现代控制理论-第17章-模型参考自适应控制
《现代控制理论》课件
![《现代控制理论》课件](https://img.taocdn.com/s3/m/a411a29229ea81c758f5f61fb7360b4c2e3f2a8d.png)
目录
• 引言 • 线性系统理论 • 非线性系统理论 • 最优控制理论 • 自适应控制理论 • 鲁棒控制理论
01
引言
什么是现代控制理论
现代控制理论是一门研究动态系统控制的学科,它利用数学模型和优化方法来分析 和设计控制系统的性能。
它涵盖了线性系统、非线性系统、多变量系统、分布参数系统等多种复杂系统的控 制问题。
20世纪60年代
线性系统理论和最优控制理论得到发展,为现代控制理论的建立奠定 了基础。
20世纪70年代
非线性系统理论和自适应控制理论逐渐发展起来,进一步丰富了现代 控制理论的应用范围。
20世纪80年代至今
现代控制理论在智能控制、鲁棒控制、预测控制等领域取得了重要进 展,为解决复杂系统的控制问题提供了更有效的工具。
01
利用深度学习算法对系统进行建模和学习,实现更高
效和智能的自适应控制。
多变量自适应控制
02 研究多变量系统的自适应控制方法,以提高系统的全
局性能。
非线性自适应控制
03
发展非线性系统的自适应控制方法,以处理更复杂的
控制系统。
06
鲁棒控制理论
鲁棒控制的基本概念
鲁棒控制是一种设计方法,旨在 提高系统的稳定性和性能,使其 在存在不确定性和扰动的情况下
自适应逆控制
一种基于系统逆动态特性的自适应控制方法,通过对系统 逆动态特性的学习和控制,实现系统的自适应控制。
自适应控制系统设计
系统建模
建立被控对象的数学模型,包括线性系统和非线性系统。
控制器设计
根据系统模型和性能指标,设计自适应控制器,包括线性自适应控制器和 非线性自适应控制器。
参数调整
根据系统运行状态和环境变化,调整控制器参数,以实现最优的控制效果 。
自适应控制
![自适应控制](https://img.taocdn.com/s3/m/9646b7eef424ccbff121dd36a32d7375a417c6f6.png)
自适应控制什么是自适应控制自适应控制是一种控制系统设计方法,它通过实时监测和调整系统的参数来适应不确定的外部环境和内部系统变化。
自适应控制可以提高控制系统的性能和鲁棒性,使其能够快速、准确地响应不断变化的环境或系统参数。
在传统的控制系统中,通常假设系统的数学模型是已知和固定的。
然而,在实际应用中,系统的动态特性常常受到各种因素的影响,如外部扰动、参数变化、非线性效应等。
这些因素使得传统的控制方法往往无法满足系统的控制要求。
而自适应控制则能够通过不断地观测和在线调整系统参数,使系统能够适应这些变化,并实现良好的控制效果。
自适应控制的基本原理自适应控制的基本原理是根据系统的实时反馈信息来调整控制器的参数。
具体来说,自适应控制系统通常由以下几个部分组成:1.参考模型:参考模型是指描述所期望控制系统输出的理想模型,通常由一组差分方程来表示。
参考模型的作用是指导控制系统的输出,使其能够尽可能接近参考模型的输出。
2.系统模型:系统模型是指描述被控对象的数学模型,包括其输入、输出和动态特性。
系统模型是自适应控制的重要基础,它确定了控制系统需要调整的参数和控制策略。
3.控制器:控制器是自适应控制系统的核心部分,它根据系统输出和参考模型的误差来实时调整控制器的参数。
控制器可以通过不同的算法来实现,如模型参考自适应控制算法、最小二乘自适应控制算法等。
4.参数估计器:参数估计器是自适应控制系统的关键组件,它用于估计系统模型中的未知参数。
参数估计器可以通过不断地观测系统的输入和输出数据来更新参数估计值,从而实现对系统参数的实时估计和调整。
5.反馈环路:反馈环路是指通过测量系统输出并将其与参考模型的输出进行比较,从而产生误差信号并输入到控制器中进行处理。
反馈环路可以帮助控制系统实时调整控制器的参数,使系统能够适应外部环境和内部变化。
自适应控制的应用领域自适应控制在各个领域都有广泛的应用,特别是在复杂和变化的系统中,其优势更为突出。
模型参考自适应控制ppt课件
![模型参考自适应控制ppt课件](https://img.taocdn.com/s3/m/7e70e7455fbfc77da369b125.png)
kpDp (s)
(1)
kmNm (s)
又
P( s)
Yp (s) R(s)
a*(s)
(s)
1
Dm (s) kmNm (s)
b* (s)
Dm (s) (s)
kma*(s)
0 (s)Dm (s) kmb*(s)
(2)
即
kp
N p (s) Dp (s)
kma*(s)
0 (s)Dm (s) kmb*(s)
23
2、假定
被辨识对象:
P(s) Yp (s) kpN p (s) R(s) Dp (s)
参考模型: 参考输入:
M (s) Ym (s) km Nm (s) U (s) Dm (s)
设r(t)是t的分段连续函数,且有界。 辨识的目的:根据可量测的r(t)和yp (t) 决定k p , N p (s), Dp (s)的系数。
设置参数可调的控制器,与模型一起组成参数可调系统
16
前馈可调增益 反馈可调增益
u
t
使ymt
完全跟踪
ypt
p(s)
r(t)
kp
y p (t )
s ap
- e1(t)
a0(t)
前馈
M (s)
+ u(t) km
-
s am
+
ym (t )
反馈 b0(t) 可调系统
17
其中:
模型的输入控制u t 为
过程位置互换。
基本思想:同MARC设计思想,即通过自适应控制器
来调整模型使e(t)0,这样的模型就是我
们要辨识的结果。
“对偶性质”设计MRAC的方法用于辨识; 将模型参考辨识方法用于设计MARC。
自适应控制(1)
