基因克隆及克隆基因的表达
基因克隆和表达技术及其应用研究
基因克隆和表达技术及其应用研究在现代生物技术领域,基因克隆和表达技术被广泛应用于生物医药、农业生产、环境保护等多个领域,是一项重要的研究方向。
本文将介绍基因克隆和表达技术的原理、工具和应用,旨在深入探讨该技术在现代生物科技领域中的应用价值。
一、基因克隆的原理与工具基因克隆是指将目标DNA片段放入载体中,通过复制和传递,获得大量相同的DNA分子的过程。
基因克隆需要用到一系列工具和分子生物学技术。
其基本的步骤包括:DNA提取、限制酶切割、连接和转化等。
DNA提取是指从细胞中获取目标DNA,一般从细胞核中提取DNA样品。
限制酶切割是一种利用特定的限制酶将DNA切割成不同长度的碎片的技术。
连接是指将目标DNA片段与载体DNA进行配对,在适当的连接条件下会形成一个大的DNA分子,也称作重组DNA。
最后的转化是将重组DNA重新引入一个宿主细胞,使其进行繁殖。
这些步骤组成了一个典型的基因克隆工作流程。
在基因克隆中,一些关键工具也是必不可少的。
例如,限制酶和DNA连接酶是进行酶切和连接的酶类;载体是将目标DNA载入的载体分子。
当然,在实验设计过程中,也需要考虑到多种子序列的选择,以获得最优的结果。
二、基因表达技术基因表达技术是指将克隆好的基因转录和翻译为蛋白质的过程。
基因表达技术所涉及的核心部分主要为转染和转录。
转染是指将载体转化到目标细胞中的过程。
转染可以分为多次批量的直接转染和、转染载体的两种方式。
对于细胞质和细胞核分离的情况,病毒载体或质粒载体也可以被用来介导转录。
质粒载体在转录的时候需要被移入到细胞的核中,由此促进了 DNA 受体和 RNA聚合酶之间的相互作用。
另一种重要的基因表达技术是转录,也称作转录调节。
转录调节可以分为两类:正调节和负调节。
正调节是指通过上调特定基因的表达、促进特定转录的过程;负调节是指通过下调特定基因的表达、抑制特定转录的过程。
转录调节受到多种因素的影响,例如转录因子和超融合酶等分子的运作。
克隆基因的表达
(2)-35区与-10区之间的距离
这两个保守区间的距离越是接近于17bp,启 动子的活性就越强。
2.翻译起始序列对表达效率的影响 (1)SD序列
SD序列与16SrRNA分子之间的碱基互补程 度,可明显影响mRNA的翻译速度,当序列 为5‘-GGAGG-3’,可与16SrRNA3’端完 全互补,翻译效率最高;而当该序列发生 单碱基突变时,翻译效率会下降30倍。
特定的时间顺序发生,称之为基因表达的 时间特异性。
• 多细胞生物基因表达的时间特异性又称阶 段特异性。
(二)空间特异性 • 在个体生长全过程,某种基因产物在个体
按不同组织空间顺序出现,称之为基因表 达的空间特异性
• 基因表达伴随时间顺序所表现出得这种分 布差异,实际上是由细胞在器官的分布决 定的,所以空间特异性又称细胞或组织特 异性
七、原核表达体系
表达体系的建立包括表达载体的构建、受体细胞的 建立及表达产物的分离、纯化等技术 步骤: 获得目的基因-准备表达载体-将目的基因插入表 达载体中(测序验证)-转化表达宿主菌-诱导 靶蛋白的表达-表达蛋白的分析-扩增、纯化、 进一步检测
(一)获得目的基因
1.对外源目的基因的要求
原核生物缺乏真核生物转录后的加工系统; 同时也缺乏真核生物翻译后的加工系统, 所以目的基因不应具有5’端非编码区以及内 含子结构,只编码成熟的蛋白质或多肽
当需要宿主大量生长时,抑制载体质粒的复制。
当宿主大量生长后,再诱导载体质粒的复制,增 加拷贝数。
6.提高表达产物的稳定性
防止被宿主的酶降解 (1)设计成融合蛋白
基因克隆与表达及功能鉴定研究
基因克隆与表达及功能鉴定研究在现代生命科学领域中,基因克隆与表达以及功能鉴定是非常重要的研究方向之一,它涉及到许多生物医学、农业、工业和环境等领域的研究和实际应用。
本文将从基因克隆与表达的基本原理、方法、技术和应用,以及功能鉴定的原理、方法、技术和应用等方面进行探讨。
