2芳基取代苯并恶唑的微波合成及光谱研究
微波辐射下2-芳基取代苯并咪唑的合成

H H 摘 要 : 报道了以 K O 为促进剂, HS 在微波辐射下通过邻苯二胺与各种芳醛的缩合反应, 较高产率合成了
2 芳 基 取 代 苯 并 咪 唑 . 合 成 方 法 具 有 条 件 温 和 、 作 简便 、 率 高 、 择 性 良好 、 应 时 间 短 等 优 点 . 一 该 操 产 选 反
MW
N
+ RCH0 —
—
KHSO4
>R I
N
H
1 实验部 分
1 1 主 要 仪 器 与 试 剂 .
F — T NMR Avn e40型 核磁 共振 仪 ( 士 B u e 公 司 , D 1 溶 剂 , a c 0 瑞 r kr C Cs为 TMS为 内 标 )F S4 G 型 红 外 光 谱 分 光 光 度 仪 ; T -0
取 0 5mmo 邻 苯 二 胺 ,0 5mmo 相应 . l . [
的 醛 , . 7 mmo KHS 4 DMF ( . ) 0 1 l O 和 1 5mL
依次 加 入 圆 底 烧 瓶 中,之 后 加 入 0 .5
ml 0, 合 均 匀 , 入微 波炉 中 , 2 0W Hz 混 放 于 0
首 先 研 究 了 不 同 溶 剂 中反 应 的 进 行 情 况 ( 1 . 表 ) 实验 表 明 : 当反 应 在 沸 点较 高 的溶 剂 如 D MF D O 中进 行 并 在 KHS 、 MS O
收 稿 日期 : 0 7 5 1 2 0 —0 — 4
基金 项 目 : 国科 学 院 知 识 创新 工 程 重 要 方 向项 目 ( 中 KGC 一S 一 6 2 ) X2 w 0 —5
辐射一定时 间( L T C跟 踪 ) 反 应 完 毕 后 冷 至 .
2_取代苯并噻唑的合成进展

并噻唑是一个较为直接的合成思路. Samat 等[20]以苯并噻唑和取代苯甲醛为原料合成 α-
羟基苄基苯并噻唑, 再还原得到取代的 2-苄基苯并噻唑 (Scheme 3). 该反应需要在氮气保护下低温进行, 条件 苛刻.
生产的要求, 而且产率很好, 即使在回收的离子液体(2 次或 3 次回收)中产率降低仍不明显. 3.3 以 2-卤代苯并噻唑为原料
Janda 等[41]通过邻氨基硫酚(邻氨基酚或邻苯二胺)
2 通过硫代酰胺或硫脲环化
由硫代酰胺或硫脲以及相应衍生物经环化生成 2取代苯并噻唑也是一种较常用的合成路线. 硫代酰胺或 硫脲可以根据实际需要自行设计合成, 因而产物中苯环 和 2 位的取代基可选择范围更大、更灵活. 只是反应需 多步完成, 反应时间通常比较长. 2.1 Jacobson 合成反应
* E-mail: yulu_wang889@ Received July 7, 2005; revised October 20, 2005; accept December 5, 2005.
No. 6
李焱等:2-取代苯并噻唑的合成进展
879
1.1 邻氨基硫酚与醛的反应
Kulenovic 等[22]用邻氨基硫酚与相应的醛在吡啶中 加热合成了 2-(5-芳基-2-呋喃基)苯并噻唑(Eq. 1). 该方 法由于使用有机溶剂, 会造成环境污染.
1.3 邻氨基硫酚与羧酸衍生物的反应
Srinivasan 等[38]研究了邻苯二胺与苯甲酰氯在多种 离子液体中的反应情况, 从中选出两种离子液体—— [Hbim]+BF4- (1-butylimidazolium tetrafluoroborate) 和 [bbim]+BF4- (1,3-di-n-butylimidazolium tetrafluoroborate), 并在其中进行了邻氨基硫酚(以及邻氨基酚、邻苯 二胺)与多种酰氯的反应(Eq. 11).
2-芳基苯并噻唑的合成研究进展

2-芳基苯并噻唑的合成研究进展摘要:2-芳基苯并噻唑是一类非常重要的杂环化合物,是构建药物分子、天然产物、功能材料和很多生物活性分子的骨架。
由于这些良好的特性,2-取代的苯并噻唑类化合物在医药方面有着很广泛的应用,它在抗菌、抗肿瘤、抗过敏、抗惊厥、消炎、保护神经系统和免疫调节等方面都有较好的活性。
关键词:2-芳基苯并噻唑;合成;研究一、2-芳基苯并噻唑的的重要性2-芳基苯并噻唑是一类非常重要的杂环化合物,是构建药物分子、天然产物、功能材料和很多生物活性分子的骨架[1] 例如,唑泊习他(zopolrestat1)是一种抑制醛糖还原酶的药物,能够治疗糖尿病[2];2-(4-氨基苯基)苯并噻唑及其衍生物(如5F203(2)和PMX610(3))是一类高效且具有良好选择性的抗肿瘤试剂,对人类乳腺癌、卵巢癌和结肠癌有毫微摩尔级的抑制活性;席夫碱(4)可用作类淀粉蛋白抑制剂,用于治疗老年痴呆症(图1)。
图1含取代基团的苯并噻唑类药物苯并噻唑类化合物在农用化学品中也表现出除草、抗菌和杀毒等方面的活性。
除草剂Benazoline是人工合成的具有生物活性的苯并噻唑衍生物。
另外,苯并噻唑类化合物在工程材料领域中也有着广泛应用,被用作塑料染色剂、橡胶硫化促进剂以及荧光探针材料等。
例如,荧光素存在于萤火虫中,在其体内经酶氧化导致生物发光;2-巯基苯并噻唑作为自由基转移试剂,在聚丁二烯和聚异戊二烯的硫化反应中起催化作用。
二、2-芳基苯并噻唑的合成研究进展1.以邻氨基芳基硫酚为原料合成2-芳基苯并噻唑最常用的方法是以邻氨基芳基硫酚为原料,和羧酸、醛、腈类、β-二酮或苄胺等缩合,该类反应经过了中间体邻酰氨基苯硫酚。
当使用芳基羧酸和邻氨基芳基硫酚反应时,一般需要在强酸或者高温条件下才能够得到较高产率的2-芳基苯并噻唑。
邻氨基苯硫酚和芳香醛也能够缩合得到2-芳基苯并噻唑,该方法一般需要Lewis酸或者强氧化剂。
除此之外,能够提供苯甲酰基的化合物都能与邻氨基苯硫酚反应生成2-芳基苯并噻唑。
1,4-苯并二氮杂卓类衍生物的合成方法研究进展

本科毕业论文题目:1,4-苯并二氮杂䓬类衍生物的合成方法研究进展学院:化学与环境工程学院班级:09应化3班姓名:***指导教师:解海职称:讲师完成日期:2013 年06 月05 日1,4-苯并二氮杂䓬类衍生物的合成方法研究进展摘要: 1,4-苯并二氮杂䓬类衍生物是一类具有特殊环结构的杂环化合物,在十九世纪被首次发现。
其拥有广泛的药用价值和生理活性,而且很多合成出来的化合物,如具有镇静催眠等作用的已经作为临床用药。
由于其拥有很高的应用前景和研究价值,所以其合成方法的研究也已经成为了有机化学合成的一个热点。
本文对1,4-苯并二氮杂䓬类衍生物的合成方法进行了比较详细的综述。
关键词: 1,4-苯并二氮杂䓬,合成方法,研究进展目录1 前言 (1)1.1 1,4-苯并二氮杂䓬的基本结构 (1)1.2 1,4-苯并二氮杂䓬在医药方面的应用 (1)2 1,4-苯并二氮杂䓬的合成 (2)2.1 1,4-苯并二氮杂䓬的合成方法分类 (2)2.1.1 多组分“一锅反应”制备法 (3)2.1.2 氨基与卤素之间的交叉偶联反应制备法 (6)2.1.3 氨基与羰基的缩合反应制备法 (8)展望 (9)参考文献 (9)致谢 (14)1 前言1,4-苯并二氮杂䓬类衍生物是一类具有特殊环结构的杂环化合物,在十九世纪被首次发现。
拥有广泛的药用价值和生理活性,其合成方法的研究以引起了相关领域研究人员的重视。
1.1 1,4-苯并二氮杂䓬的基本结构1,4-苯并二氮杂䓬是一类特殊的七元杂环苯并稠环化合物。
其基本骨架结构见图1。
根据七元杂环的不饱和程度,可以将其分为四氢或二氢化合物。
另外,与七元杂环并环的除了苯环,还可以是吡啶、吡咯、呋喃和噻吩等杂环; 也可以是多并的稠环化合物,还可以是单并的二环化合物。
NN123456789图1 Scheme 11.2 1,4-苯并二氮杂䓬在医药方面的应用1,4-苯并二氮杂䓬类衍生物是苯并二氮杂䓬类化合物的一个重要分支, 具有极其广泛的药用价值和生理活性[1]。
镍催化合成2-取代苯并呋喃化合物的研究

【 4 】 汪 秋安 ,丁 敏 ,景明 .2 一 取代 芳基 苯并 呋喃 类化 台物 的合 成[ J ] .合 成化
学 ,2 0 0 6, 1 4 f 2 1 :1 6 2 — 1 6 5 .
[ 5 】 蒲 文臣 ,王 飞 ,王淳 .2 . 芳基 苯并 [ b 】 呋 喃衍 生物 的生 物活 性与 合 成策略 有机 化学 ,2 0 I 1 ,3 1 ( 2 ) I 1 5 5 一 l 6 5 .
Fi g . 1 Sh i g ek o . O.s y n t h e s e d t he s t r u c t u r e of b e n z of u r a n c a t a l y z e d by t h e c omp l e x o f Ni / N
、 (
0
Zho u Ro n g, Ch e n Xi n
( C o l l e g e o f C h e mi c a l E n g i n e e r i n g . X i  ̄i a n g A g r i c u l t u r a l U n i v e r s i t y , U r u mq i 8 3 0 0 5 2 , C h i n a )
图 2 镍 催 化合成 苯 并呋 喃
F i g. 2 Th e s y n t h e s i s o f b e n z of u r a n c a t a l yz e d b y N
条 件 的优化 以氯化镍 催 化的邻 碘 苯酚 和苯 乙炔 关环 为模 板,对 反应 条件 进 行 了优 化 。 将 l 4 . 二氧 六环 、水 和 D MF作为溶 刺 ,发现醚 类溶 剂 l , 4 . 二 氧六环 和沸 点较 低 的水 均得 到衡量 的产 物 ,当使 用高沸 点质 子性 溶剂 D MF的结 果较好 ,升 高温 度至 1 2 0 ℃ 时,产 率可 达7 6 %( 表 l ,e n t r i e s 1 . 4 ) 。D MF为溶 剂的 条件下 分别 对 几种 不 同 类 型的碱 及其 用量 进 行 了筛 选 。 无机碱 结 果明 昆优于 有机碱 ( 表 1 , e n t r i e s 5 一 l 4 ) .强 碱 引 起 苯 乙炔 自偶联 产 物 不利 于 反应 的 进 行 , Na HC O 3 在 该条件 下 , 用 量为 2 m mo l 时以 7 6 %的 产率 得到 了 目标
suzuki反应的研究和应用进展

Suzuki反应的研究和应用进展李健摘要:近年来suzuki偶联反应在有机合成中体现出了越来越重要的作用,也是有机合成研究的热点。
本文综述了该反应的研究和应用进展。
关键词:suzuki反应,研究,应用Abstract:In recent years, the Suzuki coupling reaction incarnates more and more important role in organic synthesis research. And it is one of the central issues of organic synthesis. In this paper the latest study of the Suzuki coupling reaction and their applications are reviewed.Key words: Suzuki coupling reaction, research, application一、前言芳基—芳基的偶联反应是现在合成中重要的手段之一,这些片段在天然产物的合成中是和常见的(例如生物碱),在制药和农药,染料中都是经常见的。
[27]近几年来Mizoroki–Heck反应和Suzuki–Miyaura反应已经成为芳基偶联的常用的方法,传统的方法都是通过活化C—H键来实现C-C键的形成,而直接偶联的方法更具原子经济性。
[40]现在通过许多的金属试剂都可以实现偶联反应,这种方法提供了一种基础普通的合成方法。
1972年,Kumada、Tamato和Corriu独自报道了烯基或芳基的卤化物与有机镁的反应可以被Ni(Ⅱ)的化合物显著的催化。
Kochi报道了Fe(Ⅲ)可以有效的催化格氏试剂和卤代烯烃的偶联反应。
Murahashi 首先报道了Pd催化的格氏试剂的反应,然后这种催化效用随后被Negishi应用在有机铝试剂,锌试剂和锆试剂上。
热活化延迟荧光分子取代基位置对发光性质影响的理论研究

