模电主要章节知识点归总
大一模电的主要知识点概括
大一模电的主要知识点概括模电,即模拟电子技术,是电子工程学科中的重要分支。
在大一阶段学习模电,主要涉及到模电的基本原理、电路分析和设计等相关内容。
本文将对大一模电的主要知识点进行概括,帮助读者对该学科有一个整体的了解。
一、模拟电子技术概述模拟电子技术是指对非数字信号进行处理、传输和控制的一种技术。
它与数字电子技术相对,主要应用于模拟信号的处理、模拟电路的设计与分析等领域。
二、电路基础知识1. 电压、电流和电阻:电压是指电荷在电路中传输时的电势差,电流是指单位时间内通过导体的电荷流动量,电阻是指材料对电流流动的阻碍程度。
2. 电路元件:电阻、电容和电感是电路中常见的三种基本元件。
电阻用于限制电流,电容用于存储电荷,电感用于存储磁能。
3. 基本电路:串联电路和并联电路是最基本的电路连接方式。
串联电路中电流相同,电压之和等于总电压;并联电路中电压相同,电流之和等于总电流。
三、放大器1. 放大器的基本原理:放大器将输入信号进行放大,使其输出信号具有更高的幅度。
常用的放大器有运算放大器、差分放大器等。
2. 放大器的分类:按放大器的工作频率可以分为低频放大器和高频放大器;按放大器的工作方式可以分为共射放大器、共基放大器等。
四、操作放大器1. 操作放大器的基本特性:操作放大器是一种基础的电路元件,在模电中应用广泛。
它具有高输入阻抗、低输出阻抗、大增益等特性。
2. 基本运算电路:比较器、积分器、微分器是操作放大器的基本运算电路。
比较器常用于判断信号的高低电平,积分器和微分器用于信号的积分或微分处理。
五、滤波器1. 滤波器的作用:滤波器用于对信号进行滤波处理,分离出所需的频率成分。
2. 滤波器的类型:根据滤波器的频率响应特征,可以将其分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
六、振荡器振荡器是一种能够产生周期性输出信号的电路。
在模电中,常用的振荡器有正弦波振荡器、方波振荡器等。
七、电源管理1. 稳压电路:稳压电路用于保持输出电压的稳定性,常用的稳压电路有三端稳压电压、集成稳压电路等。
模电总结知识点复习资料大全
模电总结知识点复习资料大全第一章节半导体二极管的基本原理一.半导体的基础知识讲解1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。
2.特性---光敏、热敏和掺杂特性。
3.本征半导体----纯净的具有单晶体结构的半导体。
4. 两种载流子----带有正、负电荷的可移动的空穴和电子统称为载流子。
5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。
体现的是半导体的掺杂特性。
*P型半导体:在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。
*N型半导体: 在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。
6. 杂质半导体的特性定理*载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。
*体电阻---通常把杂质半导体自身的电阻称为体电阻。
*转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。
7. PN结* PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。
* PN结的单向导电性---正偏导通,反偏截止。
8. PN结的伏安特性二. 半导体二极管*单向导电性------正向导通,反向截止。
*二极管伏安特性----同PN结。
*正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。
*死区电压------硅管0.5V,锗管0.1V。
3.分析方法------将二极管断开,分析二极管两端电位的高低:若 V阳 >V阴( 正偏 ),二极管导通(短路);若 V阳 <V阴( 反偏 ),二极管截止(开路)。
1)图解分析算法该式与伏安特性曲线的交点叫静态工作点Q。
2) 等效电路算法➢直流等效电路法*总的解题手段----将二极管断开,分析二极管两端电位的高低:若 V阳 >V阴( 正偏 ),二极管导通(短路);若 V阳 <V阴( 反偏 ),二极管截止(开路)。
*三种模型➢微变等效电路法三. 稳压二极管及其稳压电路*稳压二极管的特性---正常工作时处在PN结的反向击穿区,所以稳压二极管在电路中要反向连接。
模电各章节主要知识点总结
(2)若是开环(无反馈),或正反馈,则放大器处于饱和状态 2、理想运放条件: Ri ,由此得到虚断, i i 0
Avo ,由此得到虚短, v v
3、虚短和虚断:
RO 0 KCMRR
各种运算(比例,加减法,积分微分电路等)中,
i i 0,说明两个输入端无电流 ; v v,说明两个输入端等电位
2
Rb2
VCC
,
VE
VB
VBE
IE
VE RE
IC
VCE
VCC
IC (RC
RE )
(2)图解分析方法:
要求: (a)用图解分析方法,判断什么情况下会发生截止和饱和失真现象,如何解决? (b)对于共射极放大器,用直流负载线和交流负载线求解最大不失真输出电压幅度
Vom VCEQ VCES ,以及ICQ RL ' 二者取最小的,即为最大不失真输出电压幅度。
Feedback Amplifier
反 馈 判 一、反馈性质判断(瞬时极性) 断 总 结 : 下图是常见器件的瞬时极性,务必掌握!
