现代化煤直接液化技术进展(最新版)
现代化煤直接液化技术进展
现代化煤直接液化技术进展引言随着全球对石油资源的需求不断增加,石油储量的日益枯竭已经成为一个全球性的问题。
煤炭作为一种丰富的化石能源资源,被广泛用于发电和工业生产。
然而,由于煤炭的高含碳和低能源利用效率,其燃烧会导致大量的二氧化碳的排放,进一步加剧了全球气候变化。
为了解决这一问题,科学家们致力于研究和发展新型的煤直接液化技术,以实现煤炭资源的高效利用和低碳排放。
1. 煤直接液化技术概述煤直接液化技术是指将固态煤炭转化为液体燃料或化学品的过程。
它通过热解、气化、合成等过程,将煤炭中的碳、氢等元素转化为液体燃料或化学品,以实现高效能源利用和减少环境污染的目标。
煤直接液化技术相较于传统的煤炭燃烧技术具有更高的能源利用效率,并且减少了大气中的二氧化碳排放。
2. 煤直接液化技术的分类根据不同的工艺和反应条件,煤直接液化技术可以分为以下几种类型:2.1 煤浆型直接液化技术煤浆型直接液化技术是指将煤炭破碎、磨细后与溶剂一起制成煤浆,然后在高温高压的条件下进行催化剂反应,最终得到液体燃料或化学品。
这种技术适用于含水煤、难燃煤、高灰分煤等不适合直接液化的煤炭类型。
2.2 固定床型直接液化技术固定床型直接液化技术是指将煤炭装入固定的反应器中,在加热的条件下进行煤炭的催化气化和合成反应。
这种技术适用于低灰分、低挥发分的煤炭,在反应器中反应的时间较长,产物质量较高。
2.3 流化床型直接液化技术流化床型直接液化技术是指将煤炭与催化剂一起置于流化床中,通过加热和流化气体的作用,使煤炭发生热解、气化和合成化学品的过程。
这种技术适用于高灰分、高挥发分的煤炭,具有工艺简单、产油率高等优点。
3. 煤直接液化技术的进展随着科学技术的不断进步,煤直接液化技术也取得了一系列的进展。
主要包括以下几个方面:3.1 催化剂的研发与改进催化剂是煤直接液化过程中至关重要的组成部分,可以提高反应速率和选择性,降低反应温度和压力。
科学家们通过改变催化剂的成分、结构和活性中心等方面,不断提高其催化性能和稳定性,以更高效地转化煤炭成液体燃料或化学品。
煤直接液化技术现状与发展趋势讲解
2、对自由基“碎片”的供氢
煤热解产生的自由基碎片是不稳定的,它只有与氢结 合后才能变得稳定,成为分子量比原料煤要低得多的 初级加氢产物,其反应为: ∑R·+H ∑RH
供给自由基的氢源主要来自以下几个方面: (1)溶解于溶剂油中的氢在催化剂的作用下变为活
性氢; (2)溶剂油可供给的或传递的氢; (3)煤本身可供应的氢; (4)化学反应生成的氢
16
直接液化
1979年~1996年: 国家支持下,进行了50多种中国煤种评价,筛选了十 几种适宜直接液化的矿点。掌握了中国煤炭应用于直 接液化的基本特性和规律。也有进一步扩展的潜力。
要将煤转化为液体产物,首先要将煤的大分子裂解为较小 的分子,而要提高H/C原子比,降低O/C比,就必须增加 H原子或减少C原子。
煤液化的实质就是在适当温度、氢压、溶剂和催化剂条件 下,比提高H/C ,使固体煤转化为液体的油。
6
直接液化
制氢
煤制备 油煤浆 制备
催化剂
加氢液化
450OC,20MPa
循环溶剂
分离 单元
加氢 精制
油品 化工品
残渣
CO2 、CO
热解
加氢
7
四、煤加氢液化过程中的化学反应
1、煤的热解 煤在隔绝空气的条件下加热到一定温度,煤的化学结构
中键能最弱的ห้องสมุดไป่ตู้位开始断裂,呈自由基碎片:
煤 热裂解 自由基碎片∑R·
随温度升高,煤中一些键能较弱和较高的部位也相 继断裂,呈自由基碎片。
13
国内外煤直接液化技术简介
开发国 德国 德国 英国 美国 德国 美国 日本 前苏 中国
工艺名称 Betgirs法
IG I.C.I C.C.C IGOR H-Coal NEDOL ST-S NEDOL
世界煤炭液化技术进展与我国对策
世界煤炭液化技术进展与我国对策1 煤炭液化的概念煤炭液化是把固体煤炭通过化学加工过程,使其转化成为液体燃料、化工原料和产品的先进洁净煤技术。
根据不同的加工路线,煤炭液化可分为直接液化和间接液化两大类。
煤的直接液化技术是指在高温高压条件下,通过加氢使煤中复杂的有机化学结构直接转化成为液体燃料的技术,又称加氢液化。
其典型的工艺过程主要包括煤的破碎与干燥、煤浆制备、加氢液化、固液分离、气体净化、液体产品分馏和精制,以及液化残渣气化制取氢气等部分,特点是对煤种要求较为严格,但热效率高,液体产品收率高。
一般情况下,1t无水无灰煤能转化成半吨以上的液化油,加上制氢用煤约3~4t原料产1t成品油,液化油在进行提质加工后可生产洁净优质的汽油、柴油和航空燃料等。
煤的间接液化技术是先将煤全部气化成合成气,然后以煤基合成气(一氧化碳和氢气)为原料,在一定温度和压力下,将其催化合成为烃类燃料油及化工原料和产品的工艺,包括煤炭气化制取合成气、气体净化与交换、催化合成烃类产品以及产品分离和改制加工等过程。
一般情况下,约5~7t原煤产1t成品油,其特点是适用煤种广、总效率较低、投资大。
2 中国发展煤炭液化的必要性1)在可预见的将来,中国以煤为主的能源结构不会改变与世界大多数国家相比,中国能源资源特点是煤炭资源丰富,而石油、天然气相对贫乏。
最新资料表明,中国煤炭探明储量为1145亿t,储采比为93,按同等发热量计算,相当于目前已探明石油和天然气储量总和的17倍。