![自适应控制(1)](https://img.taocdn.com/s3/m/39f47ed180eb6294dd886ced.png)
一、概述1.自适应控制的控制对象:自适应控制的研究对象是具有一定程度不确定性的系统,这里所谓的“不确定性”是指描述被控对象及其环境的数学模型不是完全确定的,其中包含一些未知因素和随机因素。
2.自适应控制的基本思想是:在控制系统设计时,不断地测量受控对象的状态,性能或参数,从而“认识”或“掌握”系统当前的运行状况,并将系统当前的性能指标与期望的指标相比较,从而根据比较结果作出决策,来改变控制器的结构、参数或根据自适应的规律来改变控制作用,以保证系统运行在某种意义下最优或次优的状态。
3.吉布森1962年提出以下定义:(1)在线辨识:一个自适应控制系统必须能提供对象当前状态的连续信息;(2)决策控制:它必须将系统当前的性能和希望的或者最优的性能进行比较,并作出使系统趋向最优性能的决策;(3)在线修正:它必须对控制器进行修正以便是系统趋向最优状态。
这三方面的功能是自适应系统所必须具有的功能。
4.与其他控制方法的比较自适应控制和常规的反馈控制和最优控制一样,也是一种基于数学模型的控制方法,所不同的只是自适应控制所依据的关于模型和扰动的先验知识比较少,需要在系统的运行过程中去不断提取有关模型的信息,使模型逐步完善。
具体地说,可以依据对象的输入输出数据,不断地辨识模型参数,这个过程称为系统的在线辩识。
随着生产过程的不断进行,通过在线辩识,模型会变得越来越准确,越来越接近于实际。
既然模型在不断的改进,显然,基于这种模型综合出来的控制作用也将随之不断的改进。
在这个意义下,控制系统具有一定的适应能力。
比如说,当系统在设计阶段,由于对象特性的初始信息比较缺乏,系统在刚开始投入运行时可能性能不理想,但是只要经过一段时间的运行,通过在线辩识和控制以后,控制系统逐渐适应,最终将自身调整到一个满意的工作状态。
再比如某些控制对象,其特性可能在运行过程中要发生较大的变化,但通过在线辩识和改变控制器参数,系统也能逐渐适应。
常规的反馈控制系统对于系统内部特性的变化和外部扰动的影响都具有一定的抑制能力,但是由于控制器参数是固定的,所以当系统内部特性变化或者外部扰动的变化幅度很大时,系统的性能常常会大幅度下降,甚至是不稳定。
现代控制理论
![现代控制理论](https://img.taocdn.com/s3/m/43c9bc648f9951e79b89680203d8ce2f0066659d.png)
现代控制理论⾮线性动态系统的稳定性和鲁棒控制理论研究上世纪50年代,Kallman成功的将状态空间法引⼊到系统控制理论中,从⽽标志着现代控制理论研究的开始。
现代控制理论的研究对象是系统的数学模型,它根据⼈们对系统的性能要求,通过对被控对象进⾏模型分析来设计系统的控制律,从⽽保证闭环系统具有期望的性能。
其中,线性系统理论已经形成⼀套完整的理论体系。
过去⼈们常⽤线性系统理论来处理很多⼯程问题,并在⼀定范围内取得了⽐较满意的效果。
然⽽,这种处理⽅法是以忽略系统中的动态⾮线性因素为代价的。
实际中很多物理系统都具有固有的动态⾮线性特性,如库仑摩擦、饱和、死区、滞环等,这些⾮线性动态⾮线性特性的存在常常使系统的控制性能下降,甚⾄变得不稳定。
这就使得利⽤线性系统理论处理⾮线性动态系统⾯临巨⼤的困难。
此外,在控制系统运⾏过程中,环境的变化或者元件的⽼化,以及外界⼲扰等不确定因素也会造成系统实际参数和标称值之间出现较⼤差别。
因此,基于标称数学模型所设计的控制律⼀般很难达到期望的性能指标,甚⾄会使系统不稳定。
综上所述,研究不确定条件下⾮线性动态系统的鲁棒稳定性及鲁棒控制间题具有重要的理论意义和迫切的实际需要。
⾮线性动态系统是指按确定性规律随时间演化的系统,⼜称动⼒学系统,其理论来源于经典⼒学,⼀般由微分⽅程来描述。
美国数学家Birkhoff[1]发展了法国数学家Poincare在天体⼒学和微分⽅程定性理论⽅⾯的研究,奠定了动态系统理论的基础。
在实际动态系统中,对象往往受到各种各样的不确定的影响,所以其数学模型⼀般不可能精确得到。
因此,我们只能⽤近似的标称数学模型来描述被控对象,并据此来设计控制系统,动态系统鲁棒控制由此产⽣。
所谓鲁棒性就是指系统预期⾮线性动态系统的稳定性和鲁棒控制理论研究的设计品质不因不确定性的存在⽽遭到破坏的特性,鲁棒控制是⾮线性动态系统控制理论研究的⼀个⾮常重要的分⽀。
现代控制理论的发展促进了对动态系统的研究,使它的应⽤从经典⼒学扩⼤到⼀般意义下的系统。
模型参考自适应控制
![模型参考自适应控制](https://img.taocdn.com/s3/m/3984052a4431b90d6c85c7df.png)
10.自适应控制严格地说,实际过程中的控制对象自身及能所处的环境都是十分复杂的,其参数会由于种种外部与内部的原因而发生变化。
如,化学反应过程中的参数随环境温度和湿度的变化而变化(外部原因),化学反应速度随催化剂活性的衰减而变慢(内部原因),等等。
如果实际控制对象客观存在着较强的不确定,那么,前面所述的一些基于确定性模型参数来设计控制系统的方法是不适用的。
所谓自适应控制是对于系统无法预知的变化,能自动地不断使系统保持所希望的状态。
因此,一个自适应控制系统,应能在其运行过程中,通过不断地测取系统的输入、状态、输出或性能参数,逐渐地了解和掌握对象,然后根据所获得的过程信息,按一定的设计方法,作出控制决策去修正控制器的结构,参数或控制作用,以便在某种意义下,使控制效果达到最优或近似更优。
目前比较成熟的自适应控制可分为两大类:模型参考自适应控制(Model Reference Adaptive Control)和自校正控制(Self-Turning)。
