金属学与热处理第二章
金属学与热处理第二章
第二章关于均匀形核和非均匀形核的知识点没总结,到时候抄在最后面金属由液态转变成固态的过程称为凝固,由于凝固后的固态金属通常是晶体,所以称为结晶金属的理论结晶温度与实际结晶温度的差称为过冷度过冷度越大,实际结晶温度越低过冷度随金属的本性和纯度的不同,以及冷却速度的差异可以在很大范围内变化,金属不同则过冷度大小也不同。
金属的纯度越高,则过冷度越大。
过冷度大小主要取决于冷却速度,冷却速度越大,则过冷度越大,则实际结晶温度越低。
反之冷却速度越慢,则过冷度越小,实际结晶温度越接近理论结晶温度相变潜热:1mol物质从一个相转变为另一个相,伴随着放出或吸收的热量称为相变潜热熔化潜热:金属熔化时从固相转变为液相吸收的热量结晶潜热:结晶时从液相转变成固相放出的热量当液态金属的温度达到结晶温度时,由于结晶潜热的释放,补偿了散失到周围环境的热量,所以再冷却曲线上出现了平台,平台延续的时间就是结晶过程所需要的是时间结晶过程是形核与张大的过程结晶的驱动力:液相金属与固相金属的自由能之差阻力是新旧两相之间的界面能相变:在均匀一相或几个混合相内,出现具有不同成分或不同结构(包括原子、离子或电子的位置或位向)或不同组织形态或不同性质的相,称为相变。
结晶能否发生取决于固相的只有能是否低于液相的自由能熵:表示系统中原子排列混乱程度的参数要获得结晶过程所需的驱动力,一定要使实际结晶温度低于理论结晶温度,这样才能满足结晶的热力学条件。
过冷度越大,固液两相的自由能差越大,则相变驱动力越大,结晶速度便越快短程有序:在液态中的微小范围内,存在着紧密接触规则排列的原子集团,但在大范围内原子是无序分布的长程有序:晶体中大范围的原子是呈有序排列的结构起伏:这种不断变化着的短程有序原子集团只有在过冷液体中出现的尺寸较大的相起伏才有可能在结晶时转变成晶核。
这些相起伏就是晶核的胚芽,称为晶胚总之液态金属的一个重要特点是存在着相起伏,只有在过冷液体中的相起伏才能成为晶胚。
金属学与热处理第二章
根据构成能障的界面情况的不同,可能出现两种不同的形核
方式:
均匀形核
非均匀形核
15
3.1 均匀形核
在没有任何外来界面的均匀熔体中的生核过程。均质生核在熔 体各处几率相同,晶核的全部固-液界面皆由生核过程提供。因 此,所需的驱动力也较大。理想液态金属的生核过程就是均匀形 核,又称均质形核或自发形核。
16
31
(2) 形核速率
' GA Gk GA Gk f ( ) N k1 exp[( )] k1 exp[( )] kBT kBT
根据上式可知,异质形核率与下列因素有关: (1) 过冷度(ΔT):过冷度越大,形核率越高。
32
(2) 界面:界面由夹杂物的特性、形态和数量来决定。如夹 杂物基底与晶核润湿,则形核率大。 失配度
20
(3) 形核率 形核速率为单位时间、单位体积生成固相核心的数目。临界
尺寸r的晶核处于介稳定状态,既可溶解,也可长大。当r >rk时 才能成为稳定核心,即在rk的原子集团上附加一个或一个以上的 原子即成为稳定核心。其成核率 N 为:
N N1 N 2
Gk N1 N L exp( ) kBT
(1) 形核热力学
液相与固相体积自由能之差--相变的驱动力
由于出现了固/液界面而使系统增加了界面能--相 变的阻力
G G均 V GV 4 3 r GV 4 r 2 3
17
临界形核半径
2 Tm 2 rk Gv H f T
18
(2) 形核功
在实际金属中,由于金属原子的活动能力强,不易出现极大 点,即随着过冷度的增大,形核率急剧增加。 23
(4) 均匀生核理论的局限性 均匀形核的过冷度很大,约为0.2T m,如纯铝结晶时的过冷度
《金属学与热处理》第二课后习题答案
金属学与热处理第一章习题1.作图表示出立方晶系(1 2 3)、(0 -1 -2)、(4 2 1)等晶面和[-1 0 2]、[-2 1 1]、[3 4 6] 等晶向3.某晶体的原子位于正方晶格的节点上,其晶格常数a=b≠c,c=2/3a。
今有一晶面在X、Y、Z坐标轴上的截距分别是5个原子间距,2个原子间距和3个原子间距,求该晶面的晶面参数。
解:设X方向的截距为5a,Y方向的截距为2a,则Z方向截距为3c=3X2a/3=2a,取截距的倒数,分别为1/5a,1/2a,1/2a化为最小简单整数分别为2,5,5故该晶面的晶面指数为(2 5 5)4.体心立方晶格的晶格常数为a,试求出(1 0 0)、(1 1 0)、(1 1 1)晶面的晶面间距,并指出面间距最大的晶面解:(1 0 0)面间距为a/2,(1 1 0)面间距为√2a/2,(1 1 1)面间距为√3a/3三个晶面晶面中面间距最大的晶面为(1 1 0)7.证明理想密排六方晶胞中的轴比c/a=1.633证明:理想密排六方晶格配位数为12,即晶胞上底面中心原子与其下面的3个位于晶胞内的原子相切,成正四面体,如图所示则OD=c/2,AB=BC=CA=CD=a因△ABC是等边三角形,所以有OC=2/3CE由于(BC)2=(CE)2+(BE)2则有(CD)2=(OC)2+(1/2c)2,即因此c/a=√8/3=1.6338.试证明面心立方晶格的八面体间隙半径为r=0.414R解:面心立方八面体间隙半径r=a/2-√2a/4=0.146a面心立方原子半径R=√2a/4,则a=4R/√2,代入上式有R=0.146X4R/√2=0.414R9.a)设有一刚球模型,球的直径不变,当由面心立方晶格转变为体心立方晶格时,试计算其体积膨胀。
b)经X射线测定,在912℃时γ-Fe的晶格常数为0.3633nm,α-Fe的晶格常数为0.2892nm,当由γ-Fe转化为α-Fe时,求其体积膨胀,并与a)比较,说明其差别的原因。
金属学与热处理课件 02金属的结晶
第2章 金属的结晶 2.1 纯金属的结晶与铸锭
