完全平方公式计算题训练

合集下载

完全平方公式专项练习50题(有答案)

完全平方公式专项练习50题(有答案)

完全平方公式专项练习知识点:完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。

1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。

即:a 2+2ab+b 2或a 2-2ab+b 2-a 2-2ab-b 2或 -a 2+2ab-b 2专项练习:1.(a +2b )22.(3a -5)23..(-2m -3n )24. (a 2-1)2-(a 2+1)25.(-2a +5b )26.(-21ab 2-32c )2 7.(x -2y )(x 2-4y 2)(x +2y )8.(2a +3)2+(3a -2)29.(a -2b +3c -1)(a +2b -3c -1);10.(s -2t )(-s -2t )-(s -2t )2;11.(t -3)2(t +3)2(t 2+9)2.12. 972;13. 20022;14. 992-98×100;15. 49×51-2499.16.(x -2y )(x +2y )-(x +2y )217.(a +b +c )(a +b -c )18.(2a +1)2-(1-2a )219.(3x -y )2-(2x +y )2+5x (y -x )20.先化简。

再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.21.解关于x 的方程:(x +41)2-(x -41)(x +41)=41. 22.已知x -y =9,x ·y =5,求x 2+y 2的值.23.已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值. 24.已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值. 25.已知2a -b =5,ab =23,求4a 2+b 2-1的值. 26.已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值.27.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。

(完整版)完全平方公式专项练习50题(有答案)

(完整版)完全平方公式专项练习50题(有答案)

完全平方公式专项练习知识点:完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。

1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。

即:a 2+2ab+b 2或a 2-2ab+b 2-a 2-2ab-b 2或 -a 2+2ab-b 2专项练习:1.(a +2b )22.(3a -5)23..(-2m -3n )24. (a 2-1)2-(a 2+1)25.(-2a +5b )26.(-21ab 2-32c )2 7.(x -2y )(x 2-4y 2)(x +2y )8.(2a +3)2+(3a -2)29.(a -2b +3c -1)(a +2b -3c -1);10.(s -2t )(-s -2t )-(s -2t )2;11.(t -3)2(t +3)2(t 2+9)2.12. 972;13. 20022;14. 992-98×100;15. 49×51-2499.16.(x -2y )(x +2y )-(x +2y )217.(a +b +c )(a +b -c )18.(2a +1)2-(1-2a )219.(3x -y )2-(2x +y )2+5x (y -x )20.先化简。

再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.21.解关于x 的方程:(x +41)2-(x -41)(x +41)=41. 22.已知x -y =9,x ·y =5,求x 2+y 2的值.23.已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值.24.已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值.25.已知2a -b =5,ab =23,求4a 2+b 2-1的值.26.已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值.27.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。