10.1模型参考自适应控制10.1.1模型参考自适应控制原理模型参考自适应控制系统的基本结构与图10.1所示:10.1模型参考自适应控制系统它由两个环路组成,由控制器和受控对象组成内环,这一部分称之为可调系统,由参考模型和自适应机构组成外环。
实际上,该系统是在常规的反馈控制回路上再附加一个参考模型和控制器参数的自动调节回路而形成。
在该系统中,参考模型的输出或状态相当于给定一个动态性能指标,(通常,参考模型是一个响应比较好的模型),目标信号同时加在可调系统与参考模型上,通过比较受控对象与参考模型的输出或状态来得到两者之间的误差信息,按照一定的规律(自适应律)来修正控制器的参数(参数自适应)或产生一个辅助输入信号(信号综合自适应),从而使受控制对象的输出尽可能地跟随参考模型的输出。
在这个系统,当受控制对象由于外界或自身的原因系统的特性发生变化时,将导致受控对象输出与参考模型输出间误差的增大。
自适应控制 课件
![自适应控制 课件](https://img.taocdn.com/s3/m/58e3cad833d4b14e85246870.png)
自适应控制与应用自适应控制与应用第一章自适应控制基本概念第二章模型参考自适应系统设计初步第三章用李亚普诺夫稳定性理论设计MRAC第四章用波波夫超稳定性理论设计MRAC第五章自校正技术及自校正控制器调节器的设计第六章极点配置的自校正技术第一章自适应控制的基本概念1-1 自适应控制的产生1-2自适应控制的定义1-3 自适应控制的基本原理1-4 自适应控制系统的主要类型1-5自适应控制的应用1-1 自适应控制的产生传统的控制系统设计方法,通常是首先建立被控对象的数学模型,然后根据所建数学模型的特性设计控制器(控制律),实施控制。
为了要成功的设计一个控制系统,无论是常规的反馈控制系统还是最优控制系统,都必须要设计者事先知道被控对象的所有特征,及其结构和参数。
1-1 自适应控制的产生设计都要求事先掌握被控对象或被控过程的数学模型。
然而有些数学模型是很难事先确知的,或者由于种种原因,一些系统的数学模型会在运行过程中发生较大范围的变化,这就是说,设计者对系统的特性并不是完全掌控的,或者说系统的特性是不肯定的。
在这些情况下,常规控制就往往达不到预定的控制要求。
引起被控对象特性发生变化的主要原因有:(1)由于系统所处环境的变化而引起的被控对象的参数值的变化。
1-1 自适应控制的产生许多控制对象的数学模型随着时间或工作环境的改变而发生变化,而变化规律往往事先不知道。
例如:引起被控对象特性发生变化的主要原因有:(1)由于系统所处环境的变化而引起的被控对象的参数值的变化。
1-1 自适应控制的产生许多控制对象的数学模型随着时间或工作环境的改变而发生变化,而变化规律往往事先不知道。
(2)系统本身由于工作情况的变化而引起自身参数值的改变.1-1 自适应控制的产生当被控对象的数学模型参数在小范围内变化时,可用一般的反馈控制、最优控制或补偿控制等方法使得系统对外部的扰动或内部参数的小范围变动不很敏感,以达到预期性能。
而当被控对象的数学模型参数在大范围内变化时,上述方法就不能圆满解决问题了,为了使控制对象的参数在大范围变化时,系统仍能自动的工作于最优或次优状态,因而提出了自适应控制的问题。
现代控制理论ppt
![现代控制理论ppt](https://img.taocdn.com/s3/m/38cf4106ff4733687e21af45b307e87100f6f84b.png)
求解方法
通过利用拉格朗日乘子法或Riccati方程,求 解线性二次调节器问题,得到最优控制输入
。
动态规划与最优控制策略
动态规划的基本思想
将一个多阶段决策问题转化为一系列单 阶段问题,通过求解单阶段问题得到多 阶段的最优解。
பைடு நூலகம்
VS
最优控制策略的确定
根据动态规划的递推关系,逐步求解每个 阶段的优化问题,最终得到最优控制策略 。
总结词
稳定性分析是研究非线性系统的重要方法,主要关注系统在受到扰动后能否恢 复到原始状态或稳定状态。
详细描述
稳定性分析通过分析系统的动态行为,判断系统是否具有抵抗外部干扰的能力。 对于非线性系统,稳定性分析需要考虑系统的初始状态、输入信号以及系统的 非线性特性等因素。
非线性系统的控制设计方法
总结词
要点二
详细描述
线性系统是指在输入和输出之间满足线性关系的系统,即 系统的输出量可以用输入量的线性组合来表示。线性系统 的性质包括叠加性、均匀性和时不变性等。叠加性是指多 个输入信号的响应等于各自输入信号响应的总和;均匀性 是指系统对不同频率信号的响应是一样的;时不变性是指 系统对时间的变化不敏感,即系统在不同时刻的响应是一 样的。
量随时间的变化规律,输出方程描述了输出量与状态变量之间的关系。
线性系统的稳定性分析
• 总结词:稳定性是控制系统的重要性能指标之一,线性系统的稳定性分 析是现代控制理论的重要研究内容。
• 详细描述:稳定性是控制系统的重要性能指标之一,如果一个系统受到 扰动后能够自我恢复到原来的状态,那么这个系统就是稳定的。线性系 统的稳定性分析是现代控制理论的重要研究内容,常用的方法有劳斯赫尔维茨稳定判据和奈奎斯特稳定判据等。劳斯-赫尔维茨稳定判据是 一种基于系统极点的判据,通过判断系统的极点是否都在复平面的左半 部分来判断系统的稳定性;奈奎斯特稳定判据是一种基于频率域的判据, 通过判断系统的频率响应是否在复平面的右半部分来判断系统的稳定性。
模型参考自适应控制系统的理论基础
![模型参考自适应控制系统的理论基础](https://img.taocdn.com/s3/m/cf1080a583d049649b665824.png)
t1
t0
wT vdt r02 , t1 t0
问题:前馈环节满足什么条件时整个反馈系统全局稳定?