第62卷 第5期厦门大学学报(自然科学版)V o l .62 N o .5 2023年9月J o u r n a l o f X i a m e nU n i v e r s i t y (N a t u r a l S c i e n c e )S e p.2023 h t t p :ʊjx m u .x m u .e d u .c n d o i :10.6043/j.i s s n .0438-0479.202205013热活化延迟荧光分子取代基位置对发光性质影响的理论研究沈 钰1,张 晴2*,曹泽星1*(1.厦门大学化学化工学院,福建省理论与计算化学重点实验室,福建厦门361005;2.湖州师范学院工学院,湖州市环境功能材料与污染治理重点实验室,浙江湖州313000)摘要:热活化延迟荧光(T A D F )材料具有较高的激子利用率,在有机发光二极管(O L E D )研究中备受关注.与蓝色和绿色T A D F 分子相比,红色T A D F 分子发光能隙窄,其激发态很容易以不发光的非辐射方式失活回到基态,因此,实验上很难获得发光效率较高的红色T A D F 材料.本文应用密度泛函理论(D F T )和含时密度泛函理论(T D -D F T )方法,研究了互为异构体的T -D A -2和C -D A -2分子的电子吸收光谱㊁延迟荧光性质及光物理过程机制.结果表明,T -D A -2和C -D A -2分子的电子吸收谱主要来自基态到较高能级激发态的电子跃迁,并且其荧光发射遵循反-K a s h a 规则.和C -D A -2分子相比,异构体T -D A -2分子因其更小的内转换速率和更有效的反系间窜越过程而具有更好的荧光和延时荧光特性,表现出显著的取代基位置效应.关键词:热活化延迟荧光;激发态;取代基位置效应;含时密度泛函理论;量子力学/分子力学组合方法中图分类号:O644.17 文献标志码:A 文章编号:0438-0479(2023)05-0792-09收稿日期:2022-05-06 录用日期:2022-09-14基金项目:国家自然科学基金(21873078,21933009)*通信作者:z x c a o @x m u .e d u .c n (曹泽星);z h a n g q @z jh u .e d u .c n (张晴)引文格式:沈钰,张晴,曹泽星.热活化延迟荧光分子取代基位置对发光性质影响的理论研究[J ].厦门大学学报(自然科学版),2023,62(5):792-800.C i t a t i o n :S H E N Y ,Z H A N G Q ,C A O ZX .T h e o r e t i c a l s t u d y o f s u b s t i t u e n t p o s i t i o ne f f e c to n l u m i n e s c e n c e p r o pe r t i e sof t h e t h e r m a l l y a c t i v a t e d d e l a ye df l u o r e s c e n c em o l e c u l e s [J ].JX i a m e nU n i vN a t S c i ,2023,62(5):792-800.(i nC h i n e s e ) 热活化延迟荧光(T A D F)材料可以同时利用单重态和三重态激子发光,其最大内量子效率理论上可达100%,且T A D F 材料通常为不含贵金属的纯有机分子,价格低廉,具有十分广阔的应用前景[1-3].相对于传统的荧光材料,T A D F 材料可以通过反系间窜越(R I S C )过程从最低三重激发态(T 1)跃迁至最低单重激发态(S 1),再以发射延迟荧光的方式释放能量回到基态(S 0).因此,单-叁态之间的能级差(ΔE S T )对于T A D F 分子的延迟荧光性能至关重要.通常,可以通过最小化最低未占据分子轨道(L U M O )和最高占据分子轨道(H O M O )之间的轨道重叠,以获得足够小的ΔE S T[4-12]来实现有效的R I S C 过程.相关研究表明,一些基于蓝色和绿色T A D F 材料的有机发光二极管(O L E D )的外量子效率(E Q E )能达到30%以上[13-16],具有极大的实际应用价值.然而发光波长超过600n m 的红色T A D F 材料,由于发光能隙窄,在发光时通常伴随着显著的非辐射跃迁,导致其量子效率(ΦP L )普遍偏低[17-22].因此,研发具有较高ΦP L 和较小ΔE S T 的红色TA D F 材料仍然面临巨大挑战.基于常用的分子设计策略,可以通过构造高度扭曲的电子给体-受体(D -A )框架和/或增强给体和受体基团的刚性实现较小的ΔE S T .ΦP L 可由以下公式确定[23-24]:ΦP L =k r /(k r +k I C ),(1)其中,k r 是荧光过程的辐射跃迁速率,k I C 则是衡量不发光的非辐射跃迁过程的内转换(I C )速率.由式(1)可知,抑制不发光的I C 过程,增强发光的辐射跃迁过程,可以有效地提高发光材料的ΦP L .通过构造刚性强的平面稠环结构,可以有效地抑制D -A 分子骨架的旋转和振动,继而抑制其非辐射衰减过程.最近,C h e n 等[25]报道的10-(二苯并[a ,c ]二吡啶并[3,2-h :2 ,3 -j]吩嗪-12-基)-10H -吩恶嗪(B P P Z -P X Z )红色T A D F 分子的发射波长为607n m ,ΦP L 高达100%.Z h a n g 等[26]报道的红色T A D F 分子11,12-双(4-(二苯胺基)苯基)二苯并[a ,c ]酚嗪-3,6-二腈(T P A -P Z C N )的发射波长为628n m ,ΦP L 高达97%.然而,波长大于630n m Copyright ©博看网. All Rights Reserved.第5期沈 钰等:热活化延迟荧光分子取代基位置对发光性质影响的理论研究h t t p :ʊjx m u .x m u .e d u .c n 的高效红色T A D F 分子目前鲜有报道,且对分子结构影响荧光发射过程的机制也缺乏充分了解.因此,进一步认识光物理性质与分子结构之间的关系,对于高性能红色T A D F 分子材料的设计至关重要.基于Y a n g 等[27]合成的光功能分子的两种异构体T -D A -2和C -D A -2(图1),本文对其延迟荧光性质和发光机制进行了系统的计算模拟研究.其中,菲[4,5-a b c ]吩嗪-11,12-二甲腈(P P D C N )为电子受体基团,9,9-二苯基吖啶-10(9H )-基(D P A C )为电子给体基团.通过理论计算,本研究预测了其单体分子的吸收光谱㊁发光性质㊁辐射跃迁速率㊁非辐射跃迁速率以及系间窜越(I S C )和R I S C 速率,探讨了D P A C 基团相对位置的变化对T -D A -2和C -D A -2分子的光物理过程及其T A D F 性能的影响;此外,还采用O N I O M 方法研究了固态环境对T -D A -2和C -D A -2分子荧光性质的影响.图1 T -D A -2和C -D A -2分子的化学结构和球棍模型结构[27]F i g.1C h e m i c a l s t r u c t u r e s a n d b a l l -s t i c km o d e l s t r u c t u r e s o f T -D A -2a n dC -D A -2m o l e c u l e s [27]1 计算细节应用M 06泛函和6-31G (d ,p )基组[28],优化了T -D A -2和C -D A -2分子的S 0㊁低能级激发态(S 1㊁S 2㊁S 3)和较低三重激发态的几何结构并分析了振动频率,所有态平衡结构的谐振动频率都是正值,均为势能面上的稳定结构.基于S 0和S 1的优化几何构型,采用结合极化连续介质模型(P C M )的T D -M 06方法,分别模拟了T -D A -2和C -D A -2分子在甲苯溶液中的紫外-可见吸收光谱和荧光发射性质.所有密度泛函理论(D F T )[29]和含时密度泛函理论(T D -D F T )[30]计算均在G a u s s i a n 16软件[31]中完成.根据爱因斯坦自发辐射方程,分别估算了T -D A -2和C -D A -2分子在荧光发射过程中的辐射跃迁速率(k r ).采用M O M A P 程序包[32-33]定量估算了S 1ңS 0的内转换速率(k I C ),并结合A D F2016软件包[34]计算的单重激发态和三重激发态之间的自旋轨道耦合(S O C )常数(<S n |ĤS O C |T m >),定量估算了单-叁态之间的I S C 速率(k I S C )和R I S C 速率(k R I S C ).此外,采用M u l t i w f n 程序包[35]分析了荧光发射过程中电子跃迁的自然轨道(N T O )分布.基于两层的O N I O M 模型,采用量子力学/分子力学(Q M /MM )组合的计算方法[36],研究固态环境对T -D A -2和C -D A -2分子发光性质的影响.在Q M /MM 方法中,Q M 方法只对中心分子进行结构优化和电子激发研究,而周围的分子作为环境被冻结,并采用低精度的MM 方法模拟.此外,还采用静电嵌入[37]的方式模拟了Q M 区和MM 区之间的静电相互作用.基于从文献中提取的单晶结构[27],以Q M 区的分子为中心,截取其周围1.0n m 以内的所有分子组成团簇,构建Q M /MM 计算的初始模型.通过T D -D F T /M 06-6-31G (d ,p)计算,优化中心Q M 分子的几何结构.计算中采用基于电荷均衡方法(Q E Q )计算的原子电荷和通用的力场(U F F )[38],对MM 环境分子进行模拟.2 结果与讨论2.1 电子吸收光谱基于优化的S 0几何构型,采用T D -M 06泛函并结合P C M ,分别模拟了T -D A -2和C -D A -2分子在甲苯溶液中的紫外-可见吸收光谱,如图2所示.通过比较实验[27]和理论光谱可以看出,在300~500n m 的波长范围内,理论模拟的T -D A -2和C -D A -2分子的两个主要吸收峰的相对位置和具体的出峰位置都与实验观测峰具有较好的重现性,说明T D -M 06/6-31G (d ,p )方法可以合理预测T -D A -2和C -D A -2分子的激发态性质.计算表明,T -D A -2分子分别在331和478n m 处有两个明显的吸收峰,其在478n m 处的吸收峰源于S 0ңS 6的电子跃迁.和T -D A -2分子类似,C -D A -2分子分别在342和455n m 处有两个吸收峰,并且其在455n m 处的吸收峰来自S 0ңS 8的电子跃迁.此外,T -D A -2和C -D A -2分子的S 0ңS 1跃迁的振子强度接近于零,对光吸收过程的贡献很小,由此可以推测这两种分子的S 1可能具有较低的光学活性.㊃397㊃Copyright ©博看网. All Rights Reserved.厦门大学学报(自然科学版)2023年h t t p :ʊjx m u .x m u .e d u .cn 图2 采用T D -M 06方法预测的T -D A -2和C -D A -2分子在甲苯溶液中的吸收光谱及其对应的实验光谱F i g .2A b s o r p t i o n s p e c t r a p r e d i c t e d b y TD -M 06m e t h o d o f T -D A -2a n dC -D A -2m o l e c u l e s i n t o l u e n e s o l u t i o n a n d t h e c o r r e s p o n d i n g e x p e r i m e n t a l a b s o r p t i o n s pe c t r a 2.2 荧光发射性质基于优化的低能级激发态(S 1㊁S 2和S 3)的几何构型(图3),采用T D -M 06泛函并结合P C M ,研究了T -D A -2和C -D A -2分子在甲苯溶液中的荧光发射.考虑到计算方法对荧光发射性质的影响,分别采用M 06㊁P B E 0㊁M P W 1B 95㊁M N 15和B M K 等具有不同H a r t r e e -F o c k 成分的杂化泛函,计算模拟了T -D A -2和C -D A -2分子在甲苯溶液中的荧光发射,相应的垂直发射波长(λe m )和振子强度(f )列于表1,实验测得的两种分子在甲苯溶液中的荧光发射峰分别为638和726n m [27].根据K a s h a 规则[39],在光化学中的发光态通常都为S 1,然而如表1所示,上述泛函计算预测的T -D A -2和C -D A -2分子S 1的振子强度几乎都接近于零,说明其S 1很有可能都是荧光暗态.图3 M 06方法优化的T -D A -2和C -D A -2分子的S 1(黑色)㊁S 2(蓝色)和S 3(红色)的几何构型F i g.3G e o m e t r i c a l s t r u c t u r e s o f T -D A -2a n dC -D A -2m o l e c u l e s a t S 1(b l a c k ),S 2(b l u e )a n d S 3(r e d )o p t i m i z e d b y M 06m e t h o d 表1 采用不同方法预测的T -D A -2和C -D A -2分子在甲苯溶液中S 1㊁S 2和S 3的垂直发射波长和对应的振子强度T a b .1 V e r t i c a l e m i s s i o nw a v e l e n g t h s a n d c o r r e s p o n d i n g o s c i l l a t o r s t r e n gt h s o f T -D A -2a n dC -D A -2m o l e c u l e s i n t o l u e n e s o l u t i o n a t S 1,S 2a n d S 3p r e d i c t e d b y d i f f e r e n tm e t h o d s 分子方法λe m/n m fS 1S 2S 3S 1S 2S 3T -D A -2M 067105514940.00020.27030.0012P B E 07655034960.00010.30440M P W 1B 9566047845300.33960.0001M N 155304483960.00010.44110.0093B M K5544374030.00020.44610.0006C -D A -2M 068035714660.00030.00030.2042P B E 09785614860.00010.00020.2134M P W 1B 958535174630.00010.00080.2357M N 156944484330.00030.00450.2878B M K6994524260.00020.2898㊃497㊃Copyright ©博看网. All Rights Reserved.第5期沈 钰等:热活化延迟荧光分子取代基位置对发光性质影响的理论研究h t t p :ʊjx m u .x m u .e d u .c n 表1结果表明,实验检测到T -D A -2和C -D A -2分子在甲苯溶液中的荧光发射,很有可能来自较高能级的单重激发态而非S 1,即遵循反-K a s h a 规则[40-43].理论模拟的T -D A -2和C -D A -2分子的荧光发射波长和泛函的选择密切相关,很难有一种泛函可以同时准确预估T -D A -2和C -D A -2分子的荧光发射波长.由于这两种分子的荧光发射受溶剂影响显著,可以推测在不同极性溶剂中其发射波长波动性较大,T D -D F T 方法结合P C M 不能很好地模拟T -D A -2和C -D A -2分子的荧光发射激发态的性质.与荧光发射相比,吸收光谱则几乎不受溶剂影响,T D -M 06泛函可以很好地重现T -D A -2和C -D A -2分子的吸收谱图(图2),因此本研究最终选择M 06泛函定性地模拟T -D A -2和C -D A -2分子的电子结构和激发性能.采用T D -M 06方法预测的T -D A -2分子S 2态的振子强度为0.2703,比其S 1的振子强度(f =0.0002)明显大很多,相应的发射波长为551n m.对于C -D A -2分子,采用T D -M 06方法预测的S 1和S 2的振子强度均接近于零,而其S 3的振子强度为0.2042,相应的发射波长为466n m.进一步分析发现,T -D A -2和C -D A -2分子S 1的跃迁偶极矩分别只有0.19和0.25D ,而T -D A -2分子S 2和C -D A -2分子S 3的跃迁偶极矩却分别高达5.63和4.75D .由此推测,尽管计算预测S 1的荧光发射和实验观测到的光致发光能区更接近,但是由于其缺乏光物理活性,T -D A -2和C -D A -2异构体的荧光发射更有可能分别源自其较高能级激发态S 2和S 3的直接辐射,表现出反-K a s h a 特征.同时D P A C 给电子基团位置的变化,可以显著影响T -D A -2和C -D A -2异构体的荧光发射态以及相应的激发态光物理性质.2.3 延迟荧光光物理过程如图4所示,基于T -D A -2和C -D A -2分子优化的S 1和S 2/S 3构型,分别绘制了分子的S 1ңS 0和S 2/S 3ңS 0的NT O 分布图,并标注了相应激发态的跃迁能㊁振子强度,以及电荷转移跃迁(C T )所占的百分比.对于T -D A -2和C -T D -2分子,所列激发态的空穴主要位于D P A C 基团中3个苯环组成的π平面上,而电子主要分布在P P D C N 基团的π平面上,表现出显著的电荷转移特征.进一步分析发现,T -D A -2和C -T D -2分子的S 1和S 2/S 3跃迁至S 0时的电荷转移比例都高达93%以上,说明从激发态跃迁至S 0时电荷分布的重叠程度很低,这两种分子的ΔE S T 较小.图4 T -D A -2分子的S 1ңS 0和S 2ңS 0,以及C -D A -2分子的S 1ңS 0和S 3ңS 0跃迁的NT O 分布F i g.4T h eN T Od i s t r i b u t i o n f o r S 1ңS 0a n d S 2ңS 0o f T -D A -2m o l e c u l e ,a n d f o r S 1ңS 0a n d S 3ңS 0of C -D A -2m o l e c u l e 为了进一步判断T -D A -2和C -D A -2分子的荧光发射态和失活途径,分别模拟了T -D A -2和C -D A -2分子S 1ңS 0的k r 和k I C ㊁T -D A -2分子S 2ңS 0和C -D A -2分子S 3ңS 0的k r 和k I C ,及其相应的k I S C 和k R I S C等光物理过程的速率.计算结果(表2)表明:T -D A -2和C -D A -2分子S 1ңS 0的k r 分别为4.02ˑ104和2.60ˑ104s -1,而k I C 分别高达9.03ˑ109和6.06ˑ1010s -1,远远大于k r ;此外,T -D A -2和C -D A -2分子的S 1到与其能量最接近的T 1的k I S C 分别只有3.84ˑ104和5.25ˑ106s -1,远低于它们相应的k I C .由此推测,T -D A -2和C -D A -2分子S 1的能量主要以不发光的IC 方式失活.随后又分析了T -D A -2和C -D A -2分子较高能级的S 2/S 3的光物理过程.虽然T -D A -2分子S 2ңS 0和C -D A -2分子S 3ңS 0的k I C 分别达到1.30ˑ1010和4.03ˑ1010s -1,但是T -D A -2分子S 2ңS 0的k r 为9.74ˑ107s -1,C -D A -2分子S 3ңS 0的k r 为1.06ˑ108s -1,相对于S 1,T -D A -2和C -D A -2分子的较高能级激发态可以发生更有效的辐射跃迁.进一步分析发现,T -D A -2㊃597㊃Copyright ©博看网. All Rights Reserved.厦门大学学报(自然科学版)2023年h t t p :ʊjx m u .x m u .e d u .c n 分子S 2ңS 0的寿命为10.26n s ,C -D A -2分子S 3ңS 0的寿命为9.40n s .综上所述,相对于S 1,T -D A -2分子的S 2和C -D A -2分子的S 3更有可能是荧光态,即这两种分子的荧光发射遵循反-K a s h a 规则.表2 T -D A -2和C -D A -2分子的延迟荧光光物理过程的相关速率参数T a b .2 R a t e p a r a m e t e r s r e l a t e d t o d e l a ye df l u o r e s c e n c e p h o t o p h y s i c a l pr o c e s s e s o f T -D A -2a n dC -D A -2m o l e c u l e s 速率过程T -D A -2C -D A -2k r /104s -1S 1ңS 04.022.60k r /107s -1S n ңS 09.7410.6k I C/109s -1S 1ңS 09.0360.6k I C/1010s -1S n ңS 01.304.03k I S C /104s -1S 1ңT 13.84525k I S C/105s -1S n ңT 45.29562k I S C/106s -1S n ңT 54.503.55k R I S C /105s -1T 4ңS n 5.2913.5k R I S C/106s -1T 5ңS n 4.500.0836 注:对于T -D A -2和C -D A -2分子,S n 分别为S 2和S 3.由于T -D A -2分子的S 2和C -D A -2分子的S 3都分别与其对应的T 4的能级最接近,相应的能差分别为0.03和0.21e V (表3),所以首先考虑T -D A -2分子的S 2和T 4以及C -D A -2分子的S 3和T 4之间的IS C 和R I S C 过程.基于M O M A P 程序估算的T -D A -2分子S 2和T 4之间的k I S C 和k R I S C 均为5.29ˑ105s -1,明显小于其S 2ңS 0的k r (9.74ˑ107s -1)和k I C (1.30ˑ1010s -1),说明T -D A -2分子S 2和T 4之间无法发生有效的IS C 和R I S C 过程.进一步分析发现,T -D A -2分子的S 2和T 5之间的能差为0.19e V ,虽然比S 2和T 4之间的能差(0.03e V )大,但是其<S 2|ĤS O C |T 5>为0.35c m -1,明显大于<S 2|ĤS O C |T 4>的值(0.12c m -1),也大于<S 2|ĤS O C |T 6>(0.13c m -1)以及<S 2|ĤS O C |T 7>的值(0.17c m -1)(表3),推测T -D A -2分子的S 2和T 5之间可能具有更加有效的I S C 和R I S C 过程.基于M O M A P 程序估算的T -D A -2分子S 2和T 5之间的k I S C和k R I S C 均为4.50ˑ106s -1,明显大于其S 2和T 4之间的k I S C 和k R I S C (5.29ˑ105s -1),并且该值与T -D A -2分子S 2ңS 0的k r 相当(9.74ˑ107s -1),说明T -D A -2分子的S 2和T 5之间可以发生有效的IS C 和R I S C 过程,继而发射延迟荧光.理论估算的C -D A -2分子的S 3和T 4之间的k I S C 和k R I S C 分别为5.62ˑ107和1.35ˑ106s -1,而其S 3和T 5之间k I S C 和k R I S C 分别为3.55ˑ106和8.36ˑ104s -1,说明C -D A -2分子的S 3和T 4之间具有更加有效的I S C 和R I S C 过程.此外,C -D A -2分子的S 3和T 4之间的k I S C (5.62ˑ107s -1)和k R I S C(1.35ˑ106s -1)与其S 3ңS 0的k r (1.06ˑ108s -1)相差不多,说明C -D A -2分子也可以发生有效的I S C 和R I S C 过程,继而发射延迟荧光.表3 T -D A -2和C -D A -2分子的ΔE S T 与<S n |ĤS O C |T m >T a b .3 ΔE S T a n d <S n |ĤS O C |T m >o f T -D A -2a n dC -D A -2m o l e c u l e s 分子ΔE S T (S n -T 4)/e V<S n |ĤS O C |T 4>/c m -1<S n |ĤS O C |T 5>/c m -1<S n |ĤS O C |T 6>/c m -1<S n |ĤS O C |T 7>/c m -1T -D A -20.030.120.350.130.17C -D A -20.210.700.160.150.07注:对于T -D A -2和C -D A -2分子,S n 分别为S 2和S 3.虽然C -D A -2分子S 3ңT 4的k I S C (5.62ˑ107s -1)比T -D A -2分子S 2ңT 5的k I S C (4.50ˑ106s -1)大一个数量级,然而T -D A -2分子的T 5ңS 2的k R I S C (4.50ˑ106s -1)却比C -D A -2分子T 4ңS 3的k R I S C (1.35ˑ106s -1)大,说明T -D A -2分子具有更加有效的R I S C过程.上述理论模拟的N T O 分布图㊁ΔE S T 和光物理过程的速率,合理地解释了T -D A -2和C -D A -2分子具有的延迟荧光性能,同时T -D A -2分子因为具有更加有效的R I S C 过程而具有更好的延迟荧光性能.T -D A -2和C -D A -2分子的延迟荧光光物理过程机制如图5所示.2.4 固态环境中的荧光发射为了研究固态环境对发光性质的影响,本研究分别构建了T -D A -2和C -D A -2分子在固态环境中的两层O N I O M 计算模型,O N I O M 模型中的Q M 和MM 分区如图6所示.采用Q M /MM 组合的计算方法,分别模拟了T -D A -2和C -D A -2分子在固态环境中的吸收光谱和荧光发射性质,表4给出了相应的主要谱峰㊃697㊃Copyright ©博看网. All Rights Reserved.第5期沈 钰等:热活化延迟荧光分子取代基位置对发光性质影响的理论研究h t t p :ʊjx m u .x m u .e d u .cn 图5 T -D A -2和C -D A -2分子在甲苯溶液中的T A D F 光物理过程F i g .5T h e p h o t o p h y s i c a l pr o c e s s o f t h eT A D F f o rT -D A -2a n dC -D A -2m o l e c u l e s i n t o l u e n e s o l u t i o n 位置和荧光发射的振子强度.计算结果表明,在固态和溶液环境中,T -D A -2和C -D A -2分子的荧光发射过程一致,在实验上观测到的发射峰分别为S 2ңS 0和S 3ңS 0的荧光发射.由于在O N I O M 模型中优化高能级三重态比较困难,所以基于S 0的几何构型,计算预测T -D A -2和C -D A -2异构体的ΔE S T 分别为0.03和0.04e V ,均较小,说明I S C 和R I S C 过程可以发生.图6 T -D A -2和C -D A -2分子的两层O N I O M 模型F i g .6T w o -l a ye rO N I O M m o d e l s of T -D A -2a n d C -D A -2m o l e c u l e s表4 基于T D -M 06/6-31G (d ,p)方法预测的T -D A -2和C -D A -2分子在固态环境中的吸收峰(λa b s 1和λa b s 2)㊁λe m 以及相应的f 和ΔE S TT a b .4 A b s o r p t i o n p e a k s (λa b s 1a n d λa b s 2),λe m a n d t h e c o r r e s p o n d i n g f a n dΔE S T o f T -D A -2a n dC -D A -2m o l e c u l e s i n s o l i d e n v i r o n m e n t p r e d i c t e d b yt h e T D -M 06/6-31G (d ,p )m e t h o d 分子λa b s 1/n m λa b s 2/n m λe m/n m fΔE S T /e V T -D A -23744905510.18250.03C -D A -23584605190.12610.04注:T -D A -2和C -D A -2分子的λe m 分别对应于S 2ңS 0和S 3ңS 0,ΔE S T 则分别对应于S 2ңT 4和S 3ңT 6.为了评估基态和相关激发态几何构型之间的整体差异,基于均方根位移(R M S D ),比较了T -D A -2和C -D A -2分子在甲苯溶液和固态环境中基态与荧光发射态的几何构型变化.如图7所示,在甲苯溶液中,T -D A -2分子的S 0v s S 2和C -D A -2分子的S 0v sS 3的R M S D 分别为0.103和1.247Å.和T -D A -2分子相比,C -D A -2分子的荧光发射态的几何构型发生了明显的变化.从图7中的结构对比可以看出,C -D A -2分子的S 0v s S 3较大的构型差异主要源于DP A C 基团中的一个苯环发生了明显的扭转,这种结构弛豫导致C -D A -2分子(4.03ˑ1010s -1)具有比T -D A -2分子(1.30ˑ1010s -1)更大的k I C .在固态环境中,T -D A -2分子的S 0v s S 2和C -D A -2分子的S 0v sS 3的RM S D 分别为0.018和0.024Å,明显小于甲苯溶液中的构型变化,说明在固态环境中分子的聚集可以有效抑制T -D A -2和C -D A -2分子激发态的结构弛豫,减小非辐射跃迁的速率,有助于提高其荧光发光效率.图7 T -D A -2和C -D A -2分子在甲苯溶液中和固态时S 0(红色)与荧光发射态(蓝色)的构型相对变化及R M S DF i g .7G e o m e t r y c o m pa r i s o n a n dR M S D f o r S 0(r e d )a n d t h e e m i s s i o n s t a t e s (b l u e )o f T -D A -2a n dC -D A -2m o l e c u l e s i n t o l u e n e s o l u t i o n a n d s o l i d s t a t e ㊃797㊃Copyright ©博看网. All Rights Reserved.厦门大学学报(自然科学版)2023年h t t p :ʊjx m u .x m u .e d u .c n 3 结 论本文采用D F T 和T D -D F T 计算方法,系统地研究了T -D A -2和C -D A -2分子的电子吸收光谱㊁荧光发射性质及延迟荧光光物理过程.计算表明,T -D A -2和C -D A -2分子在478和455n m 处的吸收峰分别源自S 0态到较高能级激发态的电子跃迁,说明高能级激发态可能具有更高的光物理活性.在溶液和固态环境中,T -D A -2和C -D A -2分子的荧光发射态分别为S 2和S 3,均遵循反-K a s h a 规则.在溶液环境中,和C -D A -2分子相比,理论预估的T -D A -2分子因为具有更加有效的R I S C 过程和更小的k I C 而具有更好的延迟荧光性能.此外,固态环境中分子的聚集可以有效抑制T -D A -2和C -D A -2分子激发态的结构弛豫,提高其发光效率.计算结果也揭示,D P A C 电子给体基团位置的变化,使T -D A -2分子在荧光发射时具有更小的构型弛豫和更有效的R I S C 过程,继而可以显著影响异构体T -D A -2和C -D A -2的荧光和延迟荧光性质.参考文献:[1] U O Y A M AH ,G O U S H IK ,S H I Z UK ,e t a l .H i g h l y e f f i c i e n t o r g a n i cl i g h t -e m i t t i n g d i o d e sf r o m d e l a ye df l u o r e s c e n c e [J ].N a t u r e ,2012,492(7428):234-238.[2] H I R A T A S ,S A K A IY M ,M A S U IK ,e t a l .H i g h l y ef f i c i e n t b l u ee l e c t r o l u m i n e s c e n c e b a s e d o n t h e r m a l l y ac t i v a t ed de l a ye df l u o r e s c e n c e [J ].N a t u r e M a t e r i a l s ,2015,14(3):330-336.[3] R A J A M A L L IP ,S E N T H I L K U M A R N ,G A N D E E P A NP ,e ta l .A n e w m o l e c u l a rd e s i g n b a s e d o nt h e r m a l l ya c t i v a t e d d e l a y e d f l u o r e s c e n c e f o r h i g h l y e f f i c i e n t o r g a n i c l i g h te m i t t i n g di o d e s [J ].J o u r n a l o f t h e A m e r i c a n C h e m i c a l S o c i e t y,2016,138(2):628-634.[4] K A J IH ,S U Z U K IH ,F U K U S H I M AT ,e t a l .P u r e l y o r g a n i c e l e c t r o l u m i n e s c e n t m a t e r i a lr e a l i z i n g 100%c o n v e r s i o n f r o m e l e c t r i c i t y t ol i g h t [J ].N a t u r e C o m m u n i c a t i o n s ,2015,6(1):1-8.[5] K A W A S U M IK ,W U T ,Z H U T Y ,e ta l .T h e r m a l l ya c t i v a t e d d e l a ye df l u o r e s c e n c e m a t e r i a l s b a s e d o n h o m o c o n j ug a t i o n e f f e c t o f d o n o r -a c c e p t o r t r i p t yc e n e s [J ].J o u r n a lo ft h e A m e r i c a n C h e m i c a lS o c i e t y,2015,137(37):11908-11911.[6] Z H A N GJ ,D I N G D X ,W E IY ,e ta l .M u l t i p h o s ph i n e -o x i d eh o s t sf o ru l t r a l o w -v o l t a g e -d r i v e nt r u e -b l u et h e r m a l l ya c t i v a t e d d e l a ye df l u o r e s c e n c e d i o d e s w i t h e x t e r n a l q u a n t u me f f i c i e n c y b e y o n d 20%[J ].A d v a n c e dM a t e r i a l s ,2016,28(3):479-485.[7] O B O L D AA ,P E N GQ M ,H ECY ,e t a l .T r i p l e t -po l a r o n -i n t e r a c t i o n -i n d u c e d u p c o n v e r s i o n f r o mt r i p l e t t o s i n g l e t :a p o s s i b l e w a y t o o b t a i n h i g h l y ef f i c i e n t O L E D s [J ].A d v a n c e dM a t e r i a l s ,2016,28(23):4740-4746.[8] L I U W ,C H E NJX ,Z H E N GCJ ,e t a l .N o v e l s t r a t e g yt o d e v e l o p e x c i p l e x e m i t t e r s f o r h i g h -p e r f o r m a n c e O L E D s b ye m p l o y i n g t h e r m a l l y a c t i v a t e d d e l a y e df l u o r e s c e n c e m a t e r i a l s [J ].A d v a n c e d F u n c t i o n a l M a t e r i a l s ,2016,26(12):2036.[9] D A T AP ,P A N D E RP ,O K A Z A K IM ,e t a l .D i b e n z o [a ,j]p h e n a z i n e -c o r e d d o n o r -a c c e p t o r -d o n o r c o m po u n d s a s g r e e n -t o -r e d /N I Rt h e r m a l l y a c t i v a t e d d e l a ye df l u o r e s c e n c e o rg a n i c l i gh t e mi t t e r s [J ].A n ge w a n d t e C h e m i e I n t e r n a t i o n a l E d i t i o n ,2016,55(19):5739-5744.[10] W O N G M Y ,Z Y S M A N -C O L M A N E .P u r e l y o r ga n i c t h e r m a l l y a c t i v a t e dd e l a ye df l u o r e s c e n c e m a t e r i a l sf o r o rg a n i c l i gh t -e mi t t i n g di o d e s [J ].A d v a n c e d M a t e r i a l s ,2017,29(22):1605444.[11] E T H E R I N G T O N M K ,F R A N C H E L L OF ,G I B S O NJ,e t a l .R e g i o -a n dc o n f o r m a t i o n a l i s o m e r i z a t i o nc r i t i c a l t o d e s i g n o f e f f i c i e n t t h e r m a l l y -a c t i v a t e dd e l a ye df l u o r e s c e n c e e m i t t e r s [J ].N a t u r e C o m m u n i c a t i o n s ,2017,8(1):1-11.[12] Z H A N GDD ,Q I A OJ ,Z H A N GD Q ,e t a l .U l t r a h i gh -e f f i c i e n c yg r e e nP H O L E D sw i t hav o l t a g eu n d e r3V a n da p o w e re f f i c i e n c y o fn e a r l y 110l m ㊃W -1a t l u m i n a n c e o f 10000c d ㊃m -2[J ].A d v a n c e d M a t e r i a l s,2017,29(40):1702847.[13] L I NTA ,C H A T T E R J E ET ,T S A IW L ,e t a l .S k y-b l u e o r g a n i c l i g h t e m i t t i n g d i o d ew i t h 37%e x t e r n a l qu a n t u m e f f i c i e n c y u s i n g t h e r m a l l y a c t i v a t e dd e l a ye df l u o r e s c e n c e f r o m s p i r o a c r i d i n e -t r i a z i n e h y b r i d [J ].A d v a n c e d M a t e r i a l s ,2016,28(32):6976-6983.[14] A H ND H ,K I M S W ,L E E H ,e ta l .H i g h l y ef f i c i e n t b l u et h e r m a l l y a c t i v a t e dd e l a y e df l u o r e s c e n c ee m i t t e r s b a s e do ns y m m e t r i c a la n dr ig i do x y g e n -b r i d ge db o r o n a c c e pt o r s [J ].N a t u r e P h o t o n i c s ,2019,13(8):540-546.[15] K O N D OY ,Y O S H I U R AK ,K I T E R AS ,e t a l .N a r r o w b a n dd e e p -b l u e o r g a n i c l i g h t -e m i t t i n g d i o d e f e a t u r i n g an o r ga n ob o r o n -b a s e d e m i t t e r [J ].N a t u r eP h o t o n ic s ,2019,13(10):678-682.[16] W UTL ,H U A N GMJ ,L I NCC ,e t a l .D i b o r o n c o m po u n d -b a s e do r g a n i c l i g h t -e m i t t i n g d i o d e sw i t hh i g he f f i c i e n c ya n dr e d u c e de f f i c i e n c y ro l l -o f f [J ].N a t u r e P h o t o n i c s ,2018,12(4):235-240.[17] E N G L M A N R ,J O R T N E RJ .T h ee n e r g yg a p la wf o r r a d i a t i o n l e s s t r a n s i t i o n s i n l a r gem o l e c u l e s [J ].M o l e c u l a r P h ys i c s ,1970,18(2):145-164.㊃897㊃Copyright ©博看网. All Rights Reserved.第5期沈 钰等:热活化延迟荧光分子取代基位置对发光性质影响的理论研究h t t p :ʊjx m u .x m u .e d u .c n [18] C A S P A RJV ,K O B E R E M ,S U L L I V A N BP ,e ta l .A p p l i c a t i o n o f t h e e n e r g y g a p l a w t o t h e d e c a y o f c h a r g e -t r a n s f e re x c i t e d s t a t e s [J ].J o u r n a lo ft h e A m e r i c a nC h e m i c a l S o c i e t y ,1982,104(2):630-632.[19] C U MM I N G SSD ,E I S E N B E R GR .T u n i n g th e e x c i t e d -s t a t e p r o p e r t i e s o f p l a t i n u m (Ⅱ)d i i m i n e d i t h i o l a t e c o m pl e x e s [J ].J o u r n a l o f t h e A m e r i c a n C h e m i c a l S o c i e t y,1996,118(8):1949-1960.[20] W I L S O NJ S ,C H A W D H U R Y N ,A L -M A N D H A R Y M R ,e ta l .T h ee n e r g yg a p l a wf o rt r i pl e ts t a t e si nP t -c o n t a i n i n g c o n j u g a t e d p o l ym e r s a n d m o n o m e r s [J ].J o u r n a lo ft h e A m e r i c a n C h e m i c a lS o c i e t y,2001,123(38):9412-9417.[21] Z H A N GQS ,L I J ,S H I Z U K ,e t a l .D e s i gno f e f f i c i e n t t h e r m a l l y a c t i v a t e dd e l a ye df l u o r e s c e n c e m a t e r i a l sf o r p u r e b l u e o rg a n i c l i gh t e mi t t i n g d i o d e s [J ].J o u r n a l o f t h e A m e r i c a nC h e m i c a l S o c i e t y,2012,134(36):14706-14709.[22] J A N K U SV ,D A T A P ,G R A V E S D ,e t a l .H i g h l y ef f i c i e n t T A D FO L E D s :h o w t h e e m i t t e r -h o s t i n t e r a c t i o n c o n t r o l sb o t h t h e e xc i t ed s t a te s p e c i e s a n d e l e c t r i c a l p r o pe r t i e s of t h e d e v i c e s t o a c h i e v e n e a r 100%t r i p l e t h a r v e s t i ng an d h i g h e f f i c i e n c y [J ].A d v a n c e d F u n c t i o n a l M a t e r i a l s ,2014,24(39):6178-6186.[23] Z H A N G QS ,L IB ,H U A N GSP ,e t a l .E f f i c i e n t b l u eo r g a n i c l i g h t -e m i t t i n g d i o d e s e m p l o y i n g t h e r m a l l ya c t i v a t e dd e l a ye df l u o r e s c e n c e [J ].N a t u r e P h o t o n i c s ,2014,8(4):326-332.[24] Z H A N G QS ,K U W A B A R A H ,P O T S C A V A G E WJ,J r ,e ta l .A n t h r a q u i n o n e -b a s e di n t r a m o l e c u l a rc h a r ge -t r a n sf e rc o m p o u n d s :c o m p u t a t i o n a l m o l e c u l a r d e s i gn ,t h e r m a l l y a c t i v a t e d d e l a y e d f l u o r e s c e n c e ,a n d h i g h l y e f f i c i e n tr e d e l e c t r o l u m i n e s c e n c e [J ].J o u r n a lo ft h eA m e r i c a n C h e m i c a l S o c i e t y ,2014,136(52):18070-18081.[25] C H E NJX ,T A O W W ,C H E N W C ,e t a l .R e d /n e a r -i n f r a r e d t h e r m a l l y a c t i v a t e d d e l a y e d f l u o r e s c e n c eO L E D s w i t h n e a r 100%i n t e r n a l q u a n t u m e f f i c i e n c y [J ].A n ge w a n d t e C h e m i e I n t e r n a t i o n a l E d i t i o n ,2019,58(41):14660-14665.[26] Z H A N GYL ,R A N Q ,W A N G Q ,e t a l .H i g h -e f f i c i e n c yr e d o r g a n i c l i g h t -e m i t t i n g d i o d e sw i t he x t e r n a l q u a n t u m e f f i c i e n c y c l o s et o 30%b a s e d o n a n o v e lt h e r m a l l ya c t i v a t e dd e l a ye df l u o r e s c e n c e e m i t t e r [J ].A d v a n c e d M a t e r i a l s ,2019,31(42):e 1902368.[27] Y A N GT ,C H E N GZ ,L I ZQ ,e t a l .I m p r o v i n g t h e e f f i c i e n c yo f r e dt h e r m a l l y a c t i v a t e dd e l a y e df l u o r e s c e n c eo r ga n i c l i g h t -e m i t t i n g d i o d eb y r a t i o n a l i s o m e r e n g i n e e r i n g [J ].A d v a n c e dF u n c t i o n a lM a t e r i a l s ,2020,30(34):2002681.[28] Z H A OY ,T R U H L A R D G .T h e M 06s u i t eo fd e n s i t yf u n c t i o n a l sf o r m a i ng r o u p th e r m o c h e mi s t r y,t h e r m o -c h e m i c a l k i n e t i c s ,n o n c o v a l e n t i n t e r a c t i o n s ,e x c i t e ds t a t e s ,a n d t r a n s i t i o n e l e m e n t s :t w on e wf u n c t i o n a l s a n d s y s t e m a t i c t e s t i n g of f o u rM 06-c l a s s f u n c t i o n a l s a n d12o t h e r f u n c t i o n a l s [J ].T h e o r e t i c a lC h e m i s t r y A c c o u n t s ,2008,120(1):215-241.[29] P A R R R G .D e n s i t y f u n c t i o n a lt h e o r y ofa t o m sa n d m o l e c u l e s [M ]ʊH o r i z o n s o f q u a n t u m c h e m i s t r y .D o r d r e c h t :S p r i n g e r ,1980:5-15.[30] R U N G EE ,G R O S S E K U .D e n s i t y -f u n c t i o n a l t h e o r yf o r t i m e -d e p e n d e n t s y s t e m s [J ].P h ys i c a l R e v i e w L e t t e r s ,1984,52(12):997-1000.[31] F R I S C H MJ ,T R U C K SG W ,S C H L E G E L H B ,e t a l .G a u s s i a n 16r e v i s i o nC .01,2016[C P ].W a l l i n g f o r dC T :G a u s s i a n I n c .,2016.[32] N I UYL ,P E N GQ ,D E N GCM ,e t a l .T h e o r y of e x c i t e d s t a t e d e c a y sa n do p t i c a l s p e c t r a :a p p l i c a t i o nt o p o l y a t o m i c m o l e c u l e s [J ].T h eJ o u r n a lo fP h y s i c a lC h e m i s t r y A ,2010,114(30):7817-7831.[33] S H U A IZ ,P E N G Q ,N I U Y .M O M A Pr e v i s i o n2020A(2.2.0)[C P ].B e i j i n g :T s i n g h u aU n i v e r s i t y,2014.[34] T EV E L D E G ,B I C K E L H A U P T F M ,B A E R E N D SEJ ,e t a l .C h e m i s t r y wi t h A D F [J ].J o u r n a l o f C o m p u t a t i o n a l C h e m i s t r y,2001,22(9):931-967.[35] L UT ,C H E NFW .M u l t i w f n :am u l t i f u n c t i o n a l w a v e f u n c t i o na n a l y z e r [J ].J o u r n a l o f C o m p u t a t i o n a l C h e m i s t r y ,2012,33(5):580-592.[36] C H U N GL W ,S A M E E R A W MC ,R A M O Z Z I R ,e t a l .T h eO N I O M m e t h o da n d i t sa p p l i c a t i o n s [J ].C h e m i c a l R e v i e w s ,2015,115(12):5678-5796.[37] V R E V E NT ,B Y U NKS ,K O M ÁR O M I I ,e t a l .C o m b i n i n gqu a n t u m m e c h a n i c s m e t h o d sw i t h m o l e c u l a rm e c h a n i c s m e t h o d s i nO N I O M [J ].J o u r n a l o f C h e m i c a l T h e o r y an d C o m pu t a t i o n ,2006,2(3):815-826.[38] R A P P ÉA K ,C A S E W I T CJ ,C O L W E L L K S ,e ta l .U F F ,af u l l p e r i o d i ct a b l ef o r c ef i e l d f o r m o l e c u l a rm e c h a n i c s a n d m o l e c u l a r d yn a m i c s s i m u l a t i o n s [J ].J o u r n a lo ft h e A m e r i c a n C h e m i c a lS o c i e t y ,1992,114(25):10024-10035.[39] K A S H A M.C h a r a c t e r i z a t i o no f e l e c t r o n i c t r a n s i t i o n s i nc o m p l e x m o l e c u l e s [J ].D i s c u s s i o n s o ft h e F a r ad a yS o c i e t y,1950,9:14-19.[40] Q I A N E A ,W I X T R O M A I ,A X T E L L J C ,e ta l .A t o m i c a l l y p r e c i s e o r ga n o m i m e t i c c l u s t e r n a n o m o l e c u l e s a s s e mb l e dv i a p e r f l u o r o a r y l -t h i o lS N A rc h e m i s t r y [J ].N a t u r e C h e m i s t r y ,2017,9(4):333-340.[41] P E N GZX ,W A N GZ B ,H U A N GZW ,e t a l .E x pr e s s i o n o f ㊃997㊃Copyright ©博看网. All Rights Reserved.。
合成苯并恶唑类衍生物的一种有效的电化学方法