石油探明储量为38亿t,占我国化石能源探明储量的5.6%,储采比为24。
天然气探明可采储量为1.37万亿m3,占化石能源探明储量的2%,储采比为56。
由此可见,煤炭是中国未来的主要可依赖能源。
此外,从经济上看,煤炭也是最廉价的能源。
我国是发展中国家,又是能源消费大国,经济实力和能源供应都要求我国的能源消费必须立足于国内的能源供应,这就决定我国的能源结构必须是以煤为主体。
现代化煤直接液化技术进展模版
现代化煤直接液化技术进展模版一、简介以煤为原料进行直接液化,是一种能源转化技术,可将煤转化为液体燃料和化工产品。
煤直接液化技术已经成为国内外煤化工领域的研究热点,取得了重要的科学研究成果和工程化应用。
本文将介绍现代化煤直接液化技术的最新进展,包括反应器设计、催化剂研发、工艺改进等方面。
二、反应器设计煤直接液化的关键环节是反应器的设计。
随着科技的发展和研究的深入,煤直接液化反应器的设计也取得了重要的进展。
目前,煤直接液化反应器主要分为固定床反应器和流化床反应器两种。
固定床反应器的设计包括反应器的体积、形状和温度控制等方面,旨在提高反应效率和产品质量。
流化床反应器的设计考虑了颗粒运动规律、气固两相流动特性等因素,以实现更好的液化效果。
三、催化剂研发催化剂在煤直接液化过程中具有重要作用,可以提高反应速率和选择性。
随着煤直接液化技术的进一步发展,研发高效、长寿命催化剂成为研究的热点。
目前,煤直接液化催化剂的研发主要集中在改进传统催化剂和开发新型催化剂两个方面。
改进传统催化剂包括提高比表面积、增加活性组分和改进载体结构等措施;开发新型催化剂主要探索新型活性组分和载体,以提高催化剂的性能。
四、工艺改进煤直接液化的工艺改进是提高技术经济指标和产品质量的重要途径。
近年来,煤直接液化技术的工艺改进主要集中在两个方面:一是改进溶剂和催化剂的循环体系,以提高产品收率和降低废物产生;二是改进产品分离和净化工艺,以提高产品质量和减少能源消耗。
工艺改进的关键在于找到合适的技术方案,并经过实验验证和工程应用的检验。
五、应用前景现代化煤直接液化技术的最新进展为煤资源高效利用和清洁能源转化提供了可靠保障。
随着能源需求的增长和环保要求的提高,煤直接液化技术具有广阔的应用前景。
煤直接液化技术可以将煤资源转化为高效清洁的液体燃料,满足国内外的能源需求。
此外,煤直接液化技术还可以生产多种化工产品,用于满足其他领域的需求。
通过进一步研究和工程应用,煤直接液化技术将为我国能源结构调整和可持续发展做出重要贡献。
煤直接液化技术现状与发展趋势
醚键和杂
(2)脱硫反应 煤有机结构中的硫以硫醚、硫醇和噻吩等形式存在,脱硫反应 与上述脱氧反应相似。由于硫的负电性弱,所以脱硫反应更容易进行。 (3)脱氮反应 煤中的氮大多存在于杂环中,少数为氨基,与脱硫和脱氧相比,脱 氮要困难得多。一般脱氮需要激烈的反应条件和有催化剂存在时才能 进行,而且是先被氢化后再进行脱氮,耗氢量很大。
(4)降低循环油中沥青烯含量 (5)缩短反应时间
11
五、煤加氢液化催化剂种类
(1)金属氧化物催化剂 对煤加氢液化催化活性大小顺序: SnO2、ZnO2、GeO2、MoO3、PbO、 Fe2O3、TiO2、 Bi2O3、V2O5. (2)铁系催化剂 主要为三氯化铁、硫酸亚铁、或者加入无水氧化铁,有的加硫 或者不加硫。 (3)卤化物催化剂 使用卤化物催化剂有两种方式: 一种是使用少量催化剂;另一种是使用大量催化剂,熔融金属 卤化物,催化剂与煤的质量比可高达1。
要将煤转化为液体产物,首先要将煤的大分子裂解为较小 的分子,而要提高H/C原子比,降低O/C比,就必须增加H 原子或减少C原子。 煤液化的实质就是在适当温度、氢压、溶剂和催化剂条件 下,比提高H/C ,使固体煤转化为液体的油。
6
直接液化
制 氢 煤制备 油煤浆 制 备 加氢液化
450OC,20MPa
煤 浆 预 热 器 煤浆
2014-4-3
第 一 反 应 器
第 二 反 应 器
高 温 分 离 器
中 温 分 离 器
低 温 分 离 器
常 减 压 蒸 馏
加 氢 反 应 装 置
常 压 蒸 馏
煤直接液化
残渣
循环溶 剂去制 15 15 煤浆
工艺特点:
①采用两段反应,反应温度455℃、压力19M Pa,提高了煤浆空速; ②采用人工合成超细铁基催化剂 ③固液分离采用成熟的减压蒸馏; ④循环溶剂全部加氢,提高溶剂的供氢能力; ⑤液化粗油精制采用离线加氢方案。
煤的直接液化与间接液化技术进展
氢就是在 比较温和的条件下对煤加氢。通常氢压在 8~1 a 0MP , 温度不超过煤的分解 温度 。在 煤 的轻 度加 氢反 应 中, 的有 机 煤
质 不 能 氢解 为 液 体 产 物 , 的 外 形 也 没 有 发 生 变 化 。虽 然 煤 得 煤 元 素 组 成 变 化 不 大 , 是 许 多 物 理 性 质 、 学 性 质 和 工 艺 性 质 却 但 化 发 生 明 显 的 变化 。 煤的深度加氢是在激 烈 的条件下 与更 多 的氢进 行 的反应 ,
温 度通 常低 于 4 0℃ , 5 氢压在 7 0~10 MP 。煤 中的大部分有机 0 a 质 均转化为液体产 物和少 量气态烃。煤的深度 加氢是 制取液体
燃 料 和 化 工 原料 的基 本方 法 。
1 2 煤加氢 液化 的基本 化 学反应 .