(639)完全平方公式专项练习60题(有答案)ok

(639)完全平方公式专项练习60题(有答案)ok

完全平方公式专项练习60题(有答案)1.(1)(x+y﹣z)(x+y+z);(2)(x+y)2﹣(x﹣y)2.2.已知a﹣b=3,ab=2,求:(1)(a+b)2 (2)a2﹣6ab+b2的值.3.已知(a+b)2=6,(a﹣b)2=2,试比较a2+b2与ab的大小.4.已知(x+y)2=7,(x﹣y)2=3.求:(1)x2+y2的值;(2)x4+y4的值;(3)x6+y6的值.5.已知a2+b2=13,ab=6,求a+b的值.6.已知x+y=3,x2+y2﹣3xy=4.求下列各式的值:(1)xy;(2)x3y+xy3.7.阅读理解:求代数式y2+4y+8的最小值.解:∵y2+4y+8=(y2+4y+4)+4=(y+2)2+4≥4∴当y=﹣2时,代数式y2+4y+8的最小值是4.仿照应用(1):求代数式m2+2m+3的最小值.仿照应用(2):求代数式﹣m2+3m+的最大值.8.已知a2+b2=1,a﹣b=,求a2b2与(a+b)4的值.9.已知实数a,b满足a(a+2)﹣(a2+b)=6,求4a2﹣4ab+b2﹣8a+4b﹣15的值.10.99.82.11.用乘法公式计算:.12.利用公式求2×20092﹣20102﹣20082的值.13.已知:x2+3x+1=0,求的值.14.已知,试求的值.15.已知a2+3a+1=0,求:①,②,③.16.已知x﹣y=6,xy=﹣8,(1)求x2+y2的值;(2)求代数式的值.17.已知(2012﹣a)•(2010﹣a)=2011,求(2012﹣a)2+(2010﹣a)2的值.18.已知x+y=1,求x2+xy+y2的值.19.如果a+b+c=0,,求(a+1)2+(b+2)2+(c+3)2的值.20.已知a+b=3,ab=﹣10,求下列各式的值.(1)a2+b2(2)a2﹣ab+b2(3)(a﹣b)2.21.若(x﹣z)2﹣4(x﹣y)(y﹣z)=0,试求x+z与y的关系.22.证明:(a+b+c)2+a2+b2+c2=(a+b)2+(b+c)2+(a+c)2.23.已知a+b+c=1,a2+b2+c2=2,求ab+bc+ca的值.24.运用完全平方公式计算(1)(x+y)2 (2)(2a+3b)2 (3)(4)(5)(a﹣1)2 (6).25.运用完全平方公式计算(1)100.22 (2)98×98 (3)372(4)(5)20082 (6).26.已知(a+b)2=3,(a﹣b)2=23,求代数式a2+b2﹣3ab的值.27.已知a+b+c=1,a2+b2+c2=2,a3+b3+c3=3,求(1)abc的值:(2)a4+b4+c4的值.28.已知m=4x2﹣12xy+10y2+4y+9,当x、y各取何值时,m的值最小?29.计算:5062+1012×505+5052﹣10102.30.先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.解:∵m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴(m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3问题(1)若x2+2y2﹣2xy+4y+4=0,求x y的值.(2)已知a,b,c是△ABC的三边长,满足a2+b2=10a+8b﹣41,且c是△ABC中最长的边,求c的取值范围.31.如果36x2+(m+1)xy+25y2是一个完全平方式,求m的值.32.已知多项式4x2+1,添上一项,使它成为一个完全平方式,你有哪几种方法?33.如果x2+2(m﹣2)x+9是完全平方式,那么m的值等于_________ .34.已知a2﹣4a+4+9b2+6b+1=0,求a、b的值.35.试说明:(a2+3a)(a2+3a+2)+1是一个完全平方式.36.已知a=2002,b=2003,c=2004,求a2+b2+c2﹣ab﹣ac﹣bc的值.37.代数式(a+1)(a+2)(a+3)(a+4)+1是一个完全平方式吗?请说明你的理由.38.已知(a+1)(a+2)(a+3)(a+4)+m是一个完全平方式,求常数m的值.39.x,y都是自然数,求证:x2+y+1和y2+4x+3的值不能同时是完全平方.40.试求出所有整数n,使得代数式2n2+n﹣29的值是某两个连续自然数的平方和.41.若x2+2xy+y2﹣a(x+y)+25是完全平方式,求a的值.42.已知二次三项式9x2﹣(m+6)x+m﹣2是一个完全平方式,试求m的值.43.观察下列等式:1×32×5+4=72=(12+4×1+2)22×42×6+4=142=(22+4×2+2)23×52×7+4=232=(32+4×3+2)24×62×8+4=342=(42+4×4+2)2…(1)根据你发现的规律,12×142×16+4是哪一个正整数的平方;(2)请把n(n+2)2(n+4)+4写成一个整数的平方的形式.44.(1)当a=﹣2,b=1时,求两个代数式(a+b)2与a2+2ab+b2的值;(2)当a=﹣2,b=﹣3时,再求以上两个代数式的值;(3)你能从上面的计算结果中,发现上面有什么结论.结论是:_________ ;(4)利用你发现的结论,求:19652+1965×70+352的值.45.当a=﹣3,b=1,时,分别求代数式(a﹣b)2与a2﹣2ab+b2的值,并比较计算结果;你有什么发现?利用你发现的结果计算:20122﹣2×2012×2011+20112.46.一个正整数a恰好等于另一个正整数b的平方,则称正整数a为完全平方数.如64=82,64就是一个完全平方数;若a=29922+29922×29932+29932.求证:a是一个完全平方数.47.用图说明公式:(a+b+c+d)2=a2+b2+c2+d2+2ab+2ac+2ad+2bc+2bd+2cd.48.观察如图图形由左到右的变化,计算阴影部分的面积,并用面积的不同表达形式写出相应的代数恒等式.49.如图所示:(1)指出图中有多少个边长为a的正方形?有多少个边长为b的正方形?有多少个两边长分别为a和b的矩形?(2)请在图中指出面积为(a+2b)2的图形,利用乘法公式计算结果,并利用图形的关系验证相应的结果.50.计算:(1)(x3n+1)(x3n﹣1)﹣(x3n﹣1)2;(2)(2x n+1)2(﹣2x n+1)2﹣16(x n+1)2(x n﹣1)2.51.阅读下列文字:我们知道对于一个图形,通过不同的方法计算图形的面积时,可以得到一个数学等式,例如由图(a)可以得到a2+3ab+2b2=(a+2b)(a+b).请解答下列问题:(1)写出图(b)中所表示的数学等式_________ ;(2)试画出一个长方形,使得计算它的面积能得到2a2+3ab+b2=(2a+b)(a+b).52.如图是用四个长、宽分别为a、b(a>b)的相同长方形和一个小正方形镶嵌而成的正方形图案.(1)用含有a、b的代数式表示小正方形的面积.