合成苯并恶唑类衍生物的一种有效的电化学方法作者:刘雪莹来源:《中国新技术新产品》2013年第20期摘要:一些芳基苯并恶唑的电化学合成是在苄胺存在的情况下,直接通过电化学氧化3,5-双叔丁基邻苯二酚而合成的,且没有在温和绿色的条件下使用催化剂。
结果显示,电致3,5-双叔丁基-1,2-苯醌参与了苄胺衍生物的反应,并通过“电子转移+化学反应(形成亚胺)+化学反应(环化作用)+电子转移”ECCE机制,转变成相应的苯并恶唑衍生物。
本研究使用了一种环保的新方法,在水溶液中得到一些高产量的苯并恶唑衍生物,且在碳极没有使用有毒的试剂和溶剂。
关键词:苯并恶唑类衍生物;原子经济合成;电化学中图分类号:TQ252 文献标识码:A作为杂原子系统,苯并恶唑及其衍生物在许多具有生物活性的天然产物和药类化合物中都是重要的结构基元。
这些化合物作为细胞毒素剂、组织蛋白酶抑制剂、HIV反转录酶抑制剂、雌激素受体拮抗剂、选择性过氧化物酶体增殖物激活受体拮抗剂、抗癌剂、食欲肽-1受体拮抗剂使用。
它们也被发现用作除草剂和荧光增白剂燃料。
由于这些化合物作为药物制剂的重要性,所以人们花了大量精力合成苯并恶唑衍生物。
已经使用的一些常用的方法包括:(a)2-卤-Na环苯胺金属催化环化,(b)用羧酸衍生物耦合2-氨基酚,并用强酸或微波进行催化。
(c)氧化环化 2-氨基酚和醛衍生得到的酚醛树脂席夫碱。
本研究在苄胺衍生物存在的情况下,电化学氧化3,5-双叔丁基邻苯二酚。
该方法代表了一种温和的一步电化学方法,在绿色环保的条件下,存在苄胺衍生物时,通过电化学氧化3,5-双叔丁基邻苯二酚,合成具有抗菌活性的高产量、高纯度的苯并恶唑衍生物。
碳极上也使用一种环保的方法,隔膜电解槽中未使用有毒试剂和溶剂。
这种温和的液相反应扩大了适用于小分子的液相化学的范围。
1 实验部分控制电势法。
含0.25 mmol 3,5-双叔丁基邻苯二酚和0.25 mmol苄胺衍生物的(70mL)水(磷酸盐缓冲液, c = 0.1 M, pH = 7.5)/乙醇(70/30 v/v)混合物在隔膜电解槽中0.25 V 对比Ag/AgCl进行电解。
1_3_4_恶二唑类化合物合成及应用的研究新进展_宋庆宝