煤 加 氢 液 化是 一 个 复 杂 的化 学 过 程 , 包 括 一 系 列 复 杂 的 它
Ab t a t s r c :Th in fc n e o he c a i u f cin tc oo y i e sg i a c ft o llq ea to e hn l g n Chi ’ c n mi v l p n s a ay e i naS e o o c de eo me twa n lz d. Th e c a iuea t n tc n l g s r ve d,ic u i g d r c o llq e a to n n ie tc a i u  ̄ci n P o p c sa d o ll q fc i e h oo wa e i we o y n l d n ie tc a i u f ci n a d i d r c o llq e to . r s e t n t e eo me tdr c in o h o llq e a to e h l g n Ch na we e s g e td. he d v lp n ie t ft e c a i u f cin t c noo i i r u g se o y Ke r s:tc n l g fc a i u f cin;die tlq e a t n;i d r c i u f ci n y wo d e h oo o o llq ea to y r c i u fc i o n ie tlq ea to
现代化煤直接液化技术进展
现代化煤直接液化技术进展近年来,随着能源需求的不断增长和环保意识的提高,煤直接液化技术受到了越来越多的关注和重视。
煤直接液化是一种将煤直接转化为液体燃料的技术,可以有效地利用煤资源,减少对传统石油资源的依赖,并且减少大气污染物的排放。
本文将对现代化煤直接液化技术的进展进行详细介绍。
目前,现代化煤直接液化技术的发展主要集中在以下几个方面:1. 煤直接液化工艺的改进煤直接液化工艺是将固体煤转化为液体燃料的关键步骤,因此其工艺的改进对于提高煤直接液化技术的效率和经济性至关重要。
目前,主流的煤直接液化工艺主要有传统的H-Coal工艺和现代化的ECL工艺。
传统的H-Coal工艺主要采用煤浆作为原料,通过高温高压的反应条件将煤转化为液体燃料,但存在能耗高、产品质量低等问题。
而现代化的ECL工艺采用液态化学品作为催化剂,能够更高效地转化煤为液体燃料。
此外,还有一些新的工艺正在研发和应用中,如超高效液化工艺、接触氢化工艺等,这些工艺在提高煤直接液化效率和产品质量方面具有巨大潜力。
2. 催化剂的研究和应用催化剂在煤直接液化过程中起到了至关重要的作用,能够加快煤的转化速度、提高产品品质和选择性,减少副产物的生成。
目前,常用的煤直接液化催化剂主要有铁、钴、镍等金属催化剂和固体酸催化剂。
金属催化剂主要用于气相反应,固体酸催化剂主要用于液相反应。
近年来,针对煤直接液化过程中产生的硫、氮等污染物,研发了一系列新型催化剂,如硫化钴催化剂、硫酸锆催化剂等,能够高效地去除硫、氮等污染物,提高产品的质量和环境友好性。
3. 煤直接液化衍生产品的开发和利用除了液体燃料,煤直接液化还可以产生一系列其他有价值的产品,如液化石油气、煤化工原料、轻油等。
这些产品在国内外市场上具有广阔的前景和巨大的价值。
近年来,一些国内外企业和研究机构开始关注煤直接液化衍生产品的开发和利用,通过优化煤直接液化工艺和改进催化剂,提高衍生产品的质量和产量,为能源转型和煤炭资源的有效利用做出了积极贡献。
煤炭的煤炭液化与煤制气技术研究进展
煤炭的煤炭液化与煤制气技术研究进展煤炭液化与煤制气技术研究进展煤炭作为一种重要的能源资源,在人类社会发展中扮演着重要的角色。
然而,传统的煤炭利用方式存在着严重的环境污染问题,因此煤炭液化与煤制气技术的研究进展成为了当前能源领域的热点之一。
一、煤炭液化技术煤炭液化是将固态煤转化为液体燃料的过程,其主要目的是提高煤炭能源的利用效率,降低对环境的污染。
传统的煤炭液化技术主要采用煤浆化和煤泥化的方法,通过热解、气化和加氢等步骤将煤转化为液体燃料。
然而,这些传统的液化技术存在着工艺复杂、能耗高和环境污染等问题。
近年来,煤炭液化技术得到了新的突破。
一种被广泛关注的技术是直接煤液化技术,其通过高温高压条件下将煤直接转化为液体燃料。
这种技术具有工艺简单、能耗低和环境友好等优势,被认为是未来煤炭液化的发展方向之一。
此外,还有一些新型的催化剂和溶剂被应用于煤炭液化过程中,能够提高液化效率和产物质量。
二、煤制气技术煤制气技术是将煤转化为合成气的过程,合成气主要由一氧化碳和氢气组成,可用于发电、制造化学品和合成燃料等领域。
传统的煤制气技术主要采用煤气化和煤炭燃烧两种方式,但这些方法存在着煤气净化困难、热效率低和环境污染等问题。
近年来,煤制气技术也取得了一系列的研究进展。
一种被广泛研究的技术是煤炭气化与气体分离一体化技术,其通过将煤气化和气体分离两个步骤结合起来,能够提高煤制气的效率和纯度。
此外,还有一些新型的气化剂和催化剂被应用于煤制气过程中,能够提高气化效率和减少污染物排放。
三、煤炭液化与煤制气技术的应用前景煤炭液化与煤制气技术的研究进展为煤炭资源的高效利用提供了新的途径。
这些技术不仅能够降低煤炭的环境污染,还能够提高能源利用效率,减少对传统能源的依赖。
尤其是在能源转型和碳减排的背景下,煤炭液化与煤制气技术具有重要的应用前景。
目前,煤炭液化与煤制气技术已经在一些国家和地区得到了广泛的应用。
例如,中国是世界上最大的煤炭生产和消费国,煤炭液化与煤制气技术在中国的应用已经取得了显著的成果。
2024年煤制液体燃料生产市场发展现状
2024年煤制液体燃料生产市场发展现状1. 引言近年来,随着全球能源危机的不断加剧以及对环境保护的日益重视,煤制液体燃料作为一种替代传统燃料的新型能源,受到了广泛关注。
本文将介绍当前煤制液体燃料生产市场的发展现状,并探讨其可能的未来趋势。
2. 生产技术煤制液体燃料的主要生产技术包括煤直接液化(CTL)和煤气化联产燃料(CBTL)。
煤直接液化是通过将煤加热并注入催化剂的反应器中,将固体煤转化为液体燃料。
煤气化联产燃料则是将煤气化为合成气,再通过一系列化学反应转化为液体燃料。
这两种技术各有优劣,目前市场上主要以煤直接液化为主。