一、基因克隆与表达基因克隆是指通过分子生物学技术,将含有某个或某些特定基因的DNA序列从一个大的DNA分子(如染色体)中分离出来,然后插入到特定的载体DNA中,形成重组DNA分子的过程。
基因表达是指基因信息的转录和翻译过程,将基因的DNA序列转录成RNA分子,然后翻译成蛋白质分子的过程。
基因表达是生物体形成和发展的基础,也是生命活动的重要表现形式。
1. 基因克隆原理基因克隆的主要原理是利用限制酶、DNA连接酶、DNA聚合酶以及质粒或噬菌体等DNA载体的特性,将特定DNA序列插入到载体DNA中,形成重组DNA分子。
限制酶是一种能够识别、切割DNA分子特定序列的酶,其识别序列具有一定的特异性。
DNA连接酶是一种能够连接两个DNA分子的酶,常用的有T4 DNA连接酶和快速连接酶等。
DNA聚合酶是一种能够在DNA模板上合成互补链的酶,其作用是在重组DNA分子中完成互补链的合成。
2. 基因克隆方法基因克隆的主要方法有限制性片段长度多态性(RFLP)分析、聚合酶链式反应(PCR)克隆、原核表达克隆和真核表达克隆等。
RFLP分析是一种利用限制酶对DNA序列进行切割,并根据不同的RFLP位点进行区分的方法,其主要应用于基因型鉴定和进化研究等领域。
PCR克隆是一种利用PCR技术扩增目标基因或DNA片段,并将扩增产物克隆到载体DNA中的方法,其主要应用于基因检测、DNA测序和分子克隆等领域。
原核表达克隆是一种利用质粒或噬菌体等原核生物作为DNA载体,将外源基因转入细菌或古细菌等原核生物细胞中,通过蛋白质表达实现基因功能研究的方法。
真核表达克隆是一种利用真核生物(如哺乳动物、鸟类、昆虫、线虫等)作为DNA载体,将外源基因转入具有表达能力的真核细胞中,通过蛋白质表达实现基因功能研究的方法。
基因的克隆与表达课件
----TAC -----TTG GAC CTT AAG GAT CCA---
DNA序列
AAT CGG AAG AAT TCA GAC CTA GGT TTA GCC TTC TTA AGT CTG GCT CCA
基因的克隆与表达课件
位相载体----含有3种读码框的系列载体
基因的克隆与表达课件
优点: • 表达效率高 • 产物稳定 • 易鉴定:融合蛋白分子量大,电泳可
➢基因克隆(gene cloning) ➢基因表达(gene expression)
-原核基因表达 -真核基因表达
基因的克隆与表达课件
基因克 隆 Gene Cloning
基因的克隆与表达课件
➢概述 ➢克隆载体 ➢受体细胞 ➢体外重组的策略 ➢基因克隆工作流程
基因的克隆与表达课件
一、概述
• 确定了遗传信息的携带者,即基因的盆 子载体是DNA而不是蛋白质
基因的克隆与表达课件
(二)体外重组 连接体系的建立: • 温度:粘末端连接:12-18℃
平末端连接:室温(低于30℃) • DNA量:载体分子数/目的基因分子数
=1:1-3 • 酶量:平端连接时需加大酶量
基因的克隆与表达课件
(三)转化—Cacl2法、电击法
(四)重组子的筛选及鉴定
1、筛选:平板法(抗生素、蓝白斑)
基因的克隆与表达课件
二.原核生物基因结构和表达特点
基因的克隆与表达课件
• 原核生物染色体DNA是裸露的环形 DNA,其转录和翻译是偶联的连续 进行。
• 原核生物形成多顺反子mRNA: mRNA在合成过程中和多个核糖体 结合,翻译形成多条肽链。
基因的克隆与表达课件
3、一般不含内含子(intron),没有转 录及翻译后加工系统
基因工程中的基因克隆与基因表达实验总结
基因工程中的基因克隆与基因表达实验总结基因工程作为一门新兴的交叉学科,已经广泛应用于生物医学、农业、环境保护等领域。
其中,基因克隆和基因表达实验是基因工程的核心技术,对于研究基因功能和开发新药已经起到了重要作用。
本文将对基因工程中的基因克隆和基因表达实验进行总结,并探讨其在科学研究和应用中的前景。
一、基因克隆实验基因克隆是通过重组DNA技术,将感兴趣的基因从一个生物体中复制并插入到另一个生物体中的过程。
