捷联惯导的原理与力学编排

合集下载

捷联惯性导航原理

捷联惯性导航原理

2.捷联惯导力学编排方程
姿态角定义: ψ航向角----载体纵轴在水平面的投影与地理子午线之间 的夹角,用ψ表示,规定以地理北向为起点,偏东方向 为正,定义域0~360°。 θ俯仰角----载体纵轴与纵向水平轴之间的夹角,用θ表 示,规定以纵向水轴为起点,向上为正,向下为负,定 义域-90 ° ~+90 ° 。 γ横滚角----载体纵向对称面与纵向铅垂面之间的夹角, 用γ表示,规定从铅垂面算起,右倾为正,左倾为负, 定义域-180 ° ~+180° 。(载体纵向对称面和 纵轴空 间 铅垂面)
捷联惯性导航原理
2010.11.30 北航通信导航与自动测试实验室
如果载体真实地理位置以纬度、经度、高度 表示,则与此对应的载体在地球坐标系中的 真实位置(x,y,z)可通过下式求得:
地球各点重力加速度近似计算公式: g=g0(1-0.00265cos&)/1+(2h/R) g0:地球标准重力加速度9.80665(m/平方秒) &:测量点的地球纬度 h:测量点的海拔高度 R: 地球的平均半径(R=6370km) s:时间 ????????????????????
f 为地球椭球模型的椭圆度,f= 1/298.257223563
R1 RN h R2 RM h
注意从瞬时速度过来那条线,用来计算w(enn)
3、捷联惯导系统的算法
3.1 姿态更新算法 四元数法:
Q(q0 , q1 , q2 , q3 ) q0 q1i q2 j q3k
1. 惯性导航中的常用坐标系
yt
yb
z e zi

xb
zb
zt
xt
O

Oe

捷联式惯性导航系统原理

捷联式惯性导航系统原理

1、方向余弦表cos cos sin sin sin sin cos cos sin sin cos sin sin cos cos cos sin cos sin sin sin cos sin sin cos sin cos cos cos C ψϕψθϕψϕψθϕθϕψθψθθψϕψθϕψϕψθϕθϕ-+-⎡⎤⎢⎥=-⎢⎥⎢⎥+-⎣⎦(1.0.1)X E Y C N Z ζ⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(1.0.2) 在列写惯导方程需要采用方向余弦表,因为错误!未找到引用源。

α较小,经常采用两个假设,即:cos 1sin 1αα≈≈ (1.0.3)式中 α-两坐标系间每次相对转动的角度。

由于在工程实践中可以使其保持很小,所以进一步可以忽略如下形式二阶小量,即:sin sin 0αβ≈ (1.0.4)式中β-两坐标系间每次相对转动的角度。

可以将C 近似写为:111C ψϕψθϕθ-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦(1.0.5) 2、用四元素表示坐标变换对于四元素123q p i p j p k λ=+++,可以表示为如下形式cossincos sincos sincos 2222q i j k θθθθαβγ=+++ (2.0.1)式(2.0.1)的四元数称为特殊四元数,它的范数1q =。

1'R q Rq -= (2.0.2)式中''''R xi yj zk R x i y j z k=++=++ (2.0.3)将q 和1q -的表达式及式(2.0.3)带入(2.0.2),然后用矩阵表示为:()()()()()()()()()22221231231322222123213231222213223131222''22'22p p p p p p p p p x x y p p pp p p p p p yz z p p p p p p p p p λλλλλλλλλ⎡⎤+--+-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=-+--+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥+-+--⎣⎦(2.0.4)由四元素到方向余弦表的建立123cos cos22sin cos22sin sin22cos sin22p p p θψϕλθψϕθψϕθψϕ-=-=-=+= (2.0.5) 将式(2.0.5)带入式(2.0.4),有cos cos sin cos sin cos sin sin cos cos sin sin sin cos cos cos sin sin sin cos cos cos cos sin sin sin sin cos cos C ϕψϕθψϕψϕθψϕθϕψϕθψϕψϕθψϕθθψθψθ-+⎡⎤⎢⎥=---+⎢⎥⎢⎥-⎣⎦(2.0.6)3、四元数转动公式的进一步说明采用方向余弦矩阵描述飞行器姿态运动时,需要积分姿态矩阵微分方程式,即C C =Ω (3.0.1)式中 C -动坐标系相对参考坐标系的方向余弦阵Ω-动坐标系相对参考坐标系角速度ω的反对称矩阵表达式 其中C 为公式(1.0.5)提供000z y zx y xωωωωωω⎡⎤-⎢⎥Ω=-⎢⎥⎢⎥-⎣⎦(3.0.2)采用(3.0.1)计算需要列写9个一阶微分方程式,计算量大。