输入
-
+
+
+
输入 +
输入
+
+
+
输入
二、输入端的链接方式(串联还是并联)
并联负反馈
(+) X i
(-) X f
串联负反馈
X(+i) (+) X f
并联负反馈
(+)
1、K1、K3闭合,K2断开; 2、K2、K3闭合,K1断开; 3、K1、K2闭合,K3断开; 4、K1、K2、K3闭合。
模电内容总结
第一章1本征半导体里面掺+5 价元素构成N 型半导体,掺 +3价元素构成P 型半导体. 2半导体里面有(2)种载流子:(电子和空穴) 3PN 结的主要特性:单向导电性4半导体/PN 结里面内电场的方向是:从N 区到P 区5描绘PN 结电流和电压关系的表达式:i=is(e 的(vd/vt )次方-1) 6稳压管正常工作时应该怎么接电源:N 区接正,P 区接负 第二章1在三极管中有几个区(3)分别是(发射区基区集电区) 体积大小从大到小是:集电区>发射区>基区 杂质密度从大到小:发射区>集电区>基区2三极管工作在放大区的条件:发射结正偏,集电结反偏 三极管工作在截止区的条件:发射结反偏,集电结反偏 三极管工作在饱和区的条件:发射结正偏,集电结正偏 三极管输入端的伏安特性曲线:(三个变量IbVBE VCE )三极管工作在输出端的伏安特性曲线:(三个变量ic iB VCE )3 在三极管放大电路里面,输入电阻越大越好,输出电阻越小越好 设置Q 点过低,造成截止失真 设置Q 点过高,造成饱和失真最好设置在放大区的中间,此时的放大幅度最大(V)BE u i C CE (V)(mA)=60uAI B u 1V4复合管----达林顿管同类型的三极管:发射极和基极连接 不同类型的三极管:集电极和基极连接 第四章功率放大电路1甲类乙类甲乙类功率放大电路的导通角分别是360°180° 180到360 理想的甲类功放最大的放大效率是 25%乙类双电源互补对称放大电路在理想的情况下的最大效率是 78.5% 2 乙类双电源互补对称电路中三极管功耗最大的时候V om =0.6V CC 最大功耗Pmax静态功耗是:0(在静态当中没有电流)第五章集成运放电路1 集成运放由四部分构成:输入级差动放大电路组成,中间级是电压放大极,输出极是功率放大极,还有一部分是直流偏置,直流偏置用电流源来实现2 电流源的两种作用,作直流偏置电路,用作有源负载 电流源的特点:直流电阻小、交流电阻大3 集成运放第一级为什么用差动放大电路:抑制温漂(零点漂移,也叫零漂) 第六章负反馈放大电路2CCC1maxomL0.20.22V P P R ≈=22CC CES CC OML L()22V V V P R R -=≈2要加大输出电阻,引入电流反馈减小输出电阻,引入电压反馈 加大输入电阻,引入串联反馈 减小输入电阻,引入并联反馈7在深度负反馈的时候,闭环增益约等于反馈系数的倒数,F 分之一 8 对于负反馈放大电路,牺牲了增益,改变了电路的性能 第七章信号运算1集成运放理想情况下增益是无穷大的,认为有好几级是互相乘的关系,增益一大以后,他的线性区间趋近于0,要想增大线性区间,应该引入负反馈,即负反馈可以降低增益,增益减小那么线性区间就变大了 第八章信号产生电路正弦波信号怎么产生Rc 是咱们学的 (一) 自激振荡的条件1:振幅平衡条件A*F=1A 是基本放大电路的增益,F 是反馈放大电路的增益 (原因是什么请去看课件)2:相位平衡条件:比如在基本放大电路里面有一个相位仪移动了90度,ΨA=90度 幅值放大了五倍,为了保持一致,ΨF =-90度货真ΨF =270度,A*F=1,这个时候幅值和相位就都一样了(二) 自激振荡的意思是:一开始给你一个信号,开始工作,回头我把信号撤掉,自己激励自己开始工作,电路里面有一个Vcc 提供能源,信号是从输出端反馈回来的,要求一个值和一个值相等,所以是A*F=1,一个放大了五倍,另外一个就要反馈五分之一(振幅平衡条件哦)(三) 正弦波放大电路由四部分构成基本放大选频正反馈增幅稳幅o id X A X ∙∙=。
模电知识体系总结
模电知识体系总结第一章:常用半导体器件1.1半导体基础器件1.1.1本征半导体纯净的具有晶体结构的半导体称为本征半导体。
常用的半导体材料硅(Si)和锗(Ge)均为四价元素。
在常温下,仅有极少数的价电子由于热运动(热激发)获得足够的能量,从而挣脱共价键的束缚变成为自由电子。
与此同时,在共价键中留下一个空位置,称为空穴。
运载电荷的粒子称为载流子。
导体导电只有一种载流子,即自由电子导电;而本征半导体有两种载流子,即自由电子和空穴均参与导电,这是半导体导电的特殊性质。
半导体在热激发下产生自由电子和空穴对的现象称为本征激发。
自由电子在运动的过程中如果与空穴相遇就会填补空穴,使两者同时消失,这种现象称为复合。
在一定的温度下,本征激发所产生的自由电子与空穴对,与复合的自由电子与空穴对数目相等,故达到动态平衡。
换言之,在定温度下,本征半导体中载流子的浓度是一定的,并且自由电子与空穴的浓度相等。
当环境温度升高时,热运动加剧,挣脱共价键束缚的自由电子增多,空穴也随之增多,即载流子的浓度升高,因而必然使得导电性能增强。
反之,若环境温度降低,则载流子的浓度降低,因而导电性能变差。
本征半导体的导电性能很差,且与环境温度密切相关。
半导体材料性能对温度的这种敏感性,既可以用来制作热敏和光敏器件【好处】,又是造成半导体器件温度稳定性差的原因【劣势】。
1.1.2杂质半导体一、N型半导体在纯净的硅晶体中掺入五价元素(如磷),使之取代晶格中硅原子的位置,就形成了N型半导体。
N为Negative(负)的字头,由于电子带负电,故得此名。
