统的控制研究具有重要的理论和现实意义,成为控制领域中经久不衰的研究课题。
本文是应用线性系统理论中的极点配置、线性二次型最优(LQR)和状态观测器等知识,设计了倒立摆系统线性化模型的控制器,通过MA TLAB仿真,研究其正确性和有效性。
通过分析仿真结果,我们知道了,状态反馈控制可以使倒立摆系统很好的控制在稳定状态,并具有良好的鲁棒性。
关键词:倒立摆;现代控制;Matlab仿真;Modern Control Theory Of Inverted PendulumAbstractInverted pendulum system is a complex nonlinear and strongly coupled,multi-variable and unstable system since.In control engineering,it can effectively reflect such stabilization,robustness,with the mobility of control and tracking,and many other key issue,It is the test ideal for a variety of control methods.Theory is the project leader,inverted pendulum control system also has important engineering research background,inverted pendulum with single-stage related torocket for the flight,Inverted pendulum and biped walking robot similar nature in any life in the center of gravity,the fulcrum in the next issue with the inverted pendulum control has a great similarity,so the stability control of inverted pendulum significant practical significance.So far,it has been the use of classical control theory,modern control theory and control theory of multiple intelligence to achieve a variety of inverted pendulum system stability control[5].Inverted pendulum control methods there are many,such as the state feedback control,the classic PID control,neural network control,genetic algorithm control,adaptive control,fuzzy control.The control method has been in military,aerospace,robotics and general industrial processes and other areas have been intended use.Therefore,the control of inverted pendulum system research has important theoretical and practical significance,of becoming enduring research topics in the field.This is the application of the theory of linear systems pole placement,linear quadratic optimal (LQR) and the state observer of such knowledge,the design of the linear inverted pendulum model of the controller,through simulation to study the correctness and effective sex.By analyzing the results of MATLAB simulation,state feedback control can make a goodcontrol of inverted pendulum system in a stable state,and has good robustness,stability control features.Key words: Inverted pendulum;Modern control;Matlab simulation;目录摘要 (I)Abstract (II)第一章绪论 (1)1.1倒立摆系统模型简介 (1)1.2倒立摆研究的背景与意义 (2)1.3国内外研究现状、水平和发展趋势 (3)1.3.1倒立摆和控制理论的发展 (3)1.3.2倒立摆的控制方法 (4)1.3.3倒立摆的发展趋势 (5)1.4本论文的主要工作介绍 (6)第二章一级倒立摆的数学模型建立及其性能分析 (7)2.1 系统的组成 (7)2.2 一级倒立摆数学模型的建立 (8)2.2.1 数学模型的建立 (8)2.2.2 系统的结构参数 (9)2.2.3 用牛顿力学方法来建立系统的数学模型 (9)2.2.4 一级倒立摆的性能分析[7] (13)2.3 本章小结 (15)第三章现代控制理论在倒立摆控制中的应用 (16)3.1 自动控制理论的发展历程 (16)3.2 经典控制理论 (18)3.2.1 PID控制现状 (18)3.2.2 PID控制的基本原理 (18)3.2.3 常用PID数字控制系统 (20)3.3 现代控制理论 (21)3.3.1 极点配置[11] (22)3.3.2 线性二次型最优的控制理论[7,8] (24)3.3.3 加权矩阵的选取 (26)3.3.4 状态观测器[7] (26)3.4 本章小结 (29)第四章MA TLAB仿真技术 (30)4.1 仿真软件——Matlab简介 (30)4.1.1 MA TLAB的优势 (30)4.2 Simulink简介 (32)4.3 S-函数简介 (33)4.3.1 用M文件创建S-函数 (34)4.4 倒立摆仿真模块的建立 (36)4.5 本章小结 (37)第五章一级倒立摆线性模型系统的仿真 (38)5.1 倒立摆控制器结构选择 (38)5.2 一级倒立摆线性模型系统仿真 (38)5.2.1 Simulink仿真 (42)5.3 本章小结 (46)结束语 (48)参考文献 (49)附录A (51)致谢 (53)第一章绪论1.1倒立摆系统模型简介倒立摆控制系统是一个复杂的、不稳定的、非线性的系统,是进行控制理论教学及开展各种控制实验的理想实验平台,但它并不是我们想象的那样抽象,其实在我们日常生活中就有很多这样的例子。
基于ADAMS与MATLAB联合仿真的倒立摆设计毕业论文
![基于ADAMS与MATLAB联合仿真的倒立摆设计毕业论文](https://img.taocdn.com/s3/m/5ad8e9ec52ea551811a687ac.png)
基于ADAMS与MATLAB联合仿真的倒立摆设计摘要:倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。
倒立摆的控制方法在军工、航天、机器人和一般工业过程领域中都有着广泛的用途,如机器人行走过程中的平衡控制、火箭发射中的垂直度控制和卫星飞行中的姿态控制等。
本文先分别用MATLAB和ADAMS两种软件对倒立摆系统进行建模仿真,然后将两者联合仿真,采用PID控制,用三种方法实现了对倒立摆系统的的控制。
仿真结果互相对比、补充,充分展现了各种仿真方法的特点,并直观的论证出利用两种软件进行联合仿真的优点和意义。