捷联式惯性测量基本原理____重要

捷联式惯性测量基本原理____重要
系中。如果选择惯性坐标系为参考坐标系,则可以通 过矢量左乘方向余弦矩阵 将其分解在i系中,即
13
系统举例——相对惯性系导航:
捷联惯导系统所执行的主要功能:
产生载体姿态的角速度测量值的处理、惯性参考系中比力测量值的分解、重力的 补偿以及对加速度估计值进行的积1分4 运算(以确定载体的速度和位置)。
32
5、捷联姿态表达式 & 姿态矩阵更新方法 四元数:
四元数姿态表达式是一个四参数的表达式。它基于的思路是:一个坐 标系到另一个坐标系的变换可以通过绕一个定义在参考坐标系中的矢 量μ的单次转动来实现。四元数用符号q表示,它是一个具有4个元素 的矢量,这些元素是该矢量方向和转动大小的函数。
33
5、捷联姿态表达式 & 姿态矩阵更新方法 四元数:
绕参考坐标系的 z 轴转动ψ角 绕新坐标系的 y 轴转动θ角 绕新坐标系的 Z 轴转动φ角 ψ、θ和φ称为欧拉转动角
30
5、捷联姿态表达式 & 姿态矩阵更新方法 欧拉角:
31
5、捷联姿态表达式 & 姿态矩阵更新方法 欧拉角随时间的传递(或更新):
这种形式的等式可在捷联系统中进行解算,用来更新载体相对于所选参 考坐标系的欧拉转动。然而,在θ=土90度时,由于ψ和φ方程的解变得 不确定,因而上式使用受到限制。
这种系统中,需要在惯性系中计算运载体相对于地球的速度,即地速,用符 号表示。
16
4、捷联微惯性测量系统——机械编排 系统举例——相对惯性系导航:
17
4、捷联微惯性测量系统——机械编排 系统举例——相对惯性系导航:
18
4、捷联微惯性测量系统——机械编排 系统举例——相对地球坐标系导航:
在这类系统中,地速是在与地球固连的坐标系中表 示的,即表示为 。根据哥氏方程,速度相对于地球 坐标系的变化率可用惯性系下速度的变化率来表示:

§3.7捷联式惯导系统介绍4

§3.7捷联式惯导系统介绍4


Ctb = (Cbt ) −1 = Cbt
位置信息 重力计算
gt
固连于载体 坐标系的加 速度计
哥氏校正
fb
比力测量值 的分解
ft


速度ve 和 位置的估 计值
t
导航计算
Cbt
固连于载体 的陀螺
ω
速度和位置的初始估计值
b ib
姿态计算
t t ωie + ωet
姿态的初始估值
图 捷联式惯性导航系统——地理坐标系机械编排
重力加速度
r r v v r g = G − ωie × [ωie × r ]
于是
i &ei = f i − ωie v × vei + g i
加速度计提供的载体坐标系中比力的测量值,用向量 f b 表示。为 了建立导航方程,加速度计的输出必须分解到惯性系中,得到 f i
f i = Cbi f b
式中 Cbi 是一个 3 × 3 的矩阵,定义了载体坐标系相对于 i 系的姿态。利 用陀螺提供的角速度的测量值,可求解方向余弦矩阵 Cbi
b 标系 Oe X iYi Z i 的角速度 ωib ,上角标 b 表示该角速度在 b 坐标系上的投 b 进行姿态矩阵 Cbi 计算。由于姿态矩阵 Cbi 中的元素是 影。利用 ωib
OX bYb Z b 相对 OX iYi Z i 的航向角、横滚角、俯仰角的三角函数构成,
所以当求得了姿态矩阵 Cbi 的即时值,便可进行加速度计信息的坐标 变换和提取姿态角的大小。 这三项功能实际上就代替了平台式惯性导 航系统中的稳定平台的功能, 这样计算机中的这三项功能也就是所谓
第二,在平台式系统中,计算机只完成导航计算并对惯性元件的 误差进行简单补偿。而在捷联式系统中,计算机除完成导航计算外 捷联式系统对计算机的容量、 速度和精度要求要比平台式惯导系统高 得多。计算机问题是捷联式惯导系统发展的另一障碍。但是近年来, 由于计算技术的惊人发展,满足捷联式系统购要求已不成问题,它已 经成为促进捷联式导航系统发展的积极因素。 第三,捷联式系统比平台式系统可靠性高,这是它的一个突出优 点。 这首先是由于捷联式系统用数字电路代替了平台式系统的复杂的 框架。 提高机电系统的可靠性要比提高电子部件特别是数子电路的可 靠性困难得多。 另外, 如果平台发生故障, 必须用另一个备用平台(包 括三个陀螺、三个或两个加速度计)取而代之才能继续完成导航任务。 而在捷联式系统中,任何一个惯性元件发生故障,只要用一个备用惯 性元件取而代之就行了。美国有人对 100 套惯导系统作过统计,由液 浮陀螺组成的平台式系统平均每工作 100 万小时发生故障 1832 次, 而捷联式系统只有 744 次。 第四,捷联式系统另一个突出优点是成本比较低。这主要是因为 在平台式系统中框架及其有关的元部件占去成本的大部分。另外,捷 联式系统维护比较简单方便,又进—步降低了维护费用。—套平台式 惯导系统的成本约为 6 万美元, 而相应的捷联式系统成本只需 2 万美 元。 第五,捷联式系统由于取消了笨重的框架结构、力矩电机、角度