N型半导体中,自由电子的浓度大于空穴的浓度,故称自由电子为多数载流子,空穴为少数载流子;简称前者为多子,后者为少子,由于杂质原子可以提供电子,故称之为施主原子。
N型半导体主要靠自由电子导电,掺人的杂质越多,多子(自由电子)的浓度就越高,导电性能也就越强。
二、P型半导体在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位置,就形成了P型半导体。
模电重点知识总结(1-3章)
分析指标:IBQ、ICQ、VCEQ 分析方法:图解法、估算法、大信号等效 分析指标: rbe、gm、rce、ib、ic
交流分析法
分析方法:图解法、小信号等效电路法
图解分析法
图解法 直流分析 利用三极管的输入、输出特性曲线与管外电路所 确定的负载线,通过作图的方法进行求解 优点:便于直接观察 Q 点位置是否合适,输出信号 波形是否会产生失真 要求:已知三极管特性曲线和管外电路元件参数
共发射极
IC
电路模型 IB IC
C B
直流简化电路模型
IB 0
CBLeabharlann IC 0CIB
B E
T
E
VBE
E
+ -
E
E
E
混合 型小信号电路模型
若考虑rbb、忽略rbc影响,整理后即可得出混合 型电 路模型。 ib r c b c ic
b IEQ过大rbe过小 时,才考虑rbb
bb
3kΩ
V2 + 9V D1 A
VAO O
V1 + 6V
3kΩ V2 +
+ VAO -
VAO也等于 - V1= - 6V
9V -
O
例2.在0≤t≤10ms内,画出图中所示电路输出电压vO(t) 的波形。①二极管是理想的②使用恒压模型
R1 200Ω D 5V
vI + ( t) -
①将D两端断开,求vD R2 v I + vD 5 0.2v I 5 R1 R2 R2 vO (t) v <0V,0.2V -5<0时,V <25V,D截 50Ω -
vI
(t) -
-
模拟电路各章知识点总结
模拟电路各章知识点总结第一章:电路基础1.1 电路的基本概念电路是由电气元件(例如电阻、电容、电感等)连接而成的网络。
电路中电流和电压是基本的参数,描述了其中元件之间的相互作用。
电路按照其两个端点的特性可以分为单端口电路和双端口电路。
1.2 电路的基本定律欧姆定律、基尔霍夫定律以及其他电路定律描述了电路中电流和电压之间的关系。
其中欧姆定律描述了电阻元件电流和电压之间的关系,而基尔霍夫定律描述了电路中电流和电压的分布和流动规律。
1.3 电路的等效变换电路中电气元件可以通过等效电路进行简化处理。
例如将若干电阻串并联为一个等效电阻等。
第二章:基本电路元件2.1 电阻电阻是电路中最基本的元件之一,它的作用是阻碍电流的流动。
在电路中,电阻可以通过串联和并联的方式连接。
电阻的阻值与其材料、长度和横截面积有关系。
2.2 电容电容是电路中用来存储电荷的元件,它在电路中具有很多重要的应用。
电容的存储能量与其带电电压和电容量有关。
2.3 电感电感是电路中具有电磁感应作用的元件,其具有对电流变化的响应。
电感的存储能量与其感抗和电流有关。
2.4 理想电源理想电源是电路中常用的元件,可以提供恒定的电压或电流。
其特点是内部阻抗为零或者无穷大。
第三章:基本电路分析方法3.1 直流电路分析直流电路是电路分析中最简单的一种情况。
在直流电路中,电源提供的是恒定电压或电流,不会发生周期性或者随时间改变的变化。
3.2 交流电路分析交流电路分析是在电路中考虑电压和电流随时间变化的情况。
常见的交流电路分析包括使用复数形式进行计算。
3.3 电路的参数测量方法电路中常用的参数测量方法有欧姆表、万用表等。
它们可以测量电阻的阻值、电压的大小以及电流的大小等参数。
第四章:模拟电路设计4.1 放大器设计放大器是模拟电路中广泛应用的电路元件,可以放大电压或者电流的幅值。
常见的放大器有运放放大器、差分放大器等。
4.2 滤波器设计滤波器是可以去除特定频率成分的电路,可以用于信号处理、通信和音频等领域。
模电知识点总结讲义
模电知识点总结讲义第一部分:基本概念1. 电子元件电子元件是指能处理信息的基本部件,包括电阻、电容、电感、二极管、晶体管等。
- 电阻:用于限制电流或降低电压的元件。
- 电容:用于储存电荷或储存能量的元件。
- 电感:用于储存磁场能量或阻碍电流变化的元件。
- 二极管:用于整流、开关、放大等功能的元件。
- 晶体管:用于放大、开关、稳压等功能的元件。
2. 电路电路是由电子元件连接而成的路径,用于传输电流或信号。
- 直流电路:电流方向不变的电路。
- 交流电路:电流方向时而正时而负的电路。
- 数字电路:用于处理数字信号的电路。
- 模拟电路:用于处理模拟信号的电路。
3. 电路分析电路分析是指根据电路中元件的特性和连接关系,计算电压、电流等参数的过程。
- 基尔霍夫定律:电路中各节点的电流代数和为零。
- 欧姆定律:电流与电压成正比,电阻是电压和电流的比值。
- 诺顿定理:任意线性电路均可用一个等效的电压源和串联电阻来替代。
- 戴维南定理:任意线性电路均可用一个等效的电流源和并联电阻来替代。
4. 信号处理信号是指传输信息的载体,信号处理是对信号进行增强、滤波、调制等操作的过程。
- 放大器:用于增强信号幅度的电路。
- 滤波器:用于去除或增强特定频率的电路。
- 调制器:用于将低频信号调制到高频载波上的电路。
第二部分:放大器1. 放大器类型- 基本放大器:包括共射、共集、共底极等类型。
- 差分放大器:用于抑制共模信号的放大器。