过冷度越大,金属由液态转变为固态的推动力越大, 过冷度越大,金属由液态转变为固态的推动力越大,能稳定存在的短程有 序的原子集团的尺寸越小,因此生成的自发晶核越多。但是, 序的原子集团的尺寸越小,因此生成的自发晶核越多。但是,当过冷度过大或 温度过低时,由于原子的活动能力太低,生成晶核所需的原子的扩散受阻, 温度过低时,由于原子的活动能力太低,生成晶核所需的原子的扩散受阻,形 核的速率反而减小,故形核率与过冷度有关。 核的速率反而减小,故形核率与过冷度有关。 在实际金属结晶中,往往不需要自发形核那么大的过冷度就已开始形核, 在实际金属结晶中,往往不需要自发形核那么大的过冷度就已开始形核, 因为实际液态金属中总是不可避免地含有一些杂质, 因为实际液态金属中总是不可避免地含有一些杂质,杂质的存在常常促使金属 原子在其表面形核。此外,液态金属总是与锭模内壁相接触, 原子在其表面形核。此外,液态金属总是与锭模内壁相接触,于是晶核就依附 于这些现成的固体表面形成。 于这些现成的固体表面形成。这种依靠外来质点作为结晶核心的方式称为非自 发形核。 发形核。 按照结晶时能量的条件,基底与晶体结构以及点阵常数越相近, 按照结晶时能量的条件,基底与晶体结构以及点阵常数越相近,它们的原 子在接触面上越容易吻合,基底与晶核之间的界面能越小, 子在接触面上越容易吻合,基底与晶核之间的界面能越小,从而可以减少形核 时体系自由焓的增值,这样的基底促进非自发形核形成的效果较好,因此, 时体系自由焓的增值,这样的基底促进非自发形核形成的效果较好,因此,当 杂质的晶体结构和晶格常数与金属的结构相似或相当时, 杂质的晶体结构和晶格常数与金属的结构相似或相当时,有利于形成非自发形 晶核就优先依附于这些现成的表面而形成, 核,晶核就优先依附于这些现成的表面而形成,也有些难熔金属的晶体结构与 金属的结构相差甚远,但是其表面的凹孔或裂缝有时残留未熔金属, 金属的结构相差甚远,但是其表面的凹孔或裂缝有时残留未熔金属,也可以成 为非自发形核的核心。在生产实际中, 为非自发形核的核心。在生产实际中,液态金属结晶时形核方式主要是非自发 形核。 形核。
《金属学和热处理》崔忠圻[第二版]课后答案解析[完整版]
第一章金属的晶体结构1-1 作图表示出立方晶系(1 2 3)、(0 -1 -2)、(4 2 1)等晶面和[-1 0 2]、[-2 1 1]、[3 4 6]等晶向。
答:1-2 立方晶系的{1 1 1}晶面构成一个八面体,试作图画出该八面体,并注明各晶面的晶面指数。
答:{1 1 1}晶面共包括(1 1 1)、(-1 1 1)、(1 -1 1)、(1 1 -1)四个晶面,在一个立方晶系中画出上述四个晶面。
1-3 某晶体的原子位于正方晶格的节点上,其晶格常数为a=b≠c,c=2/3a。
今有一晶面在X、Y、Z坐标轴上的结局分别为5个原子间距、2个原子间距和3个原子间距,求该晶面的晶面指数。
答:由题述可得:X方向的截距为5a,Y方向的截距为2a,Z方向截距为3c=3×2a/3=2a。
取截距的倒数,分别为1/5a,1/2a,1/2a化为最小简单整数分别为2,5,5故该晶面的晶面指数为(2 5 5)1-4 体心立方晶格的晶格常数为a,试求出(1 0 0)、(1 1 0)、(1 1 1)晶面的面间距大小,并指出面间距最大的晶面。
答:H==a/2(1 0 0)==√2a/2H(1 1 0)==√3a/6H(1 1 1)面间距最大的晶面为(1 1 0)1-5 面心立方晶格的晶格常数为a,试求出(1 0 0)、(1 1 0)、(1 1 1)晶面的面间距大小,并指出面间距最大的晶面。
答:==a/2H(1 0 0)H==√2a/4(1 1 0)==√3a/3H(1 1 1)面间距最大的晶面为(1 1 1)注意:体心立方晶格和面心立方晶格晶面间距的计算方法是:1、体心立方晶格晶面间距:当指数和为奇数是H=,当指数和为偶数时H=2、面心立方晶格晶面间距:当指数不全为奇数是H=,当指数全为奇数是H=。
1-6 试从面心立方晶格中绘出体心正方晶胞,并求出它的晶格常数。
答:1-7 证明理想密排六方晶胞中的轴比c/a=1.633。
《金属学与热处理》课件
本课程将介绍金属学基础、金属热力学、金属相变、金属缺陷与强化、金属 热处理以及金属表面处理,让您掌握金属材料与加工的基本知识。
第一章 金属学基础
1
金属的组成
金属是由原子或离子通过共用自由电子结合而成,是导热、导电、延展、可塑性 极强的物质。
2
金属的晶体结构
金属是具有整齐排列、具有规律性的晶体结构。晶格是六面体密排结构。
3
金属的晶界和位错
晶界是晶体内部不同晶粒相交界面。位错是晶粒中原子或离子排列存在的缺陷。
第二章 金属热力学
热力学第一定律
能量可以从一种形式转换成 另一种形式,但能量总量不 变。
热力学第二定律
热量不会自己从低温转移到 高温物体,只有在做功或吸 收外界热量的情况下才可以。
热力学第三定律
在温度绝对零度的情况下, 能量变为零。
2 热处理设备
有固体加热炉、电阻炉、气体加热炉、水加热炉等。
3 热处理工艺控制
包括加热速度、加热温度、保温时间、冷却速度等控制参数。
第六章 金属表面处理
金属表面处理方法
包括化学处理、机械加工、电 化学处理、热处理、电镀等多 种方法。
金属表面处理工艺流程
表面清洁、表面活化、表面处 理、表面涂装等环节组成。
产生于晶体生长、切割、变形等过程中。
包括薄亚晶带、位错、蠕变加工硬化带。
3
面缺陷
是金属晶体的缺陷,其形状是哑铃、孔
强化机理
4
等。表现为晶界、裂纹等。
金属材料经过不同的加工或处理过程, 可以获得不同的强度、硬度、延展性等
性能。
第五章 金属的热处理
1 热处理工艺
是在一定的加热、保温和冷却条件下,对金属材料进行组织和性能控制的工艺。
金属学与热处理课后习题答案第二章
第二章纯金属的结晶2-1 a)试证明均匀形核时,形成临界晶粒的△Gk与其体积V之间关系式为△Gk=V △Gv/2b)当非均匀形核形成球冠状晶核时,其△Gk与V之间的关系如何答:2-2 如果临界晶核是边长为a的正方体,试求出△Gk和a之间的关系。