关键词:ADAMS;MA TLAB;倒立摆;联合仿真Design of inverted pendulum based on the co-simulationof ADAMS and MATLABAbstract: The control of inverted pendulum system is a nonlinear,complex, unstable,system, It’s an ideal experimental platform of control theory teaching and carrying out of various control experiments. Control methods of inverted pendulum are widely used in military, aerospace, robotics and general industrial fields, such as robot balance control in rocket launch, the verticality control and satellite flight attitude control. This paper first respectively by MATLAB and ADAMS for modeling and Simulation of the inverted pendulum system, and then combining the two for co-simulation.With the PID control, the control of inverted pendulum system are realized by three methods. The simulation results contrast and complement each other, fully demonstrated the characteristics of various simulation methods, and intuitive proves the advantages and significance of combined simulation using this two kinds of software.Key words: ADAMS,MATLAB,inverted pendulum, co-simulation目录第1章绪论 (1)1.1 课题研究背景与意义 (1)1.2 国内外发展现状 (1)1.3 本论文主要内容 (2)第2章倒立摆的数学模型及控制方法 (3)2.1 建模方法的选择 (3)2.2 倒立摆系统模型 (3)2.3 控制方法的选择 (6)2.4 PID算法简介 (6)本章小结 (8)第3章基于MATLAB的倒立摆控制系统设计 (10)3.1 MATLAB软件简介 (10)3.2 倒立摆系统开环稳定性分析 (11)3.3 摆杆角度PID控制 (12)3.4 小车位移PID控制 (13)3.5 Simulink模型构建 (14)3.6 系统闭环稳定性分析 (14)3.7 系统脉冲响应分析 (15)3.8系统阶跃响应分析 (17)本章小结 (19)第4章基于ADAMS的倒立摆控制系统设计 (20)4.1 ADAMS软件介绍 (20)4.1.1 ADAMS简介 (20)4.1.2 ADAMS软件组成 (20)4.2 ADAMS中倒立摆控制方案 (22)4.3 倒立摆ADAMS模型建立 (22)4.4 PID控制 (24)4.4.1 不加控制时系统仿真分析 (24)4.4.2 PID控制时系统仿真分析 (26)本章小结 (27)第5章基于MATLAB和ADAMS联合仿真的倒立摆控制系统设计 (29)5.1 ADAMS与MATLAB联合仿真意义 (29)5.2 ADAMS与MATLAB联合仿真过程 (29)5.2.1 建立ADAMS模型 (29)5.2.2 确定ADAMS的输入输出 (30)5.2.3 ADAMS与MATLAB的连接 (31)5.2.4 构建控制模型 (32)5.2.5 联合仿真 (34)本章小结 (35)总结 (36)致谢................................................... 错误!未定义书签。
基于MATLAB的一级倒立摆控制系统仿真与设计
![基于MATLAB的一级倒立摆控制系统仿真与设计](https://img.taocdn.com/s3/m/e8d4cfd1dbef5ef7ba0d4a7302768e9951e76e38.png)
基于MATLAB的一级倒立摆控制系统仿真与设计一级倒立摆是一个经典的控制系统问题,它由一根杆子和一个在杆子顶端平衡的质点组成。
杆子通过一个固定的轴连接到一个电机,电机可以通过施加力来控制杆子的平衡。
设计一个控制系统来实现对一级倒立摆的稳定控制是一个重要的研究课题。
在这篇文章中,我们将介绍基于MATLAB的一级倒立摆控制系统仿真与设计。
我们将首先介绍一级倒立摆的数学模型,并根据模型设计一个反馈控制器。
然后,我们将使用MATLAB来进行仿真,评估控制系统的性能。
一级倒立摆的数学模型可以通过牛顿第二定律得到。
假设杆子是一个质点,其运动方程可以表示为:ml²θ''(t) = mgl sin(θ(t)) - T(t)其中m是质点的质量,l是杆子的长度,g是重力加速度,θ(t)是杆子相对于竖直方向的偏角,T(t)是电机施加的瞬时力。
为了设计一个稳定的控制系统,我们可以使用PID控制器,其控制输入可以表示为:T(t) = Kp(θd(t) - θ(t)) + Ki∫(θd(t) - θ(t))dt +Kd(θd'(t) - θ'(t))其中Kp,Ki和Kd分别是比例,积分和微分增益,θd(t)是我们期望的杆子偏角,θ'(t)是杆子的角速度。
在MATLAB中,我们可以使用Simulink来建模和仿真一级倒立摆的控制系统。
我们可以进行以下步骤来进行仿真:1. 建立一级倒立摆的模型。
在Simulink中,我们可以使用Mass-Spring-Damper模块来建立质点的运动模型,并使用Rotational Motion 库提供的Block来建立杆子的旋转模型。
2. 设计反馈控制器。
我们可以使用PID Controller模块来设计PID 控制器,并调整增益参数以实现系统的稳定性和性能要求。
3. 对控制系统进行仿真。
通过在MATLAB中运行Simulink模型,我们可以观察控制系统的响应,并评估系统的稳定性和性能。
科研训练-基于MATLAB的直线一级倒立摆仿真系统研究
![科研训练-基于MATLAB的直线一级倒立摆仿真系统研究](https://img.taocdn.com/s3/m/d47c4bca80eb6294dd886c82.png)
科研训练结题报告名称:基于MATLAB的直线一级倒立摆仿真系统研究小组成员:指导教师:1.直线一级倒立摆问题简介 (6)1.1背景简介【1】 (6)1.2软件特性 (6)1.3设计要求分析 (6)2. 数学模型的建立 (7)2.1 倒立摆受力分析 (7)2.2 微分方程的推导 (8)3.Simulink仿真模型 (9)3.1 Simulink仿真简介【2】 (9)3.2 初次模型搭建 (10)3.3 二次模型搭建 (11)3.4 二次模型优化 (12)3.5最终仿真模型及仿真结果 (13)4.封装子系统 (19)4.1 封装子系统简介 (19)4.2 封装子系统设置 (20)5. PID控制 (20)5.1 PID控制理论 (20)5.2 基于SIMULINK的PID控制器设计 (22)5.3 PID参数的确定 (24)6. 成果汇总与分析 (31)7. 经验总结与心得体会 (32)参考文献 (32)1.直线一级倒立摆问题简介1.1背景简介【1】倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。
对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。
通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。