它是研究基因功能、生物制药和转基因等领域的基础。
基因克隆实验主要包括以下几个步骤:1. DNA提取与限制性内切酶切割:通过提取DNA样品,使用限制性内切酶切割将目标基因和载体DNA切割成相应片段。
2. 基因插入:将目标基因与载体DNA片段进行连接,常用的方法是使用DNA连接酶将两者黏合。
3. 转化与筛选:将连接后的DNA转入到宿主细胞中,使其成为转基因细胞。
通过选择性培养基进行筛选,可以获得拥有目标基因的转基因细胞。
通过基因克隆实验,我们可以获得不同生物体的目标基因,并进行后续的研究和应用。
例如,通过将某种植物的耐旱基因克隆到其他作物中,可以提高作物的抗旱能力,增加农作物产量。
二、基因表达实验基因表达实验是将目标基因在宿主细胞中进行转录和翻译,产生具有特定功能的蛋白质的过程。
基因表达实验是研究基因功能和制备重组蛋白等领域的重要手段。
基因表达实验主要包括以下几个步骤:1. 选择合适的表达系统:根据需要表达的蛋白质的性质和规模,选择合适的表达系统。
常用的表达系统包括细菌、酵母、哺乳动物细胞等。
2. 构建表达载体:将目标基因插入到表达载体中,通常使用限制性内切酶和DNA连接酶进行连接,并通过测序确保插入正确。
3. 细胞转染:将构建好的表达载体导入到宿主细胞中。
不同表达系统有不同的转染方法,如细菌的化学转型、酵母的电转染等。
4. 表达和纯化:经过一定时间的培养,宿主细胞会表达目标基因,合成目标蛋白质。
可以通过蛋白质纯化技术,如亲和层析、凝胶电泳等手段获得纯度较高的目标蛋白质。
基因克隆与表达
基因克隆与表达基因克隆与表达是生物学领域中重要的技术手段和研究方法。
通过基因克隆和表达,科学家能够研究特定基因的功能、调控机制以及其在生物体内的作用,这对于深入了解生物体的生理过程和疾病发生机制具有重要意义。
本文将介绍基因克隆与表达的原理、方法以及应用。
一、基因克隆基因克隆是将特定基因从一个生物体中分离并复制到另一个载体中的过程。
这个过程主要涉及DNA的分离、复制和连接。
常用的基因克隆技术包括PCR、限制性内切酶切割、琼脂糖凝胶电泳和基因插入等。
1. PCR聚合酶链反应(PCR)是一种强大的基因扩增技术。
它通过不断地重复某一特定区域的DNA序列,使其得以大规模复制。
PCR可以在短时间内合成大量目标DNA片段,为基因克隆提供了充足的材料。
2. 限制性内切酶切割限制性内切酶可以识别并切割特定的DNA序列。
通过选择合适的限制性内切酶,可以实现将目标基因从源DNA中切割下来,为下一步的基因克隆做好准备。
3. 琼脂糖凝胶电泳琼脂糖凝胶电泳是一种常用的DNA分离技术。
通过将DNA样品加入琼脂糖凝胶槽中,并施加电场,DNA片段会根据其大小在凝胶中迁移。
凝胶电泳可以帮助科学家分离和纯化目标基因。
4. 基因插入基因插入是将目标基因连接到载体上的过程。
载体可以是质粒、病毒或者人工染色体等。
通过连接酶的作用,目标基因与载体可以稳定地结合在一起。
二、基因表达基因表达指特定基因通过转录和翻译过程转化为蛋白质的过程。
从基因克隆到基因表达,可以分为以下几个步骤:转染或转化、筛选和检测。
1. 转染或转化转染是指将外源DNA导入到动物细胞中的过程,而转化是将外源DNA导入到细菌细胞中的过程。
转染和转化可以通过多种方法实现,如化学法、电穿孔法和基因枪法等。
2. 筛选筛选是为了确定是否成功将目标基因表达在宿主细胞中而进行的步骤。
常见的筛选方法包括荧光筛选和克隆筛选。
荧光筛选利用荧光蛋白标记目标基因,观察细胞是否出现荧光信号。
克隆筛选则利用选择性培养基,筛选出含有目标基因的克隆。
分子生物学大实验——目的基因的克隆及表达
分子生物学大实验——目的基因的克隆及表达第一节基因操作概述............................................................................. 错误!未定义书签。