1.基本定义
x Ax Bu Ax Bw v Cx Du Cx Dw u w w f (v , t , ) , t
b1 s a1
b2 s a2
负反馈,正实
1.基本定义
1. 若s为实数,则G(s)必为实数=> a1 R, a2 R, b1 R 2. G(s)在Re(s)≥0中无极点=> a1 0 3. Re[G(jw)]>0,
2 2 => b1 (a2 ) a1 0 , R
T T V ( x, t ) || x ||2 x P x , P P P
2 V xT (F T P PF ) x || x ||Q xT Q x 0
则存在P,满足:F T P PF Q, Q QT 0
2.有关稳定性基本定理
(3) 唯一性:设 P ,则有 1 P 2
T 且 V ( x) || x ||2 x P x 是李雅普诺夫函数 P
推论2:常数矩阵F特征值的实部小于的充要条件是对任意 给定对称阵Q,存在正定对称阵P,是矩阵方程唯一解
2 P F T P PF Q
2.有关稳定性基本定理
定理(推论1)证明: 充分性、必要性、唯一性
(1) 充分性: F T P PF Q a.s
第二章 模型参考自适应控制系统的 理论基础
Lyapunov稳定性 Hyperstability超稳定性
现代控制理论课件
![现代控制理论课件](https://img.taocdn.com/s3/m/41103c409ec3d5bbfd0a7499.png)
图中,I为(n n )单位矩阵,s是拉普拉斯算子,z为单位延时算子。
9
❖ 讨论: 1、状态变量的独立性。
2、由于状态变量的选取不是唯一的,因此状态方程、输出方程、 动态方程也都不是唯一的。但是,用独立变量所描述的系统的维数应该是 唯一的,与状态变量的选取方法无关。
3、动态方程对于系统的描述是充分的和完整的,即系统中的任 何一个变量均可用状态方程和输出方程来描述。 例1-1 试确定图8-5中(a)、(b)所示电路的独立状态变量。图中u、i分别是是输入
y2
up
yq
被控过程
5
典型控制系统由被控对象、传感器、执行器和控制器组成。
被控过程具有若干输入端和输出端。
数学描述方法: 输入-输出描述(外部描述):高阶微分方程、传递函数矩阵。
种完整的描述。
状态空间描述(内部描述):基于系统内部结构,是对系统的一
6
1.2 状态空间描述常用的基本概念
1) 输入:外部对系统的作用(激励); 控制:人为施加的激励;
3) 状态空间:以状态向量的各个分量作为坐标轴所组成的n维空间称为状态空间。 4) 状态轨线:系统在某个时刻的状态,在状态空间可以看作是一个点。随着时间的
推移,系统状态不断变化,并在状态空间中描述出一条轨迹,这种轨迹称为状态 轨线或状态轨迹。
5) 状态方程:描述系统状态变量与输入变量之间关系的一阶向量微分或差分方程称
b2
p
bnp
c11 c12 c1n
C
c21
c22
c2n
cq1 cq2
cqn
d11 d12 L
D
d21
d22
L
d2
p
M
dqp
化工自动化及仪表_习题集(含答案)
![化工自动化及仪表_习题集(含答案)](https://img.taocdn.com/s3/m/8133c00852d380eb62946d76.png)
《化工自动化及仪表》课程习题集一、单选题1.利用各种检测仪表对主要工艺参数进行测量、记录或指示的,称为( )。
A.检测系统B.自动检测系统C.自动问答系统D.自动化系统2.测量元件安装位置不当,会产生纯滞后。
它的存在将引起过渡时间( )。
A 减少B 延长C变化 D 不一定3.在化工行业通常应用的流程图有很多种,下列()不属于其使用的流程图。
A 工艺流程图B能量流程图C工艺管道及控制流程图 D 现金流量图4.一阶环节的放大系数K是个()参数。
A 静态B输出C 输入D动态5.方框间用带有( )的线段表示相互间的关系及检测控制信号的流向。
A 箭头B液相C汽相 D 直线6.影响被控变量波动的外来因素,在自动控制中称为( )。
A控制器C对象B操纵变量D干扰作用7.在自动控制系统中,将需要控制其工艺参数的生产设备或机器叫做( )。
A主变量B被控对象或对象C外来干扰D操纵变量8.在化工工艺生产中要求被控变量的给定值不变,就需要采用( )。
A定值控制系统B自动跟踪系统C均匀控制系统D程序控制系统9.在化工生产中以下( )过渡过程是在生产上所不允许的。
A发散振荡过程B等幅振荡过程C非周期衰减过程D衰减振荡过程10.滞后时间是反映对象()特性的重要参数。
A 动态B 时间C 静态D 滞后11.仪表的灵敏度和灵敏限()。
A 相同B 大小一样C 等价D 不相同12.工业上()不是常用的热电偶。
A 双铂铑热电偶B镍铬—镍铝C镍铬—铜镍 D 镍铁—康铜13.减小随机误差常用的方法是()。
A空白实验B对照实验C多次平行实验D校准仪器14.测试仪表数字显示器的最末位数字间隔所代表的被测参数变化量,指的是仪表的()。
A分辨率B灵敏限C线性度D干扰作用15.化工上的流量大小指的是()。
A体积流量 B 对象流量C瞬时流量 D 平均流量16.二次仪表指的是()。
A 模拟仪表B 数字仪表C 一次仪表D 显示仪表17.虚拟显示仪表属于()。
《现代控制理论》 教案大纲
![《现代控制理论》 教案大纲](https://img.taocdn.com/s3/m/a752786e11661ed9ad51f01dc281e53a58025185.png)
《现代控制理论》教案大纲第一章:绪论1.1 课程背景与意义1.2 控制系统的基本概念1.3 控制理论的发展历程1.4 教学内容与目标第二章:线性控制系统的基本理论2.1 数学基础2.1.1 向量与矩阵2.1.2 复数与复矩阵2.1.3 拉普拉斯变换与Z变换2.2 线性微分方程2.3 线性差分方程2.4 线性系统的状态空间描述2.5 线性系统的传递函数2.6 小结第三章:线性控制系统的稳定性分析3.1 系统稳定性的概念3.2 劳斯-赫尔维茨稳定性判据3.3 奈奎斯特稳定性判据3.4 李雅普诺夫稳定性理论3.5 小结第四章:线性控制系统的性能分析与设计4.1 性能指标4.1.1 稳态性能4.1.2 动态性能4.2 控制器设计方法4.2.1 比例积分微分(PID)控制器4.2.2 状态反馈控制器4.2.3 观测器设计4.3 小结第五章:非线性控制系统理论5.1 非线性系统的基本概念5.2 非线性方程与非线性微分方程5.3 非线性系统的状态空间描述5.4 非线性系统的稳定性分析5.5 小结第六章:非线性控制系统的性能分析与设计6.1 非线性性能指标6.2 非线性控制器设计方法6.2.1 反馈线性化方法6.2.2 滑模控制方法6.2.3 神经网络控制方法6.3 小结第七章:鲁棒控制理论7.1 鲁棒控制的概念与意义7.2 鲁棒控制的设计方法7.2.1 定义1-范数方法7.2.2 H∞控制方法7.2.3 μ-综合方法7.3 小结第八章:自适应控制理论8.1 自适应控制的概念与意义8.2 自适应控制的设计方法8.2.1 模型参考自适应控制8.2.2 适应律与自适应律8.2.3 自适应控制器的设计步骤8.3 小结第九章:现代控制理论在工程应用中的案例分析9.1 工业过程控制中的应用9.2 控制中的应用9.3 航空航天领域的应用9.4 小结第十章:总结与展望10.1 现代控制理论的主要成果与贡献10.2 现代控制理论的发展趋势10.3 面向未来的控制挑战与机遇10.4 小结重点和难点解析重点环节一:第二章中向量与矩阵、复数与复矩阵、拉普拉斯变换与Z变换的数学基础。
现代控制理论概述
![现代控制理论概述](https://img.taocdn.com/s3/m/cd4c7f3c87c24028915fc3d5.png)
现代控制理论概述建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。
在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。
现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。
它所采用的方法和算法也更适合于在数字计算机上进行。
现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。
发展现代控制理论是在20世纪50年代中期迅速兴起的空间技术的推动下发展起来的。
空间技术的发展迫切要求建立新的控制原理,以解决诸如把宇宙火箭和人造卫星用最少燃料或最短时间准确地发射到预定轨道一类的控制问题。
这类控制问题十分复杂,采用经典控制理论难以解决。
苏联科学家Л.С.庞特里亚金和美国学者R.贝尔曼的研究成果解决了空间技术中出现的复杂控制问题,并开拓了控制理论中最优控制理论这一新的领域。
其后,贝尔曼、卡尔曼等人把状态空间法系统地引入控制理论中。
其中能控性和能观测性尤为重要,成为控制理论两个最基本的概念。
到60年代初,一套以状态空间法、极大值原理、动态规划、卡尔曼-布什滤波为基础的分析和设计控制系统的新的原理和方法已经确立,这标志着现代控制理论的形成。
现代控制理论所包含的学科内容十分广泛,主要的方面有:线性系统理论、非线性系统理论、最优控制理论、随机控制理论和适应控制理论。
现代控制理论的发展1.智能控制(Intelligent Control)智能控制是人工智能和自动控制的结合物,是一类无需人的干预就能够独立地驱动智能机器,实现其目标的自动控制。
它的理论基础是人工智能,控制论,运筹学和系统学等学科的交叉,它的主要特点是:(1)同时具有以知识表示的非数学广义模型和以数学模型表示的混合控制过程;(2)智能控制的核心在高层控制,即组织级,它的主要任务在于对实际环境或过程进行组织;(3)系统获取的信息不仅是数学信息,更重要的是文字符号、图像、图形、声音等各种信息。
现代控制理论及其应用
![现代控制理论及其应用](https://img.taocdn.com/s3/m/1a03bd540a4e767f5acfa1c7aa00b52acfc79cc0.png)
现代控制理论及其应用现代控制理论是指在现代科技发展的基础上,对控制系统的研究和应用的理论体系。
它广泛应用于工业生产、交通运输、航空航天、电力系统等各个领域,对提高自动化水平、优化控制过程,具有重要的意义和作用。
一、现代控制理论简介现代控制理论是以系统理论为基础的一种研究控制系统动态行为和优化控制问题的理论。
它以数学模型为基础,通过建立系统的数学描述,运用数学方法研究系统的特性,从而达到对系统行为进行预测和优化控制的目的。
现代控制理论主要包括控制系统的数学模型建立、系统的稳定性分析、系统的传递函数表示、系统响应特性研究等内容。
通过对系统的分析和综合,可以设计出各种不同类型的控制器,如比例控制器、积分控制器、微分控制器等,实现对系统的自动控制。
二、现代控制理论的应用1. 工业生产领域在工业生产中,现代控制理论被广泛应用于自动化生产线的控制和优化。
通过对生产过程进行实时监测和控制,可以提高工业生产的效率和质量,减少人力资源的浪费。
2. 交通运输领域现代交通运输系统中的交通灯控制、交通流量管理等问题,也是现代控制理论的应用范畴。