倒立摆的控制问题就是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度。
当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。
倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。
倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。
基于MATLAB的一级倒立摆控制系统仿真与设计
![基于MATLAB的一级倒立摆控制系统仿真与设计](https://img.taocdn.com/s3/m/306a72d476a20029bd642df4.png)
《控制系统分析与综合》任务书题目:基于MATLAB的一级倒立摆控制系统仿真分析与设计要求:对给定直线倒立摆系统模型,首先利用matlab对系统进行根轨迹、bode 图或能控性分析,然后根据控制系统设计指标进行相应控制器设计,在matlab 仿真环境下得到控制器参数,再将其写入实际倒立摆控制系统中,观察实际控制效果,进行控制参数的适当调整。
任务:1、超前校正控制器设计设计指标:调整时间t s=0.5s (2%) ;最大超调量δp≤10%设计步骤:先对传递函数模型进行根轨迹分析,讨论原系统的稳定性等,然后利用sisotool设计超前校正控制器,仿真满足设计要求后,再在实际系统中运行测试控制效果,观察分析实际控制现象,进行参数微调。
2、滞后超前校正控制器设计设计指标:系统的静态位置误差常数为10,相位裕量为500,增益裕量等于或大于10 分贝。
设计步骤:先对传递函数模型进行bode图分析,讨论原系统的稳定性等,然后利用sisotool设计滞后超前校正控制器,仿真满足设计要求后,再在实际系统中运行测试控制效果,观察分析实际控制现象,进行参数微调。
3、PID控制设计指标:调整时间t s尽量小;最大超调量δp≤10%设计步骤:先在matlab/simulink下构建PID仿真控制系统,依照PID参数整定原则进行系统校正,仿真满足设计要求后,再在实际系统中运行测试控制效果,观察分析实际控制现象,进行参数微调。
4、状态空间极点配置控制设计指标:要求系统具有较短的调整时间(约3秒)和合适的阻尼(阻尼比ζ= 0.5-0.7)。
设计步骤:先对系统进行能控性分析,然后根据设计要求选择期望极点(考虑主导极点),编程求出反馈矩阵K,进行系统仿真。
仿真满足设计要求后,再在实际系统中运行测试控制效果,观察分析实际控制现象,进行参数微调。
设计报告要求:报告提供如下内容1 封面2 目录3 正文(1)任务书(2)分别对四个设计任务按照系统分析、控制器仿真设计、实际系统运行分析形成报告4 收获、体会5 参考文献格式要求:题目小三,宋体加粗目录、正文、小标题均为小四宋体,其中标题加粗。
基于MATLAB的旋转倒立摆建模和控制仿真
![基于MATLAB的旋转倒立摆建模和控制仿真](https://img.taocdn.com/s3/m/452f2a2beef9aef8941ea76e58fafab069dc4414.png)
倒立摆系统作为一个被控对象具有非线性、强耦合、欠驱动、不稳定等典型特点,因此一直被研究者视为研究控制理论的理想平台,其作为控制实验平台具有简单、便于操作、实验效果直观等诸多优点。
倒立摆具有很多形式,如直线倒立摆、旋转倒立摆、轮式移动倒立摆等等。
其中,旋转倒立摆本体结构仅由旋臂和摆杆组成,具有结构简单、空间布置紧凑的优点,非常适合控制方案的研究,因此得到了研究者们广泛的关注[1-2]。
文献[3]介绍了直线一级倒立摆的建模过程,并基于MATLAB 进行了仿真分析;文献[4]通过建立倒立摆的数学模型,采用MATLAB 研究了倒立摆控制算法及仿真。
在倒立摆建模、仿真和研究中大多数研究者常用理论建模方法,也可以利用SimMechanics 搭建三维可视化模型仿真;文献[5]使用SimMechanics 工具箱建立旋转倒立摆物理模型,通过极点配置、PD 控制和基于线性二次型控制实现了倒立摆的平衡控制;文献[6]通过设计的全状态观反馈控制器来实现单极旋转倒立摆SimMechanics 模型控制,表明了SimMechanics 可用于不稳定的非线性系统;文献[7]通过单级倒立摆SimMechanics 仿真,研究了Bang-Bang 控制和LQR 控制对倒立摆的自起摆和平衡控制;文献[8]基于Sim⁃Mechanics 建立了直线六级倒立摆模型,并基于LRQ 设计状态反馈器进行了仿真控制分析。
本文首先采用Lagrange 方法建立了旋转倒立摆的动力学模型,在获得了旋转倒立摆动力学微分方程后建立了s-func⁃tion 仿真模型;然后,本文采用SimMechanics 建立了旋转的可视化动力学模型。
针对两种动力学模型,采用同一个PID 控制器进行了控制,从控制结果可以看出两种模型的响应曲线完全一致,这两种模型相互印证了各自的正确性。
1旋转倒立摆系统的动力学建模旋转倒立摆是由旋臂和摆杆构成的系统,如图1所示,旋臂绕固定中心旋转(角度记为θ)带动摆杆运动,摆杆可以绕旋臂自由转动,角度记为α。
直线一级倒立摆MATLAB仿真报告
![直线一级倒立摆MATLAB仿真报告](https://img.taocdn.com/s3/m/8230a3635a8102d276a22fa3.png)
1便携式倒立摆实验简介倒立摆装置被公认为是自动控制理论中的典型试验设备,是控制理论教学和科研中不可多得的典型物理模型。
本实验基于便携式直线一级倒立摆试验系统研究其稳摆控制原理。
1.1主要实验设备及仪器便携式直线一级倒立摆实验箱一套控制计算机一台便携式直线一级倒立摆实验软件一套1.2便携式倒立摆系统结构及工作原理便携式直线一级倒立摆试验系统总体结构如图1所示:图1 便携式一级倒立摆试验系统总体结构图主体结构包括摆杆、小车、便携支架、导轨、直流伺服电机等。
主体、驱动器、电源和数据采集卡都置于实验箱内,实验箱通过一条USB数据线与上位机进行数据交换,另有一条线接220v交流电源。
便携式直线一级倒立摆的工作原理如图2所示:图2 便携式一级倒立摆工作原理图数据采集卡采集到旋转编码器数据和电机尾部编码器数据,旋转编码器与摆杆同轴,电机与小车通过皮带连接,所以通过计算就可以得到摆杆的角位移以及小车位移,角位移差分得角速度,位移差分可得速度,然后根据自动控制中的各种理论转化的算法计算出控制量。
控制量由计算机通过USB数据线下发给伺服驱动器,由驱动器实现对电机控制,电机尾部编码器连接到驱动器形成闭环,从而可以实现摆杆直立不倒以及自摆起。
2便携式倒立摆控制原理方框图便携式倒立摆是具有反馈功能的闭环系统,其控制目标是实现在静态和动态下的稳摆。
当输入量为理想摆角,即时,偏差为0,控制器不工作;当输入量不为理想摆角时,偏差存在,控制器做出决策,驱动电机,使小车摆杆系统发生相应位移,输出的摆角通过角位移传感器作用于输出量,达到减小偏差的目的。
根据控制原理绘制出控制方框图如图3所示:图3 便携式一级倒立摆控制原理方框图3建立小车-摆杆数学模型便携式倒立摆系统主要由小车、摆杆等组成,它们之间自由连接。
小车可以在导轨上自由移动,摆杆可以在铅垂的平面内自由地摆动。
在忽略了空气阻力和各种摩擦之后,可将便携式倒立摆系统抽象成小车和匀质杆组成的刚体系统,在惯性坐标内应用经典力学理论建立系统的动力学方程,采用力学分析方法建立小车-摆杆的数学模型。
基于Matlab的一级倒立摆模型的仿真
![基于Matlab的一级倒立摆模型的仿真](https://img.taocdn.com/s3/m/45ded5a7c77da26925c5b037.png)
(以论文、报告等形式考核专用)二○○九~二○○一零学年度第 2 学期课程编号课程名称计算机控制系统主讲教师李东评分学号姓名专业年级2007级光电工程学院测控技术与仪器教师评语:题目:一级倒立摆模型的仿真一、倒立摆模型的研究意义倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。
对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。
通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。