(用两种不同的形式来表示)(2)如果已知大正方形图案的面积为28,小正方形的面积是6,求a2+b2+ab的值.53.图1是一个长为2a,宽为2b的长方形,沿图中虚线剪开,可分成四块小长方形.(1)你认为图1的长方形面积等于_________ ;(2)将四块小长方形拼成一个图2的正方形.请用两种不同的方法求图2中阴影部分的面积.方法1:_________ ;方法2:_________ ;(3)观察图2直接写出代数式(a+b)2、(a﹣b)2、ab之间的等量关系_________ ;(4)把四块小长方形不重叠地放在一个长方形的内部(如图3),未被覆盖的部分用阴影表示.求两块阴影部分的周长和(用含m、n的代数式表示).54.已知x1,x2,x3,…,x n中每一个数值只能取﹣2,0,1中的一个,且满足x1+x2+…+x n=﹣17,x12+x22+…+x n2=37,求x13+x23+…+x n3的值.55.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律.例如:(a+b)0=1,它只有一项,系数为1;(a+b)1=a+b,它有两项,系数分别为1,1,系数和为2;(a+b)2=a2+2ab+b2,它有三项,系数分别为1,2,1,系数和为4;(a+b)3=a3+3a2b+3ab2+b3,它有四项,系数分别为1,3,3,1,系数和为8;…根据以上规律,解答下列问题:(1)(a+b)4展开式共有_________ 项,系数分别为_________ ;(2)(a+b)n展开式共有_________ 项,系数和为_________ .56.阅读下列材料并解答后面的问题:利用完全平方公式(a±b)2=a2±2ab+b2,通过配方可对a2+b2进行适当的变形,如a2+b2=(a+b)2﹣2ab或a2+b2=(a﹣b)2+2ab.从而使某些问题得到解决.例:已知a+b=5,ab=3,求a2+b2的值.解:a2+b2=(a+b)2﹣2ab=52﹣2×3=19.问题:(1)已知a+=6,则a2+= _________ ;(2)已知a﹣b=2,ab=3,求a4+b4的值.57.阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.例如:(x﹣1)2+3、(x﹣2)2+2x、(x﹣2)2+x2是x2﹣2x+4的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项﹣﹣见横线上的部分).请根据阅读材料解决下列问题:(1)比照上面的例子,写出x2﹣4x+2三种不同形式的配方;(2)将a2+ab+b2配方(至少两种形式);(3)已知a2+b2+c2﹣ab﹣3b﹣2c+4=0,求a+b+c的值.58.1261年,我国宋代数学家杨辉写了一本书《详解九章算术》.书中记载了一个用数字排成的三角形我们叫作杨辉三角形(a+b)0=1 (1)(a+b)1=a+b…1 1(a+b)2=a2+2ab+b2…1 2 1(a+b)3=a3+3a2b+3ab2+b3…1 3 3 1(a+b)4=a4+4a3b+6a2b2+4ab3+b4…••1 4 6 4 1(1)请写出第五行的数字_________ ;(2)第n行杨辉三角形数字与(a+b)n的展开结果关系如上图所示,请写出(a+b)5的展开结果;(3)已知(a﹣b)1=a﹣b,(a﹣b)2=a2﹣2ab+b2,(a﹣b)3=a3﹣3a2b+3ab2﹣b3(a﹣b)4=a4﹣4a3b+6a2b2﹣4ab3+b4.请写出(a﹣b)5的展开结果.59.先阅读下面一段文字,然后猜想,解答问题:由32=9=4+5,发现有32+42=52成立;又52=25=12+13,仍然有52+122=132;而72=49=24+25,还是有72+242=252…(1)猜想92=81=x+y(x、y均为正整数,且x<y),并且92+x2=y2,则x= _________ ,y= _________ .(2)是否大于1的奇数都有上面这样的规律?证明你的猜想.60.操作与探究(1)比较下列两个算式结果的大小(在横线上填“>”“=”“<”(每空1分)①32+42_________ 2×3×4;②()2+()2_________ 2××;③(﹣2)2+(﹣3)2_________ 2×(﹣2)×(﹣3);④(﹣)2+(﹣)2_________ 2×(﹣)×(﹣)⑤(﹣4)2+(﹣4)2_________ 2×(﹣4)×(﹣4)…(2)观察并归纳(1)中的规律,用含a,b的一个关系式把你的发现表示出来.(3)若已知mn=8,且m,n都是正数,试求2m2+2n2的最小值.完全平方公式60题参考答案:1.解:(1)原式=(x+y)2﹣z2=x2+2xy+y2﹣z2;(2)原式=(x+y+x﹣y)(x+y﹣x+y)=4xy.2.解:(1)将a﹣b=3两边平方得:(a﹣b)2=a2+b2﹣2ab=9,把ab=2代入得:a2+b2=13,则(a+b)2=a2+b2+2ab=13+4=17;(2)a2﹣6ab+b2=a2+b2﹣6ab=13﹣12=13.解:∵(a+b)2=a2+b2+2ab=6①,(a﹣b)2=a2+b2﹣2ab=2②,∴①+②得:2(a2+b2)=8,即a2+b2=4;①﹣②得:4ab=4,即ab=14.解:(1)∵(x+y)2=7,(x﹣y)2=3,x2+2xy+y2=7,x2﹣2xy+y2=3,∴x2+y2=5,xy=1;(2)x4+y4=(x2+y2)2﹣2x2y2=25﹣2=23;(3)x6+y6=(x2+y2)(x4﹣x2y2+y4)=5×(23﹣1)=1105.解:∵a2+b2=13,ab=6,(a+b)2=a2+2ab+b2=a2+b2+2ab=13+2×6=25,∴a+b==±5.6.解:(1)∵x+y=3,∴(x+y)2=9,∴x2+y2+2xy=9,∴x2+y2=9﹣2xy,代入x2+y2﹣3xy=4,∴9﹣2xy﹣3xy=4,解得:xy=1.(2)∵x2+y2﹣3xy=4,xy=1,∴x2+y2=7,又∵x3y+xy3=xy(x2+y2),∴x3y+xy3=1×7=77.解:应用(1)m2+2m+3=(m2+2m+1)+2=(m+1)2+2≥2,∴当m=﹣1时,m2+2m+3的最小值是2,应用(2)﹣m2+3m+=﹣(m2﹣3m+)++=﹣(m﹣)2+3≤3,∴当m=时,﹣m2+3m+的最大值是38.解:a2+b2=1,a﹣b=,∴(a﹣b)2=a2+b2﹣2ab,∴ab=﹣[(a﹣b)2﹣(a2+b2)]=﹣×(﹣1)=,∴a2b2=(ab)2=()2=;∵(a+b)2=(a﹣b)2+4ab=+4×=,∴(a+b)4=[(a+b)2]2=9.解:∵a(a+2)﹣(a2+b)=6,∴a2+2a﹣a2﹣b=6,∴2a﹣b=6,原式=(2a﹣b)2﹣4(2a﹣b)﹣15,当2a﹣b=6时,原式=62﹣4×6﹣15=﹣3 10.解:99.82=(100﹣0.2)2,=1002﹣2×100×0.2+0.22,=10000﹣40+0.04,=9960.0411.解:===164012.