3. 生产能力与产量据统计,截至目前,全球煤制液体燃料的总产能已超过1000万吨/年,并且在不断增长。
中国作为全球最大的煤制液体燃料生产国,拥有最多的产能和最高的产量。
其他国家如南非、美国、澳大利亚等也在积极发展煤制液体燃料产业。
4. 市场需求与消费目前,煤制液体燃料的主要市场需求来自于国内外对交通燃料的需求。
由于煤制液体燃料具有高能量密度、稳定性好、可替代性强等优势,因此在航空、汽车等领域有广泛的应用前景。
随着全球石油资源的逐渐枯竭以及对气候变化的关注,煤制液体燃料的市场需求将会继续增长。
5. 市场竞争与前景当前,煤制液体燃料市场竞争激烈,主要的竞争者包括石油、天然气和生物燃料等。
然而,煤制液体燃料的独特优势使其具备了在细分市场中获得一席之地的机会。
此外,随着煤制液体燃料生产技术的不断进步和成本的降低,其市场前景看好。
6. 政策与环境影响在各国能源政策的引导下,煤制液体燃料产业得到了积极支持与鼓励。
然而,煤制液体燃料生产过程中产生的二氧化碳排放和其他环境问题也引发了广泛的担忧。
因此,进一步提高生产技术和环境治理水平,减少环境影响是煤制液体燃料产业发展的重要方向。
7. 总结煤制液体燃料作为一种新兴的能源替代方案,在全球范围内得到了快速发展。
当前,煤制液体燃料生产市场需求持续增长,并面临机遇与挑战。
煤直接液化技术的进展与工程开发
DCL 80000 可行性研究 80亿
546000
4775亿
世界非常规液体燃料的生产
8
若干煤化工技术的英文缩写
CCT Clean Coal Technology
洁净煤技术
CTL Coal to Liquids GTL Gas to Liquids DCL Direct Coal Liquefacation
美国 Baard Energy
Wellsiville 俄亥俄
美国 SES& Consol Energy Benwood WV
CTL MTG
53000 工程设计 9000 工程设计
50亿 8亿
印度 Sasol & Tata
印度 Reliance 工业公司
合计
未定 Orissa
ICL 80000 可行性研究 80亿
3)芳香结构饱和加氢和加氢裂解,进一步 低分子化
4)脱杂原子反应,脱O、脱S相对容易,脱 N最难。
5)结焦反应—逆反应。
18
催化剂
煤浆加氢常用催化剂: 各种铁催化剂(Fe-S系),一 次性; Co/Mo催化剂,非一次性; ZnCl2、SnCl2。
19
供氢条件
循环溶剂:介质,供氢(氢化芳烃,如四氢萘)、 传递氢(如甲基萘)、溶解分散(溶解产物,也溶 解氢)。
35
俄罗斯低压加氢工艺流程
36
此外,美国还有SRC(Solvent Refining Coal)工艺,有50 t/d中试装置,EDS工艺 (Exxon Donor Solvent)完成250 t/d中试, 两段集成液化工艺和煤与渣油共加氢工艺等。 同期,以俄罗斯可燃矿产研究院为主针对西伯 利亚康斯克-阿钦斯克褐煤开发了一种低压加 氢工艺:反应压力6~10 MPa,温度425~ 435℃,Mo催化剂,建有5 t/d小型中试装置。
现代化煤直接液化技术进展
现代化煤直接液化技术进展煤直接液化技术是将煤转化为液体燃料的一种重要技术,具有丰富的储量、分布广、资源再生利用等优点。
在现代化煤直接液化技术的研发过程中,不断取得了重要的进展。
本文将从工艺路线、催化剂、反应器设计以及环境保护等方面对煤直接液化技术的现代化进展进行详细介绍。
煤直接液化技术的工艺路线有很多种,其中常用的有两种:一是常压下的合成法,通过在常压下将煤与合成气进行反应,生成液体燃料;二是高压下的合成法,通过在高压条件下对煤进行加氢反应,生成液体燃料。
这两种工艺路线各有优缺点,需要根据煤的性质和环境条件进行选择。
在煤直接液化技术的研发中,催化剂的研究是一个关键环节。
通过选择合适的催化剂,可以提高反应速率、降低反应温度、增加产液率等。
目前,常用的催化剂有铁基、镍基、钼基等。
其中,铁基催化剂具有活性高、稳定性好、成本低等优点,是研究的热点之一。
同时,还可以通过改变催化剂的组成和结构来调节反应产物的组成和性质,进一步提高煤直接液化技术的效果。
反应器设计是煤直接液化技术研发中的另一个重要方面。
不同的反应器设计会对反应过程和产物分布产生影响。
常见的反应器有搅拌式反应器、流化床反应器、管式反应器等。
其中,搅拌式反应器由于其较好的传热和传质性能,被广泛应用于煤直接液化技术中。
同时,还可以通过改变反应器的工艺参数,如温度、压力、气体流量等,来调节反应过程和产物品质。
在煤直接液化技术的现代化研发中,环境保护是一个不可忽视的因素。
在煤直接液化反应中,会生成大量的尾气和废水,其中含有大量的有害物质,如硫化物、氰化物等。
这些物质的排放对环境和人类健康都带来了巨大的风险。
因此,在煤直接液化技术的研发过程中,需要加强对尾气和废水的处理和治理技术的研究。
同时,还需要通过改进工艺流程,减少有害物质的生成和产生。
总之,现代化煤直接液化技术在工艺路线、催化剂、反应器设计以及环境保护等方面都取得了重要的进展。
通过不断创新和改进,煤直接液化技术有望成为重要的替代能源技术,为能源结构转型和环境保护做出重要贡献。
现代化煤直接液化技术进展
现代化煤直接液化技术进展煤直接液化(Coal direct liquefaction)是一种将煤转化为液体燃料的技术,在能源短缺和环境污染问题日益严重的情况下,具有重要的战略意义。
本文将介绍现代化煤直接液化技术的进展。
第一部分:煤直接液化的背景随着全球能源需求的不断增长,传统的石油和天然气资源面临递减的局面。
而煤作为一种丰富的化石燃料资源,具有巨大的潜力和可再生能源的可能性。
因此,煤直接液化技术成为一种重要的途径,可以将煤转化为合成油或合成天然气,以满足能源需求。
第二部分:煤直接液化技术的发展历程煤直接液化技术起源于20世纪20年代的德国,并于20世纪50年代在南非得到了商业化应用。
然而,早期的煤直接液化技术存在一些问题,如低转化率、高能耗、高成本和严重的环境污染。
随着科学技术的不断发展和进步,现代化的煤直接液化技术逐渐取得了突破性的进展。
第三部分:现代化煤直接液化技术的特点现代化煤直接液化技术采用了多种改进措施,以提高煤的转化率、降低能耗、降低成本和减少环境污染。
具体来说,现代化煤直接液化技术包括以下几个方面的特点:1. 高效的催化剂:现代化的催化剂可以提高煤的转化率和选择性,减少副产物的生成,并延长催化剂的寿命。