- 电压跟随器:用于输出跟随输入信号的放大器。
2. 放大器设计- 选型:根据放大器的功率、频率、噪声等性能要求选择适当的器件。
- 偏置:通过电阻、电容等元件来设置放大器工作点。
- 反馈:通过串联或并联的电阻、电容等元件来控制放大器的增益、带宽等性能。
3. 放大器应用- 信号放大:用于将传感器输出的微弱信号放大到可测量范围。
- 信号传输:用于增强信号以便传输到远处或驱动加载。
第三部分:滤波器1. 滤波器类型- 低通滤波器:允许低频信号通过,阻断高频信号。
完整版)模拟电子技术基础-知识点总结
完整版)模拟电子技术基础-知识点总结共发射极、共基极、共集电极。
2.三极管的工作原理---基极输入信号控制发射结电流,从而控制集电极电流,实现信号放大。
3.三极管的放大倍数---共发射极放大倍数最大,共集电极放大倍数最小。
三.三极管的基本放大电路1.共发射极放大电路---具有电压放大和电流放大的作用。
2.共集电极放大电路---具有电压跟随和电流跟随的作用。
3.共基极放大电路---具有电压放大的作用,输入电阻较低。
4.三极管的偏置电路---通过对三极管的基极电压进行偏置,使其工作在放大区,保证放大电路的稳定性。
四.三极管的应用1.放大器---将弱信号放大为较强的信号。
2.开关---控制大电流的通断。
3.振荡器---产生高频信号。
4.稳压电源---利用三极管的负温度系数特性,实现稳定的输出电压。
模拟电子技术复资料总结第一章半导体二极管一.半导体的基础知识1.半导体是介于导体和绝缘体之间的物质,如硅Si、锗Ge。
2.半导体具有光敏、热敏和掺杂特性。
3.本征半导体是纯净的具有单晶体结构的半导体。
4.载流子是带有正、负电荷的可移动的空穴和电子,是半导体中的两种主要载流体。
5.杂质半导体是在本征半导体中掺入微量杂质形成的半导体。
根据掺杂元素的不同,可分为P型半导体和N型半导体。
6.杂质半导体的特性包括载流子的浓度、体电阻和转型等。
7.PN结是由P型半导体和N型半导体组成的结,具有单向导电性和接触电位差等特性。
8.PN结的伏安特性是指在不同电压下,PN结的电流和电压之间的关系。
二.半导体二极管半导体二极管是由PN结组成的单向导电器件。
1.半导体二极管具有单向导电性,即只有在正向电压作用下才能导通,反向电压下截止。
2.半导体二极管的伏安特性与PN结的伏安特性相似,具有正向导通压降和死区电压等特性。
3.分析半导体二极管的方法包括图解分析法和等效电路法等。
三.稳压二极管及其稳压电路稳压二极管是一种特殊的二极管,其正常工作状态是处于PN结的反向击穿区,具有稳压的作用。
模电必考知识点总结
模电必考知识点总结一、基本电路理论1. 电路基本定律欧姆定律、基尔霍夫定律、电路中的功率计算等基本电路定律是模拟电子技术学习的基础,了解和掌握这些定律对于学习模拟电子技术是非常重要的。
2. 电路分析了解如何对电路进行简化、等效电路的转换、戴维南定理和诺依曼定理等电路分析的基本方法。
3. 电路稳定性掌握电路的稳定性分析方法,包括如何对直流放大电路和交流放大电路进行稳定性分析。
4. 传输线理论了解传输线的基本特性,包括传输线的阻抗、反射系数、传输线的匹配等知识。
二、放大电路1. 二极管放大电路了解二极管的基本特性和放大电路的设计原理,包括共射放大电路、共集放大电路和共基放大电路等基本的二极管放大电路。
2. 晶体管放大电路了解晶体管放大电路的基本原理和设计方法,包括共射放大电路、共集放大电路和共基放大电路等基本的晶体管放大电路。
3. 放大电路的频率响应了解放大电路的频率响应特性,包括截止频率、增益带宽积等相关知识。
4. 反馈电路掌握反馈电路的基本原理和分类,了解正反馈和负反馈电路的特点和应用。
三、运算放大电路1. 运算放大器的基本特性了解运算放大器的基本特性,包括输入输出阻抗、放大倍数、共模抑制比等相关知识。
2. 运算放大器的电路应用了解运算放大器在反馈电路、比较电路、滤波电路、振荡电路等方面的应用,掌握运算放大器的基本应用方法。
四、滤波器电路1. RC滤波器和RL滤波器了解RC滤波器和RL滤波器的基本原理、特性和应用,包括一阶和二阶滤波器的设计和性能分析。
2. 增益电路和阻抗转换电路掌握增益电路和阻抗转换电路的设计原理和方法,了解它们在滤波电路中的应用。
3. 模拟滤波器设计了解低通滤波器、高通滤波器、带通滤波器和带阻(陷波)滤波器的设计方法和特性,掌握模拟滤波器的设计技巧。
五、功率放大电路1. BJT功率放大电路了解晶体管功率放大电路的基本原理和设计方法,包括类A、类B、类AB和类C功率放大电路的特点和应用。
电路模电知识点总结
电路模电知识点总结电路模电是电子学科的重要组成部分,也是电子工程师应当具备的基本知识。
电路模电涵盖了很多内容,包括基本电路理论、电子元件的特性、电路分析方法、模拟信号处理、数字信号处理等等。
本文将就电路模电的相关知识点进行总结,以供学习和参考。
一、基本电路理论1. 电压、电流和电阻的基本概念电压是电流的推动力,是电子在电路中的运动状态。
电流是电子通过导体的数量,是电路中的载流子的运动情况。
电阻是电路中阻碍电流通过的物理量,是影响电路工作性能的重要因素。
2. 电路基本定律基尔霍夫定律:节点定律和回路定律,用于分析复杂电路中的电压和电流关系。
欧姆定律:描述了电压、电流和电阻之间的基本关系。
功率定律:描述了电路中功率的计算方法,包括有源元件和无源元件的功率计算。
3. 电路分析方法电路分析中常用的方法包括节点分析法、回路分析法、戴维南定理和超定方程组的求解方法。