捷联惯导详细讲解

捷联惯导详细讲解

捷联惯导系统从20世纪60年代初开始发展起来,在1969年,捷联惯导系统作为"阿波罗"-13号登月飞船的应急备份装置,在其服务舱发生爆炸时将飞船成功地引导到返回地球的轨道上时起到了决定性作用,成为捷联式惯导系统发展中的一个里程碑。

捷联式惯性导航(strap-downinertialnavigation),捷联(strap-down)的英语原义是“捆绑”的意思。

因此捷联式惯性导航也就是将惯性测量元件(陀螺仪和加速度计)直接装在导弹需要诸如姿态、速度、航向等导航信息的主体上,用计算机把测量信号变换为导航参数的一种导航技术。

一、捷联惯导系统工作原理及特点惯导系统基本工作原理是以牛顿力学定律为基础,通过测量载体在惯性参考系的加速度,将它对时间进行积分,之后将其变换到导航坐标系,得到在导航坐标系中的速度、偏航角和位置信息等。

捷联惯导系统(SINS)是一种无框架系统,由三个速率陀螺、三个线加速度计和微型计算机组成。

由于惯性元器件有固定漂移率,会造成导航误差,因此导弹通常采用指令、GPS或其组合等方式对惯导进行定时修正,以获取持续准确的位置参数。

如采用指令+捷联式惯导捷联惯导系统能精确提供载体的姿态、地速、经纬度等导航参数,是利用惯性敏感器、基准方向及最初的位置信息来确定运载体的方位、位置和速度的自主式航位推算导航系统。

在工作时不依赖外界信息,也不向外界辐射能量,不易受到干扰破坏。

它完全是依靠载体自身设备独立自主地进行导航,它与外界不发生任何光、声、磁、电的联系,从而实现了与外界条件隔绝的假想的“封闭”空间内实现精确导航。

所以它具有隐蔽性好,工作不受气象条件和人为的外界干扰等一系列的优点。

除此以外捷联惯导系统的最大特点是没有实体平台,即将陀螺仪和加速度计直接安装在机动载体上,在计算机中实时的计算姿态矩阵,通过姿态矩阵把导航加速度计测量的载体沿机体坐标系轴向的加速度信息变换到导航坐标系,然后进行导航计算。

捷联惯导系统

捷联惯导系统

作业思考题
1、简要说明捷联惯导系统的基本组成和原理。 2、什么是数学平台?它有什么作用?
惯性导航系统
第四十四讲 捷联惯导系统 力学编排方程(一)
捷联式惯导系统(SINS)
加速度计
fb
数学平台
姿态矩阵 Cbp
f p 导航 速度、位置
计算机 姿态、航向
姿态矩阵计算
陀螺
ibb
pbb
b ip
姿态航向
-
C11 C21 C31
Cep 1 Cep T
C12 C13 1 C11 C21
C22
C23
C12
C22
C32 C33 C13 C23
C11 C22C33 C23C32 C21 C13C32 C12C33 C31 C12C23 C22C13
C31
C32
C33
位置矩阵微分方程组
Cep 0 f 0,0,0
1
p p epx epy
g g egx egy
R VeggxVeggy
VeppxVeppy
三、位置速率方程
11
p p epx epy
g g egx egy
RN RE
捷联惯导的发展
1、1950年起,德雷珀实验室捷联系统得到成熟的探索; 2、1969年,在“阿波罗-13”宇宙飞船,备份捷联惯导系统; 3、20世纪80~90年代,波音757/767、A310民机以及F-20战 斗机上使用激光陀螺惯导系统,精度达到1.85km/h的量级; 4、20世纪90年代,美国军用捷联式惯导系统已占有90% 。光 纤陀螺的捷联航姿系统已用于战斗机的机载武器系统中及波 音777飞机上。 5、国内由90年代挠性捷联惯导到现在激光捷联惯导、光纤陀 螺捷联航姿系统。