一、聚合酶链式反应(PCR) ............................................................. 错误!未定义书签。
二、质粒概述................................................................................... 错误!未定义书签。
三、凝胶电泳................................................................................... 错误!未定义书签。
四、大肠杆菌感受态细胞的制备和转化....................................... 错误!未定义书签。
五、重组质粒的连接....................................................................... 错误!未定义书签。
六、限制性内切酶消化................................................................... 错误!未定义书签。
七、SDS-PAGE蛋白质电泳........................................................... 错误!未定义书签。
第二节材料、设备及试剂..................................................................... 错误!未定义书签。
基因工程7克隆基因的表达概述
7.3.1.2 终止子
提供转录停止信号的DNA序列称为终 止子,它可被RNA聚合酶识别并停止合成 mRNA。通常终止信号是一小段DNA片段 ,它的RNA转录本上碱基对可自身相互配 对形成柄-环结构。
强启动子是能维持高频率转录的启动子 ,通常控制那些细胞需要其大量转译产物的 基因转录;而弱启动子具有相对较低的转录 效率,指导那些仅需要其少量转译产物的基 因转录。
利用基因工程技术,可将由弱启动子所 控制的基因放在强启动子的下游,从而获得 高效表达。
两个保守区之间的DNA对启动子的功能 也有影响,各启动子都需要一些最适的间隙 ,通常认为间隙为17 bp的启动子功能较强。
(1) 能识别和除去外源基因中的内含子,加工 形成成熟的mRNA,即带内含子的天然基因是 可以利用的;
(2) 真核细胞将表达的蛋白糖基化,而大肠杆 菌表达的蛋白是无糖基化的,糖基化对某些表 达蛋白的免疫原性影响很大。
真核细胞作宿主表达系统尚存在以下几个问 题:
(1) 转化真核细胞的效率低; (2) 表达效率不够高; (3) 细胞培养(动植物) 工艺较复杂,成本高; (4) 选择标记及选择系统较少。
2. 影响mRNA转译效果的因素:
(1) SD序列与反SD序列的互补程度:互补程 度高,则表达强。
(2) SD序列与AUG之间的间隔距离(spacer), 使用不同的启动子,表达不同的基因,其 最佳间隔不一样。
(3) –20 bp到+13 bp这一段序列中不要有二级 结构(发卡结构)。
(4) 连接在SD序列后面的4个碱基的改变,会 对转译效率发生很大的影响,如果这个区 域由4个A组成,其转译作用最为有效;而 当其被4个C或G替代,则转译效率仅为最高 值的25~50%。
《基因克隆与表达》课件
2 留下问题和展望
引发学生对基因克隆与表达的思考和问题,并展望该领域的未来发展。
什么是基因克隆与表达
解读基因克隆与表达的定义, 了解其在基因研究中的作用。
基因克隆和表达的重要 性
探讨基因克隆与表达在科学 研究和应用中的重要价值。
课程大纲介绍本课程的内容和学习 Nhomakorabea 标,为后续的学习做好准备。
基因克隆
基因克隆是获取目标基因及其背后的DNA片段的过程。PCR、限制性酶切和连接反应是基因克隆中常用的关键 技术。
2 重组蛋白表达