这些方法适用于不同类型的电路,能够有效地进行电路参数求解和性能分析。
二、电子元件的特性1. 二极管二极管是最基本的电子元件之一,具有整流、放大、开关和稳压等功能。
二极管的正向导通特性和反向截止特性是其重要特点,能够用于各种电路中。
2. 晶体三极管晶体三极管是一种重要的电子管,具有放大、开关和整流等功能。
其放大系数、输入阻抗和输出阻抗是其重要特性,直接影响了其在电路中的应用。
3. 集成电路集成电路是目前电子技术发展的主要方向,包括模拟集成电路和数字集成电路。
模拟集成电路主要包括运算放大器、比较器、滤波器、振荡器等,数字集成电路主要包括逻辑门、触发器、计数器和寄存器等。
三、模拟信号处理1. 信号的采集和重构模拟信号处理中,需要对真实世界的信号进行采集和处理,其中包括采样、量化和编码等过程,最终通过数字信号处理进行重构。
2. 运算放大器的应用运算放大器是模拟电路中的重要元件,常用于放大、滤波、积分和微分等功能。
根据其特性,可以设计不同类型的电路,满足不同的应用需求。
模电知识点复习总结
模电知识点复习总结模拟电子技术(模电)是电子工程中的重要基础学科之一,主要研究电路中的电压、电流以及能量的传输和转换。
下面是我对模电知识点的复习总结:一.基础知识1.电路基本定律:欧姆定律、基尔霍夫定律、电压分压定律、电流分流定律、功率定律。
2.信号描述与频域分析:时间域与频域的关系。
傅里叶级数和傅里叶变换的基本概念和应用。
3.理想放大器:增益、输入/输出电阻、输入/输出阻抗的概念和计算方法。
4.放大器基本电路:共射、共集、共基放大器的特点、电路结构和工作原理。
二.放大器设计1.放大器的参数:增益、输入/输出电阻、输入/输出阻抗。
2.放大器的稳定性:稳态稳定性和瞬态稳定性。
3.放大器的频率响应:截止频率、增益带宽积、输入/输出阻抗对频率的影响。
4.放大器的非线性失真:交趾略失真、交调失真、互调失真等。
5.放大电路的优化设计:负反馈、输入/输出阻抗匹配、增益平衡等。
三.运算放大器1.运算放大器的基本性质:增益、输入阻抗、输出阻抗、共模抑制比。
2.电压放大器:非反转放大器、反转放大器、仪表放大器、差分放大器。
3.运算放大器的应用电路:比较器、积分器、微分器、换相器、限幅器等。
4.运算放大器的非线性失真:输入失真、输出失真、交调失真等。
四.双向可调电源1.双向可调电源的基本原理:输入电压、输出电压和控制信号之间的关系。
2.双向可调电源的电路结构:移相电路、比较器、反相放大器、输出级等。
3.双向可调电源的控制方式:串行控制和并行控制。
五.滤波器设计1.常见滤波器类型:低通、高通、带通和带阻滤波器。
2.滤波器的频率响应特性:通频带、截止频率、衰减量。
3.滤波器的传输函数:频率选择特性、阶数选择。
4.滤波器的实现方法:RC、RL、LC和电子管等。
六.可控器件1.二极管:理想二极管模型、二极管的非理想特性、二极管的应用。
2.可控硅:双向可控硅、单向可控硅、可控硅的触发电路和应用。
3.功率晶体管:NPN、PNP型功率晶体管的特性参数、功率放大电路设计。
模电章节知识点总结
模电章节知识点总结模拟电子技术的核心知识点包括模拟信号的表示与处理、模拟电路的基本元件与分析方法、放大电路、滤波电路、混频电路、调制与解调电路等。
本文将对这些知识点进行总结,以帮助读者更好地理解和掌握模拟电子技术。
一、模拟信号的表示与处理1. 模拟信号的表示模拟信号是连续变化的信号,一般可以表示为关于时间的函数。
常见的模拟信号包括正弦信号、三角波信号、方波信号等,它们可以用数学函数进行表示。
2. 模拟信号的处理模拟信号的处理包括模拟信号的采集、放大、滤波、混频、调制等过程。
其中,模拟信号的采集是将连续的模拟信号转换为离散的数字信号,而放大、滤波、混频、调制等过程则是对模拟信号进行增强、筛选、整合以及变换的过程。
二、模拟电路的基本元件与分析方法1. 电阻、电容、电感电阻、电容、电感是模拟电路中最基本的元件,它们分别用于限制电流、储存电荷和储存能量。
在模拟电路分析中,常常需要对这些元件进行分析,计算其电压、电流和功率等参数。
2. 理想电路元件的模型在实际的模拟电路中,可以将电阻、电容、电感等元件看作是理想的元件,从而简化模拟电路的分析。
这些理想的元件模型可以大大简化模拟电路的分析。
3. 基本的电路分析方法基本的电路分析方法包括基尔霍夫定律、叠加定理、戴维南定理等。
这些方法可以帮助工程师准确、快速地分析模拟电路中的电压、电流和功率等参数。
三、放大电路1. 放大器的基本原理放大器是模拟电路中最常见的电路之一,它可以将输入的弱信号放大到一定的程度。
放大器的基本原理是利用管子的放大作用,从而使得输入信号经过电压、电流的放大后,输出信号获得放大。
2. 常见的放大电路常见的放大电路包括共集极放大电路、共基极放大电路、共射极放大电路等,它们分别适用于不同的放大应用场景。
这些放大电路可以通过适当的电路设计和参数调整,来实现对不同信号类型的放大。
四、滤波电路1. 滤波器的分类滤波器是模拟电路中的重要组成部分,它可以对信号进行频率筛选。
模电知识点总结
模电知识点总结第一篇:模电知识点总结第一章绪论1.掌握放大电路的主要性能指标:输入电阻,输出电阻,增益,频率响应,非线性失真2.根据增益,放大电路有那些分类:电压放大,电流放大,互阻放大,互导放大第二章预算放大器1.集成运放适合于放大差模信号2.判断集成运放2个输入端虚短虚断如:在运算电路中,集成运放的反相输入端是否均为虚地。