解:设a=2009,原式=2a2﹣(a+1)2﹣(a﹣1)2=2a2﹣a2﹣2a﹣1﹣a2+2a﹣1=﹣213.解:∵x≠0,∴已知方程变形得:x+3+=0,即x+=﹣3,则x2+=(x+)2﹣2=9﹣2=714.解:对式子两边平方得,a2+﹣2=,∴a2+=,∴()2=a2++2,=+2,=,∴=±15.解:①∵a2+3a+1=0,∴a≠0,∴在等式的两边同时除以a,得a+3+=0,∴a+=﹣3;②由①知,a+=﹣3,则(a+)2=+2=9,解得,=7;③由②知,=7,则()2=+2=49,解得,=4716.解:(1)∵x﹣y=6,xy=﹣8,∴(x﹣y)2=x2+y2﹣2xy,∴x2+y2=(x﹣y)2+2xy=36﹣16=20;(2)∵(x+y+z)2+(x﹣y﹣z)(x﹣y+z)﹣z(x+y),=(x2+y2+z2+2xy+2xz+2yz)+[(x﹣y)2﹣z2]﹣xz﹣yz,=x2+y2+z2+xy+xz+yz+x2+y2﹣xy﹣z2﹣xz﹣yz,=x2+y2,又∵x2+y2=20,∴原式=2017.解:∵(2012﹣a)•(2010﹣a)=2011,∴(2012﹣a)2+(2010﹣a)2=[(2012﹣a)﹣(2010﹣a)]2+2(2012﹣a)(2010﹣a)=4+2×2011=402618.解:x2+xy+y2=(x+y)2=×1=.19.解:由,去分母,得(b+2)(c+3)+(a+1)(c+3)+(a+1)(b+2)=0,而(a+1)2+(b+2)2+(c+3)2=[(a+1)+(b+2)+(c+3)]2﹣2[(b+2)(c+3)+(a+1)(c+3)+(a+1)(b+2)] =(a+b+c+6)2=(0+6)2=3620.解:(1)a2+b2=(a+b)2﹣2ab=9+20=29;(2)a2﹣ab+b2=(a+b)2﹣3ab=9+30=39;(3)原式=(a+b)2﹣4ab=9+49=5821.解:∵x﹣z=x﹣y+y﹣z,∴原式可化为[(x﹣y)+(y﹣z)]2﹣4(x﹣y)(y﹣z)=0,(x﹣y)2﹣2(x﹣y)(y﹣z)+(y﹣z)2=0,(x﹣y﹣y+z)2=0,∴x+z=2y22.证明:(a+b+c)2+a2+b2+c2=[(a+b)+c]2+a2+b2+c2,=(a+b)2+2(a+b)c+c2+a2+b2+c2,=(a+b)2+2ac+2bc+c2+a2+b2+c2,=(a+b)2+(a2+2ac+c2)+(b2+2bc+c2),=(a+b)2+(a+c)2+(b+c)223.解:∵a+b+c=1,∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac=1,∵a2+b2+c2=2,∴2+2ab+2bc+2ac=1,解得ab+bc+ac=﹣24.解:(1)原式=x2+2xy+y2;(2)原式=4a2+12ab+9b2;(3)原式=m2+4m+16;(4)原式=x2+x+;(5)原式=a2﹣2a+1;(6)原式=﹣2ab+9b225.(1)原式=(100+0.2)2=10000+40+0.04=10040.04;(2)原式=(100﹣2)2=10000﹣400+4=9604;(3)原式=(40﹣3)2=1600﹣240+9=1351;(4)原式=(20+)2=400+20+=420;(5)原式=(2000+8)2=4000000+32000+64=4032064;(6)原式=(14+)2=196++=217.26.解:∵(a+b)2=a2+2ab+b2=3①,(a﹣b)2=a2﹣2ab+b2=23②,∴①+②得:2(a2+b2)=26,即a2+b2=13,①﹣②得:4ab=﹣20,即ab=﹣5,则原式=13+15=2827.解:(1)(a+b+c)2=a2+b2+c2+2(ab+bc+ac),即1=2+2(ab+bc+ac),∴ab+bc+ac=﹣,a3+b3+c3﹣3abc=(a+b+c)(a2+b2+c2﹣ab﹣ac﹣bc),即3﹣3abc=2+,∴abc=;(2)(a+b+c)(a3+b3+c3)=a4+b4+c4+7(ab+bc+ac)﹣abc(a+b+c),即:3=a4+b4+c4+7×(﹣)﹣×1,a4+b4+c4=28.解:m=4x2﹣12xy+10y2+4y+9=(2x﹣3y)2+(y+2)2+5,由于m等于两个非负数的和加上5,所以最小值是0+5=5,即m=5,即2x﹣3y=0,y+2=0,∴x=﹣3,y=﹣2.故m=5,x=﹣3,y=﹣229.解:原式=5062+2×506×505+5052﹣10102=(506+505)2﹣10102=10112﹣10102=(1011+1010)(1011﹣1010)=202130.解:(1)x2+2y2﹣2xy+4y+4=x2﹣2xy+y2+y2+4y+4=(x﹣y)2+(y+2)2=0,∴x﹣y=0,y+2=0,解得x=﹣2,y=﹣2,∴x y=(﹣2)﹣2=;(2)∵a2+b2=10a+8b﹣41,∴a2﹣10a+25+b2﹣8b+16=0,即(a﹣5)2+(b﹣4)2=0,a﹣5=0,b﹣4=0,解得a=5,b=4,∵c是△ABC中最长的边,∴5≤c<931.解:∵36x2+(m+1)xy+25y2=(6x)2+(m+1)xy+(5y)2,∴(m+1)xy=±2•6x•5y,∴m+1=±60,∴m=59或﹣6132.解:4x,﹣4x,4x4设所求的一项是y,则①当y是中间项时,∵4x2+1±y是完全平方式,∴4x2+y+1=(2x+1)2,∴4x2±y+1=4x2+4x+1,∴y=±4x;②当y是尾项时,1=2×2x•,则y=.不合题意,舍去33.解:∵x2+2(m﹣2)x+9是一个完全平方式,∴这两个数是x和3,∴2(m﹣2)=±6,解得m=5或﹣1,故答案为m1=5,m2=﹣134.解:∵a2﹣4a+4+9b2+6b+1=(a﹣2)2+(3b+1)2=0,而(a﹣2)2≥0,(3b+1)2≥0,∴a﹣2=0,3b+1=0,解得a=2,b=﹣35.证明:(a2+3a)(a2+3a+2)+1,=(a2+3a)2+2(a2+3a)+1,=(a2+3a+1)2,∴(a2+3a)(a2+3a+2)+1是一个完全平方式36.解:∵2(a2+b2+c2﹣ab﹣ac﹣bc),=a2+b2﹣2ab+a2+c2﹣2ac+b2+c2﹣2bc,=(a﹣b)2+(a﹣c)2+(b﹣c)2,=(2002﹣2003)2+(2002﹣2004)2+(2003﹣2004)2=1+4+1,=6,∴a2+b2+c2﹣ab﹣ac﹣bc=337.解:原式=(a+1)(a+4)(a+2)(a+3)+1=(a2+5a+4)(a2+5a+6)+1=(a2+5a)2+10(a2+5a)+25=(a2+5a+5)2.则代数式是完全平方式38.解:(a+1)(a+2)(a+3)(a+4)+m,=(a+1)(a+4)(a+2)(a+3)+m,=(a2+5a+4)(a2+5a+6)+m,=(a2+5a)2+10(a2+5a)+24+m,∵多项式是一个完全平方式,∴24+m=25,∴m=139.