捷联惯导结算原理

捷联惯导结算原理

0 cos sin , Rz sin 0 cos
sin cos 0
0 0 1
cos cos sin sin sin cos cos sin sin cos sin cos T11 T12 T13 Ry Rx Rz cos sin cos cos sin T21 T22 T23 sin cos cos sin sin sin sin cos sin cos cos cos T T T 31 32 33 b 由姿态矩阵 C n 反解飞行器姿态欧拉角:
(5) 速度的计算
t t t t t 0 2iez etz ety 2iey Vxt Vx 0 t t b t t t t 0 2iex etx Vyt 0 Vy Cb f 2iez etz t Vz g Vzt 2 t t 2 t t 0 iey ety iex etx
o o sin 1 T23 , 90 , 90
tg 1
T13 180o , 180o , T33
tg 1
T21 o o , 180 , 180 T 22
图 6 东向北向速度变化曲线
阶段总结:1.学习了平台式和捷联式惯导的惯导解算方法并进行了仿真计算。 2.平台式惯导物理平台时刻跟踪当地水平东北天地理系, 加速计的比 力信息直接投影在导航系中,可直接进行导航速度和位置解算。载体的姿态可直 接从平台框架直接得出;而捷联式惯导用数学平台取代实体的物理平台,通过求

《2024年捷联惯性导航系统关键技术研究》范文

《2024年捷联惯性导航系统关键技术研究》范文

《捷联惯性导航系统关键技术研究》篇一一、引言捷联惯性导航系统(SINS)是一种利用惯性测量单元(IMU)来获取和解析导航信息的先进技术。

它以其高精度、高动态性以及全自主工作的特性,在航空、航天、航海、车辆导航等领域中发挥着重要的作用。

本文将深入探讨捷联惯性导航系统的关键技术研究,从系统组成、工作原理、技术难点到解决方案等方面进行详细阐述。

二、系统组成与工作原理捷联惯性导航系统主要由惯性测量单元(IMU)、导航计算机、算法处理软件等部分组成。

其中,IMU是系统的核心,它包括加速度计和陀螺仪,用于实时测量载体在三维空间中的运动状态。

导航计算机则负责采集IMU的数据,通过算法处理软件进行数据解析和处理,最终输出导航信息。

捷联惯性导航系统的工作原理主要依赖于牛顿第二定律和角动量守恒定律。

通过测量载体的加速度和角速度,系统可以推算出载体的运动轨迹和姿态信息,从而实现导航定位。

三、关键技术研究1. 高精度IMU技术研究IMU的精度直接影响到整个系统的导航精度,因此提高IMU 的精度是捷联惯性导航系统的关键技术之一。

当前,研究者们正在通过优化加速度计和陀螺仪的设计和制造工艺,提高其测量精度和稳定性。

此外,采用先进的滤波算法和校准技术,也可以有效提高IMU的精度。

2. 算法优化技术研究算法是捷联惯性导航系统的核心,其优化程度直接影响到系统的性能。

目前,研究者们正在致力于开发更加高效的算法,以实现更快的数据处理速度和更高的导航精度。

同时,针对不同应用场景,如高动态、强干扰等环境,研究者们也在进行相应的算法优化工作。

3. 系统误差校正技术研究由于惯性器件的误差积累和环境干扰等因素的影响,捷联惯性导航系统在长时间工作时会产生较大的误差。

因此,系统误差校正是捷联惯性导航系统的另一个关键技术。

研究者们正在通过建立更加精确的误差模型,采用先进的校正算法和技术手段,对系统误差进行实时校正,以保证系统的导航精度和稳定性。

四、结论捷联惯性导航系统是一种重要的导航技术,具有广泛的应用前景。

3捷联惯性导航系统原理 - search readpudncom

3捷联惯性导航系统原理 - search readpudncom
( 4 ) 角 速度
角 速 度 用带 有 上 下 标的 符 号 表 示, 如: 。 九 , 其下 标含义为b 系( 机 体 坐标系) 相
对于i 系( 惯性坐标系)的 转动角速度,上标含义为此角速度在b 系( 机体坐标系)中
的投影。 其它角速度符号含义与此相似。
( 5 ) 坐 标系 变换矩阵
( 5 ) 机 体 坐 标 系( 下 标为b ) - o x b y b z b
机体坐标下是固连在机体上的坐标系。
机体 坐 标 系的 坐 标原点。 位于 飞 行 器的 重 心 处,x b 沿 机体横 轴 指向 右,Y h 沿 机体
纵 轴 指问 前 , z 。 垂 直 于 o x h Y 6 , 并 沿 飞 行 器的 竖 轴 指 向 上。 x b y b z 。 构 成 右 手 坐 标系 机
坐 标 系 变 换 矩 阵 也 用 带 有 上 下 标的 符 号 表 示 , 如:心, 其 含 义 为n 系( 导 航 坐 标
系) 到b 系〔 机体坐标系)的 变换矩阵。其它坐标系变换矩阵符号的含义与此相似。
(பைடு நூலகம் 6 ) 地球半径:
的需要而选取的作为导航基准的坐标系。当把导航坐标系选得与地理坐标系重合时,可 将这种导航坐标系成为指北方位系统;为了适应在极区附近导航的需要往往将导航坐标
系 的z轴 仍 选 的 与z 轴 重 合, 而 使x 。 与x , 及Y , 与Y , 之 间 相 差 一 个自 由 方 位角 或 游 动 方
位角a,这种导航坐标系可称为自由方位系统或游动自由方位系统。
于其它类型的导航方案 ( 如无线电导 航、天文导航等)的根本不同 之处就在于其导航原 理是建立在牛顿力学定律一一又可称为惯性定修 一 的基础上的, “ 惯性导航” 也因此