为什么形成立方体晶核的△Gk比球形晶核要大。
答:2-3 为什么金属结晶时一定要由过冷度影响过冷度的因素是什么固态金属熔化时是否会出现过热为什么答:金属结晶时需过冷的原因:如图所示,液态金属和固态金属的吉布斯自由能随温度的增高而降低,由于液态金属原子排列混乱程度比固态高,也就是熵值比固态高,所以液相自由能下降的比固态快。
当两线相交于Tm温度时,即Gs=Gl,表示固相和液相具有相同的稳定性,可以同时存在。
所以如果液态金属要结晶,必须在Tm温度以下某一温度Tn,才能使Gs<Gl,也就是在过冷的情况下才可自发地发生结晶。
把Tm-Tn的差值称为液态金属的过冷度影响过冷度的因素:金属材质不同,过冷度大小不同;金属纯度越高,则过冷度越大;当材质和纯度一定时,冷却速度越大,则过冷度越大,实际结晶温度越低。
固态金属熔化时是否会出现过热及原因:会。
原因:与液态金属结晶需要过冷的原因相似,只有在过热的情况下,Gl<Gs,固态金属才会发生自发地熔化。
2-4 试比较均匀形核和非均匀形核的异同点。
答:相同点:1、形核驱动力都是体积自由能的下降,形核阻力都是表面能的增加。
2、具有相同的临界形核半径。
3、所需形核功都等于所增加表面能的1/3。
不同点:1、非均匀形核的△Gk小于等于均匀形核的△Gk,随晶核与基体的润湿角的变化而变化。
2、非均匀形核所需要的临界过冷度小于等于均匀形核的临界过冷度。
3、两者对形核率的影响因素不同。
非均匀形核的形核率除了受过冷度和温度的影响,还受固态杂质结构、数量、形貌及其他一些物理因素的影响。
2-5 说明晶体生长形状与温度梯度的关系。
答:液相中的温度梯度分为:正温度梯度:指液相中的温度随至固液界面距离的增加而提高的温度分布情况。
金属学与热处理原理(第三版)课后答案 全
金属学与热处理课后答案第一章金属键?并用其解释金属的特性答:金属键就是金属阳离子和自由电子之间的强烈的相互作用,可以决定金属的很多物理性质。
金属的延展性就是由于在金属被锻造的时候,只是引起了金属阳离子的重新排布,而由于自由电子可以在整块金属内自由流动,金属键并未被破坏。
再如由于自由电子的存在使金属很容易吸收光子而发生跃迁,发出特定波长的光波,因而金属往往有特定的金属光泽。
金属中的自由电子沿着电场定向运动,导电性;自由电子的运动及正离子的震动,使之具有导热性;温度升高,正离子或原子本身振动的幅度加大,阻碍电子的通过,使电阻升高,具有正的电阻温度系数用双原子模型说明金属中原子为什么会呈现周期性规则排列,并趋于紧密排列答:当大量金属原子结合成固体时,为使体系能量最低,以保持其稳定,原子间必须保持一定的平衡距离,因此固态金属中的原子趋于周期性规则排列。
原子周围最近邻的原子数越多,原子间的结合能越低(因为结合能是负值),把某个原子从平衡位置拿走,克服周围原子对它的作用力所需做的功越大,因此固态金属中的原子总是自发地趋于紧密排列。
3.填表:晶格类型原子数原子半径配位数致密度间隙类型间隙半径间隙数目举例原子堆垛方式体心立方2a438 68% 八面体 a 18 α—Fe ABABAB四面体 a 24面心立方4a4212 74% 八面体 a 13 γ—Fe ABCABC四面体 a 8密排六方6a2112 74% 八面体 a 6 Mg ABABAB四面体8a 194什么是晶体结构?什么是晶格?什么是晶胞?答:晶体结构:指晶体中原子(离子,原子,分子集团)的具体的排列情况,也就是指晶体中这些质点在三维空间内有规律的周期性重复排列;晶格:将阵点用一系列平行的直线连接起来构成的空间格架。
晶胞:构成点阵的最基本单元。
5、作图表示出立方晶系(1 2 3)、(0 -1 -2)、(4 2 1)等晶面和[-1 0 2]、[-2 1 1]、[3 4 6] 等晶向6立方晶系的{1 1 1}晶面构成一个八面体,试作图画出该八面体,并注明各晶面的晶面指数。
金属学与热处理课后答案(崔忠圻版)
第二章纯金属的结晶2-3 为什么金属结晶时一定要有过冷度?影响过冷度的因素是什么?固态金属熔化时是否会出现过热?为什么?答:(1)因为金属结晶时存在过冷现象,是为了满足结晶的热力学条件,过冷度越大,固、液两项的自由能差越大,相变驱动力越大。
(2)过冷度随金属的纯度不同和本性不同,以及冷却速度的差异可以再很大范围内变化。
金属不同,过冷度也不同;金属的纯度越高,则过冷度越大;冷却速度越大,过冷度越大,反之,越小。
(3)会,当液态金属的自由能低于固态时,这时实际结晶温度高于理论结晶温度T m,此时,固态金属才能自发的转变为液态金属,称为过热。
2-4试比较均匀形核与非均匀形核的异同点。
答;均匀形核是指:若液相中各区域出现新相晶核的几率是相同的;非均匀形核:液态金属中存在微小的固相杂质质点,液态金属与型壁相接触,晶核可以优先依附现成的固体表面形核。
在实际的中,非均匀形核比均匀形核要容易发生。
二者形核皆需要结构起伏,能量起伏,过冷度必须大于临界过冷度,晶胚的尺寸必须大于临界晶核半径。
2-5说明晶体成长形状与温度梯度的关系?答;正温度梯度下以平面状态的长大形态,服温度梯度下以树枝状长大。
2-6简述铸锭三晶区形成的原因及每个晶区的性能特点?(1)表层细晶区形成原因:①型壁临近的金属液体产生极大过冷度满足形核的热力学条件;②型壁可以作为非均匀形核的基地。
该晶区特点:组织细密,力学性能较好,但该晶区较薄,一般没有多大的实际意义。
(2)柱状晶区的形成原因:①液态金属结晶前沿有适当的过冷度,满足形核要求;②垂直于型壁方向散热最快,晶体向相反的方向生长;③外因是散热的方向性;④内因是晶体晶体生长的各向异性。
该晶区的特点:相互平行的柱状晶接触面及相邻垂直的柱状晶区的交界面较为脆弱,并常聚集着易熔杂质和非金属夹杂物,使铸锭在热压力加工时,容易沿着这些脆弱面开裂,组织比较致密。
(3)中心等轴晶区形成特定:①中心液体达到过冷,加上杂质元素的作用,满足形核的要求;②散热失去方向性,晶核自由生长,长大速度差不多,长成等轴区。