解:设x2+y+1和y2+4x+3的值能同时是完全平方,那么有x2+y+1=(x+1)2,y2+4x+3=(y+)2,∴y=2x,4x=2y,即y=2x,x=y,又∵x、y是自然数,∴y必是无理数,∴与已知矛盾,故x2+y+1和y2+4x+3的值不能同时是完全平方40.解:设两个连续自然数是x、x+1,则根据题意知2n2+n﹣29=x2+(x+1)2,化简为2x2+2x+30﹣2n2﹣n=0 ①∴x==②因为x是自然数,所以4n2+2n﹣59必为某个整数的平方(完全平方数),因此设4n2+2n﹣59=k2③∴n==④因为n是整数,所以4k2+237必为某个整数的平方(完全平方数),设4k2+237=a2⑤则有a2﹣4k2=237,即(a+2k)(a﹣2k)=237,所以有或,解之得或由⑤式得4k2+237=1192或412,代入④式得n1=10,n2=﹣30,∴符合条件的整数n是10或﹣3041.解:原式=(x+y)2﹣a(x+y)+52,∵原式为完全平方式,∴﹣a(x+y)=±2×5•(x+y),解得a=±1042.解:∵9x2﹣(m+6)x+m﹣2=(3x)2﹣(m+6)x+()2,∴±(m+6)=2•3•,两边平方并整理得,m2﹣24m+108=0,解得m1=6,m2=18,所以m的值为6或1843.解:(1)由题意,可得12×142×16+4=(122+4×12+2)2=1942;(2)n(n+2)2(n+4)+4=(n2+4n+2)244.解:(1)当a=﹣2,b=1时,(a+b)2=1,a2+2ab+b2=1(2)当a=﹣2,b=﹣3时,(a+b)2=25,a2+2ab+b2=25(3)(a+b)2=a2+2ab+b2(4)原式=19652+2×1965×35+352=(1965+35)2=400000045.解:当a=﹣3,b=1时,(a﹣b)2=(﹣3﹣1)2=16,a2﹣2ab+b2=(﹣3)2﹣2×(﹣3)×1+12=9+6+1=16,∴(a﹣b)2=a2﹣2ab+b2;根据结果,20122﹣2×2012×2011+20112=(2012﹣2011)2=1 46.证明:令2992=m,则2993=m+1,于是a=m2+m2•(m+1)2+(m+1)2,=m4+2m3+3m2+2m+1,=m4+2m3+2m2+m2+2m+1,=(m2)2+2•m2•(m+1)+(m+1)2,=(m2+m+1)2,所以是a一个完全平方数47.解:依题意,画一个边长是a+b+c+d的正方形,则(a+b+c+d)2=a2+ab+ac+ad+ab+b2+bc+bd+ac+bc+c2+cd+ad+bd+cd+d2=a2+b2+c2+d2+2ab+2ac+2ad+2bc+2bd+2cd48.解:左边图形的阴影部分面积为:(a+b)2﹣(a﹣b)2,右边图形的阴影部分面积为:a×4b=4ab,根据两图形的阴影部分面积相等可得,(a+b)2﹣(a﹣b)2=4ab.故答案为:(a+b)2﹣(a﹣b)2=4ab49.解:(1)图中有1个边长为a的正方形;有4个边长为b的正方形;有4个两边长分别为a和b的矩形;(2)图形中最大正方形的面积为(a+2b)2=a2+4ab+4b2;最大正方形的边长为a+2b,故面积为(a+2b)2;最大正方形的面积S=a2+4ab+4b2,故(a+2b)2=a2+4ab+4b250.解:(1)原式=x6n﹣1﹣x6n+2x3n﹣1=2x3n﹣2.(2)原式=[(1+2x n)(1﹣2x n)]2﹣16[(x n+1)(x n﹣1)]2=(1﹣4x2n)2﹣16(x2n﹣1)2=1﹣8x2n+16x4n﹣16x4n+32x2n﹣16=24x2n﹣1551.解:(1)由图形可知:2a2+5ab+2b2=(a+2b)(2a+b);(2)52.解:(1)∵如图是用四个长、宽分别为a、b(a>b)的相同长方形和一个小正方形镶嵌而成的正方形图案,∴小正方形的面积为:(a﹣b)2或(a+b)2﹣4ab;(2)∵大正方形图案的面积为28,小正方形的面积是6,∴(a+b)2﹣4ab=6,∴28﹣4ab=6,∴ab=,∴a2+b2+ab=(a+b)2﹣ab=28﹣=22.553.解:(1)长方形面积=2a•2b=4ab;(2)方法1:S阴影部分=(a+b)2﹣4ab;方法2:S阴影部分=(a﹣b)2;(3)根阴影部分的面相等得到(a+b)2﹣4ab=(a﹣b)2;(4)两块阴影部分的周长和=2a+2(n﹣2b)+2×2b+2(n﹣a)=4n.故答案为4ab;(a+b)2﹣4ab;S阴影部分=(a﹣b)254.解:设有p个x取1,q个x取﹣2,有,(5分)解得,(5分)所以原式=1×13+9×(﹣2)3=﹣71.55.解:(1)根据题意知,(a+b)4的展开后,共有5项,各项系数分别为1、(1+3)、(3+3)、(3+1)、1,即:1、4、6、4、1;(2)当a=b=1时,(a+b)n=2n.故答案为:(1)5,1,4,6,4,1;(2)n+1,2n56.解:(1)∵=a2+2∴a2+=﹣2=34;(2)∵a﹣b=2,ab=3,∴a2+b2=(a﹣b)2+2ab,=4+2×3,=10,a2b2=9,∴a4+b4=(a2+b2)2﹣2a2b2,=100﹣2×9,=8257.解:(1)x2﹣4x+2的三种配方分别为:x2﹣4x+2=(x﹣2)2﹣2,x2﹣4x+2=(x+)2﹣(2+4)x,x2﹣4x+2=(x﹣)2﹣x2;(2)a2+ab+b2=(a+b)2﹣ab,a2+ab+b2=(a+b)2+b2;(3)a2+b2+c2﹣ab﹣3b﹣2c+4,=(a2﹣ab+b2)+(b2﹣3b+3)+(c2﹣2c+1),=(a2﹣ab+b2)+(b2﹣4b+4)+(c2﹣2c+1),=(a﹣b)2+(b﹣2)2+(c﹣1)2=0,从而有a﹣b=0,b﹣2=0,c﹣1=0,即a=1,b=2,c=1,∴a+b+c=458.解:(1)根据题意可推出第五行的数字为:1、5、10、10、5、1,(2)(a+b)5=(a+b)3(a+b)2=a5+5a4b+10a3b2+10a2b3+5ab4+b5,(3)(a﹣b)5=(a﹣b)3(a﹣b)2=(a3﹣3a2b+3ab2﹣b3)(a2﹣2ab+b2)=a5﹣5a4b+10a3b2﹣10a2b3+5ab4﹣b5.故答案为1、5、10、10、5、159.解:(1)92=81=40+41,且92+402=412,故答案为:40,41.(2)(2n﹣1)2+(2n2﹣2n)2=(2n2﹣2n+1)2,证明:(2n﹣1)2+(2n2﹣2n)2=4n2﹣4n+1+4n4﹣8n3+8n2﹣4n+1,(2n2﹣2n+1)2=4n4﹣8n3+8n2﹣4n+1,即(2n﹣1)2+(2n2﹣2n)2=(2n2﹣2n+1)2,故答案为:40,4160.解:(1)32+42>2×3×4;②()2+()2>2××;③(﹣2)2+(﹣3)2>2×(﹣2)×(﹣3);④(﹣)2+(﹣)2>2×(﹣)×(﹣)⑤(﹣4)2+(﹣4)2=2×(﹣4)×(﹣4)…故答案为>、>、>、>、=;(2)a2+b2≥2ab;(3)∵m2+n2≥2mn,而mn=8,∴m2+n2≥16,∴2m2+2n2的最小值为32。