捷联惯性导航原理概要

捷联惯性导航原理概要

捷联惯性导航原理概要捷联惯性导航(Inertial Navigation System,简称INS)是一种基于惯性力学原理运行的导航系统,用于测量和跟踪物体的位置、速度和加速度。

它通过内部的陀螺仪和加速度计来测量物体在空间中的运动状态,并根据质量、力和运动的基本原理来计算物体的位置和速度。

通过将陀螺仪和加速度计的输出信号转换为数字信号,并通过计算机处理,可以获得物体相对于初始参考点的位置和速度。

这些数据可以通过与地图或导航系统的集成来确定物体的位置和方向。

捷联惯性导航系统的原理是基于牛顿运动定律和旋转不变性原理。

根据牛顿第一定律,当物体处于惯性坐标系中且不受任何力的作用时,它将保持静止或匀速直线运动。

根据牛顿第二定律,当物体受到外力作用时,它将产生加速度。

根据旋转不变性原理,即物理量在不同坐标系下具有相同的数值,陀螺仪和加速度计可以测量物体的角速度和加速度,从而得到物体的位置和速度。

捷联惯性导航系统具有高精度和高稳定性的优势,尤其适用于无法使用其他导航系统(如GPS)或需要高精度导航的环境。

然而,它也存在一些局限性。

首先,由于陀螺仪和加速度计的测量误差和漂移,容易导致导航误差的累积。

其次,捷联惯性导航系统无法提供绝对位置信息,需要与其他导航系统集成才能获得绝对位置。

为了提高捷联惯性导航系统的性能,可以采用多传感器融合技术。

通过将多种导航系统(例如GPS、地图、惯性导航)的输出数据进行融合,可以提高导航的精度和可靠性,同时减少漂移和误差的影响。

总之,捷联惯性导航系统是一种基于惯性力学原理运行的导航系统,利用陀螺仪和加速度计测量物体的运动状态,并根据质量、力和运动的基本原理计算物体的位置和速度。

它具有高精度和高稳定性的优势,但也存在一些局限性,需要与其他导航系统集成才能获得绝对位置信息。

通过多传感器融合技术的应用,可以进一步提高捷联惯性导航系统的性能。

捷联惯导的原理与力学编排

捷联惯导的原理与力学编排

1 RN

1 RE

sin

cos
sin2 cos2
RN
RE


1 RN
cos2
RN

1 RE


sin2
RE

sin cos




Veppx Veppy

速度方程
.
V 惯导基本方程: ep f 2ie ep V ep g


arc
sin
C33
又因定义域: 90 ,90


arc tan
C32 C31
180 ,180
1、求纬度的真值 反正弦函数的主值域与 的定义域一致,因此:=主
2、求经度的真值
反正切函数的主值域是 90 ,90 ,与 的定义域不一致,因此


要在主
Cep


C21
C22
C23




cos

sin

cos


sin

sin

cos sin sin sin cos
cos
cos

C31 C32 C33
cos cos
cos sin
sin
确定纬度 和经度
利用方向余弦矩阵可确定纬度和经度的真值。先求其主值:
向和垂线方向的坐标系。
惯性导航中的常用坐标系
平台坐标系(下标为p)— Oxp yp z p ▪ 原点o在载体重心,在平台惯导系统中,它代表实

6.7 捷联式惯性导航系统

6.7 捷联式惯性导航系统

rx0 cos H ry0 sin H rx0 sin H ry0 cos H

rz1 rz0

cos H sin H 0
TheFirstTurn : sin H cos H 0
0
0 1
rx0
H x0
x1( x2)
ry1
O
ry0
rx1
θ y1
3
捷联式惯性导航系统
捷联姿态矩阵
地理坐标系 ox0y0z0 与载体坐标系 oxyz 之间的关系,可以用三个转动欧 拉角来表示:
z
z2
Ф
z0(z1)
θ
o
ox0 y0z0
绕oz0
H
ox1 y1z1
绕ox1

ox2 y2z2
绕oy2

oxyz
H
x0
Ф
x1(x2) x
y2(y)
θ y1
H
y0
捷联式惯性导航系统

sin cos
cos sin H cos cos H
sin
sin cos H cos sin sin H
sin

sin
H

cos
sin

cos
H

cos cos

作用1:姿态和航向的求解
z
z2
Ф
z0(z1)
θ


tg 1
T31 T33

sin

sin
H

cos
sin

cos
H

cos cos

• 纵摇角—— θ • 横摇角—— • 航向角—— H

捷联惯导系统

捷联惯导系统




(3)无框架锁定系统,允许全方位(全姿态)工作。
(4)除能提供平台式系统所能提供的所有参数外,还可以提供沿弹 体三个轴的速度和加速度信息。
缺点:

但是,由于在捷联惯导系统中,惯性元件与载体直接固连, 其工作环境恶劣,对惯性元件及机(弹)载计算机等部件也 提出了较高的要求。


(1)要求加速度表在宽动态范围内具有高性能、高可靠性, 且能数字输出。
1.4捷联惯导系统的精度

惯性导航和制导系统对陀螺仪和加速度计的精度要求极高, 如加速度计分辨率通常为0.0001g~0.00001g,陀螺随机漂 移率为0.01°/小时甚至更低,并且要求其有大的测量范围, 如军用飞机所要求的测速范围应达10的9次方(0.01°/小 时~400°/秒)。因此,陀螺仪和加速度计属于精密仪表范 畴。

“数学解析平台”的原理简图
捷联惯导优点:

捷联惯导系统和平台式惯导系统一样,能精确提供载体的姿态、地 速、经纬度等导航参数。但平台式惯导系统结构较复杂、可靠性较 低、故障间隔时间较短、造价较高,为可靠起见,通常在一个运载 体上要配用两套惯导装臵,这就增加了维修和购臵费用。在捷联惯 导系统中,由于计算机中存储的方向余弦解析参考系取代了平台系 统以物理形式实现的参考系,因此,捷联惯导系统有以下独特优点。 (1)去掉了复杂的平台机械系统,系统结构极为简单,减小了系统 的体积和重量,同时降低了成本,简化了维修,提高了可靠性。 (2)无常用的机械平台,缩短了整个系统的启动准备时间,也消除 了与平台系统有关的误差。


为测量基准,它不再采用机电平台,惯性平台的功能由计算 机完成,即在计算机内建立一个数学平台取代机电平台的功 能,其飞行器姿态数据通过计算机计算得到,故有时也称其 为"数学平台",这是捷联惯导系统区别于平台式惯导系统的 根本点。由于惯性元器件有固定漂移率,会造成导航误差, 因此,远程导弹、飞机等武器平台通常采用指令、GPS或其 组合等方式对惯导进行定时修正,以获取持续准确的位臵参 数。如采用指令+捷联式惯导、GPS+惯导(GPS/INS)。美国 的战斧巡航导弹采用了GPS+INS +地形匹配组合导航。

P15捷联惯导系统算法导航原理教学课件

P15捷联惯导系统算法导航原理教学课件

舰船导航应用
舰船导航概述
01
舰船在航行过程中需要精确的导航信息,以确保航行安全和任
务执行。
舰船导航应用案例
02
介绍了P15捷联惯导系统在舰船导航中的实际应用案例,包括海
上巡逻、救援行动等。
舰船导航优势
03
详细阐述了P15捷联惯导系统在舰船导航中的优势,如高精度、
稳定性、可靠性高等。
其他领域应用
其他领域概述
系统初始化
01
02
03
初始化流程
系统上电后,首先进行硬 件和软件的初始化,包括 传感器、微处理器、存储 器等。
初始参数设置
根据系统要求和导航需求, 设置初始参数,如初始位 置、初始速度、地球模型 等。
校准与标定
对系统中的传感器进行校 准和标定,确保其测量精 度和可靠性。
数据采集与预处理
ห้องสมุดไป่ตู้
数据采集
通过传感器采集原始数据, 如加速度、角速度等。
算法验证
通过模拟实验和实际测试,验证算 法的正确性和有效性。
导航解算与
导航解算
根据算法处理后的数据,进行导 航解算,包括位置、速度、姿态
等计算。
数据融合
将捷联惯导系统与其他导航系统 (如GPS)的数据进行融合,进
一步提高导航精度。
输出结果
将解算得到的导航信息输出,为 其他系统或设备提供准确的导航
服务。
除了无人机、车辆和舰船等应用领域,P15捷联惯导系统还广泛 应用于其他领域。
其他领域应用案例
列举了P15捷联惯导系统在其他领域中的实际应用案例,如机器 人、航空航天等。
其他领域应用优势
详细阐述了P15捷联惯导系统在其他领域应用中的优势,如高精 度、稳定性、可靠性高等。