第二章 纯金属的结晶(金属学与热处理崔忠圻课后答案)
金属学与热处理第二版(崔忠圻)答案第二章纯金属的结晶2-1 a)试证明均匀形核时,形成临界晶粒的△Gk与其体积V之间关系式为△Gk=V△Gv/2b)当非均匀形核形成球冠状晶核时,其△Gk与V之间的关系如何?答:2-2 如果临界晶核是边长为a的正方体,试求出△Gk和a之间的关系。
为什么形成立方体晶核的△Gk比球形晶核要大。
答:2-3 为什么金属结晶时一定要由过冷度?影响过冷度的因素是什么?固态金属熔化时是否会出现过热?为什么?答:金属结晶时需过冷的原因:如图所示,液态金属和固态金属的吉布斯自由能随温度的增高而降低,由于液态金属原子排列混乱程度比固态高,也就是熵值比固态高,所以液相自由能下降的比固态快。
当两线相交于Tm温度时,即Gs=Gl,表示固相和液相具有相同的稳定性,可以同时存在。
所以如果液态金属要结晶,必须在Tm温度以下某一温度Tn,才能使Gs<Gl,也就是在过冷的情况下才可自发地发生结晶。
把Tm-Tn的差值称为液态金属的过冷度影响过冷度的因素:金属材质不同,过冷度大小不同;金属纯度越高,则过冷度越大;当材质和纯度一定时,冷却速度越大,则过冷度越大,实际结晶温度越低。
固态金属熔化时是否会出现过热及原因:会。
原因:与液态金属结晶需要过冷的原因相似,只有在过热的情况下,Gl<Gs,固态金属才会发生自发地熔化。
2-4 试比较均匀形核和非均匀形核的异同点。
答:相同点:形核驱动力都是体积自由能的下降,形核阻力都是表面能的增加。
具有相同的临界形核半径。
所需形核功都等于所增加表面能的1/3。
不同点:非均匀形核的△Gk小于等于均匀形核的△Gk,随晶核与基体的润湿角的变化而变化。
非均匀形核所需要的临界过冷度小于等于均匀形核的临界过冷度。
两者对形核率的影响因素不同。
非均匀形核的形核率除了受过冷度和温度的影响,还受固态杂质结构、数量、形貌及其他一些物理因素的影响。
2-5 说明晶体生长形状与温度梯度的关系。
答:液相中的温度梯度分为:正温度梯度:指液相中的温度随至固液界面距离的增加而提高的温度分布情况。
金属学与热处理第二章
2Βιβλιοθήκη ; 为单位面积表面能
十一、均匀形核率: 指单位时间单位体积液相中形成的晶核数目, 以 N 表示, 单位 cm s
因子较高的物质仍然保持着光滑界面形态。 二十三、晶粒大小的控制: 细化晶粒不仅能提高材料的强度和硬度, 还能提高材料的韧性和塑性。 工业上将通过细化晶 粒来提高材料强度的方法称为细晶强化. 晶粒度:晶粒的大小,通常用晶粒的平均面积或直径表示。 晶粒大小的影响因素:形核率和长大速度。晶粒的大小取决于形核率 N 与长大速度 G 的比 值,N/G。 二十四、工业中细化晶粒的方法: 控制过冷度:在一定范围内,过冷度越大,N/G 越大,晶粒越细。 变质处理:在浇铸前往液态金属中加入形核剂,促进形成大量的非均匀晶核来细化晶粒。 振动和搅拌:输入能量提高形核率;使凝固过程中正在长大的晶体破碎,增加核心。 二十五、铸锭三晶区的形成: 1.表层细晶区:模壁激冷(大△T )及非自发形核→细小晶粒薄层,无实用价值。 2.柱状晶区:△T↓且方向性散热→垂直模壁单相长大→柱晶,致密但粗大,性能有方向性且 柱晶间为薄弱环节。 3.中心等轴晶区:温度均匀,到处同时形核、各向长大,晶粒较小,性能较好。 二十六、铸锭组织的控制:1.铸型的冷却能力 2.浇注温度与浇注速度 3.熔化温度 二十七、铸锭缺陷:1.缩孔(集中缩孔、分散缩孔)2.气孔(气泡)3.夹杂物 二十八、本章小结 1、基本概念:结晶、过冷度、相变潜热、熔化潜热、结晶潜热、近程有序、远程有序、结 构起伏(相起伏)、均匀形核、非均匀形核、形核功、能量起伏、正温度梯度、负温度梯度、 树枝晶、等轴晶、柱状晶、晶粒度 2、过冷度影响因素 3、金属结晶的宏观现象:过冷度、结晶潜热;微观过程:形核、长大 4、金属结晶的热力学条件:液固相的自由能差,就是转变的驱动力,过冷度△T 越大,相变驱 动力越大;液态金属的过冷度必须大于临界过冷度,晶胚尺寸必须大于临界晶核半径 rK 5、均匀形核需要结构起伏,也需要能量起伏, 二者都是液体本身存在的自然现象。 6、均匀形核和非均匀形核的区别(形核时的能量变化、临界晶核半径、形核功) 7、均匀形核和非均匀形核的形核率的影响因素 8、晶体长大机制(二维晶核长大机制、螺型位错长大机制、连续长大机制) 9、正温度梯度和负温度梯度下晶体生长的界面形状 10、晶粒大小的影响因素,工业中细化晶粒的方法 11、铸锭三晶区的形成(表层细晶区、柱状晶区、中心等轴晶区) 12、铸锭组织的控制(铸型的冷却能力、浇注温度与浇注速度、.熔化温度) 13、铸锭缺陷(缩孔(集中缩孔、分散缩孔) 、气孔(气泡) 、夹杂物)
金属学与热处理—第二章1-4节
教学要求:
1 了解金属结晶过程的形核、长大
2 理解金属铸锭的组织与缺陷
3 掌握金属结晶的热力学条件和结构条件
重点:金属结晶的热力学条件和结构条件 难点:金属结晶过程的形核、长大 学时数:共4学时
§1
金属的结晶现象
注意结晶和凝固的 区别
结晶: 液体 --> 晶体——金属生产的第一步
θ=0 a)
θ b) 不同湿润角的晶核形状
θ c)
2、影响非均质形核率的因素
⑴ 过冷度的影响:∵形核功小;
∴ΔT=0.02Tm
~0.2Tm ⑵
┗ 远小于均匀形核 ⑵ 固体杂质结构的影响:
~0.02Tm
⑴
△T 非均匀形核率⑴与均匀形核率 ⑵随过冷度变化的比较
LB B cos L
温度
Tm
△T
急冷
非晶态材料
非均匀形核
1、临界形核半径和形核功
液相L
1 3 V r (2 3 cos cos3 ) 3
σLα σLβ θ
晶核α
S1
S1 2r 2 (1 cos )
S2
σαβ
L L cos
基底β
r
S 2 r 2 sin2
结晶的结构条件
相起伏
能量起伏
晶胚
晶核
§4 晶核的形成
形核方式:
不是所有的晶坯均能 形成晶核,为什么?