同时,其控制方法在军工、航天、机器人和一般工业过程领域中都有着广泛的用途,如机器人行走过程中的平衡控制、火箭发射中的垂直度控制和卫星飞行中的姿态控制等。
故其研究意义广泛。
二、倒立摆模型的数学建模质量为m的小球固结于长度为L的细杆(可忽略杆的质量)上,细杆又和质量为M的小车铰接相连。
由经验知:通过控制施加在小车上的力F(包括大小和方向)能够使细杆处于θ=0的稳定倒立状态。
在忽略其他零件的质量以及各种摩擦和阻尼的条件下,推导小车倒立摆系统的数学模型分析过程如下:如图所示,设细杆摆沿顺时针方向转动为正方向,水平向右方向为水平方向上的正方向。
当细杆摆顺时针往右运动时水平方向施加的力应该为水平向右。
现对小车和细杆摆分别进行隔离受力分析:(1)对小车有: F-F’sinθ=Mx’’(a)(2)对小球有:水平方向上运动为 x+lsinθ故水平方向受力为 F’sinθ= m(x+lsinθ)’’=m(x’+lcosθθ’)’= mx’’+mlcosθθ’’-mlsinθ(θ’)^2 (b)由(a)、(b)两式得 F= (M+m)x’’+mlcosθθ’’-mlsinθ(θ’)^2 <1>小球垂直方向上位移为 lcosθ故受力为F’cosθ-mg=m(lcosθ)’’=-ml θ’’sin θ-ml cos θ(θ’)^2 即 F ’cos θ=mg-ml θ’’sin θ-ml cos θ(θ’)^2 (c ) 由(b )、(c )两式得cos θx ’’ =gsin θ- l θ’’ <2>故可得以下运动方程组:F= (M+m)x ’’ +mlcos θθ’’-mlsin θ(θ’)^2cos θx ’’ =gsin θ- l θ’’以上方程组为非线性方程组,故需做如下线性化处理:32sin ,cos 13!2!θθθθθ≈-≈-当θ很小时,由cos θ、sin θ的幂级数展开式可知,忽略高次项后, 可得cos θ≈1,sin θ≈θ,θ’’≈0 故线性化后运动方程组简化为 F= (M+m)x ’’ +ml θ’’ x ’’ =g θ- l θ’’下面进行系统状态空间方程的求解:以摆角θ、角速度θ’、小车位移x 、加速度x ’为系统状态变量,Y 为输出,F 为输入即X=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡4321x x x x =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡x'x 'θθ Y=⎥⎦⎤⎢⎣⎡x θ=⎥⎦⎤⎢⎣⎡31x x由线性化后运动方程组得 x1’=θ’=x2 x2’=''θ=()Mlg m M +x1-Ml1 F X3’ =x ’=x4 x4’=x ’’=-Mmg x1+M 1 F故空间状态方程如下:X ’=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡'4'3'2'1x x x x =()⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-+0010000000010MmgMlg m M ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡4321x x x x + ⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-M Ml 1010 FY= ⎥⎦⎤⎢⎣⎡31x x =⎥⎦⎤⎢⎣⎡01000001 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡4321x x x x + 0⨯F 用MATLAB 将状态方程转化成传递函数,取M=2kg m=0.1kg l=0.5m 代入得 >>A=[0 1 0 0;20.58 0 0 0;0 0 0 1;-0.49 0 0 0] >>B=[0;-1;0;0.5] >>C=[1 0 0 0;0 0 1 0] >>D=[0;0]>> [num,den]=ss2tf(A,B,C,D,1); >> [num,den]=ss2tf(A,B,C,D,1) num =0 -0.0000 -1.0000 0 0 0 -0.0000 0.5000 -0.0000 -9.8000den =1.0000 0 -20.5800 0 0由上可以得出角度 对力F 的传递函数:位移X 对外力F 的传递函数:58.201)()(2--=Φs s F s 24258.208.95.0)()(s s s s F s X --=三、用MATLAB 的Simulink 仿真系统进行建模1、没校正之前的θ-F 控制系统由于未加进控制环节,故系统输出发散2、加进控制环节,实现时域的稳定控制给系统加入PID 控制,设置系统稳定值为0,给系统一个初始干扰冲击信号 采用试凑法不断调整PID 参数,使系统达到所需的控制效果 当系统Kp=-100,Ti=Td=0时输出如下:Transfer Fcn-s 2s +-20.58s 42ScopePulseGeneratorConstant 1Transfer Fcn-1s +-20.582ScopePulseGeneratorIntegrator1s Gain 3-40Gain 11Gain -K-Derivative du/dt Constant不断地调整参数,最后得到稳定的响应 Kp=-1000,Ti=1,Td=-40时可见调整好参数后,系统基本达到稳定,净差基本为0,超调较小,响应时间较小。
倒立摆系统建模及MATLAB仿真
![倒立摆系统建模及MATLAB仿真](https://img.taocdn.com/s3/m/3f023157fe4733687e21aa33.png)
倒立摆系统的建模及MATLAB仿真通过建立倒立摆系统的数学模型,应用状态反馈控制配置系统极点设计倒立摆系统的控制器,实现其状态反馈,从而使倒立摆系统稳定工作。
之后通过MA TLAB 软件中Simulink工具对倒立摆的运动进行计算机仿真,仿真结果表明,所设计方法可使系统稳定工作并具有良好的动静态性能。
倒立摆系统是1个经典的快速、多变量、非线性、绝对不稳定系统,是用来检验某种控制理论或方法的典型方案。
倒立摆控制理论产生的方法和技术在半导体及精密仪器加工、机器人技术、导弹拦截控制系统和航空器对接控制技术等方面具有广阔的开发利用前景。
因此研究倒立摆系统具有重要的实践意义,一直受到国内外学者的广泛关注。
本文就一级倒立摆系统进行分析和研究,建立倒立摆系统的数学模型,采用状态反馈极点配置的方法设计控制器,并应用MA TLAB 软件进行仿真。
1 一级倒立摆系统的建模1. 1 系统的物理模型如图1 所示,在惯性参考系下,设小车的质量为M ,摆杆的质量为m ,摆杆长度为l ,在某一瞬间时刻摆角(即摆杆与竖直线的夹角)为θ,作用在小车上的水平控制力为f 。
这样,整个倒立摆系统就受到重力,水平控制力和摩擦力的3 外力的共同作用。
图1 一级倒立摆物理模型1. 2 系统的数学模型在系统数学模型中,本文首先假设:(1) 摆杆为刚体。
(2)忽略摆杆与支点之间的摩擦。
(3)忽略小车与导轨之间的摩擦。
然后根据牛顿第二运动定律,求得系统的运动方程为:方程(1) , (2) 是非线性方程,由于控制的目的是保持倒立摆直立,在施加合适的外力条件下,假定θ很小,接近于零是合理的。
则sinθ≈θ,co sθ≈1 。
在以上假设条件下,对方程线性化处理后,得倒立摆系统的数学模型:1. 3 系统的状态方程以摆角θ,角速度θ',小车的位移x ,速度x'为状态变量,输出为y 。
即令:则一级倒立摆系统的状态方程为:2 控制器设计及MATLAB 仿真2. 1 极点配置状态反馈的基本原理图2 状态反馈闭环控制系统极点配置的方法就是通过一个适当的状态反馈增益矩阵的状态反馈方法,将闭环系统的极点配置到任意期望的位置。
基于MATLAB(矩阵实验室)的倒立摆控制系统仿真
![基于MATLAB(矩阵实验室)的倒立摆控制系统仿真](https://img.taocdn.com/s3/m/5eb87053a0116c175e0e4844.png)