2. 高温高压条件:高温高压条件有利于煤的氢解反应,提高液化效率。
同时,适当控制温度和压力可以减少副产物的生成。
3. 脱氧剂的使用:现代化的煤直接液化技术使用脱氧剂来去除煤中的氧和水,提高煤的液化效果。
4. 固体浆态氢化技术:固体浆态氢化技术是一种新型的煤直接液化技术,通过将煤和氢气在高温高压下反应,将煤转化为液体燃料。
该技术具有转化率高、能耗低、环境污染小等优点。
第四部分:现代化煤直接液化技术的应用前景现代化煤直接液化技术在能源供应和环境保护方面具有重要的意义。
通过煤直接液化技术,可以实现煤炭资源的高效利用,减少对石油和天然气的依赖,提高能源供应的可靠性。
同时,煤直接液化技术还可以减少温室气体的排放,降低环境污染和空气污染物的排放。
煤液化技术进展及展望
关键技术及研究现状
煤液化技术中的关键技术主要包括反应机理、催化剂制备等。在反应机理方 面,目前主要是通过对煤的化学结构进行分析,探究其与氢气、水蒸气等反应物 的相互作用机制。在催化剂制备方面,研究主要集中在开发高效、稳定的催化剂 体系,以降低反应活化能,提高反应速率和目标产物选择性。
目前,国内外研究者已经开展了大量的煤液化技术研究。例如,中国科学院 山西煤炭化学研究所开发了一种新型超临界溶剂体系,实现了对煤的高效溶解和 液化。同时,研究者们还积极探索将煤液化技术与其它技术的结合,如煤-生物 质耦合液化、煤-废弃物联合液化等,以进一步提高煤液化的资源利用率和环境 友好性。
煤液化技术进展及展望
01 引言
目录
02 煤液化技术进展
03 煤液化技术展望
04 关键技术及研究现状
05 结论
引言
作为一种丰富的能源资源,煤炭在全球能源供应中占据了重要的地位。然而, 传统燃煤方式所带来的环境污染和气候变化问题日益严重,因此寻求煤炭的清洁 利用方式成为全球共同的焦点。煤液化技术作为一种将煤炭转化为液体燃料的有 效方法,近年来取得了显著的进展。本次演示将回顾煤液化技术的发展历程,分 析当前的研究现状与挑战,并展望未来的发展前景。
作用。因此,未来研究应继续煤液化技术的创新与优化,以推动该技术在全 球范围内的广泛应用和发展。
感谢观看
煤液化技术进展
煤液化技术最早可以追溯到20世纪初,当时德国率先进行了煤加氢液化的研 究。随着科技的不断进步,现代煤液化技术已经发展到第三代。第一代技术主要 采用直接加氢的方法,第二代技术则采用气化合成的方法,而第三代技术主要以 间接液化为主。间接液化主要是通过气化将煤转化为合成气,然后再通过催化剂 作用将合成气转化为液体燃料。
现代化煤直接液化技术进展(三篇)
现代化煤直接液化技术进展我国是一个富煤贫油少气的国家,煤炭资源探明剩余可采储量为1842亿t,石油资源探明剩余经济可采储量为20.4亿t,天然气资源探明剩余经济可采储量为23900亿m3,这样的能源结构决定了中国煤炭价格要大大低于油气价格,煤炭价格的上涨速度也大大低于油气价格的上涨速度。
近年来,我国石油进口量不断增加,对外依存度已超过40%,已经严重威胁到我国国家的能源安全问题。
面对这样的现实,为了缓解我国石油严重短缺的现状,充分利用中国采储量相对较大的煤炭资源,大力推进煤液化产业的成熟与发展,越来越受到了国人的重视和青睐。
“煤制油”的科学名称为“煤液化”,实施煤液化目是事关国家能源安全的重大战略选择。
煤直接液化是国家“十五”期间12个高技术工程项目之一,受到各方关注,国外专家也积极参与[1-3]。
所谓煤液化,就是指把固体的煤炭通过化学加工的方法,使其转化为液体燃料、化工原料等产品。
根据加工路线的不同,通常把煤液化分为直接液化和间接液化两大类[4]。
一、煤化工产业科技发展现状(一)煤化工概述煤化工是以煤为原料,经过化学加工使煤转化为气体,液体,固体燃料以及化学品的过程。
从煤的加工过程分,主要包括:干馏(含炼焦和低温干馏),气化,液化和合成化学品等。
煤化工利用生产技术中,炼焦是应用最早的工艺,并且至今仍然是化学工业的重要组成部分。
煤的气化在煤化工中占有重要地位,用于生产各种气体燃料,是洁净的能源,有利于提高人民生活水平和环境保护;煤气化生产的合成气是合成液体燃料等多种产品的原料。
煤直接液化,即煤高压加氢液化,可以生产人造石油和化学产品。
在石油短缺时,煤的液化产品将替代目前的天然石油。
(二)新型煤化工技术1.三种新型煤化工技术路线技术之一:煤化工产业发展最重要的单元技术--煤气化技术。
以鲁奇、德士古、壳牌等炉型最为常用,我国先后引进了上述炉型用于生产合成气和化工产品。
采用多组分催化剂,可从合成气制含60%异丁醇和40%甲醇的混合物,异丁醇脱水成异丁烯,从而可完成由合成气直接制取甲基叔丁基醚,这是一条很值得重视的由天然气和煤为原料制取高辛烷值添加剂的技术路线。
煤直接液化技术进展
C A MN HN H R IG C I A
煤直接液化技术进展
李小强 裴晓芳
( . 华鄂 尔多斯煤制 油分公 司, 1神 内蒙古 鄂 尔多斯 0 7 0 ; 1 29 2神 华神 东煤炭集 团设备管理 中心 , . 陕西 榆林 7 9 1 ) 13 5 摘要: 依据 当前 国内外对煤直接液化工 艺的研 究 , 简述 了国内外先进的煤直接液化 工艺, 阐述 了各种工 艺的特点 , 探讨 接液化技术 。 很 但早期 因投资大 、 产出低 、 操作条件苛刻和原 油廉价而被中断 。2 0世 纪7 O年代石油危机给煤直接液化的发 展带来了新的契机。先 后 美国 、 国 、 德 日本 、 国 、 拿大 、 俄 加 澳大利 亚 、 中国、 国等又 英 开始研究该技术 , 虽然在催化 剂 、 降低操作苛刻度和油渣分离 等核心技术方面取得了重大突破 ,但是只有少数工艺达 到了 工业化的条件 。 31 .国外典型工艺 俄罗斯 F 工艺采用了自行 开发的瞬间涡流仓煤粉干 燥 H 技 术和 钼催化剂 ,针 对高活 性褐煤 ,反应压 力可降低 到 6 — 1Mp , 0 a可降低投资和维护费用 。 国 I OR 工艺德国建成的 德 G 日处 理煤 2 0吨 的半 工 业 试验 装 置 ,操 作压 力 由原 来 的 0 7MP 降至 3MP , 0 a 0 a反应温度 40 4o , 5 ̄ 8℃ 固液分 离改过 滤 、 离心为真空闪蒸方法 ,将 难以加氢 的沥青烯 留在残渣 中气 化 制氢 , 轻油和中油产 率可达 5%3。 