完全平方公式30道题

完全平方公式30道题

完全平方公式30道题一、完全平方公式基础计算(10道题)1. 计算(a + 3)^2解析:根据完全平方公式(a + b)^2=a^2 + 2ab+b^2,这里a=a,b = 3。

所以(a+3)^2=a^2+2× a×3 + 3^2=a^2 + 6a+9。

2. 计算(x 5)^2解析:根据完全平方公式(a b)^2=a^2-2ab + b^2,这里a=x,b = 5。

所以(x 5)^2=x^2-2× x×5+5^2=x^2-10x + 25。

3. 计算(2m+1)^2解析:根据完全平方公式(a + b)^2=a^2 + 2ab+b^2,这里a = 2m,b=1。

所以(2m + 1)^2=(2m)^2+2×2m×1+1^2=4m^2 + 4m+1。

4. 计算(3n 2)^2解析:根据完全平方公式(a b)^2=a^2-2ab + b^2,这里a = 3n,b = 2。

所以(3n-2)^2=(3n)^2-2×3n×2+2^2 = 9n^2-12n + 4。

5. 计算(a + b)^2,其中a = 2x,b=3y解析:先将a = 2x,b = 3y代入完全平方公式(a + b)^2=a^2+2ab + b^2,得到(2x+3y)^2=(2x)^2+2×2x×3y+(3y)^2=4x^2 + 12xy+9y^2。

6. 计算(m n)^2,其中m = 5a,n=2b解析:把m = 5a,n = 2b代入完全平方公式(a b)^2=a^2-2ab + b^2,这里a = 5a,b = 2b,所以(5a-2b)^2=(5a)^2-2×5a×2b+(2b)^2=25a^2-20ab + 4b^2。

7. 计算(4x+3)^2解析:根据完全平方公式(a + b)^2=a^2 + 2ab+b^2,这里a = 4x,b = 3。

(完整版)完全平方公式练习题(最新整理)

(完整版)完全平方公式练习题(最新整理)

B.5x+ y
C.-5x+ y
D.-5x- y
3.填空:(1)(_____- y)2= x2-xy+______
(2) ( -2)2=
- x+
4.若(3x+4y)2=(3x-4y)2+B,则 B=_____.
5.计算:⑴ (8a 11b)2
⑵ (2x 3y)2
(3) (a b)(a b) ;
ab
我们可以得到两数和的平方公式:(a+b)2=a2+2ab+b2.你根据图乙
能得到的=(a-b)2
B.(a+b)2= a2+2ab+b2

a
a b 乙
C.(a-b)2= a2-2ab+b2 D. a2- b2=(a +b)(a-b)
b
b
3.如图 3(1)是一个长为 2m,宽为 2n 的长方形,沿图中的虚线剪开均分成四个小正方形,然后按图
题型一:简单应用
1.下列运算中,利用完全平方公式计算正确的是( )
A.(x+y)2=x2+y2
B.(x-y)2=x2-y2
C.(-x+y)2=x2-2xy+y2
D.(-x-y)2=x2-2xy+y2
2.在括号内选入适当的代数式使等式(5x- y)·(
)=25x2-5xy+ y2 成立.
A.5x- y
(4) (a 3)(a 3)(a2 9) (5) (x 1)2 (x 1)2 (x2 1)2 ..
题型四:整体计算 1.已知 a-b=3,ab=10,那么 a2+b2 的值为( )A.27
2.已知
求 a2b2 与 a-b 的值。

完全平方公式专项练习50题(有答案)

完全平方公式专项练习50题(有答案)

完全平方公式专项练习知识点:完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。

1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。

即:a 2+2ab+b 2或a 2-2ab+b 2-a 2-2ab-b 2或 -a 2+2ab-b 2专项练习:1.(a +2b )22.(3a -5)23..(-2m -3n )24. (a 2-1)2-(a 2+1)25.(-2a +5b )26.(-21ab 2-32c )2 7.(x -2y )(x 2-4y 2)(x +2y )8.(2a +3)2+(3a -2)29.(a -2b +3c -1)(a +2b -3c -1);10.(s -2t )(-s -2t )-(s -2t )2;11.(t -3)2(t +3)2(t 2+9)2.12. 972;13. 20022;14. 992-98×100;15. 49×51-2499.16.(x -2y )(x +2y )-(x +2y )217.(a +b +c )(a +b -c )18.(2a +1)2-(1-2a )219.(3x -y )2-(2x +y )2+5x (y -x )20.先化简。