基于MATLAB的倒立摆控制系统仿真摘要自动控制原理(包括经典部分和现代部分)是电气信息工程学院学生的一门必修专业基础课,课程中的一些概念相对比较抽象,如系统的稳定性、可控性、收敛速度和抗干扰能力等。
倒立摆系统是一个典型的非线性、强耦合、多变量和不稳定系统,作为控制系统的被控对象,它是一个理想的教学实验设备,许多抽象的控制概念都可以通过倒立摆直观地表现出来。
本文以一级倒立摆为被控对象,用经典控制理论设计控制器(PID控制器)的设计方法和用现代控制理论设计控制器(极点配置)的设计方法,通过MATLAB仿真软件的方法来实现。
关键词:一级倒立摆PID控制器极点配置Inverted pendulum controlling systemsimulation based on the MATLABABSTRACTAutomatic control theory (including classical parts and modern parts) is a compulsory specialized fundamental course of the students majored in electrical engineering. Some of the curriculum concept is relatively abstract, such as the stability, controllability, convergence rate and the anti-interference ability of system. Inverted pendulum system is a typical nonlinear, strong coupling, multivariable and unstable system. It is an ideal teaching experimental equipment as a controlled object, by which many abstract control concepts can be came out directly. This paper chose first-order inverted pendulum as the controlled object. First, the PID controller was designed with classical control theory. Then pole-assignment method was discussed with modern control theory. At last, the effectness of the two methods was verified by MATLAB simulation software.KEY WORDS: First-order inverted pendulum PID controller pole-assignment目录摘要 (I)ABSTRACT (II)1 绪论 (1)1.1倒立摆的控制方法 (1)1.2 MATLAB/Simulink简介 (2)1.3 主要内容 (3)2一级倒立摆 (3)2.1 实验设备简介 (3)3直线一级倒立摆的数学模型 (4)3.1直线一级倒立摆数学模型的推导 (4)3.1.1 微分方程模型 (6)3.1.2 传递函数模型 (7)3.1.3 状态空间数学模型 (8)3.2系统阶跃响应分析 (10)4 直线一级倒立摆PID控制器设计 (14)4.1 PID控制分析 (14)4.2PID控制参数设定及MATLAB仿真 (17)5直线一级倒立摆状态空间极点配置控制器设计 (20)5.1 状态空间分析 (21)5.2极点配置及MATLAB仿真 (22)6总结 (26)致谢 (27)参考文献 (28)1 绪论倒立摆起源于20世纪50年代,是一个典型的非线性、高阶次、多变量、强耦合、不稳定的动态系统,能有效地反映诸如稳定性、鲁棒性等许多控制中的关键问题,是检验各种控制理论的理想模型。
基于ADAMS与MATLAB的倒立摆联合仿真实验
![基于ADAMS与MATLAB的倒立摆联合仿真实验](https://img.taocdn.com/s3/m/b7177ec33968011ca2009112.png)
基于ADAMS与MATLAB的倒立摆联合仿真实验一、实验目的在传统的机电一体化研究设计过程中,机械工程师和控制工程师虽然在共同设计开发一个系统,但是他们各自都需要建立自己的模型,然后分别采用不同的分析软件,对机械系统和控制系统进行独立的设计、调试和试验,最后进行机械系统和控制系统各自的物理样机联合调试,如果发现问题又要回到各自的模型中分别修改,然后再联合调试,显然这种方式费时费力。
基于多领域的建模与联合仿真技术很好的解决了这个问题,为机械和控制系统进行联合分析提供了一种全新的设计方法。
机械工程师和控制工程师就可以享有同一个样机模型,进行设计、调试和试验,可以利用虚拟样机对机械系统和控制系统进行反复联合调试,直到获得满意的设计效果,然后进行物理样机的建造和调试。
ADAMS与MATLAB是机械系统仿真和控制系统仿真领域应用较为广泛的软件,其中ADAMS为用户提供了强大的建模、仿真环境,使用户能够对各种机械系统进行建模、仿真和分析,具有十分强大的运动学和动力学分析功能;而MATLAB具有强大的计算功能、极高的编程效率及模块化的建模方式,因此,把ADAMS与MATLAB联合起来仿真,可以充分将两者的优势相结合,将机械系统仿真分析同控制系统设计有机结合起来,实现机电一体化的联合分析。
本实验以倒立摆为例,进行ADAMS与MATLAB的联合仿真,对倒立摆的运动性能和运动规律进行分析。
二、实验方法软件环境:MD ADAMS R3,MATLAB R2009b 2.1 建立倒立摆的动力学模型启动ADAMS/View模块弹出如图1所示对话框,建立小车及摆杆模型。
首先选择“Create a new model”选项,创建一个新的模型,将该文件保存在相应的文件夹下,本实验将结果保存在E:\daolibai_adams文件夹下,将文件名取为“daolibai_adams”,其余选项保持默认。
注意,在ADAMS中路径名和文件名最好采用英文字符,否则有可能在运行的过程中出现意想不到的错误。
MATLAB一级倒立摆的二次最优控制系统设计仿真
![MATLAB一级倒立摆的二次最优控制系统设计仿真](https://img.taocdn.com/s3/m/e3b8b537bdd126fff705cc1755270722192e591d.png)
---------------------------------------------------------------范文最新推荐------------------------------------------------------ MATLAB一级倒立摆的二次最优控制系统设计仿真摘要:倒立摆是典型的多变量、非线性、强耦合的自然不稳定系统,可以把许多抽象问题直观的表达出来,所以对倒立摆系统的研究在理论上和工程实践上均有着深远意义。
本课题首先利用牛顿力学分析的方法建立了直线一级倒立摆系统的数学模型,并在此基础上分析了该系统是不稳定的,同时又是能控和能观的。
然后研究了倒立摆系统的线性二次最优控制算法,并设计了倒立摆系统的二次最优控制器,利用MATLAB仿真分析倒立摆系统的Q,R矩阵,通过仿真结果获得了实时控制效果,使得摆杆保持竖直向上平衡的同时,能跟踪小车的位臵。
最后,结合倒立摆的二次最优控制器设计和能量自动摆起控制,实现了直线一级倒立摆的自动摆起的LQR实时控制。
可以得出,LQR法具有较小的超调量和较好的稳态效果,LQR法适合应用到对稳1 / 20态性能要求较高的控制系统中。