捷联式惯性导航原理

捷联式惯性导航原理

捷联式惯性导航原理捷联式惯性导航(Inertial Navigation System,简称INS)是一种基于惯性测量装置的导航系统。

它通过测量线性加速度和角速度来得出加速度、速度和位置信息,从而实现航海、航空和航天等领域的精确导航和定位。

捷联式惯性导航系统由多个惯性传感器组成,包括加速度计和陀螺仪。

加速度计用于测量线性加速度,而陀螺仪则用于测量角速度。

这些传感器安装在导航系统的载体上,并与导航系统的计算单元相连。

捷联式惯性导航系统的原理可分为两个主要步骤:传感器测量和姿态解算。

传感器测量是指测量加速度计和陀螺仪输出的信号。

加速度计通过测量导航系统相对于载体的线性加速度来估计速度和位移。

陀螺仪则通过测量导航系统相对于载体的角速度来估计转角和航向。

这些测量值由传感器输出,并发送给导航系统的计算单元进一步处理。

姿态解算是指根据传感器测量值计算导航系统相对于载体的三维方向。

这个过程基于四元数算法和方向余弦矩阵等数学模型。

根据加速度计的测量值,可以得到系统的重力矢量,从而计算出系统相对于地球的姿态。

陀螺仪的测量值则用于校正角速度误差和姿态的漂移。

通过不断地积分和更新测量值,导航系统可以保持准确的姿态信息。

捷联式惯性导航系统的优势在于其自主性和抗干扰能力。

由于不依赖于外部信号源,如卫星或地面控制点,INS可以在任何环境中进行导航。

同时,由于惯性传感器对外部扰动的响应速度很快,导航系统可以及时纠正估计误差,从而实现高精度的导航和定位。

然而,捷联式惯性导航系统也存在一些缺点。

由于惯性传感器存在漂移和积分误差,INS的导航信息随着时间的推移会变得不准确。

此外,惯性传感器的准确性和稳定性也会受到温度、振动和电磁干扰等因素的影响。

为了解决这些问题,通常需要与其他导航系统,如全球定位系统(GPS)或地面测量系统(如激光测距仪),进行组合导航。

总的来说,捷联式惯性导航系统是一种基于惯性传感器测量的导航系统。

它通过测量线性加速度和角速度,计算出加速度、速度和位置信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

惯性导航的分类
• 平台式惯导
• 捷联式惯导 • 两者的主要区别在于是否有实体的物理平 台
捷联式惯导的概念
• ―捷联”(strapdown)这一术语的英文原意 就是“捆绑”的意思,因此所谓捷联系统 就是将惯性测量的敏感器(陀螺仪与加速 度计)直接捆绑在运载体上,从而实现运 动对象的自主导航目的 。通过计算机内的 姿态矩阵实时解析计算而得到一个“数学 解析平台”,它同样可以起到机电结合的 稳定平台所提供的在惯性空间始终保持所 要求的姿态作用。
主 主 , T 3 3 0时 主 1 8 0 , T3 3 0 且 主 0

主 1 8 0 , T3 3 0 且 主 0

再根据定义域与T中元素的符号得到各角真值:
G 主 , T 2 2 0, G 主 0

G G 主 3 6 0 , T 2 2 0, G 主 0 G 主 1 8 0 , T22 0
惯性导航中的常用坐标系
地心惯性坐标系(下标为i) --- O e x i y i z i – 惯性坐标系是符合牛顿力学定律的坐标系,即 是绝对静止或只做匀速直线运动的坐标系。 O – 以地心 O 为原点作右手坐标系, z 轴沿地轴指 O O 向地球的北极, x , y 轴在地球赤道平面内 O 与地轴垂直并不随地球自转,其中, x 轴指向 春分点(惯性-不随地球自转,所以指向春分点) – 春分点是天文测量中确定恒星时的起始点,因 O O 此 O x 、 y 、 z 均指向惯性空间某一方向不 变。
2 co s 2 sin p RN R E V ep x p V ep y 1 1 sin co s RN RE

速度方程
.
惯导基本方程: V ep
.
f 2 ie ep V
0 0 g
0 p p 2 z ep z 2 p p y ep y
2 z ep z
p p
0
2
p x
ep x
p
p ep y V p y ep x p p p 2 x ep x V ep y p V ep z 0 p
捷联惯导的特点
• 惯性元件直接安装在机体上,便于安装维护和更换。 • 惯性元件直接给出机体线加速度和角加速度,而这些信息 又是飞行控制系统所必须的。这样在采用捷联惯导系统的 飞机上,可以省略专门为飞机控制系统提供上述信息的传 感器。 • 由于取消了机械平台,减少了惯导系统中的机械零件,加 之惯性元件体积小、质量轻,故可以采用更多的惯性元件 来实现余度技术,从而大大提高了系统的可靠性。 • 由于惯性元件的工作环境比平台式惯导中的惯性元件要差, 因此捷联惯导系统对惯性元件的要求比平台惯导要高,而 且系统中也必须采取误差补偿措施。 • 用“数字平台”取代机械平台,增加了导航计算机的计算 量,对导航计算机性能突出了更高的要求
正,所以co s 与 C 3 1同 号 。利用 C 31, 主 的正负值可确定真值 :
主 = 主 1 8 0 主 1 8 0