文章编号:1006-4184-(2009)08-0017-081,3,4-噁二唑类化合物合成及应用的研究新进展宋庆宝,徐丽娟,马淳安(浙江工业大学化学工程与材料学院,浙江杭州310032)摘要:1,3,4-噁二唑类化合物因具有独特的生物活性和光学活性而被广泛研究,该类化合物在农药、医药、材料等领域有广泛应用。
将1,3,4-噁二唑环引入不同的化合物结构中,通过结构修饰能生成一系列具有广谱生物活性的化合物及电致发光材料。
因此,1,3,4-噁二唑衍生物的合成也成了人们研究的热点。
文章综述了近年来合成1,3,4-噁二唑类化合物的传统方法、微波辅助合成法、固相合成法,对其在医药、材料等方面的应用进行了总结,并对其发展趋势和应用前景作了展望。
关键词:1,3,4-噁二唑;合成;生物活性;光学活性收稿日期:2009-01-16作者简介:宋庆宝(1959-),男,吉林磐石人,教授,博士。
从事有机化学教学和研究。
1,3,4-噁二唑及其衍生物具有重要的生物活性,广泛应用于医药[1]、农药[2-3]等领域,某些1,3,4-噁二唑衍生物还具有光敏性质,可用于生产荧光剂、闪烁剂等,尤其可作为感光高分子材料应用于电致发光仪器[4-6]。
由于该类化合物的用途广泛,化学工作者对其合成方法进行了广泛而深入的研究,不断地涌现出新的合成方法和技术。
笔者综述了近年来合成1,3,4-噁二唑类化合物的传统方法、微波辅助合成法、固相合成法,对其生物活性的研究及在电致发光材料的应用进行了总结。
1合成方法1.1传统的合成方法2000年,Liras 等[7]在-10~25℃下,在二氯甲烷中用三氟乙酸酐处理二元酰肼,合成了不对称二取代1,3,4-噁二唑,产率达72%~95%(Eq.1)。
(1)2001年,Tandon 等[8]用BF 3·Et 2O 作催化剂,以乙酰氯和水合肼为原料,在二氧六环中回流2h 合成了对称的1,3,4-噁二唑,该法产率高、易处理(Eq.2)。
有机叠氮化合物的合成及研究进展-王冠军