探讨重组蛋白表达的步骤以及在基因工程和生物医药领域中的可行表达体系选择。
3 基因治疗
介绍基因治疗的原理和在疾病治疗中的应用前景。
结论
在基因研究和应用中,基因克隆和表达起着至关重要的作用。通过了解相关技术和应用,我们可 以更好地理解基因的功能和探索其在生物科学中的潜力。
1 基因克隆和表达的重要性再强调
PC R
探讨聚合酶链式反应(PCR)在 基因克隆中的原理、步骤和应 用。
限制性酶切
介绍限制性酶切的原理及其在 基因克隆中的应用。
连接反应
讨论连接反应在基因克隆中的 原理、步骤和应用。
基因表达
基因表达是指利用转化和重组蛋白表达系统来实现基因功能研究和基因治疗的过程。
1 转化
深入解析转化的原理、步骤和转化后的检测方法。
《基因克隆与表达》PPT 课件
这是一份专业的《基因克隆与表达》PPT课件,将带你深入了解基因克隆和表 达的重要性以及相关技术。通过本课件,你将掌握基因克隆和表达的关键步 骤和应用。
简介
基因克隆与表达是研究基因结构和功能的重要方法。本课程将介绍基因克隆与表达的基本概念、原理和技术, 并探讨其在生物科学研究和应用中的重要性。
基因克隆与表达
精选2021版课件
卫文强 2015.112
目的基因-T
表达载体
酶切, 胶回收,连接
转化到克隆用细胞(Top10)
提质粒,酶切验证
转化到表达用细胞(BL21(DE3))
诱导表达
SDS-PAG精E选2021版课件
2
影响限制性内切酶活性的因素
1). DNA的纯度
DNA中的杂质如蛋白质、酚、氯仿、乙醇、 SDS、EDTA等都会影响酶的活性。
• 酶用量不能超过酶切总体积的10%;
• 多种酶进行酶切时,先低盐后高盐缓冲 液;
精选2021版课件
5
1、连接
连接、转化与重组子鉴定
精选2021版课件
6
(2). 连接条件
(1)必须是两条双链DNA。
(2)DNA 3’ 端有游离的-OH, 5’端有一个磷酸基团(P)。
(3)需要能量 动物或噬菌体中:ATP 大肠杆菌中: NAD+
精选2021版课件
7
2)连接温度:
连接效果最好在37 ℃,但形成的互补 不稳定; 最佳连接温度:12-16 ℃,较好的连 接效果,互补又较稳定;
3)反应液中的成分:
ATP:反复冻熔,ATP活性降低,ATP溶解度 不高,连接缓冲液宜分装;
单价离子:150-200mM NaCl,提高连接效果; PEG:5%以下可以提高连接效率
精选2021版课件
15
抽提出的质粒三种构型 电泳结果:
1)开 环 2)线 状 3)超螺旋
-
电 泳 方 向
精选2021版课件
+
16
凝胶电泳技术
电泳目的:对核酸分子进行分离和检测
精选2021版课件
基因克隆与表达的研究方法
基因克隆与表达的研究方法基因克隆和表达是生命科学中重要的研究方法,它们在基因工程、药物研发、癌症治疗等领域发挥着重要作用。
在克隆和表达一个基因之前,需要先建立一个可重复的实验方法,以确保实验结果的准确性和可靠性。
本文将介绍基因克隆和表达的一些通用方法和技术。
1. PCR扩增PCR扩增是一种常用的克隆方法,它可以在短时间内高效地扩增DNA序列。
这种方法需要一对引物,在PCR反应中引物定向扩增目标序列。
PCR反应需要一个DNA模板、引物和聚合酶,在合适的反应条件和温度下进行。
PCR扩增后的产物可以纯化、酶切、克隆到表达载体上。
2. 限制性内切酶消化限制性内切酶消化是一种分子生物学技术,可以将DNA分子切成不同的长度,并生成暴露的粘性末端。
这样的末端可以与其他的DNA分子的互补末端连接起来,从而实现DNA的克隆。
在DNA克隆中,选择合适的限制性内切酶可以实现目标DNA序列的克隆。
3. 匀浆凝胶电泳匀浆凝胶电泳是一种检测DNA大小的技术,它可以用于确认PCR扩增产物的大小,鉴定DNA克隆的有效性以及纯化DNA等。
在匀浆凝胶电泳中,DNA样品被负载到凝胶上,并在电场作用下迁移。
根据DNA分子大小的不同,可以通过在凝胶上形成特定的DNA带和条带,从而检测DNA分子的大小。