本 N D L 0[ 日 】 E O 工艺 由 前 煤 处理单元 、 液化 反应单元 、 液化油蒸馏单 元及 溶剂加氢 单元等 4 主要单 元组成 。反应 压力只 有 1MP ̄9 a 个 7 a1MP ,温 度 为 4 0 4 5C; 3 ̄ 6 ̄ 大部分 的中质油和全部重质油馏分经加氢后被 循 环作 为供氢溶剂 , 供氢性能 明显优于 E DS工艺 ; 固液分离 采 用减压蒸馏 的方法 。 美国基于 H— L和 HCOA oI L工艺研发 了 H I T 工艺 。其特点是 : 操作条件明显缓和 , 度和 压力分别 为 温 4 0( 1MP [ ; 5 ̄ 和 7 a 1采用悬浮床 技术 , 2 5 对反应温度 的控制更加 理想 ; 催化剂采用铁基催化剂 , 活性 选择 陛更好 ; 的溶剂 油渣 萃取大大提高了液化油收率。 32国内重要工艺 . 近2 0多年来 , 国科研人 员对煤直接液化技术不断深 入 我 研究 , 我国上百个煤种进行 了大量的直接液化试验 。目前 , 对 我 国的煤直接液化技术已经 完全成熟 。
2024年现代化煤直接液化技术进展
2024年现代化煤直接液化技术进展____年,煤直接液化技术在实现现代化方面取得了显著的进展。
现代化的煤直接液化技术是指利用化学反应将煤转化为液态燃料的先进技术。
下面将介绍煤直接液化技术在____年实现现代化的几个主要进展。
首先,煤直接液化技术在催化剂开发方面取得了重要突破。
在____年,煤直接液化过程中所使用的催化剂将更加高效、稳定,能够更好地促进煤的转化反应。
新型催化剂的研发将大大提高煤的直接液化效率,减少副产物的生成,并降低能耗。
多相流化床和固定床反应器等工艺也将得到优化,以进一步提高反应效果和设备稳定性。
其次,煤直接液化技术在产品种类方面将实现多样化。
传统的煤直接液化技术主要是将煤转化为合成油,但是在____年,随着新材料和催化剂的研制成功,煤直接液化技术将能够生产更多种类的液态燃料,包括煤制甲醇、煤制丁醇、煤制烯烃等。
这些液态燃料不仅可以作为燃料使用,还可以用于化工工业的生产。
第三,煤直接液化技术在环境友好性方面取得了重大突破。
煤直接液化过程会产生大量的废气和废水,会对环境造成严重的污染。
然而,到了____年,随着污染物排放标准的提高和废气处理技术的进步,煤直接液化技术将实现零废气排放,同时废水处理能力也将大幅度提高,有效地解决了环境污染的问题。
此外,煤直接液化技术在能源资源利用方面将变得更加高效。
煤是一种丰富的能源资源,但由于其固态结构和高含灰、硫等元素的特性,煤的利用率相对较低。
在____年,煤直接液化技术将能够更有效地提取煤中的有用能源,并最大程度地减少能源的浪费。
通过煤直接液化技术,可以充分利用煤炭资源,满足人们对能源的需求,并减少对传统能源的依赖。
综上所述,____年现代化的煤直接液化技术将会在催化剂开发、产品种类、环境友好性和能源资源利用等方面取得重要进展。
这些进展将使煤直接液化技术成为一种更加高效、多样化、环保和节能的能源转化技术,为人们提供更多种类和更可持续的液态燃料。
煤直接液化技术的工艺进展
煤直接液化技术的工艺进展发布时间:2023-03-08T02:01:02.759Z 来源:《中国科技信息》2022年19期第10月作者:韩林1 秦萌萌1 刘祺1 杨来来1 宋兰兰1* 于跃2* [导读] 中国是一个“富煤、少油、少气”的国家,煤炭产量和消费量居世界首位韩林1 秦萌萌1 刘祺1 杨来来1 宋兰兰1* 于跃2*临沂大学化学化工学院1 青岛理工大学2 山东临沂 276000摘要:中国是一个“富煤、少油、少气”的国家,煤炭产量和消费量居世界首位。
因此,改进和推广煤炭液化石油气技术,可以优化我国资源产业结构,进一步发挥煤炭资源优势,对弥补我国煤炭资源短缺具有重要意义。
本文主要对煤炭直接液化发展历程、典型工艺介绍、工艺参数影响等方面进行了论述。
关键词:能源;煤直接液化工艺;加氢反应中国是一个“富煤、少油、少气”的国家,煤炭产量和消费量居世界第一位。
煤炭储量大,价格相对稳定,已成为中国发电的首选燃料。
煤炭约占一次能源消费结构的60%,而石油资源短缺也将煤炭向石油生产的转变提上了议事日程。
煤制油是以煤为原料,通过化学工艺生产石油和石化产品的技术。
煤直接液化是煤在高温高压下直接催化加氢液化合成液态烃燃料。
该液体产品具有产率高的优点,但也具有反应和操作条件苛刻、杂质含量高、十六烷值低的特点[1]。
因此,进一步加强煤制油技术的研究成为近年来研究重点。
一、煤直接液化发展历程1973年世界石油危机期间,各国相继开发了多种第二代煤直接液化工艺,如氢煤法、溶剂精制煤法、供氢溶剂法、日本和德国的新工艺。
这些技术普遍存在反应选择性差、气态烃、耗氢量大、成本高、固液分离技术不成熟、铁催化剂的活性不够好、钴镍催化剂的成本较高等缺点。
后期各国主要是从降低水解液化压力方面入手提高了煤炭直接液化工艺的整体效益。
目前,几个主要工业国家正在继续研究和开发第三代煤炭直接液化技术,该技术具有反应条件温和、产油率高、成本相对较低的特点。
国内外煤炭液化的技术现状
煤炭的直接 液化技术
2
5
3
4
1
反应机理
煤质要求
催化剂
工艺
供氢溶剂
2-1-1 煤炭直接液化的反应机理
煤在热解过程中,生成的游离基从供氢溶剂中取得氢而稳定下来,生成分子量较小的产物。
煤在加氢液化过程中,在一定的温度下(300°C)时,煤的化学结构中键能最弱的部分开始断裂成自由基碎片:R - CH2 - CH2 - R′v R → CH2 +R′- CH2
2-1-5 直接液化工艺-日本NEDOL工艺
该工艺以黄铁矿为催化剂,催化剂加人量为4% ,也不进行催化剂回收。反应压力为19 MPa,反应温度为460℃。
其主要特点是循环溶剂全部在一个单独的固定床反应器中,用高活性催化剂预先加氢,使之变为供氢溶剂。液化粗油经过冷却后再去进行提质加工。液化残渣连同其中所含的重质油即可进一步进行油回收,也可直接用作气化制氢的原料。现已完成0.01t/d、0.1t/d、lt/d以及150t/d规模的试验研究。
煤岩组成
镜质组和壳质组是活性组分,易加氢液化,而惰质组难液化或根本不能液化
矿物质组成 及含量
矿物质的含量越低越好,5%左右最好,最大不超过10%
铁系催化剂
包括含铁的天然矿石、含铁的工业残渣和各种纯态铁的化合物(如铁的氧化物、硫化物和氢氧化物)。
金属 卤化物