通过建立交通系统的数学模型,运用控制理论中的方法和算法,可以实现交通拥堵的缓解和交通流量的优化。
3. 航空航天领域现代控制理论在航空航天领域的应用十分重要。
在飞行器的自动驾驶系统中,通过设计合适的控制器,可以实现对飞行器的航向、高度、速度等参数的稳定控制,提升飞行安全性。
4. 电力系统领域电力系统的稳定运行对于社会经济的发展至关重要。
现代控制理论在电力系统的发电、输配电以及电力负荷调度等方面都有广泛应用。
通过合理控制和管理,可以确保电力系统的稳定供应和电能的高效利用。
三、现代控制理论的发展趋势随着科技的进步和应用领域的不断拓展,现代控制理论也在不断发展和创新。
以下是现代控制理论发展的几个趋势:1. 多元化控制方法:传统的PID控制器已经无法满足复杂系统的控制需求,因此需要开发出更多新颖有效的控制方法,如模糊控制、神经网络控制等。
自适应控制(研究生经典教材)
![自适应控制(研究生经典教材)](https://img.taocdn.com/s3/m/e55f61a8970590c69ec3d5bbfd0a79563c1ed4d9.png)
自适应控制Adaptive control1.关于控制2.关于自适应控制3.模型参考自适应控制4.自校正控制5.自适应替代方案6.预测控制参考文献主要章节内容说明:第一部分:第一章自适应律的设计§1.参数最优化方法§2.基于Lyapunov稳定性理论的方法§3.超稳定性理论在自适应控制中的应用第二章误差模型§1.Narendra误差模型§2.增广矩阵§3.线性误差模型第三章MRAC的设计和实现第四章小结第二部分:第一章模型辨识及控制器设计§1.系统模型:CARMA模型§2.参数估计:LS法§3.控制器的设计方法:利用传递函数模型§4.自校正第二章最小方差自校正控制§1.最小方差自校正调节器§2.广义最小方差自校正控制第三章极点配置自校正控制§1.间接自校正§2.直接自校正1.About control engineering education1)control curriculum basic concept(1)dynamic system●The processes and plants that are controlled have responses that evolvein time with memory of past responses●The most common mathematical tool used to describe dynamic system isthe ordinary differential equation (ODE).●First approximate the equation as linear and time-invariant. Thenextensions can be made from this foundation that are nonlinear 、time-varying、sampled-data、distributed parameter and so on.●Method of building model (or equation )a)Idea of writing equations of motion based on the physics andchemistry of the situation.b)That of system identification based on experimental data.●Part of understanding the dynamical system requires understanding theperformance limitations and expectation of the system.2.stabilityWith stability, the system can at least be used●Classical control design method, are based on a stability test.Root locus 根轨迹Bode‟s frequency response 波特图Nyquist stability criterion 奈奎斯特判据●Optimal control, especially linear-quadratic Gaussian (LQG) control (线性二次型高斯问题) was always haunted by the fact that method did notinclude a guarantee of margin of stability.The theory and techniques of robust (鲁棒)design have been developedas alternative to LQG●In the realm of nonlinear control, including adaptive control, it iscommon practice to base the design on Lyapunov function in order to beable to guarantee stability of final result.3.feedbackMany open-loop devices such as programmable logic controllers (PLC) are in use, their design and use are not part of control engineering.●The introduction of feedback brings costs as well as benefits. Among thecosts are need for both actuators and sensors, especially sensors.●Actuator defines the control authority and set the limits of speed indynamic response.●Sensor via their inevitable noise, limit the ultimate(最终) accuracy ofcontrol within these limits, feedback affords the benefit of improveddynamic response and stability margins, improved disturbancerejection(拒绝) ,and improved robustness to parameter variability.●The trade off between costs and benefits of feedback is at the center ofcontrol design.4.Dynamic compensation●In beginning there was PID compensation, today remaining a widely usedelement of control, especially in the process control.●Other compensation approaches : lead-and-log networks (超前-滞后)observer-based compensators include : pole placement, LQG designs.●Of increasing interest are designs capable of including trade-off amongstability, dynamic response and parameter robustness.Include: Q parameterization, adaptive schemes.Such as self-tuning regulators, neural-network-based-controllers.二、historical perspectives (透视)●Most of early control manifestations appear as simple on-off (bang-bang)controllers with empirical (实验;经验性的) setting much dependent uponexperience.●The following advances such as Routhis and Hurwitz stability analysis(1877).Lyapunov‟s state model and nonlinear stability criteria(判据) (1890) .Sperry‟s early work on gyroscope and autopilots (1910), and Sikorsky‟swork on ship steering (1923)Take differential equation, Heaviside operators and Laplace transform astheir tools.●电机工程(electrical engineering)The largely changed in the late 1920s and 1930s with Black‟s developmentof the feedback electronic amplifier, Bush‟s differential analyzer, Nyquist‟sstability criterion and Bode‟s frequency response methods.The electrical engineering problems faced usually had vary complex albeitmostly linear model and had arbitrary (独立的;随机的) and wide-ringingdynamics.●过程控制(process control in chemical engineering)Most of the progress controlled were complex and highly nonlinear, butusually had relatively docile (易于处理的) dynamics.One major outcome of this type of work was Ziegler-Nichols‟PIDthres-term controller. This control approach is still in use today, worldwidewith relatively minor modifications and upgrades (including sampled dataPID controllers with feed forward control, anti-integrator-windupcontrollers :抗积分饱和,and fuzzy logic implementations).