C 31 0 C 3 1 0, 主 0 C 3 1 0, 主 0
方程余弦元素的微分方程表示式
方向余弦矩阵的变化是由平台坐标系相对地球坐标系运动的角速率(又称位置速率)w ep 引起的
e
e
e
e
e
e
e
地理坐标系(东北天)(下标为g)—O x g y g z g y z • 原点选在载体重心处 ,x g 指向东, 指向北, 沿垂线方向指向天。 • 是在载体上用来表示载体所在位置的东向、北向 和垂线方向的坐标系。
g g
惯性导航中的常用坐标系
平台坐标系(下标为p)— O x p y p z p • 原点o在载体重心,在平台惯导系统中,它代表实 际平台的坐标系,在捷联惯导系统中,它代表 “数学平台”。 • 理想状况下,可以与地理坐标系重合,也可以与 其在水平面有一定的夹角,后者成为游移方位平 台坐标系; 载体坐标系(下标为b)—O x b y b z b 坐标原点位于载体的重心,y 轴沿载体纵轴指向 前, x 轴沿载体横轴指向右,z 轴垂直于平面指 向上。
T1 3 co s co s G sin sin sin G T 2 3 co s sin G sin sin co s G T3 3 sin co s
G 格网航向角, 俯仰角, 倾斜角 = G , 取 = 0,所 以 = G
e
e i
e i
e
i
e
i
e
i
e
i
e
i
惯性导航中的常用坐标系
地球坐标系(下标为e)—O e x e y e z e • 地球坐标系的原点在地球中心 O , O z 轴与地球 O 自转轴重合, x y 在赤道平面内,x e 轴取赤道和 本初子午线的交线,y 轴则与构成右手坐标系。 又称为空间直角坐标系或地心地固坐标系。(地 球-x轴指向0子午线)
p

t
ep
p
p ep x 可写成 p ep y
co s sin
sin ep x t co s ep y

综合上两式得:
p ep x p ep y
1 1 sin co s RN RE 2 2 sin co s RN RE
确定纬度 和经度
利用方向余弦矩阵可确定纬度和经度的真值。先求其主值: 又因定义域:
90 , 90

主 a rc sin C 3 3 主 a rc tan
C 32 C 31





1 8 0 ,1 8 0

1、求纬度的真值 反正弦函数的主值域与 的定义域一致,因此: = 主


ep
g
其中:
V
ep
平台系相对地球的加速度向量
f 加速度计测量的比力向量 2 ie ep V


ep
无明显物理意义,又称有害加速度
g 重力加速度向量
整理上式可得: .p V ep x p f . x V p f p ep y y . p p fz V ep z

姿态微分方程
与姿态矩阵对应的姿态微分方程为
.
C b C b w pb
p p bk
w pb
bk
对应姿态角速率 w p b
. T 11 . T21 . T3 1
. .
b
的反对称矩阵
2

捷联矩阵 C(姿态矩阵) b
p
实现由机体坐标系到平台坐标系的坐标转换的方向余弦矩阵称为捷联矩阵,用T表示; 根据捷联矩阵的元素可以确定飞行器姿态角,因此捷联矩阵又称姿态矩阵。满足方程:
Xp Yp Zp
T1 1 T T21 T 31 T1 2 T22 T3 2
2、求经度的真值 反正切函数的主值域是 90 , 90 ,与 的定义域不一致,因此需 要在 的定义域内确定经度 的真值。 由:主 tan 1 C 32 tan 1 cos sin 由于在 的定义域内co s 永远为
C 31 cos cos
方向余弦矩阵 C e(位置矩阵)
平台坐标系与地球坐标系转动关系为:
Xp Yp Zp Xe p C e Ye Z e
p
其中
C 11 p C e C 21 C 31 C 12 C 22 C 32 C 13 sin sin cos cos sin C 23 cos sin cos sin sin C 33 cos cos sin sin sin cos cos cos sin sin sin cos cos sin sin cos cos cos sin
b
b
b
惯性导航中的常用坐标系
yt
yb
z e zi北xb Nhomakorabeazb
zt
xt
O

Oe
xi
xe
ye
yi
捷联惯导的基本原理
捷联惯导系统的基本原理
捷联惯导的基本原理
• 从上图中可以看出,加速度计和陀螺直接安装在飞机上, b w ib 用陀螺测量的角速度信号 减去导航计算机计算的导航 坐标系(用平台系p表示)相对于惯性空间的角速度 , b b w pb 得到机体坐标系相对于导航坐标系的角速度 ,并利用 w ip 该信号进行姿态矩阵的计算。在得到姿态矩阵 之后,p Cb 就可以把加速度计测量的沿机体坐标系轴向的比力信号 b p f f 变换成沿导航坐标系轴向的比力信号 ,然后由导航计 算机进行导航计算,得到导航位置和速度信息。同时, 利用姿态矩阵中的元素,还可以提取姿态和航向信息。 所以,姿态矩阵的计算,加速度信号的坐标变换以及姿 势航向角的计算,这三项功能实际上就代替了机械平台 的作用
p
. C 11 . C 21 . C 31
.
C 12
.
C 22
.
C 32
0 . C 23 0 . p ep y C 33
.
C 13
相关文档
最新文档