3.运放组成的运算电路一般均引入负反馈4.当集成运放工作在非线性区时,输出电压不是高电平,就是低电平。
5.根据输入输出表达式判断电路种类同相:两输入端电压大小接近相等,相位相等。
反相:虚地。
第三章二极管及其基本电路1.二极管最主要的特征:单向导电性2.半导体二极管按其结构的不同,分为面接触型和点接触型3.面接触型用于整流。
点接触型用于高频电路和数字电路4.杂质半导体中少数载流子浓度只与温度有关5.掺杂半导体中多数载流子主要来源于掺杂6.在常温下硅二极管的开启电压为0.5伏,锗二极管的开启电压为0.1伏7.硅二极管管压降0.7伏,锗二极管管压降0.2伏8.PN结的电容效应是势垒电容,扩散电容9.PN结加电压时,空间电荷区的变化情况正向电压:外电场将多数载流子推向空间电荷区,使其变窄,削弱内电场,扩散加剧反向电压:外电场使空间电荷区变宽,加强内电场,阻止扩散运动进行10.当PN结处于正向偏置时,扩散电容大.当PN结反向偏置时,势垒电容大11.稳压二极管稳压时,工作在反向击穿区.发光二极管发光时,工作在正向导通区 12.稳压管称为齐纳二极管13.光电二极管是将光信号转换为电信号的器件,它在PN结反向偏置状态下运行,反向电压下进行,反向电流随光照强度的增加而上升14.如何用万用表测量二极管的阴阳极和判断二极管的质量优劣?用万用表的欧姆档测量二极管的电阻,记录下数值,然后交换表笔在测量一次,记录下来.两个结果,应一大一小,读数小的那次,黑表笔接的是阳极,红表笔接的是阴极.这个读数相差越多,二极管的质量越好.当两个读数都趋于无穷大时,二极管断路.当两个读数都趋于零时,二极管短路第四章双极结型三极管及放大电路1.半导体三极管又称双极结型三极管,简称BJT是放大器的核心器件2.采用微变等效电路求放大电路在小信号运用时,动态特性参数3.晶体三极管可以工作在: 放大区,发射结正偏,集电极反偏饱和区,发射结集电极正偏截止区,发射结集电极反偏4.NPN,PNP,硅锗管的判断5.工作在放大区的三极管,若当Ib以12μA增大到22μA时,Ic 从1mA变为2mA,β约为1006.直流偏置电路的作用是给放大电路设置一个合适的静态工作点,若工作点选的太高——饱和失真。
模电各章重点内容及总复习
《模电》第一章重点掌握内容:一、概念1、半导体:导电性能介于导体和绝缘体之间的物质。
2、半导体器件,主要是利用半导体材料制成,如硅和锗。
3、半导体奇妙特性:热敏性、光敏性、掺杂性。
4、本征半导体:完全纯净的、结构完整的、晶格状的半导体。
5、本征激发:环境温度变化或光照产生本征激发,形成电子和空穴,电子带负电,空穴带正电。
它们在外电场作用下均能移动而形成电流,所以称载流子。
6、半导体中存在两种载流子:自由电子和空穴。
7、P型半导体:在纯净半导体中掺入三价杂质元素,便形成P型半导体,使导电能力大大加强,此类半导体,空穴为多数载流子(称多子)而自由电子为少子。
8、N型半导体:在纯净半导体中掺入五价杂质元素,便形成N型半导体,使导电能力大大加强,此类半导体,电子为多子、而空穴为少子。
9、PN结具有单向导电性:P接正、N接负时(称正偏),PN结正向导通,P接负、N接正时(称反偏),PN结反向截止。
所以正向电流主要由多子的扩散运动形成的,而反向电流主要由少子的漂移运动形成的。
10、二极管按材料分有硅管(S i管)和锗管(G e管),按功能分有普通管,开关管、整流管、稳压管等。
11、二极管由一个PN结组成,所以二极管也具有单向导电性:正偏时导通,呈小电阻,大电流,反偏时截止,呈大电阻,零电流。
P6,图1.2.5二极管的伏安特性。
P7,(1.2.1式)二极管方程其死区电压:S i管约0.5V,G e管约为0.1 V 。
其导通压降:S i管约0.7V,G e管约为0.2 V 。
这两组数也是判材料的依据。
10、稳压管是工作在反向击穿状态的:①加正向电压时,相当正向导通的二极管。
(压降为0.7V,)②加反向电压时截止,相当断开。
③加反向电压并击穿(即满足U﹥U Z)时便稳压为U Z。
11、二极管主要用途:整流、限幅、继流、检波、开关、隔离(门电路)等。
12.三极管由两个PN结组成。
从结构看有三个区、两个结、三个极。
(参考P40)三个区:发射区——掺杂浓度很高,其作用是向基区发射电子。
(完整版)模电知识总结
第一部分半导体的基本知识二极管、三极管的结构、特性及主要参数;掌握饱和、放大、截止的基本概念和条件。
1、导体导电和本征半导体导电的区别:导体导电只有一种载流子:自由电子导电半导体导电有两种载流子:自由电子和空穴均参与导电自由电子和空穴成对出现,数目相等,所带电荷极性不同,故运动方向相反。
2、本征半导体的导电性很差,但与环境温度密切相关。
3、杂质半导体(1)N型半导体——掺入五价元素(2)P型半导体——掺入三价元素4、PN结——P型半导体和N型半导体的交界面在交界面处两种载流子的浓度差很大;空间电荷区又称为耗尽层反向电压超过一定值时,就会反向击穿,称之为反向击穿电压5、PN结的单向导电性——外加电压正向偏置反向偏置6、二极管的结构、特性及主要参数(1)P区引出的电极——阳极;N区引出的电极——阴极温度升高时,二极管的正向特性曲线将左移,反向特性曲线下移。
二极管的特性对温度很敏感。
其中,Is为反向电流,Uon为开启电压,硅的开启电压——0.5V,导通电压为0.6~0.8V,反向饱和电流<0.1μA,锗的开启电压——0.1V,导通电压为0.1~0.3V,反向饱和电流几十μA。