●机械工程(mechanical engineering)The application of controls in mechanical engineering dealt mostly in thebeginning with mechanism controls, such as servomechanisms, governorsand robots.Some typical control application areas now include manufacturing processcontrols, vehicle dynamic and safety control, biomedical devices and geneticprocess research.Some early methodological outcomes were the olden burger-Kahenbugerdescribing function method of equivalent linearization, and minimum-time,bang-bang control.●航空工程(aeronautical engineering )The problems were generally a hybrid (混合) of well-modeled mechanicsplus marginally understood fluid dynamics. The models were often weaklynonlinear, and the dynamics were sometimes unstable.Major contributions to framework of controls as discipline were Evan‟s rootlocus (1948) and gain-scheduling.●Additional major contributions to growth of the discipline of control over thelast 30-40 years have tended to be independent of traditional disciplines.Examples include:Pontryagin‟s maximum principle (1956) 庞特里金Bellman‟s dynamic programming (1957)贝尔曼Kalman‟s optimal estimation (1960)And the recent advances in robust control.三、Abstract thoughts on curriculum●The possibilities for topic to teach are sufficiently great. If one tries topresent proofs of all theoretical results. One is in danger of giving thestudents many mathematical details with little physical intuition orappreciation for the purposes for which the system is designed.●Control is based on two distinct streams of thought. One stream is physicaland discipline-based. Because one must always be controlling some thing.The other stream is mathematics-based, because the basis concepts ofstability and feedback are fundamentally abstract concepts best expressedmathematically. This duality(两重性) has raised, over the years, regularcomplaints about the …gap‟ between theory and practice.●The control curriculum typically begins with one or two courses designed topresent an overview of control based on linear, constant, ODE models,s-plane and Nyquist‟s stability ideas, SISO feedback and PID, lead-lay andpole-placement compensation.These introductory courses can then be followed by courses in linear systemtheory, digital of control, optimal control, advanced theory of feedback, andsystem identification.四、Main control courses●Introduction to controlLumped system theoryNonlinear controlOptimal controlAdaptive controlRobot controlDigital controlModeling and simulationAdvanced theoryStochastic processesLarge scale multivariable systemManufacturing systemFuzzy logic Neural Networks外文期刊:《Automatic》IFAC 国际自动控制联合会Computer and control abstractsIEEE translations on Automatic controlAutomation●Specialized \ experimental courses✓Intelligent controlApplication of Artificial IntelligenceSimulation and optimization of lager scale systems robust control ✓System identification✓Microcomputer-based control systemDiscrete-event systemsParallel and Distributed computationNumerical optimization methodsNumerical system theory●Top key works from 1963-1995 in IIACAdaptive control 305Optimal control 277Identification 255Parameter estimation 244Stability 217Linear system 184Non-linear systems 168Robust control 158Discrete-time systems 143Multivariable systems 140Robustness 140Multivariable systems control systems 110Optimization 110Computer control 104Large-scale systems 103Kalman filter 102Modeling 107为什么自适应 《Astrom 》chapter 1✓ 反馈可以消除扰动。
《现代控制理论》课程教案
![《现代控制理论》课程教案](https://img.taocdn.com/s3/m/3d43366686c24028915f804d2b160b4e777f8172.png)
《现代控制理论》课程教案第一章:绪论1.1 课程简介介绍《现代控制理论》的课程背景、意义和目的。
解释控制理论在工程、科学和工业领域中的应用。
1.2 控制系统的基本概念定义控制系统的基本术语,如系统、输入、输出、反馈等。
解释开环系统和闭环系统的区别。
1.3 控制理论的发展历程概述控制理论的发展历程,包括经典控制理论和现代控制理论。
介绍一些重要的控制理论家和他们的贡献。
第二章:数学基础2.1 线性代数基础复习向量、矩阵和行列式的基本运算。
介绍矩阵的特殊类型,如单位矩阵、对角矩阵和反对称矩阵。
2.2 微积分基础复习微积分的基本概念,如极限、导数和积分。
介绍微分方程和微分方程的解法。
2.3 复数基础介绍复数的基本概念,如复数代数表示、几何表示和复数运算。
解释复数的极坐标表示和欧拉公式。
第三章:控制系统的基本性质3.1 系统的稳定性定义系统的稳定性,并介绍判断稳定性的方法。
解释李雅普诺夫理论在判断系统稳定性中的应用。
3.2 系统的可控性定义系统的可控性,并介绍判断可控性的方法。
解释可达集和可观集的概念。
3.3 系统的可观性定义系统的可观性,并介绍判断可观性的方法。
解释观测器和状态估计的概念。
第四章:线性系统的控制设计4.1 状态反馈控制介绍状态反馈控制的基本概念和设计方法。
解释状态观测器和状态估计在控制中的应用。
4.2 输出反馈控制介绍输出反馈控制的基本概念和设计方法。
解释输出反馈控制对系统稳定性和性能的影响。
4.3 比例积分微分控制介绍比例积分微分控制的基本概念和设计方法。
解释PID控制在工业控制系统中的应用。
第五章:非线性控制理论简介5.1 非线性系统的特点解释非线性系统的定义和特点。
介绍非线性系统的常见类型和特点。
5.2 非线性控制理论的方法介绍非线性控制理论的基本方法,如反馈线性化和滑模控制。
解释非线性控制理论在实际应用中的挑战和限制。
5.3 案例研究:倒立摆控制介绍倒立摆控制系统的特点和挑战。
解释如何应用非线性控制理论设计倒立摆控制策略。
现代控制理论_第17章_模型参考自适应控制
![现代控制理论_第17章_模型参考自适应控制](https://img.taocdn.com/s3/m/7f3a563bf111f18583d05a8a.png)
(17-36) (17-37)
Pb c 2dl
一般情况下,对于输入输出间存在惯性的系统有 d 0 ,则系统状 态空间表示为
x Ax bu
.