再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.21.解关于x 的方程:(x +41)2-(x -41)(x +41)=41. 22.已知x -y =9,x ·y =5,求x 2+y 2的值.23.已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值.24.已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值.25.已知2a -b =5,ab =23,求4a 2+b 2-1的值.26.已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值.27.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。

完全平方公式专项练习50题(有答案)

完全平方公式专项练习50题(有答案)

完全平方公式专项练习专项练习:1、计算(1)(a +2b )2 (2)(3a -5)2 (3)(-2m -3n )2 (4) (a 2-1)2-(a 2+1)2 (5)(-2a +5b )2 (6)(-21ab 2-32c )2 (7)(x -2y )(x 2-4y 2)(x +2y )(8)2a +3)2+(3a -2)2 (9)(a -2b +3c -1)(a +2b -3c -1);(10)(s -2t )(-s -2t )-(s -2t )2; (11)(t -3)2(t +3)2(t 2+9)2. (12)992-98×100; (13) 49×51-2499. (14)(x -2y )(x +2y )-(x +2y )2(15)(a +b +c )(a +b -c ) (16)(2a +1)2-(1-2a )2 (17)(3x -y )2-(2x +y )2+5x (y -x )2、先化简。

再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.3、.解关于x 的方程:(x +41)2-(x -41)(x +41)=41. 4、已知x -y =9,x ·y =5,求x 2+y 2的值.5、已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值6、.已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值7、.已知2a -b =5,ab =23,求4a 2+b 2-1的值. 8、已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值.9、.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。

10、.已知()5,3a b ab -==求2()a b +与223()a b +的值。

11、.已知6,4a b a b +=-=求ab 与22a b +的值。

(完整版)完全平方公式练习50题

(完整版)完全平方公式练习50题

完全平方公式专项练习知识点: 姓名:完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。

1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定:① 两数和(或差)的平方 即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2② 两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。

即:a 2+2ab+b 2或a 2-2ab+b 2 -a 2-2ab-b 2或 -a 2+2ab-b 2专项练习:1.(a +2b )2 2.(3a -5)2 3..(-2m -3n )2 4. (a 2-1)2-(a 2+1)25.(-2a +5b )26.(-21ab 2-32c )2 7.(x -2y )(x 2-4y 2)(x +2y )8.(2a +3)2+(3a -2)2 9.(a -2b +3c -1)(a +2b -3c -1);10.(s -2t )(-s -2t )-(s -2t )2; 11.(t -3)2(t +3)2(t 2+9)2.12. 972; 13. 20022; 14. 992-98×100; 15. 49×51-2499;16.(x -2y )(x +2y )-(x +2y )217.(a +b +c )(a +b -c ) 18. (a+b+c+d)219.(2a +1)2-(1-2a )2 20.(3x -y )2-(2x +y )2+5x (y -x )21. 先化简,再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.22.解关于x 的方程:(x +41)2-(x -41)(x +41)=41.23.已知x -y =9,x ·y =5,求x 2+y 2的值. 24.已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值.25.已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值.26.已知2a -b =5,ab =23,求4a 2+b 2-1的值. 27.已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值.28.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。

完全平方公式专项练习50题(有答案)

完全平方公式专项练习50题(有答案)

完全平方公式专项练习知识点:完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。

1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。

即:a 2+2ab+b 2或a 2-2ab+b 2-a 2-2ab-b 2或 -a 2+2ab-b 2专项练习:1.(a +2b )22.(3a -5)23..(-2m -3n )24. (a 2-1)2-(a 2+1)25.(-2a +5b )26.(-21ab 2-32c )2 7.(x -2y )(x 2-4y 2)(x +2y )8.(2a +3)2+(3a -2)29.(a -2b +3c -1)(a +2b -3c -1);10.(s -2t )(-s -2t )-(s -2t )2;11.(t -3)2(t +3)2(t 2+9)2.12. 972;13. 20022;14. 992-98×100;15. 49×51-2499.16.(x -2y )(x +2y )-(x +2y )217.(a +b +c )(a +b -c )18.(2a +1)2-(1-2a )219.(3x -y )2-(2x +y )2+5x (y -x )20.先化简。

再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.21.解关于x 的方程:(x +41)2-(x -41)(x +41)=41. 22.已知x -y =9,x ·y =5,求x 2+y 2的值.23.已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值. 24.已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值. 25.已知2a -b =5,ab =23,求4a 2+b 2-1的值. 26.已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值.27.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。

最新完全平方公式专项练习50题(有答案)

最新完全平方公式专项练习50题(有答案)

完全平方公式专项练习知识点:完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。

1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。

即:a 2+2ab+b 2或a 2-2ab+b 2-a 2-2ab-b 2或 -a 2+2ab-b 2专项练习:1.(a +2b )22.(3a -5)23..(-2m -3n )24. (a 2-1)2-(a 2+1)25.(-2a +5b )26.(-21ab 2-32c )2 7.(x -2y )(x 2-4y 2)(x +2y )8.(2a +3)2+(3a -2)29.(a -2b +3c -1)(a +2b -3c -1);10.(s -2t )(-s -2t )-(s -2t )2;11.(t -3)2(t +3)2(t 2+9)2.12. 972;13. 20022;14. 992-98×100;15. 49×51-2499.16.(x -2y )(x +2y )-(x +2y )217.(a +b +c )(a +b -c )18.(2a +1)2-(1-2a )219.(3x -y )2-(2x +y )2+5x (y -x )20.先化简。

再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.21.解关于x 的方程:(x +41)2-(x -41)(x +41)=41. 22.已知x -y =9,x ·y =5,求x 2+y 2的值.23.已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值.24.已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值.25.已知2a -b =5,ab =23,求4a 2+b 2-1的值.26.已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值. 27.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。

最新完全平方公式专项练习50题(有答案)

最新完全平方公式专项练习50题(有答案)