青岛农业大学本科生课程论文论文题目有机叠氮化合物的合成及研究进展学生专业班级制药工程1002班学生姓名(学号)王冠军(20105058)指导教师徐鲁斌完成时间 2013-12-15 2013 年 12 月 17 日目录摘要 (4)Abstract (4)1 芳基叠氮化合物的合成 (5)1.1 芳基重氮化反应 (5)1.2 缺电芳卤直接亲核取代 (6)1.3 卤代烃的催化偶联 (6)1.4 有机硼酸催化偶联 (7)1.5 芳基叠氮直接衍生化 (7)2 烯基叠氮的合成 (8)2.1 肉桂酸及肉桂酸酯的加成/消除反应 (8)2.2 烯烃的加成/消除反应 (9)2.3 醛的Knoevenagel 反应 (9)2.4 烯基碘盐取代 (10)2.5 环氧丙烷衍生物开环消除 (10)3 烷基叠氮化合物的合成 (11)3.1 卤代烃的亲核取代反应 (11)3.2 苄位氢原子直接叠氮化 (12)3.3 α,β-不饱和醛酮与叠氮化钠共轭加成 (12)3.4 伯胺直接叠氮化 (12)3.5 醇直接叠氮化 (13)4 酰基叠氮的合成 (14)4.1 以酰肼为原料 (14)4.2 以酰胺类化合物为原料 (15)4.3 以羧酸酯为原料 (15)4.4 以酰氯为原料 (16)结论 (17)参考文献课程论文任务书学生姓名王冠军指导教师徐鲁斌论文题目有机叠氮化合物的合成及研究进展论文内容(需明确列出研究的问题):资料、数据、技术水平等方面的要求:发出任务书日期 2013.05.20 完成论文日期2013.12.17 教研室意见(签字)院长意见(签字)注:此表装订在课程论文之前。
有机叠氮化合物的合成及研究进展制药工程专业王冠军指导教师徐鲁斌摘要:简单介绍了有机叠氮化合物在制药,化工,航天等领域内的应用,对其合成方法按照叠氮化合物的分类做了简单的总结,并对其中的个别机理进行了分析。
关键词:有机叠氮合成进展dvances in the Synthesis of Organic AzidesStudent majoring in pharmaceutical engineering Wang guanjunTutor Xu lubinAbstract: The recent advances in the synthesis of organic azides are reviewed, based on the categories of these compounds including alkyl azides, alkenyl azides, aryl azides and acyl azides. Mechanism of some reactions is also discussed.Keywords: organic azides; synthesis; advances有机叠氮化合物是指分子中含有叠氮基的化合物(-N3),有机叠氮化合物通常都具有爆炸性,通过热、光、压力、摩擦或撞击引入少量外部能量后就会激烈地爆炸性分解。
二氢黄酮类化合物的合成研究进展