如ZnCl2、SnCl2等,属酸性催化剂,裂解能力强,但是对煤液化装置设备有较强的腐蚀作用
3-3 合成技术经济对比
*
项目
煤直接液化
煤间接液化(浆态床)
例1
例2
例1
例2
规模,kt/a
998.1
国内外煤直接液化发展现状及发展方向
国内外煤直接液化发展现状及发展方向摘要;煤液化技术产业化前景可行性研究煤的液化是先进的煤炭转化技术之一。
是以煤为原料制取液体烃类为主要产品的技术。
煤液化可分为煤的直接液化和间接液化两大类。
煤的直接液化技术是煤直接催化加氢转化成液体产物的技术。
我国煤炭液化技术研究开发和神华集团煤直接液化示范工程以及美国烃技术公司的煤炭直接液化工艺技术。
一.煤炭直接液化的原理煤和石油都是由古代生物在特定的历史条件下,经过漫长的地质化学演变而成的。
煤和石油的本质区别就在于:煤的分子结构中含有大量的碳原子和较少的氢原子,与煤相比,石油的分子结构中氢原子多而碳原子少。
通过加氢,改变煤的分子结构,煤就可以液化变成油。
早在1913年,德国化学家柏吉乌斯(Bergius)首先研究成功了煤的高压加氢,为煤的直接液化奠定了基础。
煤的分子结构十分复杂,它的有机质是具有不规则构造的空间聚合体,其基本结构单元是吼缩合芳香环为主的带有侧链或官能团的分子结构,煤炭直接液化技术及其产业化前景单元之间又有各种桥键相连。
作为结构单元的缩台芳香环的环数有多有少,平均为2〜3个,有的芳环上还有氧、氮、硫等杂原子,结构单元之间的桥键也有不同形态,有碳碳键、碳氧键、碳硫健、氧氧键等。
从煤的元素组成看,煤的氢碳原子比小于1,而石油的氢碳原子比是1 8左右。
所以,要使煤转化成油,就要对煤加氢。
二.煤炭直接液化的典型工艺煤的直接液化是煤在适当的温度和压力下,催化加氢裂化(热解、溶剂萃取、非催化液化等)生成液体烃类及少量气体烃,脱除煤中氮、氧和硫等杂原子的转化过程。
煤炭直接液化生产过程可分为4个主要单元(不包括制氢部分)。
煤浆制备单元:将煤破碎2rnm以下与溶剂、催化剂一起制成煤浆;反应单元:在反应器内在高温(420〜470t;)高压(6--30MPa)下进行加氢反应(氢气用量一般为液化用煤的6%〜10%),生产以液态烃类为主的液化产物;分离单元:将反应生成的液化油、气体烃与残渣分离开,取出重油作为循环溶剂配煤浆用;液化油提质加工单元:根据需要将液化油加工成符合环保要求和产品标准的汽油、柴油与航空煤油等成品。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention.(安全管理)单位:___________________姓名:___________________日期:___________________现代化煤直接液化技术进展(最新版)现代化煤直接液化技术进展(最新版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。
显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。
我国是一个富煤贫油少气的国家,煤炭资源探明剩余可采储量为1842亿t,石油资源探明剩余经济可采储量为20.4亿t,天然气资源探明剩余经济可采储量为23900亿m3,这样的能源结构决定了中国煤炭价格要大大低于油气价格,煤炭价格的上涨速度也大大低于油气价格的上涨速度。
近年来,我国石油进口量不断增加,对外依存度已超过40%,已经严重威胁到我国国家的能源安全问题。
面对这样的现实,为了缓解我国石油严重短缺的现状,充分利用中国采储量相对较大的煤炭资源,大力推进煤液化产业的成熟与发展,越来越受到了国人的重视和青睐。
“煤制油”的科学名称为“煤液化”,实施煤液化目是事关国家能源安全的重大战略选择。
煤直接液化是国家“十五”期间12个高技术工程项目之一,受到各方关注,国外专家也积极参与[1-3]。
所谓煤液化,就是指把固体的煤炭通过化学加工的方法,使其转化为液体燃料、化工原料等产品。
根据加工路线的不同,通常把煤液化分为直接液化和间接液化两大类[4]。
一、煤化工产业科技发展现状(一)煤化工概述煤化工是以煤为原料,经过化学加工使煤转化为气体,液体,固体燃料以及化学品的过程。
从煤的加工过程分,主要包括:干馏(含炼焦和低温干馏),气化,液化和合成化学品等。
煤化工利用生产技术中,炼焦是应用最早的工艺,并且至今仍然是化学工业的重要组成部分。
煤的气化在煤化工中占有重要地位,用于生产各种气体燃料,是洁净的能源,有利于提高人民生活水平和环境保护;煤气化生产的合成气是合成液体燃料等多种产品的原料。
煤直接液化,即煤高压加氢液化,可以生产人造石油和化学产品。
在石油短缺时,煤的液化产品将替代目前的天然石油。
(二)新型煤化工技术1.三种新型煤化工技术路线技术之一:煤化工产业发展最重要的单元技术--煤气化技术。
以鲁奇、德士古、壳牌等炉型最为常用,我国先后引进了上述炉型用于生产合成气和化工产品。
采用多组分催化剂,可从合成气制含60%异丁醇和40%甲醇的混合物,异丁醇脱水成异丁烯,从而可完成由合成气直接制取甲基叔丁基醚,这是一条很值得重视的由天然气和煤为原料制取高辛烷值添加剂的技术路线。
技术之二:以煤为原料生产甲醇及多种化工产品。
目前国外甲醇生产主要以天然气为主,从资源背景看,我国煤炭储量远大于石油、天然气储量,因此在很长一段时间内煤炭是我国甲醇生产最重要的原料。
目前正在山西交城建设的60万吨/年焦炉气制甲醇示范工程和以高硫煤为原料生产甲醇的创新工艺都将使煤制甲醇在全国得到更广泛的推广。
甲醇作为一种重要的化工原料,通过羰基化可进一步制取醋酸、醋酸酐、甲酸甲酯、甲酸、草酸等重要的化工产品。
西南化工研究院现已开发成功甲醇羰基化制取醋酸、醋酸酐工艺软件包,在现有20万吨/年低压羰基化醋酸装置的基础上,正在扩展系列产品,进一步实现产业化;甲醇与亚硝酸在Pd催化剂作用下可反应制取草酸,这是合成草酸的一条新途径;德国Hu1s公司以甲醇和CO在叔二胺与乙烷作用下进行加压羰基化反应制得甲酸甲酯(HCOOCH3),转化率为80.7%,选择性达99.4%。
技术之三:以煤为原料合成烃类。