均匀形核
非均匀形核
是指完全依靠液态金属中稳定的原
子集团(相起伏)形核的过程,液
相中各区域出现新相晶核的几率都 是相同的。——理想情况
均匀形核
非均匀形核
是指晶胚依附于液态金属中现 成的微小固相杂质质点或器壁 的表面形核的过程。——实际 液态金属结晶情况均属此类。
金属学与热处理第二章
复习重点:名词、简答、各章课堂强调的重点及书后作业第二章纯金属的结晶一、名词:结晶:金属由液态转变为固态晶体的转变过程.结晶潜热:金属结晶时从液相转变为固相放出的热量。
孕育期:当液态金属过冷至理论结晶温度以下的实际结晶温度时,晶核并末立即出生,而是经过了一定时间后才开始出现第一批晶核。
结晶开始前的这段停留时间称为孕育期。
近程有序:液态金属中微小范围内存在的紧密接触规则排列的原子集团。
远程有序:固态晶体中存在的大范围内的原子有序排列集团。
结构起伏(相起伏):液态金属中不断变化着的近程有序原子集团。
晶胚:过冷液体中存在的有可能在结晶时转变为晶核的尺寸较大的相起伏。
形核率:单位时间单位体积液体中形成的晶核数目。
过冷度:金属的实际结晶温度与理论结晶温度之差。
均匀形核:液相中各个区域出现新相晶核的几率都相同的形核方式。
非均匀形核:新相优先出现于液相中的某些区域的形核方式。
变质处理:在浇注前向液态金属中加入形核剂以促进形成大量的非均匀晶核来细化晶粒的液态金属处理方法。
能量起伏:液态金属中各微观区的能量此起彼伏、变化不定偏离平衡能量的现象。
正温度梯度:液相中的温度随至界面距离的增加而提高的温度分布状况。
负温度梯度:液相中的温度随至界面距离的增加而降低的温度分布状况细晶强化:用细化晶粒来提高材料强度的方法。
晶粒度:晶粒的大小。
缩孔:液态金属凝固,体积收缩,不再能填满原来铸型,如没有液态金属继续补充而出现的收缩孔洞。
二、简答:1. 热分析曲线表征了结晶过程的哪两个重要宏观特征?答:过冷现象、结晶潜热释放现象2. 影响过冷度的因素有那些?如何影响的?答:金属的本性、纯度和冷却速度。
金属不同,过冷度的大小也不同;金属的纯度越高,则过冷度越大;冷却速度越大,则过冷度越大。
3. 决定晶体长大方式和长大速度的主要因素?1)界面结构;2)界面附近的温度分布;3)潜热的释放与逸散4. 晶体长大机制有哪几种?1)二维晶核长大机制;2)螺型位错长大机制;3)垂直长大机制5、结晶过程的普遍规律是什么?答:结晶是形核和晶核长大的过程6、均匀形核的条件是什么?答:①要有结构起伏与能量起伏;②液态金属要过冷,且过冷度必须大于临界过冷度;③结晶必须在一定温度下进行。
金属学与热处理第二章(1)
第二章过冷度:金属的理论结晶温度(T m)和实际结晶温度(T n)之差,△T=T m-T n 纯金属结晶/均匀形核△T≈0.2 T m非均匀形核△T≈0.02 T m金属不同,过冷度不同;金属纯度↑,过冷度↑;冷却速度↑,过冷度↑,实际结晶温度↓;实际结晶温度≠理论结晶温度;过冷度有一最小值,小于这个值,结晶无法进行相变潜热:1mol物质从一个相转变成另一个相时,伴随着放出或者吸收的热量 融化潜热:金属熔化时,从固相转变为液相,吸收的热量结晶潜热:金属结晶时,从液相转变为固相,放出的热量1.出现平台,释放的结晶潜热补偿散失到环境中的热量,释放的结晶潜热>散失到环境中的热量,温度回升,发生区域重熔平台延续时间=结晶过程用时;2.第一个转折点,结晶开始3.第二个转折点,结晶结束热力学第二定律:在等温等压条件下,物质系统总是自发的从自由能较高的状态向自由能较低的状态转变结晶发生的条件:固相自由能<液相自由能熵(S)的物理意义:表征系统中原子排列的混乱程度,温度↑,S↑,G↓,S L>S S1.− =2.T m点为理论结晶温度,S L=S S,两相共存3.当T<T m时,G L>G S,发生结晶,△G v为结晶驱动力△Gv=−△Hf△,△H f为熔化潜热短程有序:在液体中的微小范围内,存在着紧密接触规则排列的原子集团长程有序:在晶体中大范围内的原子呈有序排列结构起伏/相起伏:处于瞬间出现,瞬间消失,此起彼伏,变化不定状态中的短程有序的原子集团相起伏:尺寸大和尺寸小的出现几率很小,一定温度下存在r max,r min,T↑,r max↓ 在过冷液体中,只有尺寸较大的相起伏才有可能转变为晶核,这些相起伏就是胚芽,称为晶胚均匀形核/匀质形核/自发形核:液相中各个区域出现新相晶核的几率都是相同的 非均匀形核/异质形核/非自发形核:新相优先出现于液相中某些区域晶核:尺寸等于或大于某一临界尺寸才能稳定存在并自发长大的晶胚结晶的驱动力,自由能降低;结晶阻力,表面能均匀形核能量变化△ = △Gv +4 ,△G v 单位体积自由能差,σ单位面积表面能1.临界形核半径 rk = ∆ ∆2.r<r k ,不能形成稳定晶核;r>r k ,晶胚可以自发形成稳定晶核3. r k 与△T 成反比4. r k ~r 0范围内,△G>0,△G k = ,=4π 为临界晶核表面积 5. r k ~r 0范围内,形核需要对形核做功△G k,1/3的表面能能量起伏:液态金属各微区能量此起彼伏,变化不定,暂时偏离平衡能量的现象 也是形核功的来源,形核功大小与过冷度的平方成反比形核的基础:过冷液相中的相起伏和能量起伏形核率:单位时间单位体积液相中形成晶核的数目,均匀形核率的影响因素:过冷度和原子扩散能力成反比1.过冷度↑,形核率↑2.原子扩散能力↑,形核率↑非均匀形核半径 = ∆ ∆ = 均匀形核半径, 表示晶核与液相间的表面能非均匀形核功∆ = (4 ) (),θ晶核与基底接触角(润湿角) θ=0°,∆ =0,表示不需要形核功;θ=180°,∆ =∆0°<θ<180°,∆ <∆ ,θ↓,∆ ↓,非均匀形核越容易,需要∆T 越小 点阵匹配原理:两个相互接触晶面,结构相似,尺寸相当非均匀形核率影响因素:1.