二氢黄酮类化合物的合成研究进展梁海;向卓;张学辉;吴久鸿【摘要】综述二氢黄酮类化合物的合成研究进展,总结已报道的各种类型的二氢黄酮合成方法,为二氢黄酮类新药研发提供方法学支持。
合成方法包括:查尔酮环合、Friedel‐Crafts反应、Knoevenagel缩合和 Hoesch单酰基化反应,以及二氢黄酮的不对称合成,并简要介绍无溶剂合成二氢黄酮等“绿色”化学方法。
%Research progress of flavanone compounds synthesis was reviewed ,various types of synthesis methods of fla‐vanone compounds were summarized ,and methodological support for flavanone compounds in new drug research and develop‐ment was provided .Research progress in synthesis of flavanone compounds includes chalconecycl ization ,Friedel‐Crafts reac‐tion ,Knoevenagel condensation ,Hoesch single acetoxylation ,and asymmetric synthesis of flavanone compounds .Solvent‐free synthesis of flavanone compounds and other green chemistry methods were also introduced .【期刊名称】《药学实践杂志》【年(卷),期】2015(000)002【总页数】6页(P97-101,130)【关键词】二氢黄酮类化合物;查尔酮;环合;合成【作者】梁海;向卓;张学辉;吴久鸿【作者单位】安徽医科大学药学院,安徽合肥 230032; 解放军306医院药学部,北京100101;解放军306医院药学部,北京100101;解放军306医院药学部,北京100101;解放军306医院药学部,北京100101【正文语种】中文【中图分类】R916·综述·Reviews on flavanone compounds synthesis researchLIANG Hai1, 2, XIANG Zhuo2, ZHANG Xuehui2, WU Jiuhong2(1. School of Pharmacy, Anhui Medical University, Hefei 230032, China; 2. Department of Pharmacy, No.306 Hospital of PLA, Beijing 100101, China)[Key words] flavanone compounds; chalcone; cyclization; synthesis二氢黄酮,又称黄烷酮,是黄酮类化合物中的一种,分布于蔷薇科、芸香科、姜科、菊科、杜鹃花科,豆科等被子植物中。
2,3-位稠杂环喹唑啉酮类化合物的合成研究进展

2,3-位稠杂环喹唑啉酮类化合物的合成研究进展刘举;王洋;周云鹏;李春艳;陈烨;姜明俊;徐利锋【摘要】2,3-位稠环喹唑啉酮类化合物由于具有多种优良的生物和生理活性而广泛应用于药物领域,其合成方法是目前药物研究的热点领域之一.本文主要介绍了包括以2-氨基苯甲酸类化合物、2-氨基苯甲酸甲酯类化合物、靛红酸酐类化合物、喹唑啉酮类化合物等为原料合成2,3-位稠环喹唑啉酮类化合物的方法,并对这些方法进行了简单的评述.%2,3-fused heterocyclic quinolinones have shown many excellent biological activities in the areas of medicine. Their synthetic methods are important topics of pharmaceutical researches at present. Several major synthetic methods of the 2,3-fused heterocyclic quinolinones are reviewed, including the reactions in which anthracitic acids, methyl anthranilates, isatoic anhydrides, quinolinones was used as the main materials and briefly evaluate their advantages and disadvantages.【期刊名称】《化学研究》【年(卷),期】2011(022)006【总页数】11页(P85-95)【关键词】喹唑啉酮;稠杂环化合物;生物活性;合成;进展【作者】刘举;王洋;周云鹏;李春艳;陈烨;姜明俊;徐利锋【作者单位】辽宁大学药学院药物研究所,辽宁沈阳110036;辽宁大学药学院药物研究所,辽宁沈阳110036;辽宁大学药学院药物研究所,辽宁沈阳110036;辽宁盛生医药集团有限公司,辽宁沈阳110179;辽宁大学药学院药物研究所,辽宁沈阳110036;辽宁大学药学院药物研究所,辽宁沈阳110036;辽宁大学药学院药物研究所,辽宁沈阳110036【正文语种】中文【中图分类】O626.4稠杂环化合物尤其含氮稠杂环化合物是目前有机化学和药物化学的研究热点.2,3-位稠杂环喹唑啉酮类化合物作为喹唑啉酮稠杂环化合物中的一个重要分支,表现出很广泛的生物活性.大量的含有该结构的化合物被应用于医药领域,表现出很好的生物活性;作为磷酸二酯酶1(PDE1)的抑制剂,具有良好的抗帕金森作用[1].该类化合物具有抗肿瘤[2-4]、降血压[5-6]、抗菌[7-8]、抗炎[9-11]和抗疟[12]等活性.该类化合物具有较多的靶标点,而引起化学工作者极大的兴趣.基于该类化合物的重要作用以及近年对此类化合物的广泛的研究,本文综述了2,3-位稠杂环类喹唑啉酮化合物的主要合成方法.Mikhalev等[9]研究发现,邻氨基苯甲酸1和2-氯代-3-取代吡啶类化合物2在冰乙酸中回流能够顺利反应生成吡啶并[2,1-b]喹唑啉酮3(Scheme 1),产率在60%~80%.原因是在浓冰乙酸中,化合物2中吡啶环上的氮原子被质子化了,卤素更容易被芳香胺所置换而形成中间体,中间体再进一步环合生成吡啶并喹唑啉酮类化合物.该方法原料廉价易得,操作方法简单,产率高.Francois等[13]以邻氨基苯甲酸衍生物4与氯代苯并嘧啶类化合物5为原料,冰乙酸为溶剂,在100W微波辅助下105℃反应20min合成了喹唑啉并[4,3-b]喹唑啉酮类化合物6(Scheme 2).产率在41%~85%.微波反应大大缩短了反应时间,产率也有了进一步的提高.是合成2,3-嘧啶并喹唑啉酮类化合物较好的方法.早在1971年,John等[14]就报道了用邻氨基苯甲酸1和亚胺类甲基硫醚化合物7在二甲基乙酰胺中,150~160℃下反应生成2,3-位稠环喹唑啉酮类化合物8(Scheme 3),产率为20%.Francois等[13]利用石墨负载的邻氨基苯甲酸衍生物4与亚胺类甲基硫醚9在60W微波辅助下150℃反应30min合成了喹唑啉并[4,3-b]喹唑啉酮类化合物6(Scheme 4),产率29%~79%.和传统的加热方法比较,该方法具有产率高,反应时间短,产物易分离的优点.2001年,Lisianne等[15]也将微波辐射引入此类反应,以邻氨基苯甲酸类化合物10和亚胺硫醚类化合物11在微波条件下,以石墨为反应加热介质合成了2,3-位稠环喹唑啉酮类化合物12(Scheme 5),产率有了进一步的提高.1996年,Juan等[16]以邻氨基苯甲酸类化合物13为原料运用两种方法合成2,3-稠环喹唑啉酮类化合物16(Scheme 6),第一种方法是邻氨基苯甲酸类化合物与环亚胺醚类14在无溶剂条件下反应,产率65%~95%.第二种方法是取代邻氨基苯甲酸经过与氯化亚砜反应制备酰氯后与内酰胺15反应,产率为30%~65%.实验证明,第一种方法的产率远远高于第二种方法的产率.2009年,Tan等[17]将上述工艺进行了改进.用2-氨基-4-硝基苯甲酸或2-氨基-5-硝基苯甲酸17在三氯氧磷存在下与2-吡咯烷酮18在甲苯中回流一步反应得到喹唑啉酮19(Scheme 7).产率中等.2009年,Chen等[5]利用此方法,以邻氨基苯甲酸类化合物20和二氯亚砜反应生成的活性中间体与2-哌啶酮21反应闭环生成喹唑啉酮母体,经过与取代苯基重氮盐反应制备了腙23,23再闭环生成了天然产物吴茱萸次碱的类似物24(Scheme 8).该合成方法为合成天然产物提供了一个新的思路.2007年,Sachin等人[18]报道了通过取代的邻氨基苯甲酸类化合物25和吡啶并[2,3-d]嘧啶类化合物26在微波辐射下合成新型1,3,10,12-四取代-8H-吡啶并[2′,3′∶4,5]嘧啶并[6,1-b]喹唑啉-8-酮类化合物27(Scheme 9).通过微波辅助合成、常规加热、熔融三种方法的对比,得出最佳合成条件是在多聚磷酸存在下微波辐射10min.和经典的加热方法相比,具有反应温度低、时间短、产率高等优点.产率高达75%~95%.2005年,Liu等人[19]利用廉价易得的邻氨基苯甲酸28和Boc-保护的氨基酸29为起始原料,以亚磷酸三苯酯为催化剂,吡啶为溶剂,在230℃下微波辅助反应20min,运用一锅法合成了生物碱sclerotigenin(30a),(±)-circumdatin F(30b)和(±)-asperlicin C(30c),产率分别为55%、32%和20%.该反应是一种典型的多米诺反应.在该文章中,又通过微波辅助合成的方法,利用三组分一锅连续反应法制备了生物碱circumdatin E的类似物33a和33b,产率分别为34%和29%.这两种合成方法虽然产率不高,但是具有步骤简单,反应时间短的特点.不失为合成2,3-位稠环喹唑啉类化合物的较好方法.2006年,Liu等人[4]又利用邻氨基苯甲酸类化合物34与等当量的Boc-5-氨基戊酸35以吡啶为溶剂在三苯氧基膦存在下,220℃微波辐射反应10min后,再加入苯甲醛类化合物36,然后升温230℃下微波辐射反应12min制得目标化合物,实现了微波辅助三组分一锅法合成了67种目标化合物37(Scheme 11).该方法是快速合成化合物库的很好的方法.1998年,Mahavir[20]报道了邻氨基苯甲酸甲酯38在冰乙酸回流条件下和三氧化硫脲39反应制备喹唑啉稠杂环化合物40(Scheme 12).2004年,Maria报道了[21]通过4,5-二氯-1,2,3-二噻唑氯化物合成新型3,4-二氢-2H-吡嗪并[2,1-b]喹唑啉酮(Scheme 13),通过实验条件摸索加入乙二胺的量(1或3当量)显示,过量的乙二胺有利于二氢咪唑并[2,1-b]喹唑啉酮44a~c的生成,而吡嗪并[2,1-b]喹唑啉酮43a~c的生成量减少.有意思的是,4,5-二甲氧基邻氨基苯甲酸甲酯和3倍量的乙二胺反应却仅仅得到了产物43d,更换方法,例如:使用1倍量或者3倍量乙二胺在加热或者不加热情况下,都没有生成化合物44d(Table 1).早在1971年,John等[14]报道,靛红酸酐45和甲基硫脲胺类化合物46在1,4-二氧六环中,100℃反应4 h,以37%的产率得到了产物喹唑啉酮47(Scheme 14).1972年,Timothy等[22]利用靛红酸酐类化合物48和2-(乙基硫代)-2-咪唑啉49在DMF中加热得到四氢咪唑并[2,1-b]喹唑啉酮类化合物50(Scheme 15).Fadda等[23]在2001年报道了以靛红酸酐45和邻苯二胺51为原料,在冰乙酸中回流,以85%的产率得到了2,3-稠杂环喹唑啉酮化合物52(Scheme 16),该方法步骤简单,产率较高,是一种较好的合成苯并咪唑并喹唑啉的方法.2002年,Vedula等[2]以靛红酸酐类化合物53和靛红类化合物54为原料,在三乙胺存在下,甲苯中回流2~4h,一步合成了具有喹唑啉酮结构的色胺酮类化合物55,该反应产率较高(70%~85%),操作简单.而靛红酸酐45和靛红类化合物56在三乙胺存在下,甲苯中回流反应制备该类化合物的产率却较低,仅为25%~30%(Scheme 17).2007年Sang等用类似的方法[24]采用5-甲氧基靛红和靛红酸酐为原料,在氢化钠存在下,DMF中50℃反应,得到了8-甲氧基色胺酮,产率为77%.2001年,Sharief等[25]报道了以2-磺酰胺-3-氨基喹唑啉酮类化合物58和苯甲醛类化合物为原料,在冰乙酸回流后得到中间体化合物59,化合物59在以DMF为溶剂、三乙胺为碱性催化剂条件下回流反应得到了2,3-稠杂环喹唑啉酮化合物60(Scheme 18).各个步骤产率中等以上(60%~70%).2002年,Vijay等[26]用3-氨基-2-甲基-6-硝基-4(3H)喹唑啉酮61和苊醌62为原料,在乙酸酐中回流5~6h,以70%的产率得到产物11-氨基-13H-苊并[1,2-e]哒嗪[3,2-b]喹唑啉-13-酮63(Scheme 19).2008年,Sharief等[27]用3-氨基-2-(苯氨基)喹唑啉-4(3H)-酮64为原料,在乙酸酐中回流反应4h,生成了2-甲基-3-苯基-[1,2,4]三唑并[5,1-b]喹唑啉酮65(Scheme 20).2006年,Abhijeet等[28]利用喹唑啉66在经二氯化锡还原后和糖反应一锅法合成了含糖的喹唑啉稠杂环类化合物68、69(Scheme 21).合成的各种化合物产率也均在70%以上.该合成方法是一种合成含糖取代基的喹唑啉类化合物的好方法. 1993年,Giancarlo等人[29]利用l-溴-4-[3,4-二氢-4-氧代喹唑啉-2-基]-2-丁醇类化合物70在乙腈中回流反应3~10h,得到四氢吡啶并[2,1-b]喹唑啉酮类化合物71(Scheme 22),产率为17%~64%.1998年,Wang等[30]以化合物72为原料,二氯甲烷为溶剂,在20%的哌啶存在的条件下,室温环合,经二氧化硅处理后合成了吡嗪并[2,1-b]喹唑啉酮类天然产物Fumiquinazoline G73,该文献又采用类似的方法合成了fiscalin B74(Scheme 23).2004年,Chavan等[11]利用化合物75为原料,在60%的乙醇硫酸溶液中回流环合,生成了骆驼宁碱A(Luotonins A),产率73%.化合物77在60%的盐酸中回流反应,以70%的产率生成骆驼宁碱B(Luotonins B),化合物77在浓盐酸和甲醇(1∶1)的溶液中回流反应,以50%的产率生成骆驼宁碱E(Luotonins E)(Scheme 24),该反应条件简单易行,产率较高.2008年,Tseng[31]将固相肽合成法(SPPS)引入2,3-稠环喹唑啉酮类化合物合成方法中,利用树脂连接的氨基酸衍生物80先与邻氨基苯甲酸反应,产物81再和9-芴甲氧羰基保护的氨基酸酰氯反应得到相应的三肽类化合物82.该三肽类化合物82在路易斯酸三氟甲烷磺酸锌催化下,一锅法合成了吡嗪并[2,1-b]喹唑啉-3,6-二酮类化合物83(Scheme 25),该反应具有产率高,反应快速等优点.早在1965年,Bird报道了[32]1-氰基吲唑化合物84在加热到270℃时,发生重排反应,得到2,3-稠环喹唑啉酮类化合物85(Scheme 26),产率40%.有研究发现[33],2-氨基苯并咪唑86和邻溴苯甲酸或邻氯苯甲酰氯87在金属铜催化下,通过反应温度为170℃的Ullman反应,也能顺利地以中等产率得到2,3-稠杂环喹唑啉类化合物85(Scheme 27).1987年,Tilley等人[34]利用对异丙基苯胺和6-氯烟酸在加热条件下生成二芳基胺,该二芳基胺经过溴代、羧酸还原、关环等步骤,生成[2,1-b]喹唑啉酮衍生物.结语:2,3-位稠环喹唑啉酮类化合物具有广泛的生物活性和药理活性,近年来受到药物化学家和有机化学家的极大关注.随着有机合成化学的不断发展,将会出现更有效、更环保的新方法、新技术应用于2,3-位稠环喹唑啉酮类化合物的合成,推动着2,3-位稠环喹唑啉酮类化合物的开发和应用.可以预见,随着有机化学、药物化学和化学生物学等学科的飞速发展,将会有越来越多的2,3-位稠环喹唑啉酮类化合物被发现并应用到更广的领域.【相关文献】[1]SACHIN S L,SATYENDRA P B.A new therapeutic approach in Parkinson’s disease:some novel quinazoline derivatives as dual selective phosphodiesterase 1inhibitors and anti-inflammatory agents[J].Bioorg Med Chem,2009,17(19):6796-6802.[2]VEDULA M.Novel indolo[2,1-b]quinazoline analogues as cytostatic agents:synthesis,biological evaluation and structure activity relationship[J].Bioorg Med Chem Lett,2002,12(17):2303-2307.[3]ZHONG Ze Ma,HANO Y,NOMURA T,et al.Two new quinazolinequinoline alkaloids from peganum nigellastrum[J].Heterocycles,1997,46:541-546.[4]LIU Ji Feng,CHRISTOPHER J W,YE P,et al.Privileged structure-based quinazolinone natural product-templated libraries:Identification of novel tubulin polymerizationinhibitors[J].Bioorg Med Chem Lett,2006,16(3):686-690.[5]CHEN Zhuo,GAO Yun Hua,DAI Li,et al.Synthesis and vasodilator effects of rutaecarpine analogues which might be involved transient receptor potential vanilloid subfamily,member 1(TRPV1)[J].Bioorg Med Chem,2009,17(6):2351-2359. [6]YANG Li Ming,CHEN C F,LEE K H.Synthesis of rutaecarpine and cytotoxic analogues[J].Bioorg Med Chem Lett,1995,5(5):465 468.[7]POOJA P B,KEIR A R,VIRALI J P,et al.Antimicrobial activity of tryptanthrins in Escherichia coli[J].J Med Chem,2010,53(9):3558-3565.[8]SUBHASH P C.A facile total synthesis of rutaecarpine[J].Tetrahedron Lett,2004,45(5):997-999.[9]MIKHALEV A I,KONSHIN M E,OVODENKO L A.Synthesis,anti-inflammatory and analgesic activity of pyrido[2,1-b]quinazoline derivatives[J].Pharm Chem J,1995,29(2):124-126.[10]OTTO M C,BRAMHA N,BRIAN T,et al.A versatile new synthesis of quinolines and related fused pyridines.Part 9.Synthetic application of the 2-chloroquinoline-3-carbaldehydes[J].J Chem Soc,Perkin Trans 1,1981:2509-2517.[11]CHAVAN S P,SIVAPPA R.A short and efficient general synthesis of luotonin A,B and E[J].Tetrahedron,2004,60(44):9931-9935.[12]APURBA K B,MARK G H,DANIEL A N,et al.Structure-activity relationship study of antimalarial indolo[2,1-b]quinazoline-6,12-diones(tryptanthrins).Three dimensional pharmacophore modeling and identification of new antimalarial candidates[J].Eur J Med Chem,2004,39(1):59-67.[13]FRANCOIS R A,AMAYA B,ROGER W,et al.Novel series of 8H-quinazolino[4,3-b]quinazolin-8-ones viatwo Niementowski condensations[J].Tetrahedron,2003,59(9):1413-1419.[14]JOHN H G,LOUIS C I,WILLIAM B H.Tetracyclic quinazolinone derivatives[J].J Med Chem,1971,14(9):878-882.[15]LISIANNE D,CATHERINE L C,AXELLE G,et al.Efficient modified von niementowski synthesis of novel derivatives of 5a,14b,15-triazabenzo[a]indeno[1,2-c]anthracen-5-one from indolo[1,2-c]quinazoline[J].Tetrahedron Lett,2001,42(38):6671-6674.[16]JUAN C J,VLAD E G,CHET L,et al.Acetylcholinesterase inhibition by fused dihydroquinazoline compounds[J].Bioorg Med Chem Lett,1996,6(6):737-742. [17]TAN Jia Heng,OU Tian Miao,HOU Jin Qiang,et al.Isaindigotone derivatives:A new class of highly selective ligands for telomeric g-quadruplex DNA [J].J Med Chem,2009,52(9):2825-2835.[18]SACHIN S L,SATAYENDRA P B.Efficient niementowski synthesis of novel 1,3,10,12-tetrasubstituted-8H-pyrido[2',3':4,5]pyrimido[6,1-b]quinazolin-8-ones[J].Arkivoc,2007,(xvi):1-11.[19]LIU Ji Feng,MIRA K,YUKO I,et al.Microwave-assisted concise total syntheses of quinazolino benzodiazepine alkaloids[J].J Org Chem,2005,70(25):10488-10493.[20]MAHAVIR P,CHEN LI JIAN,OLJAN R,et al.A new reaction of aminoiminomethanesulfonic acid with methyl anthranilates[J].Synth Commun,1998,28(11):2125-2129.[21]MARIA F P,FRANCOIS R A,VALERIE T.A rapid and convenient synthesis of novel 1-imino-2,3-dihydro-1H-pyrazino[2,1-b]quinazolin-5-ones[J].Tetrahedron Lett,2004,45(15):3097-3099.[22]TIMOTHY J,BARBARA D,HELENE B,et al.A new class of antihypertensive agents.1,2,3,5-tetrahydroimidazo[2,1-b]quinazolines[J].J Med Chem,1972,15(7):727-731.[23]FADDA A A,REFAT H M,ZAKI M E.Synthesis of some new quinazolone fused heterocycles,2-substituted anilinoheterocyclic derivatives and other related compounds[J].Synth Commun,2001,31(22):3537-3545.[24]SANG K L,GHEE H K,DONG H K,et al.Identification of a tryptanthrin metabolite in rat liver microsomes by liquid chromatography/electrospray ionization-tandem mass spectrometry[J].Biol Pharm Bull,2007,30(10):1991-1995.[25]SHARIEF A M,AMMAR Y A.,ZAHRAN M A,et al.Aminoacids in the synthesis of heterocyclic systems:the synthesis of triazinoquinazolinones,triazepinoquinazolinones and triazocinoquinazolinones of potential biological interest[J].Molecules,2001,6:267-278.[26]VIJAY H P,MANISH P P,RANJAN G P.Fused heterocycle 11-amino-13H-acenaphtho[1,2-e]pyridazino[3,2-b]quinazoline-13-one based monoazo disperse dyes[J].Dyes and Pigments,2002,52:191-198.[27]SHARIEF E L,MICKY A A,SHARAF H F.Synthesis and antimicrobial activity of newly fused quinazolinone derivatives[J].J Taibah Univ Sci,2008,1:51-60.[28]ABHIJEET D R,ARUNACHALAM S,BALARAM M,et al.A one-pot synthesis of novel sugar derived 5,6-dihydroquinazolino[4,3-b]quinazolin-8-ones:an entry towards highly functionalized sugar-heterocyclic hybrids[J].Tetrahedron Lett,2006,47(38):6857-6860.[29]GIANCARLO F,MARCO F,ALESSANDRO M,et al.Tetrahydropyrido[2,1-b]quinazolin-11-ones and tetrahydropyrido[l,2-a]quinazolin-6-ones viathermal cyclization of 2-substituted 4(3H)-quinazolinones[J].J Org Chem,1993,58(3):741-743.[30]WANG Hai Shan,GANESAN A.Total synthesis of the quinazoline alkaloids(-)-fumiquinazoline G and (-)-fiscalin B[J].J Org Chem,1998,63(8):2432-2433.[31]TSENG M C,CHU Yen Ho.Zinc triflate-catalyzed synthesis of pyrazino[2,1-b]quinazoline-3,6-diones [J].Tetrahedron,2008,64(40):9515-9520.[32]BIRD C W.The rearrangement of 2-cyano-1-phenylpyrazolederivatives[J].Tetrahedron,1965,21(8):2179-2182.[33]DALLA V L,GIA O,MARCIANI M S,et al.Synthesis,invitro antiproliferative activity and DNA-interaction of benzimidazoquinazoline derivatives as potential anti-tumor agents[J].II Farmaco,2001,56(3):159-167.[34]TILLEY J W,COFFEN D L,SCHAER B H,et al.A palladium-catalyzed carbonyl insertion route to pyrido[2,1-b]quinazoline derivatives[J].J Org Chem,1987,52(12):2469-2474.。
微波辅助合成咪唑类化合物的研究