(17-38) (17-39)
y cx
则式(17-36)、式(17-37)可化简为
AT P PA ll T Q
(17-40)
t J e1 2e1 d 0 K0 K0
(17-4)
按梯度法, K0 的调整值应为
K0 B1 J K0
(17-5)
式中, B1 为步长,是经适当选定的正常数。经一步调整后 K0 值为
Ko Ko0 B1 J Ko
(17-6)
J 可以通过如下运算来求梯度 。对式(17-6)求导可得 Ko
(17-11)
N s 1 r s yM s D s KM
e1 t K o yM t Ko KM
(17-12) (17-13)
代入式(17-7),则得
B 2e t K o y t K o 1 1 M KM
(17-14)
(17-41)
Pb c
以上卡尔曼-雅库波维奇定理又可叙述为:传递函数 W s 为正实函 数的充要条件是存在正定矩阵 P、Q ,并满足式(17-36)、式(17-37)。
下面来讨论受控对象全部状态可直接获取的情况下,基于李雅普 诺夫稳定性理论进行自适应控制系统设计的方法。 设可调系统数学模型为
这时新的可调系统的传递函数为同理当的分母比分子高二阶以上时设分母为阶分子为阶是可用同样的方法将原输入可调系统的参考输入先经一个阶前置滤波器第四节用超稳定性及正性概念设计自适应控制的方法基于李雅普诺夫稳定性理论设计自适应控制存在着这样一个问题就是一般不知道如何来扩大李雅普诺夫函数类从而也就不能做到最大可能地扩大导致整体渐近稳定的自适应律数目以便在完成一个完整的设计时能
模型参考自适应控制.ppt
![模型参考自适应控制.ppt](https://img.taocdn.com/s3/m/c1ec697c192e45361166f52f.png)
e -
y
图 1 增益可调的参考模型自适应 控制系统
即e(t)所满足的微分方程为:P(D)e (Km KcK p )Q(D)r
微分算子:D
d dt
,
D
2
d2 dt 2
....
两边对Kc求导: P(D) e Kc
K pQ(D)r
ym
KmQ(s) P(s)
r
P(D) ym KmQ(D)r
比较可得:e Kc
• 由图4,参考模型和参数可调被控系统的s域表达式分别为
Ym (s)
KmN (s) D(s)
r(s)
(1)
Y (s) KcKpN (s) r(s)
(2)
D(s)
其中D(s)和N(s)分别为如下已知的n阶的稳定首一多项式和n-1阶
多项式
n-1
D(s) sn aisi
n-1
N (s) bisi
iT -eP ri ,i 1,2,, m
则 V -eTQe为负定,从而广义误差系统为渐近稳定。
这种方法要求所有状态可测,这对许多实际对象往往不 现实,为此可采用按对象输入输出来直接设计自适应控制系 统。其中一种为直接法,它根据对象的输入输出来设计自适 应控制器,从而来调节可调参数,使可调系统与给定参考模 型匹配,另一种为间接法,利用对象的输入输出设计一个自 适应观测器,实时地给出对象未知参数和状态的估计,然后 利用这些估计值再来设计自适应控制器,使对象输出能跟踪 模型输出,或使其某一性能指标最优。
a2 s 2
Kp a1s
1
参考模型:Gm
(s)
a2 s 2
Km a1s
1
这时闭环自适应控制系统为:
P(D)e (Km Kc K p )Q(D)r
模型参考自适应控制系统说明
![模型参考自适应控制系统说明](https://img.taocdn.com/s3/m/2657cef4ad51f01dc281f15a.png)
第四章模型参考自适应控制系统4.1 稳定型概念及基本定理在研究线性系统时,由系统特征方程的根可以判定系统的稳定性:特征根实部但对于非线性系统,难于求出特征根,微分方程难于求解,不能用特征根来判断系统稳定性。
模型参考自适应控制系统是非线性系统,不能用研究线性系统稳定性方法来研究其稳定性。
用直接法不需要解微分方程就可以判断其稳定性。
1. 稳定性定义1)平衡点设被控系统由向量微分方程描述(4.1-1)在初始条件()下它的解为:式中状态向量向量函数若状态空间中某一点(某一状态)对所有时刻均满足则称为系统的一个平衡点。
只要无外力作用,则系统永远处于该平衡状态。
对于线性系统,若为非奇异矩阵,则系统只有一个平衡点对于非线性系统,可能存在一个或多个平衡点。
通常假定平衡点为原点2)稳定性定义定义4.1-1(稳定性)如果对于给定时刻,只要,就总有,也就是说只要不越出邻域,则就不会越出邻域,则称平衡点在意义下是稳定的。
图4.1-1稳定性示意图如图4.1-1所示,其中为向量的范数——以为球心的超球体的半径,就是以为球心,为半径的超球体。
一般来说,是和的函数,记为。
若邻域, 和无关,对于任意稳定条件不变,则称平衡状态是一致稳定的。
定义4.1-2(渐近稳定性)图4.1-2渐近稳定性示意图若满足下列条件,则称系统平衡状态是渐近稳定的:平衡状态(点)1) 是意义下稳定的;2) 存在一个实数,使得只要就有其中是系统的解。
表明只要初始状态在邻域内,则从出发的解当,最终收敛于(平衡点),渐近稳定性的解示意图如图4.1-2所示定义4.1-3(全局渐近稳定性)若平衡状态对所有(n维实数向量空间)都具有渐近稳定性,则称是全局渐近稳定的。
图4.1-3不稳定平衡点示意图定义4.1-4(不稳定性)若对于一个实数,总找不到一个实数,使时,有,,则称平衡状态为不稳定平衡状态。
也就是说,从平衡点的邻域出发的系统轨线,不管多小,均离开区域,如图4.1-3所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
K & oB12e1tK KM o yMt
(17-11) (17-12) (17-13)
(17-14)
令
B
2 B1
Ks KM
,则得
K oB e1tyM t
(17-15)