过冷度↑,形核率↑,开始形核所需∆T为均匀形核的1/102.与接触角θ有关(点阵匹配原理),θ↓,∆ ↓,形核率越高3.固体杂质形貌,凹面>平面>凸面4.过热度(液态金属温度与金属熔点之差),5.振动、搅动提高形核率过热度的影响:过热度不大,无影响过热度较大,部分质点表面凹面变平面,非均匀形核数目减少过热度很大,质点全部熔化,非均匀形核转变为均匀形核,形核率大大降低晶体长大的条件:1.液相能继续不断地向晶体扩散提供原子(液相有足够温度,足够扩散能力)2.晶体表面能不断的牢靠到地接受这些原子(晶体结构)决定晶体长大方式和长大速度的因素:界面微观结构,温度梯度界面微观结构 光滑界面/小平面界面 粗糙界面/非小平面界面组成(光学显微镜) 曲折小平面 界面平直固相原子占据界面比例x 0%、100% 50%杰克逊因子α α≥5 α≤2实例 有机化合物 纯金属、合金、CBr4长大机制 二维晶核、螺形位错 连续长大正温度梯度:液相中温度随至界面距离增加而提高的温度分布状况过冷度随至界面距离的增加而减少负温度梯度:液相中温度随至界面距离增加而降低的温度分布状况过冷度随至界面距离的增加而增加正温度梯度 负温度梯度光滑界面 小台阶长大 树枝长大、小台阶长大粗糙界面 平面长大 树枝状长大形态晶粒度:晶粒的大小,取决于形核率和长大速度细化晶粒的方法:1.控制过冷度,提高冷却速度,适用小型或薄壁铸件2.变质处理,加形核剂(变质剂),适用大的厚壁铸件3.振动、搅拌实际生产,铸锭模→铸锭;铸型→铸件铸态组织:包括晶粒大小、形状和取向,合金元素和杂质的分布以及铸锭中的缺陷(缩孔、气孔…)等铸态组织的影响:铸件,力学性能+使用寿命铸锭,压力加工性能+加工后金属制品的组织和性能铸锭三晶区表层细晶区/激冷区:形成机理:金属液体结晶从型壁开始,靠近型壁的液体有极大的过冷度,形核率极大,产生大量晶核,并同时向各个方向长大,由于晶粒数量极多,彼此很快相遇,不能继续长大,这样形成了细晶区形核数目的影响因素:1.型壁的形核能力2.型壁处所能达到的过冷度大小(铸型表面温度低、热传导能力好、浇注温度低能获得较大过冷度)优缺点:优,晶粒细小、组织致密、力学性能好。
金属学与热处理-2.1
25
不同金属的过冷倾向不同,同一种金属的过冷度
也不是恒定值,它将随实验条件而变。冷却速度增
大,会使金属凝固时的过冷度增大。
过冷是金属凝固的必要条件。 金属由液体冷凝成固体时要放出凝固潜热,如果
这一部分热量恰好能补偿系统向环境散失的热量,
凝固将在恒温下进行。
第2章 纯金属的结晶
1
本章知识结构
基本概念
金属结晶的现象
热力学条件 结晶的条件 结构条件 晶核的形成及长大 铸锭的组织与缺陷
2
基本概念
组元(component) :组元通常是指系统中每一个 可以单独分离出来,并能独立存在的化学纯物质,
在一个给定的系统中,组元就是构成系统的各种化
学元素或化合物。 化学元素:Cu, Ni, Fe等 化合物:Al2O3, MgO, Na2O, SiO2等 按组元数目,将系统分为:
纯金属结晶的两个宏观现象就是过冷和恒温。
26
结晶的热力学条件
G H TS
dG Vdp SdT
压力可视为常数,dp=0
dG S dT 温度升高,原子活动能力提高,因而原子排列的 混乱程度增加,即熵值增加,系统的自由能随温度 的升高而降低。
27
T>Tm,GL<GS
处于液态;
液态金属中的规则排列的原子团总是处于时起时伏,此
起彼伏的变化之中,人们把液态金属中这种规则排列原 子团的起伏现象称为相起伏或结构起伏。
相起伏是产生晶核的基础。当把金属熔液过冷到熔点以
下时,这种规则排列的原子团被冻结下来,成为规则排 列的固相,就有可能成为均匀形核的胚芽,故称为晶胚。
《金属学与热处理》(第二版)课后习题参考答案
金属学与热处理第一章习题1.作图表示出立方晶系(1 2 3)、(0 -1 -2)、(4 2 1)等晶面和[-1 0 2]、[-2 1 1]、[3 4 6] 等晶向3.某晶体的原子位于正方晶格的节点上,其晶格常数a=b≠c,c=2/3a。
今有一晶面在X、Y、Z坐标轴上的截距分别是5个原子间距,2个原子间距和3个原子间距,求该晶面的晶面参数。
解:设X方向的截距为5a,Y方向的截距为2a,则Z方向截距为3c=3X2a/3=2a,取截距的倒数,分别为1/5a,1/2a,1/2a化为最小简单整数分别为2,5,5故该晶面的晶面指数为(2 5 5)4.体心立方晶格的晶格常数为a,试求出(1 0 0)、(1 1 0)、(1 1 1)晶面的晶面间距,并指出面间距最大的晶面解:(1 0 0)面间距为a/2,(1 1 0)面间距为√2a/2,(1 1 1)面间距为√3a/3三个晶面晶面中面间距最大的晶面为(1 1 0)7.证明理想密排六方晶胞中的轴比c/a=1.633证明:理想密排六方晶格配位数为12,即晶胞上底面中心原子与其下面的3个位于晶胞内的原子相切,成正四面体,如图所示则OD=c/2,AB=BC=CA=CD=a因△ABC是等边三角形,所以有OC=2/3CE由于(BC)2=(CE)2+(BE)2则有(CD)2=(OC)2+(1/2c)2,即因此c/a=√8/3=1.6338.试证明面心立方晶格的八面体间隙半径为r=0.414R解:面心立方八面体间隙半径r=a/2-√2a/4=0.146a面心立方原子半径R=√2a/4,则a=4R/√2,代入上式有R=0.146X4R/√2=0.414R9.a)设有一刚球模型,球的直径不变,当由面心立方晶格转变为体心立方晶格时,试计算其体积膨胀。