咪 唑的制 备在 技 术 上 简 便 、 速 , 以前 的路 径 快 与 相 比产 率更 高. 化合 物 3和 4的合 成 路 线 如 图 1
所示 .
RI
.
ቤተ መጻሕፍቲ ባይዱ
氟 甲磺酸 钪 为催 化 剂 进 行 的 U i 三组 分 缩 合 g型
反应 中 , 环脒 与醛 和异腈 在室 温 下反应 通 常需 杂
2 1 6月 0 1年 第3 O卷 第 3期
重庆 文 理 学 院学 报 (自然 科 学 版 )
J u a o h n qn nv r t o r n c n e N tr cec dt n o r l f o g igU i s y f t a dS i c s( aua S in eE i o ) n C e i A s e l i
进 行综述 .
无章, 导致 熵 的增 加 ; 另一方 面 , 波对 极性分 子 微 的作 用 , 使其 按 照 电磁 场作 用 方式 运 动 , 秒 迫 每
变化 2 4 . 5×1 次 , 致 了熵 的减 小. 0 导 此外 , 它还
存 在一 种不是 由温度 引起 的非热 效应 . 波作用 微 下的有机 反 应 , 改变 了反 应 动力 学 , 降低 了反应 活 化能. 近年来 , 大量 的实验 已经证 实 , 微波 可 以 极大地 提高 一些化 学反应 的反应 速率 , 一些 在 使 通 常条 件下不 易进 行 的 反应 迅 速 形 成. 传统 上 ,
1 1
1 Mw, 6 " 1 ai 0C, 0r n
’ \
严‘
R =胤 C OOE r
量还 原为 咪唑 化 合物 8 反 应 时 间仅需 5 m n 研 , i.
究发 现 , 高反应 温度 如 2 0 q 下 处理 酮 肟与 醛 在 0 C 及 乙酸铵 时 , 原位 切 断热 易 变 的 N 0键 直 接 经 ~ 得到 了 目标 化合 物 8 利用 这 种 优化 的条 件 可 制 . 备多 样 化 、 效 率 的 2 4 5一三 ( ) 基 咪 唑 , 高 ,, 杂 芳
苯并咪唑研究进展