(2)主要参数1)最大整流电流I:最大正向平均电流2)最高反向工作电流U:允许外加的最大反向电流,通常为击穿电压U的一半3)反向电流I:二极管未击穿时的反向电流,其值越小,二极管的单向导电性越好,对温度越敏感4)最高工作频率f:二极管工作的上限频率,超过此值二极管不能很好的体现单向导电性7、稳压二极管在反向击穿时在一定的电流范围内(或在一定的功率耗损范围内),端电压几乎不变,表现出稳压特性,广泛应用于稳压电源和限幅电路中。
(1)稳压管的伏安特性(2)主要参数1)稳定电压U:规定电流下稳压管的反向击穿电压2)稳定电流I:稳压管工作在稳定状态时的参考电流。
电流低于此值时稳压效果变坏,甚至根本不稳压,只要不超过稳压管的额定功率,电流越大稳压效果越好。
模电各章节主要知识点总结
06
第六章:信号发生器与信号变换器
信号发生器的定义和分类
总结词
信号发生器是用于产生所需信号的电子设备 ,根据产生信号的方式不同,可以分为振荡 器和调制器两类。
详细描述
信号发生器是用来产生各种所需信号的电子 设备,这些信号可以是正弦波、方波、脉冲 波等。根据产生信号的方式不同,信号发生 器可以分为两类:振荡器和调制器。振荡器 是利用自激反馈产生所需信号的电子设备, 而调制器则是利用调制技术将低频信号加载
THANKS
感谢观看
限流、分压、反馈等
电阻的串并联
串联增大阻值,并联减小阻值
电容
电容的种类
电解电容、瓷片电容、薄膜电 容等
电容的参数
标称容量、允许偏差、额定电 压、绝缘电阻等
电容的作用
隔直流通交流、滤波、耦合等
电容的充电放电
在交流电下,电容具有“隔直 流通交流”的作用,即让高频 信号通过,阻止低频信号通过
电感
电感的种类
信号变换器的工作原理和应用
• 总结词:模拟式信号变换器的工作原理是将输入的模拟信号进行采样、量化和 编码,转换成数字信号输出;数字式信号变换器则是将输入的数字信号进行解 码和数模转换,转换成模拟信号输出。
• 详细描述:模拟式信号变换器的工作原理是将输入的模拟信号进行采样、量化 和编码,转换成数字信号输出。采样是将连续时间信号转换为离散时间信号的 过程,量化是将采样后的离散值进行近似取整的过程,编码则是将量化后的离 散值转换为二进制码元的过程。数字式信号变换器的工作原理是将输入的数字 信号进行解码和数模转换,转换成模拟信号输出。解码是将输入的数字码元进 行解码的过程,数模转换则是将解码后的离散值转换为连续时间信号的过程。 模拟式和数字式信号变换器在通信、测量、控制等领域有着广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PN结V-I 特性表达式
iD=IS(evD/VT 1)
其中
IS ——反向饱和电流 VT ——温度的电压当量
且在常温下(T=300K)
VT
=
kT=0.026V=26mV q
PN结的伏安特性
3.2.4 PN结的反向击穿
当PN结的反向电压 增加到一定数值时,反 向电流突然快速增加, 此现象称为PN结的反向 击穿。
形成:向本征半导体中掺入少量的 5 价元素
特点:(a)含有大量的电子——多数载流子 (b)含有少量的空穴——少数载流子
(2) P 型半导体(空穴型半导体)
形成:向本征半导体中掺入少量的 3 价元素
特点:(a)含有大量的空穴——多数载流子 (b)含有少量的电子——少数载流子
无论N型或P型半导体都是中性的,对外不显电性。
放大状态下BJT中载流子的传输过程
2. 电流分配关系
又设= 1
根据 IE=IB+ IC
IC= InC+ ICBO
= I nC IE
且令 ICEO= (1+ ) ICBO (穿透电流)
则 = ICICEO
IB
当IC
IC
时
EO
, IC
IB
是另一个电流放大系数。同样,它也只与管
子的结构尺寸和掺杂浓度有关,与外加电压无关。
rd
=VT ID
=
26(mV) ID(mA)
(a)V-I特性 (b)电路模型
特别注意: ▪ 小信号模型中的微变电阻rd与静态工作点Q有关。 ▪ 该模型用于二极管处于正向偏置条件下,且vD>>VT 。
3.5 特殊二极管
(一)稳压二极管
I/mA
(1) 结构:面接触型硅二极管
(2) 主要特点: (a) 正向特性同普通二极管 (b) 反向特性
一般 >> 1 。
பைடு நூலகம்
3. 三极管的三种组态
BJT的三种组态
共发射极接法,发射极作为公共电极,用CE表示; 共基极接法,基极作为公共电极,用CB表示; 共集电极接法,集电极作为公共电极,用CC表示。
三极管的放大作用,主要是依靠它的发射极电 流能够通过基区传输,然后到达集电极而实现 的。
实现这一传输过程的两个条件是:
根据放大电路输入信号的条件和对输出信号的要求,放大器 可分为四种类型,所以有四种放大倍数的定义。
(1)电压放大倍数定义为: (2)电流放大倍数定义为: (3)互阻增益定义为: (4)互导增益定义为:
AU=UO/UI
AI=IO/II
Ar=UO/II Ag=IO/UI
2. 输入电阻Ri——从放大电路输入端看进去的等效电 阻,决定了放大电路从信号源吸取信号幅值的大小。
4.3.1 图解分析法
1. 静态工作点的图解分析
• 在输入特性曲线上,作出直线 vBE=VBB iBRb,两线的交点 即是Q点,得到IBQ。
流子传输体现出来的。
外部条件:发射结正偏 集电结反偏
由于三极管内有两种载流子(自由 电子和空穴)参与导电,故称为双极 型三极管或BJT (Bipolar Junction Transistor)。
1. 内部载流子的传输过程
发射区:发射载流子
集电区:收集载流子
基区:传送和控制载流子