6861关键词:倒立摆;最优控制;建模与分析;MATLAB 仿真;自动摆起Quadratic optimal control for an inverted pendulum systemAbstract:Inverted pendulum is a typical multi-variable, non-linear, strong coupling and naturally unstable system,it can express many abstract problems directly, So the Research of inverted pendulum system have far-reaching significance in theory and in practice.In this paper, we firstly use Newtonian mechanics analysis method to establish the mathematical model of the linear 1-stage inverted pendulum system, in the mean time, the system is unstable by analyzing the model, but it is controllable and observable. Then we study on algorithm of linear quadratic optimal control for inverted pendulum system, and design a quadratic optimal controller of inverted pendulum system, Simulation and analysis the---------------------------------------------------------------范文最新推荐------------------------------------------------------matrix Q,R of an inverted pendulum system using MATLAB. By simulation results, gained the real-time control effect, While maintaining the pendulum rod balance the vertical up, tracking the car's location. Finally, Combining the design of inverted pendulum system’s quadratic optimal controller, and the automatic swing-up control, achieving linear inverted pendulum’s LQR control of automatic swing up. It can be concluded that LQR method has smaller overshoot and better steady state results, and LQR method is suitable for applications that require higher steady state performance in the control system.4.2.2 仿真分析204.2.3 实时控制245 倒立摆自动摆起控制283 / 205.1 起摆过程分析285.2 起摆的能量控制策略295.3 起摆实时控制306 结论34致谢35参考文献36附录371 绪论倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。
毕业设计(论文)-基于matlab的一级倒立摆控制器设计与仿真[管理资料]
![毕业设计(论文)-基于matlab的一级倒立摆控制器设计与仿真[管理资料]](https://img.taocdn.com/s3/m/8eadd625c1c708a1294a44b8.png)
摘要倒立摆系统是一个典型的多变量、非线性、强耦合和快速运动的高阶不稳定系统,它是检验各种新型控制理论和方法有效性的典型装置。
近年来,许多学者对倒立摆系统进行广泛地研究。
本文研究了直线一级倒立摆的控制问题。
首先阐述了倒立摆系统控制的研究发展过程和现状,接着介绍了倒立摆系统的结构并详细推导了一级倒立摆的数学模型。
本文分别用极点配置、LQR最优控制设计了不同的控制器,极点配置法通过设计状态反馈控制器将多变量系统的闭环系统极点配置在期望的位置上,从而使系统满足要求的瞬态和稳态性能指标。
最优控制理论主要是依据庞特里亚金的极值原理,通过对性能指标的优化寻找可以使目标极小的控制器。
若取状态变量的二次型函数的积分做为系统的性能指标,则称为线性系统二次型性能指标的最优控制。
通过比较和MATLAB仿真,验证了所设计的控制器的有效性、稳定性和抗干扰性。
关键词:单级倒立摆;MATLAB;控制器设计;极点配置;LQRABSTRACTInverted pendulum is a typical multi-variable, non-linear, strong coupling and rapid movement of high-end system instability, It is testing various new control theory and methods of the effectiveness of the typical devices. In recent years, many scholars of the inverted pendulum extensive study.In this paper, a straight two inverted pendulum control on the inverted pendulum control of the development process and the status quo, then introduced the inverted pendulum system and the detailed structure of the two inverted pendulum is derived a mathematical model. In this paper, with pole placement, LQR optimal control design a different controller, By comparing and MATLAB simulation, verified the effectiveness ,stability and anti-jamming of the controller.Pole-zero configuration can configure the closed-loop system poles of multi-variable system in the desired position, by designing of the state feedback controller,so that to make the system meets the requirements of the transient and steady state performance indicators.Optimal control theory is mainly based on the Pontryagin maximum principle, by the optimization of the performance indicators to find the minimal goal of the taking the integral of the quadratic function of state variables as the system of performance indicators, called the as the linear quadratic performance index of optimal control.Key words : Single stage Inverted pendulum; MATLAB; Controller design; Zero-pole ; LQR目录摘要 (1)ABSTRACT (2)1 绪论 0控制理论的发展 0倒立摆系统简介及其研究意义 0倒立摆研究的发展现状及其主要控制方法 (1)研究目标 (2)2 直线一阶倒立摆数学模型的建立 (4)倒立摆系统的物理结构与建模 (4)系统参数设定 (7)系统能控性与能观性 (8)3 极点配置控制方案的设计 (9)极点配置理论 (9)极点配置算法 (10)极点配置控制方案的设计 (11)4 线性二次型最优控制(LQR)方案的设计 (15)最优控制的起源和发展 (15)线性二次型最优控制原理 (15)最优控制矩阵的设计 (18)5 控制系统的MATLAB仿真 (22)MATLAB软件介绍 (22)极点配置控制方案的仿真 (23)线性二次型最优控制(LQR)方案的仿真 (26)干扰条件下控制系统的仿真 (27)S函数模拟动画设计 (28) (31)6 总结与展望 (32)参考文献 (35)致谢 (36)附录 (37)1 绪论控制理论的发展控制理论发展至今已有100多年的历史,随着现代科学技术的发展,它的应用也越来越广泛。