b)经X射线测定,在912℃时γ-Fe的晶格常数为0.3633nm,α-Fe的晶格常数为0.2892nm,当由γ-Fe转化为α-Fe时,求其体积膨胀,并与a)比较,说明其差别的原因。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复习重点:名词、简答、各章课堂强调的重点及书后作业第二章纯金属的结晶一、名词:结晶:金属由液态转变为固态晶体的转变过程.结晶潜热:金属结晶时从液相转变为固相放出的热量。
孕育期:当液态金属过冷至理论结晶温度以下的实际结晶温度时,晶核并末立即出生,而是经过了一定时间后才开始出现第一批晶核。
结晶开始前的这段停留时间称为孕育期。
近程有序:液态金属中微小范围内存在的紧密接触规则排列的原子集团。
远程有序:固态晶体中存在的大范围内的原子有序排列集团。
结构起伏(相起伏):液态金属中不断变化着的近程有序原子集团。
晶胚:过冷液体中存在的有可能在结晶时转变为晶核的尺寸较大的相起伏。
形核率:单位时间单位体积液体中形成的晶核数目。
过冷度:金属的实际结晶温度与理论结晶温度之差。
均匀形核:液相中各个区域出现新相晶核的几率都相同的形核方式。
非均匀形核:新相优先出现于液相中的某些区域的形核方式。
变质处理:在浇注前向液态金属中加入形核剂以促进形成大量的非均匀晶核来细化晶粒的液态金属处理方法。
能量起伏:液态金属中各微观区的能量此起彼伏、变化不定偏离平衡能量的现象。
正温度梯度:液相中的温度随至界面距离的增加而提高的温度分布状况。
负温度梯度:液相中的温度随至界面距离的增加而降低的温度分布状况细晶强化:用细化晶粒来提高材料强度的方法。
晶粒度:晶粒的大小。
缩孔:液态金属凝固,体积收缩,不再能填满原来铸型,如没有液态金属继续补充而出现的收缩孔洞。
二、简答:1. 热分析曲线表征了结晶过程的哪两个重要宏观特征?答:过冷现象、结晶潜热释放现象2. 影响过冷度的因素有那些?如何影响的?答:金属的本性、纯度和冷却速度。
金属不同,过冷度的大小也不同;金属的纯度越高,则过冷度越大;冷却速度越大,则过冷度越大。
3. 决定晶体长大方式和长大速度的主要因素?1)界面结构;2)界面附近的温度分布;3)潜热的释放与逸散4. 晶体长大机制有哪几种?1)二维晶核长大机制;2)螺型位错长大机制;3)垂直长大机制5、结晶过程的普遍规律是什么?答:结晶是形核和晶核长大的过程6、均匀形核的条件是什么?答:①要有结构起伏与能量起伏;②液态金属要过冷,且过冷度必须大于临界过冷度;③结晶必须在一定温度下进行。
7、过冷度对形核率N有何影响?答:开始时,形核率随过冷度的增加而增大,当超过极大值之后,形核率又随过冷度的增加而减小,当过冷度非常大时,形核率接近于零。
8、何谓非均匀形核?答:非均匀形核:新相优先出现于液相中的某些区域的形核方式。
必要条件:9、影响接触角θ的因素?选择什么样的异相质点可以促进非均匀形核?答:晶体与固态杂质的结构(原子排列的几何状态、原子大小、原子间距等)上的相似程度。
选择晶体结构与金属晶核晶体结构相近的表面曲率大的异相质点。
三、综合应用题1、何谓结构起伏?它与过冷度有何关系?临界晶核半径与过冷度有何关系?答:结构起伏:液态金属中不断变化着的近程有序原子集团。
结构起伏与过冷度没有关系。
临界晶核半径与过冷度的关系:过冷度增大,临界晶核半径减小。
2、晶核长大的条件是什么?过冷度对长大方式和长大速度有什么影响?答:晶核长大的条件:1)温度,要有足够高的温度,保证原子具有足够的扩散能力;2)晶核表面结构要能够接纳原子。
过冷度对长大方式的影响:① 粗糙界面在较小的过冷度下即可垂直长大,且长大速度大。
②在很大的过冷度下,光滑界面才能以二维晶核与螺型位错方式长大,且长大速度很慢。
过冷度对长大速度的影响:随着过冷度的增大,长大速度先是增大,达到极大值后,又减小。
3、常温下晶粒大小对金属性能有何影响?根据凝固理论,试述细化晶粒的方法有哪些?答:金属的晶粒越细小,强度和硬度则越高,同时塑性韧性也越好。
细化晶粒的方法:1)控制过冷度,在一般金属结晶时的过冷度范围内,过冷度越大,晶粒越细小;2)变质处理,在浇注前往液态金属中加入形核剂,促进形成大量的非均匀晶核来细化晶粒;3)振动、搅动,对即将凝固的金属进行振动或搅动,一方面是依靠从外面输入能量促使晶核提前形成,另一方面是使成长中的枝晶破碎,使晶核数目增加。
四、书后习题 P592-1 a )证明均匀形核时,形成临界晶粒的k G ∆与其体积V 之间的关系为v k G V G ∆=∆2。
本题可了解掌握 证明:由均匀形核体系自由能的变化∆G =-V ∆G v +σS (1)可知,形成半径为r k 的球状临界晶粒,自由度变化为σπ+∆π-=∆23434k v k k r G r G (2) 对(2)进行微分处理,有k k k v k k dr r d dr G r d dr G d )4()34()(23σπ+∆π-=∆ 2433402⨯σπ+⨯∆π-=k v k r G r ,即2v k G r ∆=σ (3) 将(3)代入(1),有∆G k =-V ∆G v +2v k G r ∆S (4)因V=334k r π=S r k 3,即3V=r k S (5) 将(5)代入(4),有∆G k =-V ∆G v +v G V ∆23=v G V ∆22-2 如果临界晶核是边长为a 的正方形,试求其k G ∆和a 的关系?为什么形成立方晶核的k G ∆比球形晶核要大?