这就是可调整参数K o 的自适应律。于是M.I.T.自适应控制系统的 数学பைடு நூலகம்型可归结为
输出误差: D s e 1 s K M K o K s N s r s 模型输出: D s y M s K M N s r s
解: 本例自适应控制系统的数学模型可表示成
输出误差: T e & 1 e 1 K M K o K sr
(17-19)
模型输出: T y & MyMK M T
(17-20)
自适应律:
Ko Be1yM
(17-21)
现在来检查系统的稳定性。设 rt ro ,对式(17-19)进行求导得
Te & 1e1K & oK sT o
D s e 1 s K M K o K s N s r s
上式对 K o 求导:
DseK soKsNsrs
(17-8) (17-9) (17-10)
由参考模型传递函数可得
KM
Ns Ds
yM s rs
N DssrsK1M yMs
e1t
Ko
Ko KM
yMt
代入式(17-7),则得
第十七章 模型参考自适应控制
模型参考自适应控制在原理及结构上与自校正控制有很大差 别,这类系统的性能要求不是用一个指标函数来表达,而是 用一个参考模型的输出或状态响应来表达,例如导弹的稳定 控制系统。
参考模型的输出或状态相当于给定一个动态性能指标,通 过比较受控对象及参考模型的输出或状态响应取得误差信 息,按照一定的规律(自适应律)来修正实际系统的参数 (参数自适应)或产生一个辅助输入信号(信号综合自适 应),从而使实际系统的输出或状态尽量跟随参考模型的 输出或状态。参数修正的规律或辅助输入信号的产生是由 自适应机构来完成的。
模型参考自适应系统的基本设计方法有以三种: ⑴ 参数最优化方法: ⑵ 基于李雅诺夫稳定性理论的设计方法: ⑶ 基于波波夫超稳定性及正性概念的设计方法。
下面,我们将对各种设计方法分别进行介绍。
第一节 按局部参数最优化设计自适应控制的方法
这是以参数最优化理论为基础的设计方法。它的基本思想 是:假设可调系统中包含若干个可调参数,取系统性能指 标为理想模型与可调系统之间误差的函数,显然它亦是可 调参数的函数,因此可以将性能指标看作参数空间的一个 超曲面。
当外界条件发生变动或出现干扰时,受控对象特性会发 生相应变化,由自适应机构检测理想模型与实际系统之 间的误差,例如水箱液面控制系统。对系统的可调参数 进行调整,且寻求最优的参数,使性能指标处于超曲面 的最小值或其邻域内。
最常用的参数最优化方法有梯度法、共轭梯度法等。这种设 计方法最早是由M.I.T.在五十年代末提出来的,故M.I.T.法。 M.I.T.提出的自适应方案假定受控对象传递函数为:
自适应律:
K & oB e1tyM t
(17-15) (17-15) (17-15)
其结构图如图17-3所示。由图可见,自适应机构包括了一个乘法 器及一个积分器。M.I.T.自适应控制方案的优点是结构比较简单,
并且自适应律所需信号只是参考模型的输出yM t 以及参考模型输 出与可调系统输出之误差 e1 t ,它不需要状态信息,因此这些都是
图(17-1)模型参考自适应系统基 本结构图
模型参考自适应控制问题的提法可归纳:根据获得的有关受 控对象及参考模型的信息(状态、输出、误差、输入等)设 计一个自适应控制律,按照该控制律自动地调整控制器的可 调参数(参数自适应)或形成辅助输入信号(信号综合自适 应),使可调系统的动态特性尽量接近理想的参考模型的动 态特性。 由图17-1可见,参考模型与可调系统的相互位置是并联的, 因此称为并联模型参考自适应系统。这是最普遍的一种结构 方案。除此之外,还有串并联方案及串联方案,其基本结构 如图17-2所示。
J
t 0
e12
d
(17-3)
式中,e1yMys为输出广义误差。要求设计调节 K 0 的自适应律,使 以上性能指标达到最小。下面,用梯度法来求它的自适应律。
为使J达最小,首先要求出J对K 0 的梯度;
J
K0
t
02e1
e1 K0
d
(17-4)
按梯度法,K 0 的调整值应为
K0
B1
J K0
(17-5)
式中, B 1 为步长,是经适当选定的正常数。经一步调整后 K 0 值为
J Ko Ko0 B1 Ko
(17-6)
可以通过如下运算来求梯度 J 。对式(17-6)求导可得
K o
K & oB1d dtK JoB12e1 K e1o
(17-7)
为了计算e1 /Ko先求传递函数
故有
W ese r1ssK MK oK sN D s s
容易获得的。但是M.I.T.方案不能保证自适应系统总是稳定的,因 此,最后必须对整个系统的稳定性进行检验,这可以通过以下例 子来说明。
例17-1 设对象为一阶系统,其传递函数为
Ws
s
1
Ks Ts
s
式中,T s 为已知常数,K s 受环境影响而改变。设参考模型传递函数 为
WM
s
KM 1TM
s
式中TMTs To。试根据M.I.T.自适应控制方案,设计自适应控制系 统。其结构如图17-4所示。
由于在一般情况下,被控对象的参数是不便直接调整的,为 了实现参数可调,必须设置一个包含可调参数的控制器。这 些可调参数可以位于反馈通道、前馈通道或前置通道中,分 别对应地称为反馈补偿器、前馈补偿器、前馈补偿器及前置 滤波器,例如航天飞机的姿态控制系统。
为了引入辅助输入信号,则需要构成单独的自适应环路。 它们与受控对象组成可调系统。模型参考自适应控制系 统的基本结构如图17-1所示。
WS
s
Ks
Ns Ds
(17-1)
式中,只有 K s 受环境影响而变化,是未知的; N s 及 D s 则
为已知的常系数多项式。所选择的参考模型传递函数为:
WM
s
KM
Ns Ds
(17-2)
式中,K M 根据希望的动态响应来确定。
在可调系统中仅设置了一个可调的前置增益 K,M 由自适应机构来进 行调节。选取性能指标为