苯并咪唑合成研究进展摘要:苯并咪唑类化合物具有广泛的生物活性, 如抗癌、抗真菌、消炎、治疗低血糖和生理紊乱等, 在药物化学中具有非常重要的意义; 并可用于模拟天然超氧化物歧化酶(SOD)的活性部位研究生物活性, 以及环氧树脂新型固化剂、催化剂和某些金属的表面处理剂, 还可作为有机合成反应的中间体等。
绿色合成苯并咪唑化合物显得尤为重要。
本文主要讲述了苯并咪唑的合成方法,以及在离子鉴定、航空航天等方面的应用介绍。
关键词:苯并咪唑配合物合成应用1合成苯并咪唑类化合物1.1以邻苯二胺和羧酸(及其衍生物)为原料的合成继1872年Hoebrecker首次合成第一个苯并咪唑类化合物2,5-二甲基苯并咪唑(1)后, Ladenburg用乙酸和4-甲基邻苯二胺加热回流, 也同样得到化合物1 。
从此, 邻苯二胺衍生物和有机酸的关环反应就成为苯并咪唑类化合物制备最通用的方法, 但通常需要很强的酸性条件[常采用HCl、多聚磷酸(PPA)、混酸体系、对甲苯磺酸等作为催化剂]和很高的反应温度[1].1986 年Gedye 等[2]首次报道了微波作为有机反应的热源, 具有速度快、产率高、污染少、安全性高等优点。
例如, 路军等[3]在无溶剂条件下, 利用微波间歇加热合成苯并咪唑衍生物。
只需反应8 min, 产率一般可达64%~88%。
Zhang[4]成功报道了以邻苯二胺和原酸酯为原料合成苯并咪唑类化合物.。
他们用路易斯酸为催化剂,在乙醇溶剂中室温搅拌进行反应, 合成条件比较温和.当以ZrCl4为催化剂时, 反应2h, 产率为95%. 用相同的原料, 他们[5]还研究了用磺酸作为催化剂, 在甲醇体系中室温下合成苯并咪唑类化合物, 产率达到96%, 反应时间也缩短为1h。
1.2液相合成考虑到载体合成的某些缺点, 研究者们对同样以卤代硝基苯为原料的传统液相合成法也比较重视. 例如,Raju 等[6]报道了在室温下用邻氟取代硝基苯合成含硫和含氧的取代苯并咪唑. 与别人不同的是, 在还原芳环上的硝基时, 他们用的是Raney Ni 的甲醇溶液, 最后在THF 溶液中进行关环缩合反应。
2012年度安徽省自然科学基金项目表

1208085ME61 1208085ME62 1208085ME63 1208085ME64 1208085ME65 1208085ME66 1208085ME67 1208085ME68 1208085ME69 1208085ME70 1208085ME71 1208085ME72 1208085ME73 1208085ME74 1208085ME75 1208085ME76 1208085ME77 1208085ME78 1208085ME79 1208085ME80 1208085ME81 1208085ME82 1208085ME83 1208085ME84 1208085ME85 1208085ME86 1208085ME87 1208085MF88 1208085MF89 1208085MF90 1208085MF91 1208085MF92
化学学部 王广健 淮北师范大学 化学学部 方红霞 黄山学院 生命科学 武立权 安徽农业大学 生命科学 李华伟 安徽省农业科学院 生命科学 甘德芳 安徽农业大学 生命科学 高慧 安徽农业大学
生命科学 张志勇 中国科学技术大学 生命科学 方富贵 安徽农业大学 生命科学 李峰 淮北师范大学
生命科学 蔡亚非 安徽师范大学 生命科学 龚仁敏 安徽师范大学 生命科学 周存六 合肥工业大学 生命科学 周杰 安徽农业大学
附件:
2012年度安徽省自然科学基金项目表
一、2012年度面上基金项目
项目编号 1208085MA01 1208085MA02 1208085MA03 1208085MA04 1208085MA05 1208085MA06 1208085MA07 1208085MA08 1208085MA09 1208085MA10 1208085MA11 1208085MA12 1208085MA13 1208085MA14 1208085MA15 1208085MB16 1208085MB17 1208085MB18 1208085MB19 1208085MB20 1208085MB21 1208085MB22 1208085MB23 1208085MB24 1208085MB25 1208085MB26 1208085MB27 1208085MB28 所在学部 申请人 数理学部 许斌 依托单位 中国科学技术大学 项目名称 黎曼流形上特征函数的分析与几何性质 基于模约化的结构矩阵与插值问题的研究 与自旋系统相变有关的非稳态时间序列研究 密近双星中第三天体的观测与研究 纳米结构自旋零禁带半导体的磁性与输运性质研究 含铋Aurivillius结构Bi2An-1BnO3n+3 (n=5)室温单相铁 电磁体的探索研究 结构对称破缺及相变对超构材料光学性能的影响 碱土金属原子和若干分子的冷碰撞研究 相对论平均场理论在中子星物质研究中的应用 圆锥自旋结构材料中的磁电耦合效应研究 高斯随机系统的Malliavin分析及相关问题研究 介观声子系统中退相干效应对热整流影响的理论研究 周期退化时滞微分系统周期解及控制问题的研究 常循环自对偶码的研究及其应用 若干非多项式型曲线曲面造型理论、方法及应用研究 基于纳米粒子单线态氧能量转移的乙烯雌酚免疫分析方法 研究 重金属非单调量效关系在土壤污染诊断中的应用基础研究 LaNiO3作为锂空气电池的双功能氧电极催化剂的研究 新型氟硼荧染料的合成及其在太阳电池中的应用 金属钌多齿N-杂环卡宾配合物的合成及其催化自由基聚合 反应的性能研究 功能性环金属化有机配体及配合物的设计、合成和光电性 质 新型配合物双光子吸收材料的构效关系和导向制备 共轭聚合物/无机纳米线杂化异质结的制备、界面调控及 光伏器件的研究 新型芳基桥联聚硅氧烷低介电材料的设计、合成及性能研 究 光诱导电子转移形成C-N反应研究 铅对模式生物斑马鱼神经毒性及其分子机制 超声光催化协同降解持久性有机污染物 茶多酚胁迫水溶液中毒死蜱降解的机理
微波辅助N-芳基乙酰胺类化合物的合成

[ ] Kpe , ai eD C noe io a an 3 ap C0 Dln r . ot ̄d c wv h tg lg r m r e ei
i mo e n d m o g n c s t e i :Hi hi hs fo ra i y h ss n g l t r m t e g h
h&o e ,9 62 ( ) 2 9— 8 . e nL t 1 8 ,7 3 :7 2 2 t 20 04—20 trt e J . l i r,09,3 7 0 8lea r[ ] Mo Dv s 20 1 :1— i u e
1 3 9.
[ ] Cdi , im u e R io a nacds . 4 ad kS Fz ar e .Mc wv ehne e t i r e n y
21 年第 1 卷 01 9 第 3期 。 8 34 3 3— 8
合 成 化 学
Chn s o ra f y te cCh mit ieeJu lo nh t e sr n S i y
Vo . 9, 0 1 11 2 1
No 3,3 3—3 4 . 8 8
・
研究简报 ・
微波辅助 Ⅳ 芳基乙酰胺类化合物的合成 -
基金项目 : 国家 自然科学基金资助项 目(0706 ; 2759 ) 科技部国际合作项 目(00 F 360 2 1D A 28)
作者简介 : 崔丽君 (97一 , , , 18 )女 汉族 山东潍坊人 , 硕士研究生 , 主要从事微波化学的研究。 通信联系人 : 夏之宁 , 教授 , 博士生导师 。 —a :hm l _q@y o. m c Em i ce _ bcu a oo .n l a h
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
嗯唑的荧光激发和发射光谱.由图1可知2一苯基苯并嗯唑在乙醇
溶液中的最大激发和发射波长分别为295 nm和352 nm.由图2可
知2一(4一碘苯基)苯并嗯唑在乙醇溶液中的最大激发和发射波长分 别为338 nm和388 nm.图3给出了5种化合物的发射光谱,从图3
wavelerIg(nm)
可知,随着苯环上取代基的吸电子能力的减弱,化合物的最大发射 波长向长波方向移动,从a~e最大发射波长由346 nm逐渐增至
2.2催化剂的选择以及苯甲酸苯环上的取代基对反应的影响 改变不同的催化剂和苯甲酸苯环上的取代基团,其它实验条件不变,其结果见表2. 表2催化剂对反应及其产率的影响。
催化剂
/15 mL
—H
H3803
O
一声一Cl O
一户一Br O
一户一I O
产率/% —p—NH2
O
—0CH3 O
一。一N02 O
一m—N02 O
990,910,740 1 590,1 560,1 460, 1 420,1 240,1 040,
980,910,740 3 380,3 340,1 580, 1 550,1 460,1 290,
1 240,920,740
1 H NMR/8(ppm) 7.3~8.4(m,9H) 7.2~8.3(m。8H) 7.4~8.2(m,8H) 7.3~8.1(m,8H) 6.8~8.1(m。8H) 4.8(s,2H,NH2)
改变不同的辐射时间,其它实验条件不变,结果见表3(P398).
万方数据
山西大学学报(自然科学版)
表3辐射时间对产率的影响”
辐射时间
产率/%
/min
—H
一户一C1
一户一Br
一户一I
2
33.7
45.6
40.2
35.5
3
62.3
70.4
68.6
66.3
4
78.4
85.5
80.2
79.2
5
71.2
78.5
76.3
74.5
。以PPA为催化剂(15 mL),每次实验中各种反应物均为10 mmol,辐射功率为260 w.
由表3可得,辐射时间为4 min时,产率最高,故以4 min为宜. 2.4输出功率对产率的影响‘103
改变微波辐射反应器的输出功率,其它实验条件不变,结果见表4. 表4输出功率对产率的影响。
输出功率
产率/%
/W
—H
一户一Cl
一户一Br
一户一l
130 195 260 325
20.2 55.4 78.4 31.7
38.2 68.5 85.5 40.1
35.4 64.3 80.2 38.2
25.1 59.8 79.2 34.5
’以PPA为催化剂(15 mL),每次实验中各种反应物均为10 mmol,辐射时间均为4 min.
2结果与讨论
2.1 化合物的结构测定结果 用9种取代苯甲酸进行了实验,结果只得到5种取代苯甲酸的产物.表1给出了这5种2一芳基取代苯并
嗯唑的m.p.,IR,1H NMR的数据.经对这些数据的分析,表明为目标化合物. 表1 5种化合物的测定结果’
化合物
a
b
m.p./℃ 103~104 153~154
c
一户一N0z O
H3P04
21
25
23.5
21.5
18
O
O
O
O
PPA
78.4
85.5
80.2
79.2
70.8
O
O
O
O
。每次实验中各种反应物均为10 mmol,液体催化剂总量均为15 mL,辐射功率为260 W,辐射时间均为4 min.
从表2可知:硼酸(路易斯酸)不可作催化剂,磷酸作催化剂效果差,多聚磷酸催化效果好.由此可见,此 反应是在强酸性作用下氨基和羟基被质子化而后脱水合环,酸性的强弱直接影响反应进行的程度,用酸性极 强的多聚磷酸为最佳催化剂.另外,R取代基对目标产物及产率有很明显的影响,随着R基团的吸电子能力 的增强,产率增大,但R为吸电子能力特强的硝基时,得不到目标产物.这可能与缩合反应的机理有关,有待 进一步的研究¨j. 2.3辐射时间对产率的影响
万方数据
冯丽恒等:2一芳基取代苯并嗯唑的微波合成及光谱研究
定量(15 mL)的催化剂(如多聚磷酸,PPA),搅拌均匀后将反应瓶放人微波炉中,间歇式260 W辐射4 min. 将反应液冷至室温后倒入冰水中,有沉淀生产,抽滤,滤饼先用100 mL质量浓度为10%的碳酸氢钠溶液洗 涤,再用水洗至中性,将干燥后得到粗产品溶于热乙醇,趁热过滤,在滤液中加入300 mL冰水,搅拌,静置10 min,过滤,常温干燥得纯的产品.
浓度为:1.43×10“mol/L(乙醇作溶剂) 图1 2一苯基苯并嗯唑的激发和发射光谱
390nm,并且R取代基由H~Br(a~c)变化不大,当R为I或NH:时,发生了大约42 nm的红移.这可能是由
于吸电子能力强的基团减弱了兀共轭体系的程度‘111.
咖
姗
鲫
伽 言∞cu_口T『
瑚
Waveleng山(nm) 浓度为:2.56×lo“mol/L(乙醇作溶剂) 图2 2一(4一碘苯基)苯并嗯唑的激发和发射光谱
万方数据
。 350
400
450
WavekngtIl(nm)
500
图3 5种化合物的荧光发射光谱
万方数据
142~143
d
185~186
e
169~170
’除c为棕红色外,其它均为白色.
Байду номын сангаас
IR/u(cm。)
1 610,1 550,1 480, 1 440,1 250,1 050,
940.740 1 620,1 580,1 460, 1 440,1 240,1 080,
932,840,750 1 600,1 570,1 530, 1 430,1 230,1 050,
一户一NH2 29.8 58.4 70.8 68.7
一户一NH2 18.4 51.4 70.8 29.1
输出功率对反应的产率有重要的影响,因为若输出功率太高 的话,在高温下要发生严重的炭化,若输出功率太低的话,反应不
充分,都使产率降低.从表4可知260 W的输出功率为最佳.
。
2.5荧光光谱的研究
l
图1和图2分别给出了2一苯基苯并嗯唑和2一(4一碘苯基)苯并j