完全平方公式专项练习知识点:完全平方公式:(a+b) 2=a2+2ab+b2(a-b) 2 =a2 -2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的1 、完全平方公式也可以逆用,即a2 +2ab+b2=(a+b) 2 a2-2ab+b 2=(a-b) 22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或(a-b)2或(-a-b)2或(-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。

-a2-2ab-b 2或-a2+ 2ab-b2专项练习:(—-ab2—2c) 22 3210. ( s—2t) (—s—2t) — ( s—2t);11. (t —3) 2(t+ 3) 2(t 2+ 9) 2.212. 97 ;2倍。

即: a2 +2ab+b2或a2 -2ab+b21. (a+ 2b)2. (3a—5)3..(—2m—3n)4. (a2—1) 2(a2+ 1) 25.2 (—2a+ 5 b)6.(x — 2y ) (x 2— 4y 2) (x + 2y )(2a + 3) 2+( 3a —2) 2(a — 2b + 3c — 1) (a + 2b — 3c — 1);7. 8. 9.(x-2 y ) (x +2 y )-( x +2 y )2 2 (3 x — y )—(2 x + y ) +5 x 20. 先化简。

再求值:(x +2 y ) (x —2 y ) (x 2 —4 y 2),其中 x =2, y =—1 .11 11 21.解关于 x 的方程:(x + ) 2 —( x — )(x + )= — 44 4 413. 2 2002 ;14.992— 98 X 100; 15. 49 X 51 - 2499 .17. (a + b + c ) (a + b — c )18. 2 2 (2 a +1)—(1 — 2 a )22•已知x — y =9, x • y =5,求 x 2 + y 2 的值• 23•已知 a (a —1) + ( b — a 2 )=—7,求 2 +R 2 a --------- — ab 的值. 2 24.已知 a + b = 7, ab = 10,求 a 2 + b 2, (a — b ) 2 的值. 25•已知3 2a — b = 5, ab = ,求 4a 2+ b 2 — 1 的值. 2 26•已知 (a + b ) 2= 9, (a — b ) 2= 5,求 a 2 + b 2, ab 的值.27•已知 2 . , 2 a b (a b)2 =16,ab =4,求 3 2 与(a -b )的值。

完全平方公式专项练习50题(有答案)复习课程

完全平方公式专项练习50题(有答案)复习课程

完全平方公式专项练习知识点:完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。

1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。

即:a 2+2ab+b 2或a 2-2ab+b 2-a 2-2ab-b 2或 -a 2+2ab-b 2专项练习:1.(a +2b )22.(3a -5)23..(-2m -3n )24. (a 2-1)2-(a 2+1)25.(-2a +5b )26.(-21ab 2-32c )2 7.(x -2y )(x 2-4y 2)(x +2y )8.(2a +3)2+(3a -2)29.(a -2b +3c -1)(a +2b -3c -1);10.(s -2t )(-s -2t )-(s -2t )2;11.(t -3)2(t +3)2(t 2+9)2.12. 972;13. 20022;14. 992-98×100;15. 49×51-2499.16.(x -2y )(x +2y )-(x +2y )217.(a +b +c )(a +b -c )18.(2a +1)2-(1-2a )219.(3x -y )2-(2x +y )2+5x (y -x )20.先化简。

再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.21.解关于x 的方程:(x +41)2-(x -41)(x +41)=41. 22.已知x -y =9,x ·y =5,求x 2+y 2的值.23.已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值.24.已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值.25.已知2a -b =5,ab =23,求4a 2+b 2-1的值.26.已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值. 27.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。

完全平方公式专项练习50题(有答案)

完全平方公式专项练习50题(有答案)

完全平方公式专项练习知识点:完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。

1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。

即:a 2+2ab+b 2或a 2-2ab+b 2-a 2-2ab-b 2或 -a 2+2ab-b 2专项练习:1.(a +2b )22.(3a -5)23..(-2m -3n )24. (a 2-1)2-(a 2+1)25.(-2a +5b )26.(-21ab 2-32c )2 7.(x -2y )(x 2-4y 2)(x +2y )8.(2a +3)2+(3a -2)29.(a -2b +3c -1)(a +2b -3c -1);10.(s -2t )(-s -2t )-(s -2t )2;11.(t -3)2(t +3)2(t 2+9)2. 12. 972;13. 20022;14. 992-98×100;15. 49×51-2499.16.(x -2y )(x +2y )-(x +2y )217.(a +b +c )(a +b -c )18.(2a +1)2-(1-2a )219.(3x -y )2-(2x +y )2+5x (y -x )20.先化简。

再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.21.解关于x 的方程:(x +41)2-(x -41)(x +41)=41. 22.已知x -y =9,x ·y =5,求x 2+y 2的值.23.已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值. 24.已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值.25.已知2a -b =5,ab =23,求4a 2+b 2-1的值. 26.已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值. 27.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。

完全平方公式专项练习50题(有答案)

完全平方公式专项练习50题(有答案)

完全平方公式专项练习知识点:完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。

1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。

即:a 2+2ab+b 2或a 2-2ab+b 2-a 2-2ab-b 2或 -a 2+2ab-b 2专项练习:1.(a +2b )22.(3a -5)23..(-2m -3n )24. (a 2-1)2-(a 2+1)25.(-2a +5b )26.(-21ab 2-32c )2 7.(x -2y )(x 2-4y 2)(x +2y )8.(2a +3)2+(3a -2)29.(a -2b +3c -1)(a +2b -3c -1);10.(s -2t )(-s -2t )-(s -2t )2;11.(t -3)2(t +3)2(t 2+9)2. 12. 972;13. 20022;14. 992-98×100;15. 49×51-2499.16.(x -2y )(x +2y )-(x +2y )217.(a +b +c )(a +b -c )18.(2a +1)2-(1-2a )219.(3x -y )2-(2x +y )2+5x (y -x )20.先化简。

再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.21.解关于x 的方程:(x +41)2-(x -41)(x +41)=41. 22.已知x -y =9,x ·y =5,求x 2+y 2的值.23.已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值. 24.已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值.25.已知2a -b =5,ab =23,求4a 2+b 2-1的值. 26.已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值. 27.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档