(以NPN为例)
IE=IB+ IC IC= InC+ ICBO
o
u+ - u-
-Uo(sat)
理想运算放大器
理想运放及其分析依据
1)开环电压放大倍数 Auo→∞ 理想化条件: 2)差模输入电阻 rid→∞
3)开环输出电阻 ro→0 4)共模抑制比 KCMRR→∞
+
+
Vp
-
-
vN
+
-
+
Avo(vp-vN)
-
vo
理想运算放大器的特性
理想运算放大器具有“虚短”和“虚断”的特性, 这两个特性对分析线性运用的运放电路十分有用。为 了保证线性运用,运放必须在闭环(负反馈)下工作。
RS ii
uS
ui
信号源 输入端
Ri
Au
输出端
输入电阻:
Ri=ui / ii
一般来说, Ri越大越好。 (1)Ri越大,ii就越小,从信号源索取的电流越小。 (2)当信号源有内阻时, Ri越大, ui就越接近uS。
3. 输出电阻Ro——从放大电路输出端看进 去的等效电阻。决定了放大电路带负载的能力。
f
通频带: fBW=fH–fL
第二章 运算放大器
主讲: 胡仕刚
湖南科技大学信息与电气工程学院
开环电压放大倍数高(104-107); 输入电阻高(约几百KΩ); 输出电阻低(约几百Ω); 漂移小、可靠性高、体积小、重量轻、价格低 。
电压传输特性 Vo=Avo(vp-vN)
+Uo(sat)
理想特性 实际特性
小信号模型,即以Q点为切点的一条直线。
过Q点的切线可以等 效成一个微变电阻
即
rd
=
vD iD
根据 iD=IS(evD/VT 1)
得Q点处的微变电导
(a)V-I特性 (b)电路模型
gd
=
diD dvD
Q
= IS VT
evD /VT
Q
iD VT
Q
= ID VT
则
rd
=
1 gd
=
VT ID
常温下(T=300K)
集电子,基区复合减少,同样的vBE下 IB减小,特性曲线右移。
共射极连接
4.1.3 BJT的V-I 特性曲线
2. 输出特性曲线
iC=f(vCE) iB=const
输出特性曲线的三个区域:
饱和区:iC明显受vCE控制的区域, 该区域内,一般vCE<0.7V (硅管)。
此时,发射结正偏,集电结正偏或反 偏电压很小。
模拟电路知识体系
• 总的来说就是以三极管为核心,以集成运放为主 线。
• 集成运放内部主要组成单元是差分输入级、电压 放大级、功率放大级、偏置电路。
• 集成运放的两个不同工作状态:线性和非线性应 用。
• 模拟电路主要就是围绕集成运放的内部结构、外 部特性及应用、性能改善、工作电源产生、信号 源产生等展开。
截止区:iC接近零的区域,相当iB=0
的曲线的下方。此时, vBE小于死区 电压。
放大区:iC平行于vCE轴的区域,曲
线基本平行等距。此时,发射结正偏, 集电结反偏。
4.1.4 BJT的主要参数
极限参数
(1) 集电极最大允许电流ICM (2) 集电极最大允许功率损耗PCM
PCM= ICVCE
• V(BR)CEO——基极开路时集电极和发射 极间的击穿电压。
第一章 绪 论
主讲: 胡仕刚
湖南科技大学信息与电气工程学院
1.2 放大电路基本知识
一、放大电路的表示方法
放大电路主要用于放大微弱的电信号,输出电压或电流 在幅度上得到了放大。放大电路为双口网络,即一个信号 输入口和一个信号输出口。
1.3 放大电路的主要技术性能指 标
1.放大倍数(增益)——表征放大器的放大能力
(1)内部条件:发射区杂质浓度远大于基区 杂质浓度,且基区很薄。
(2)外部条件:发射结正向偏置,集电结反 向偏置。
4.1.3 BJT的V-I 特性曲线
1. 输入特性曲线
(以共射极放大电路为例)
iB=f(vBE) vCE=const
(1) 当vCE=0V时,相当于发射结的正向伏安特性曲线。 (2) 当vCE≥1V时, vCB= vCE - vBE>0,集电结已进入反偏状态,开始收
返 回 下一节
上一页
18 下一页
3.2.1 载流子的漂移与扩散
漂移运动: 由电场作用引起的载流子的运动称为漂移运动。
扩散运动: 由载流子浓度差引起的载流子的运动称为扩散运动。
3.2.2 PN结形成
在一块本征半导体两侧通过扩散不同的杂质,分 别形成N型半导体和P型半导体。此时将在N型半 导体和P型半导体的结合面上形成如下物理过程:
• 较大的 I 较小的 U •工作在反向击穿状态。 在一定范围内,反向击穿 具有可逆性。
Uz (a) 图形符号
0
U/V
Izmin
Izmax
(b) 伏安特性
(3)主要参数 稳定电压:Uz 最小稳定电流:Izmin
最大稳定电流:Izmax
返回
上一节 下一节
上一页
31 下一页
第四章 三极管及放大电路基础
︱V(BR) ︱> ︱V︱ > 0 iD = IS < 0.1 A(硅)几十 A (锗) ︱V︱> ︱U(BR) ︱ 反向电流急剧增大 (反向击穿)
3.4.2 二极管电路的简化模型分析方法
1.二极管V-I 特性的建模
将指数模型 iD=IS(e分vD段VT线性1)化,得到二极管特性的 等效模型。 (1)理想模型
二、二极管的伏安特性
0 V Vth iD = 0
iD /mA
V (BR) IS
反 向
反向特性 O
正向特性 Vth uD /V
Vth = 0.5 V (硅管) 0.1 V (锗管)
V Vth
iD 急剧上升
击 穿
死区 电压
VD(on) = (0.6 0.8) V 硅管 0.7 V (0.2 0.4) V 锗管 0.3 V
输出端
uS ~
Au
Ro
输出端
u’o
输出电阻的定义:
.
Ro
=
U’o
.
I’o
RL =∞ ,