本题可了解掌握证明:∆G =-V ∆G v +σS=-a 3∆G v +6a 2σ上式做微分处理,有0=-3a 2∆G v +12a σ,则σ=41a ∆G v 因此 ∆G k =- a 3∆G v +41a ∆G v 6a 2=21a 3∆G v 当形成球型晶核时σπ+∆π-=∆23434r G r G v 球,则有2v k G r ∆=σ,则 v k v k k v k k G r G r r G r G ∆π=∆π+∆π-=∆323322434球 当形成立方晶核时σ+∆-=∆236a G a G v 立,则有4v k G a ∆=σ,则 v k v k k v k k G a G a a G a G ∆=∆+∆-=∆3232146立 液态金属固定,σ值就固定不变了,所以24v k v k G r G a ∆=∆=σ,则有 a k =2r k ,代入v k v k kv k k G a G a a G a G ∆=∆+∆-=∆3232146立,则 v k k G r G ∆=∆34立,又v k k G r G ∆π=∆332球,所以 立k G ∆>球k G ∆2-3、为什么金属结晶时一定要有过冷度?影响过冷度的因素是什么?固态金属熔化时是否会出现过热度?为什么?掌握答:由热力学可知,在某种条件下,结晶能否发生,取决于固相的自由度是否低于液相的自由度,即∆G=G S -G L <0;只有当温度低于理论结晶温度T m 时,固态金属的自由能才低于液态金属的自由能,液态金属才能自发地转变为固态金属,因此金属结晶时一定要有过冷度。
影响过冷度的因素:1)金属的本性,金属不同,过冷度大小不同;2)金属的纯度,金属的纯度越高,过冷度越大;3)冷却速度,冷却速度越大,过冷度越大。
固态金属熔化时会出现过热度。
原因:由热力学可知,在某种条件下,熔化能否发生,取决于液相自由度是否低于固相的自由度,即∆G = G L -G S <0;只有当温度高于理论结晶温度T m 时,液态金属的自由能才低于固态金属的自由能,固态金属才能自发转变为液态金属,因此金属熔化时一定要有过热度。
2-4 试比较均匀形核与非均匀形核的异同点。
答:相同点:均匀形核与非均匀形核具有相同的临界晶核半径,非均匀形核的临界形核功也等于三分之一表面能。
不同点:非均匀形核的临界形核功小于等于均匀形核的临界形核功,即非均匀形核的过冷度小于等于均匀形核的过冷度。
2-5 说明晶体生长形状与温度的关系?P52答:在正温度梯度下长大,光滑界面呈锯齿状;粗糙界面呈平面;在负温度梯度下长大,一般金属和半金属的界面都呈树枝状,非金属界面呈光滑界面。
2-6 简述铸锭三晶区形成的原因及每个晶区的性能特点?掌握答:形成原因:1)表层细晶区:低温模壁强烈地吸热和散热,使靠近模壁的一薄层液体产生极大地过冷,模壁又可作为非均匀形核的基底,在此一薄层液体中立即产生大量的晶核,并同时向各个方向生长。
晶核数目多,晶核很快彼此相遇,不能继续生长,在靠近模壁处形成一薄层很细的等轴晶粒区。
2)柱状晶区:模壁温度升高导致温度梯度变得平缓;过冷度小,不能生成新晶核,但利于细晶区靠近液相的某些小晶粒长大;远离界面的液态金属过热,不能形核;垂直于模壁方向散热最快,晶体择优生长。
3)中心等轴晶区:柱状晶长到一定程度后,铸锭中部开始形核长大---中部液体温度大致是均匀的,每个晶粒的成长在各方向上接近一致,形成等轴晶。
性能特点:1)表层细晶区:组织致密,力学性能好;2)柱状晶区:组织较致密,存在弱面,力学性能有方向性;3)中心等轴晶区:各晶粒枝杈搭接牢固,无弱面,力学性能无方向性。
2-7 为了得到发达的柱状晶区应该采取什么措施?为了得到发达的等轴晶区应该采取什么措施?其基本原理如何?P57掌握答:为了得到发达的柱状晶区应采取的措施:1)控制铸型的冷却能力,采用导热性好与热容量大的铸型材料,增大铸型的厚度,降低铸型的温度。
2)提高浇注温度或浇注速度。
3)提高熔化温度。
基本原理:1)铸型冷却能力越大,越有利于柱状晶的生长。
2)提高浇注温度或浇注速度,使温度梯度增大,有利于柱状晶的生长。
3)熔化温度越高,液态金属的过热度越大,非金属夹杂物溶解得越多,非均匀形核数目越少,减少了柱状晶前沿液体中的形核的可能,有利于柱状晶的生长。
为了得到发达的等轴晶区应采取的措施:1)控制铸型的冷却能力,采用导热性差与热容量小的铸型材料,增大铸型的厚度,提高铸型的温度。
2)降低浇注温度或浇注速度。
3)降低熔化温度。
基本原理:1)铸型冷却能力越小,越有利于中心等轴晶的生长。
2)降低浇注温度或浇注速度,使温度梯度减小,有利于等轴晶的生长。
3)熔化温度越低,液态金属的过热度越小,非金属夹杂物溶解得越少,非均匀形核数目越多,增加了柱状晶前沿液体中的形核的可能,有利于等轴晶的生长。
第三章1、2节合金相部分一、解答1、根据晶体结构特点可以将相分为哪两大类?答:固溶体、金属化合物2、固溶体的分类1) 按溶质原子在晶格中所占位置分类①置换固溶体,②间隙固溶体2) 按固溶度分类①有限固溶体,②无限固溶体3) 按溶质原子与溶剂原子的相对分布分类①无序固溶体,②有序固溶体3、金属化合物的特点?金属化合物主要有哪三种类型?答:具有较高的熔点和硬度,使合金的强度、硬度、耐磨性及耐热性提高,但塑性韧性有所降低。
金属化合物主要有三种类型:正常价化合物,电子化合物,间隙相和间隙化合物二、综合应用题1、何谓合金?何谓组元?何谓相?何谓固溶体?固溶体的晶体结构有何特点?何谓置换固溶体?影响其固溶度的因素有哪些?掌握答:合金: 由两种或两种以上的金属,或金属与非金属,经熔炼、烧结或其它方法组合而成并具有金属特性的物质。