甲醇裂解制烯烃的研究工作已进行了多年,中科院大连化物所在此方面的研究居世界领先地位,甲醇转化率达到100%,对烯烃的选择性高达85%~90%;目前合成气制烯烃已成为费托合成化学中新的研究方向之一,一些研究结果已显示出诱人的工业化前景,但由于还有一些在转化过程中的核心问题有待解决,因此该项研究距离实际工业化尚有一定距离;近期,国内外对将甲烷摆脱造气工序直接氧化脱氢生成乙烯也颇为重视,中科院兰州物化所通过3年多的努力,取得了甲烷转化率25%~35%,对C2的选择性为70%~80%的可喜进展,目前该项研究已被列为科技部科技攻关重点项目。
二、我国煤化工产业科技发展现状1.煤炭焦化受钢铁工业快速增长的拉动,从2002年开始中国焦化工业呈现高速增长的态势。
2004年焦炭总产量突破20亿吨,比2003年增加约4亿吨,出口焦炭约1.5亿吨,约占世界焦炭贸易总量的60%。
据估算,2004年中国炼焦消耗原料精煤约29亿吨,洗选加工原煤约45亿吨,约占当年煤炭消费总量的25%,炼焦已成为涉及原料煤加工和转化数量最大的煤化工产业。
中国炼焦工业技术已进入世界先进行列,新建的大部分是技术先进、配套设施完善的大型焦炉,炭化室高6m的大容积焦炉已实现国产化,2004年机械化焦炉生产的焦炭约占焦炭总产量的70%;干熄焦、地面除尘站等环保技术已进入实用化阶段;化学产品回收加强;改造装备简陋、落后的小型焦炉,淘汰土焦及改良焦炉的进展加快。
优质炼焦煤不足是国内提高焦炭质量的主要障碍,通过对低灰、低硫、弱粘结煤或不粘结煤的改质或科学、优化配煤技术,可以扩大和改善原料煤资源,实现在常规工艺条件下提高焦炭质量。
注重煤焦油化学品集中深加工和焦炉煤气的有效利用,是焦化工业综合发展、提升竞争能力的重要方向。
对布局较为集中的大型炼焦企业,应在焦油深加工、剩余煤气的利用方面统筹规划,以实现规模化生产和高效、经济生产。
污染控制仍然是当前焦化工业发展的迫切问题,在严格取消土法炼焦,改造落后、污染严重的中小型焦炉的同时,推动大型和新建焦炉采用先进的污染治理技术,切实搞好环境保护。
2.煤制油技术及工业发展煤直接液化、间接液化的产品以汽油、柴油、航煤以及石脑油、烯烃等为主,产品市场潜力巨大,工艺、工程技术集中度高,是中国新型煤化工技术和产业发展的重要方向。
近年来,两种技术在研究开发和大规模工程示范方面均得到发展。
--直接液化技术开发及工业示范工程取得进展煤直接液化于50年前已实现工业生产,新工艺研发在国外已有近30年,积累了从基础工艺研究到中间试验的大量经验,中国国内研究已有20多年。
国内已完成高分散直接液化加氢液化催化剂实验室开发,该催化剂具有添加量低,催化效果好,生产成本低,显著提高油收率等优点,达到国际先进水平。
在开发形成“神华煤直接液化新工艺”的基础上,建成了工艺试验装置,于2004年10-12月进行了溶剂加氢、热油连续运转和23小时投料试运转,打通了液化工艺,取得开发成果。
适合中国煤种、煤质的CDCL直接液化新工艺的基础研究和工艺开发已启动进行。
--煤间接液化技术开发和工业化发展速度加快到2004年底,国内分别建成了设计合成产品能力为1000吨/年、1万吨/年的低温浆态床合成油(间接液化)中试装置,并进行了长周期试验运行,完成了配套铁系催化剂的开发,完成了10万吨/年、100万吨/年级示范工厂的工艺软件包设计和工程研究。
低温浆态床合成油可以获得约70%的柴油,十六烷值达到70以上,其它产品有LPG (约5%-10%)、含氧化合物等。
间接液化中试装置开发、运转是自主知识产权煤基合成油技术的标志性成果,对推动技术国产化和工业化发展有重要作用。
煤间接液化大规模商业化生产在国外是成熟的,引进技术建设300万吨/年级工厂的可行性研究正在进行中。
煤间接液化技术有较宽的煤种适应性,工艺条件相对缓和,可以通过改变生产工艺条件调整产品结构,或以发动机燃料为主,或以化工晶为主,因此将会成为未来煤制油产业发展的主要途径。
--煤制油技术及工业发展趋势煤制油可得到质量符合标准,含硫、氮很低的洁净发动机燃料,不改变发动机和输配、销售系统均可直接供给用户。
目前,国内煤制油技术和工业化尚处于发展初期,采用技术引进和自主开发两条途径推动发展速度。
预计,2010年以前,利用国外技术和以国内技术为主的商业化示范工程都将有实质性进展,为2010年后进入工业化发展阶段打下基石出。
到20XX年期间,中国将基本建成煤制油工业产业,并在国内发动机燃料供应和替代石油化工品方面起到重要作用。
三、当前国内外洁净煤技术发展动态1.煤炭洗选与加工(1)煤炭冼选。
煤炭经洗选后可显著降低灰分和硫分的含量,减少烟尘、SO2等污染物的排放。
目前发达国家原煤洗选率为50%~90%,选煤技术已广泛应用。
我国己建选煤厂洗选能力约5亿吨,但由于政策及技术等原因,我国煤炭人洗比例仍比较低(20%~30%)。
平均厂型小、设备可靠性差等导致选煤成本偏高,这是制约我国选煤技术发展的主要原因。
(2)煤炭液化。
煤炭液化分为间接液化和直接液化。
煤间接液化是将煤首先经过气化制得合成气(CO+H2),合成气再经催化合成(F-T合成等)转化成有机烃类。
煤间接液化的煤种适应性广,并且间接液化过程的操作条件温和,典型的煤间接液化的合成过程在250℃、15~40个大气压下操作。
此外,有关合成技术还可以用于天然气以及其他含碳有机物的转化,合成产品的质量高,污染小。
煤间接液化合成油技术在国外已实现大规模工业化。
南非基于本国丰富的煤炭资源优势,建成了年耗煤近4200万吨、生产合成油品约500万吨和200万吨化学品的合成油厂。
在技术方面,南非SASOL公司经历了固定床技术(1950~1980)、循环流化床(1970~1990)、固定流化床(1990~)、浆态床(1993~)4个阶段。
20世纪90年代中期,我国在加紧开发合成汽油固定床工艺的动力学和软件包的同时,开展了合成柴油催化剂和先进的浆态床合成汽油工艺的研究。
1998年以后,自主开发了铁催化剂(ICC-IA),合成效率接近SASOL水乎,有望在大规模生产后使成本从8万元/吨降到3万元/吨。
还开发出可以大规模廉价生产的新型铁催化剂ICC-IB,催化剂各项指标超过国外同等催化剂,预计工业化后,结合浆态床工艺的低成本可以使煤基合成油具有很强的经济竞争力。
目前,国内技术已经发展到可以产业化的阶段,包括反应器在内的所有设各和控制系统均可在国内制造。
直接液化是煤直接通过高压加氢获得液体燃料。
1913年,德国柏吉乌斯首先研究了煤的高压加氢,并获得世界上第一个煤炭液化专利。
到1944年,德国煤炭直接液化工厂的油品生产能力已达到423万吨/年,为第二次世界大战中的德国提供了2/3的航空燃料和50%的汽车、装甲车用油。