基于MATLAB的倒立摆系统控制系统设计与仿真【毕业作品】
![基于MATLAB的倒立摆系统控制系统设计与仿真【毕业作品】](https://img.taocdn.com/s3/m/ecffa66bd4d8d15abf234eed.png)
1 绪论1.1倒立摆系统简介倒立摆系统是一种很常见的又和人们的生活密切相关的系统,它深刻揭示了自然界一种基本规律,即自然不稳定的被控对象,通过控制手段可使之具有良好的稳定性。
倒立摆系统是一个非线性,强耦合,多变量和自然不稳定的系统。
它是由沿导轨运动的小车和通过转轴固定在小车上的摆杆组成的。
在导轨一端装有用来测量小车位移的电位计,摆体与小车之间由轴承连接,并在连接处安置电位器用来测量摆的角度。
小车可沿一笔直的有界轨道向左或向右运动,同时摆可在垂直平面内自由运动。
直流电机通过传送带拖动小车的运动,从而使倒立摆稳定竖立在垂直位置。
图1.1一级倒立摆装置简图由图1.1中可以看到,倒立摆装置由沿导轨运动的小车和通过转轴固定在小车上的摆体组成。
导轨的一端固定有位置传感器,通过与之共轴的轮盘转动可以测量出沿导轨由图中可以看到,倒立摆装置由沿导轨运动的小车和通过转轴固定在小车上的摆运动的小车位移;小车通过轴承连接摆体,并在小车与摆体的连接处固定有共轴角度传感器,用以测量摆体的角度信号;并通过微分电路得到相应的速度和角速度信号;导轨的另一端固定有直流永磁力矩电机,直流电机通过传送带驱动小车沿导轨运动,在小车沿导轨左右运动的过程中将力传送到摆杆以实现整个系统的平衡。
倒立摆的种类很多,有悬挂式倒立摆、平行式倒立摆、和球平衡式倒立摆;倒立摆的级数可以是一级,二级,乃至更多级。
控制方法也是多种,可以通过模糊控制,智能控制,PID控制,LQR控制等来实现倒立摆的动态平衡,本文介绍的是状态反馈极点配置方法来实现一级倒立摆的控制。
1.2倒立摆的控制规律当前,倒立摆的控制规律可总结如下:(1)状态反馈H控制[1],通过对倒立摆物理模型的分析,建立倒立摆的动力学模型,然后使用状态空间理论推导出状态方程和输出方程,应用状态反馈和Kalnian滤波相结合的方法,实现对倒立摆的控制。
(2)利用云模型[2-3]实现对倒立摆的控制,用云模型构成语言值,用语言值构成规则,形成一种定性的推理机制。
倒立摆控制系统设计matlab
![倒立摆控制系统设计matlab](https://img.taocdn.com/s3/m/71c59d68443610661ed9ad51f01dc281e43a567c.png)
倒立摆控制系统设计matlab倒立摆控制系统设计是一个在工程领域中非常重要的课题。
倒立摆是一个经典的控制系统问题,通过控制电机的力矩来使倒立摆保持平衡。
在这篇文章中,我们将使用Matlab来设计一个倒立摆控制系统,并逐步回答其中的关键问题。
首先,我们需要明确设计的目标。
在倒立摆控制系统中,我们的目标是使摆杆保持垂直位置。
为了实现这个目标,我们需要采用逆向控制方法,即通过测量摆杆当前状态以及目标状态之间的差异,并控制力矩,从而使摆杆回复到垂直位置。
接下来,我们需要构建倒立摆的模型。
倒立摆模型可以采用Euler-Lagrange动力学方程进行描述。
具体地,我们可以使用如下的动力学方程来描述倒立摆:m*L^2*θ''(t) + m*g*L*sin(θ(t)) = u(t) - b*θ'(t) - c*sat(θ(t)) 其中,m是摆杆的质量,L是摆杆的长度,θ(t)是摆杆的角度,u(t)是电机的力矩,b是摩擦系数,c是控制器增益。
在上述动力学方程中,μ(t)表示补偿力,其作用是抵消由于重力引起的非线性成分。
有了动力学方程之后,我们可以使用Matlab来进行数值仿真。
首先,我们需要定义模型的初始状态和控制器增益。
我们可以选择一个合适的初始状态,比如θ(0)=pi/4,θ'(0)=0,然后根据模型的特性来选择控制器增益c。
接下来,我们可以使用Matlab的ode45函数来求解动力学方程的数值解。
ode45函数是一种常用的数值积分器,可以对常微分方程进行数值求解。
在本例中,我们可以将动力学方程与初始条件传递给ode45函数,然后使用该函数来求解摆杆的角度θ(t)和角速度θ'(t)的变化。
在求解得到角度和角速度之后,我们可以使用反馈控制方法来设计控制器。
一种常见的控制器设计方法是使用PID控制器。
PID控制器基于当前状态与目标状态之间的差异来计算控制信号。
具体地,PID控制器的输出可以通过如下公式来计算:u(t) = Kp*e(t) + Ki*∫e(t)dt + Kd*e'(t)其中,u(t)是控制器的输出,Kp、Ki和Kd分别是比例、积分和微分增益,e(t)=θ(t)-θd(t)是当前状态与目标状态之间的差异,e'(t)=θ'(t)-θd'(t)是当前状态与目标状态之间的差异的一阶导数。
基于MATLAB的倒立摆最优控制设计和仿真
![基于MATLAB的倒立摆最优控制设计和仿真](https://img.taocdn.com/s3/m/a21c08e2941ea76e58fa04fa.png)
《 智能机器人》 O c t o b e r . 2 0 1 6 L l _ 二 1
J : MAT L AB 的倒 摆妓优控制 没计 仿典
广州海洋工程有限公司 姜洪发
摘 要 : 本 文通过 对单级倒 立摆控制 系统研 究和分析 ,采用 了线性二 次型最优控制 的方法 ,通过改 变二 次型
址 优控 f ; J J 设 汁 仿 r
( 4 ) 传送带与皮带轮之 间相互无滑动 ,并且传送带 是实
时 的:
车 垂直之 间 的夹角 0、摆 杆 的运 动速 度 、小 车的移 动位 置 和小车 的移动 速度 。将 上述 单级倒 立摆 的运动 系统 方程
( 5)各组件摩擦力 和阻尼对系统的影响可忽略 不计 ,除 导轨与滑块之 间的摩擦力和摆杆转动轴承 的摩擦力除外 。 设摆 杆与小 车垂 直位置之 间 的角度 为 0,倒 立摆 摆杆 的
± : 。
Z
“
一
一
篆( z + c s i n o ) = H
,L
式
( 4 )
3倒立摆 系 统能 控性 分析
f + ) , +
摆杆 重心进行垂直运动时可表示为 :
m
5
、J
篆f c 0 s 0 = m 9
警 — H
中
)
系统具有 良好的能控性是进行系统控制器设计 的前提条件 。 根据 系统的状态方程和能控性 的矩阵方程 M= 【 B A B… A 。 B ] ,在 MA T L A B软件 中调用 矩阵可控 性指令 c t r b来进行该 系统可控
如网 1 所 示 为
本 文通过对单级倒立摆控 制系统进
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Pulse GenePrautlosre Generator
-1 s2+-2-10 .58 Trsa2n+s-f2e0r .F5c8n Transfer Fcn
Scope Scope
给系统加入 PID 控制,设置系统稳定值为 0,给系统一个初始干扰冲击信号 采用试凑法不断调整 PID 参数,使系统达到所需的控制效果 当系统 Kp=-100,Ti=Td=0 时输出如下:
3、通过本实验,掌握了倒立摆仿真的整个过程,熟悉了 MATLAB 的仿真软件 Simulink 的使用,也对系统控制有了较好的理解。作为本次实验的组长,自己更 是从中掌握了合作实验开展中的一般步骤,对小组进行分工,掌握实验的主体线 路。此次实验中,自始至终发挥了组长的作用,从建模到最后的仿真调试,都秉 着认真负责的态度完成了倒立摆仿真研究。
0
0
(s) F (s)
s2
1 20.58
X (s) 0.5s2 9.8 位移 X 对外力 F 的传递函数: F(s) s4 20.58s2
三、用 MATLAB 的 Simulink 仿真系统进行建模
1、没校正之前的θ-F 控制系统
1 Constant
Pulse Generator
-s2 s4+-20 .58 s2 Transfer Fcn
2、由实验中可知,倒立摆系统是一个非线性的较复杂的不稳定系统,故要满足 稳定性要求,就得对系统进行线性化近似和稳定控制。本实验中,在做了线性化 和加进控制调整后,系统达到了良好的稳定状态。当然,这只是一个理想模型, 在实际应用中情况会更加复杂,稳定性也更难获得。不过,通过实验,我们至少 掌握了简单控制的基本方法,并得到了预期的实验效果。
>>D=[0;0]
>> [num,den]=ss2tf(A,B,C,D,1);
>> [num,den]=ss2tf(A,B,C,D,1)
num =
0 -0.0000 -1.0000
0
0
0 -0.0000 0.5000 -0.0000 -9.8000
den =
1.0000
0 -20.5800
由上可以得出角度 对力 F 的传递函数:
二、 倒立摆模型的数学建模
质量为 m 的小球固结于长度为 L 的细杆(可忽略杆的质量)上,细杆又和质量 为 M 的小车铰接相连。由经验知:通过控制施加在小车上的力 F(包括大小和 方向)能够使细杆处于θ=0 的稳定倒立状态。在忽略其他零件的质量以及各种 摩擦和阻尼的条件下,推导小车倒立摆系统的数学模型
分析过程如下:
如图所示,设细杆摆沿顺时针方向转动为正方向,水平向右方向为水平方向上的 正方向。当细杆摆顺时针往右运动时水平方向施加的力应该为水平向右。 现对小车和细杆摆分别进行隔离受力分析:
(1)对小车有: F-F’sinθ=Mx’’
(2)对小球有: 水平方向上运动为 x+lsinθ
故水平方向受力为 F’sinθ= m(x+lsinθ)’’
(a)
=m(x’+lcosθθ’)’
= mx’’+mlcosθθ’’-mlsinθ(θ’)^2
(b)
由(a)、(b)两式得 F= (M+m)x’’ +mlcosθθ’’-mlsinθ(θ’)^2
<1>
小球垂直方向上位移为 lcosθ
故受力为
F’cosθ -mg=m(lcosθ)’’
=-mlθ’’sinθ-mlcosθ(θ’)^2
Scope
由于未加进控制环节,故系统输出发散
2、加进控制环节,实现时域的稳定控制
0 0 Constant Constant
-K -K Gain Gain
1 1 Gain 1 Gain 1
-40 -40 Gain 3 Gain 3
1 1s Integrsator Integrator
du /dt du /dt Derivative Derivative
不断地调整参数,最后得到稳定的响应 Kp=-1000,Ti=1,Td=-40 时
可见调整好参数后,系统基本达到稳定,净差基本为 0,超调较小,响应时间较小。再微调 后,得到最终的响应曲线响应时间较小,Tp=0.2s
3、时域达到稳定后,进行离散化分析
离散模型系统控制框图如下
0 Constant
-K -
后,得到最终的响应曲线响应时间较小,Tp=0.5s。 至此,离散域的控制顺利实现
四、实验总结与分析
1、本实验,从数学建模到仿真系统的搭建,再到加进控制环节进行实时控制, 最后得出结果的过程中,参考了大量的资料,通过对比整合,设计出了适合自己 的一套实验方法:倒立摆数学模型推导部分:首先用牛顿—欧拉方法建立数学模 型,接着用动态系统空间状态方程法导出状态方程系数矩阵,然后用 MATLAB 对数学模型进行从状态空间到传递函数的变换(包括传递函数的拉氏变换与 Z 变换),得到系统的传递函数模型。接着根据数学建模得出的传递函数进行系统 模型的搭建,在 Simulink 软件上进行系统仿真,采用最为广泛的 PID 控制算法, 先用连续系统的设计方法设计出模拟控制器,然后在满足一定条件下,对其进行 离散化处理,(采用加零阶保持器的 Z 变换法)形成数字控制器。接着进行 PID 参 数整定,利用试凑法,根据 PID 控制器各组成环节对系统性能的影响,从一组初 始 PID 参数开始反复试凑,直至获得,满意的控制效果。此实验中,系统的控 制非常稳定,性能较好。
以摆角 θ、角速度 θ’、小车位移 x、加速度 x’为系统状态变量,Y 为输出,F 为 输入
x1 即 X= x2 = '
x3 x x4 x'
Y=
x
=
x1 x3
由线性化后运动方程组得
x1’=θ’=x2
x2’= '' = M mg x1- 1 F
Ml
Ml
X3’ =x’=x4
x4’=x’’=- mg x1+ 1 F MM
即 F’cosθ=mg-mlθ’’sinθ-mlcosθ(θ’)^2 由(b)、(c)两式得
cosθx’’ =gsinθ- lθ’’
(c) <2>
故可得以下运动方程组: F= (M+m)x’’ +mlcosθθ’’-mlsinθ(θ’)^2
cosθx’’ =gsinθ- lθ’’
sin
3
, cos
故空间状态方程如下:
0
1
0
0
0
X’=
x1' x 2' x3' x 4'
=
M mg
Ml
0
mg M
0 0 0
0 0 0
x1
0
1
0
x2 x3 x4
+
1
Ml
0
F
1
M
x1
Y=
x1 1 x3
=
1 0
0 0
0 1
0 0
x2 x3
+ 0F
Constant
x4
-s2 s4+-20 .58 s2 Transfer Fcn
Scope
用 MATLAB 将状态方程转化成传Pul递se 函数,取 M=2kg m=0.1kg l=0.5m 代入得 Generator
>>A=[0 1 0 0;20.58 0 0 0;0 0 0 1;-0.49 0 0 0]
>>B=[0;-1;0;0.5]
>>C=[1 0 0 0;0 0 1 0]
2 1
以上方程组为非线性方程组,故需做如下线性化处理:
3!
2!
当 θ 很小时,由 cosθ、sinθ 的幂级数展开式可知,忽略高次项后,
可得 cosθ≈1,sinθ≈θ,θ’’≈0
故线性化后运动方程组简化为
F= (M+m)x’’ +mlθ’’
x’’ =gθ- lθ’’
下面进行系统状态空间方程的求解:
Gain
1
-2
1-z-1
Gain 1 Discrete Filter
ቤተ መጻሕፍቲ ባይዱ
1-z-1 -K -
1
Gain 3 Discrete FIR Filter
Zero -Order Hold
-1 s2+-20 .58 Transfer Fcn
Pulse Generator
Scope
当 Kp=-100,Ti=0,Td=0 时输出 :发散,需加大 Kp、增加 Ti 、Td 控制
4、此外,通过仿真,再次认识到了自动控制在改善系统性能方面的重要性,并 激发了良好的关于系统控制方面的学习兴趣,在此基础上,相信对以后的进一步 研究将会有较大帮助。
五、参考文献
[1]黄坚.自动控制原理及其应用[M].北京:高等教育出版社,2004.1 [2]孙德宝.自动控制原理[M].北京:化学工业出版社,2002.7 [3]胡寿松.自动控制原理(第四版)[M].北京:科学出版社,2001.2 [4]周伯敏.自动控制理论[M].北京:机械工业出版社,1999.1 [5]夏德钤,翁贻芳.自动控制理论[M].北京:机械工业出版社,2004.1 [6]刘时鹏.MATLAB 环境下直线单级倒立摆系统实时控制实验的研究与设计[R]. 重庆大学自动化学院,2004.6
基于 matlab 的倒立摆的仿真与设计
姓名:贾永伟 专业:测控技术与仪器
学号:1123105950
年级:2011 级
摘要:倒立摆系统是一个典型的快速、多变量、非线性、不稳定系统,对倒
立摆的控制研究无论在理论上和方法上都有深远的意义。 本论文以实验室原有的直线一级倒立摆实验装置为平台,重点研究其 PID 控制 方法,设计出相应的 PID 控制器,并将控制过程在 MATLAB 上加以仿真。