4. 蛋白表达的研究方法蛋白表达是生命科学研究中重要的实验方法,可以获得对生命过程和重要分子的深入了解。
在蛋白表达中,需要克隆一个给定的基因到一个特定的表达载体上。
表达载体中包含能够转录和翻译蛋白质所需的所有元件。
在表达系统中,可以使用细胞培养、原核生物、真核生物等不同的宿主来表达蛋白。
5. 功能分析的研究方法在获得基因克隆和表达蛋白之后,需要通过功能分析进一步了解目标基因和蛋白的生物学功能。
在功能分析中,常用的方法包括基因敲除、蛋白互作、基因组学、蛋白质修饰等。
通过这些方法,可以深入研究生物学体系的信号传导、调节机制、发育和疾病机制等问题。
植物光合作用相关基因的克隆与表达
植物光合作用相关基因的克隆与表达植物光合作用是指在光的作用下,植物体内的叶绿素吸收光能,将其转化成化学能,从而产生能量和氧气的过程。
植物光合作用是生命的基础能量来源之一,也是维持生态系统平衡的重要过程。
植物光合作用的相关基因克隆和表达,是近年来植物学研究的热点之一。
这一研究方向主要集中在植物光合作用的细胞生物学、分子生物学和基因组学等方面。
细胞生物学角度,植物体内的光合细胞有两种类型:一种是负责光合作用的叶绿体细胞,另一种是负责运输产物的质体细胞。
这两种细胞在外形和功能上有所不同,其内部的基因表达和调控也存在差异。
因此,研究植物光合作用相关基因的克隆和表达,需要从细胞类型的角度进行分析。
分子生物学角度,植物光合作用相关基因的克隆和表达研究,主要探索基因的结构、功能和调控等方面。
例如,利用PCR技术和基因克隆技术,可以获得植物体内的光合作用相关基因,然后通过生物信息学工具对基因序列、编码蛋白质和表达谱进行分析。
另外,还可以应用转基因技术构建基因敲除或添加的重组植物株系,进一步揭示光合作用相关基因在植物体内的作用和机理。
基因组学角度,随着高通量测序技术的发展和基因组数据的丰富,研究人员可以在全局范围内分析植物光合作用相关基因的基因组学特征、进化关系和功能注释。
例如,通过对一些重要植物基因的全基因组序列比较,可以发现在多个物种中保守的部位和变异的部位,进而获得这些基因在植物演化中的起源和分化过程。
此外,研究人员也可以利用系统生物学的方法,将各个基因的作用和调控网络进行拼凑和模拟,从而模拟出更加细致的植物光合作用模型。
总之,植物光合作用相关基因的克隆和表达研究,对于理解植物生物学和解决环境保护和农业生产中的问题,具有重要意义。
希望未来能够有更多的研究成果和创新突破。
基因克隆与表达
基因表达的检测方法
Northern blot:检测mRNA的方法,可用于检测基因的表达水平。
RT-PCR:通过逆转录和PCR技术,检测特定基因的表达水平。
Western blot:检测蛋白质的方法,可用于检测基因的表达产物。 免疫荧光技术:通过抗体与目标蛋白质的结合,利用荧光标记技术进行 检测。
基因克隆与表达的研究流程
同的后代。
克隆技术可以用 于繁殖动物、植 物和微生物,以 及用于生产转基 因生物和基因治
疗。
克隆技术的主要 步骤包括获取供 体细胞的DNA、 将DNA植入受 体细胞、培养产 生的胚胎并使其 发育成新个体。
克隆技术的优点 包括可以快速繁 殖具有优良性状 的动物和植物, 以及可以用于基 因治疗和药物生
产等领域。
生物安全:基因 克隆与表达技术 可用于检测和预 防生物威胁,如 生物武器和病原 体的传播,保障 公共安全。
感谢您的观看
汇报人:XX
克隆技术的应用:克隆技术在医学、农业、生物技术等领域具有广泛的应用价值,例如 用于生产转基因动物、研究动物模型、繁殖濒危物种等。
克隆技术的分类
胚胎干细胞克隆技术 核移植克隆技术 转基因克隆技术 基因克隆技术
克隆技术的应用
添加项标题
克隆动物:通过基因克隆技术可以繁殖出具有相同基因的动物, 用于医学研究、药物筛选和动物模型建立等。
03 基因表达的调控
基因表达的概述
基因表达的定义:基因表达是指基因经过转录和翻译,将遗传信息传递给蛋白质的过程。
基因表达的调控方式:包括转录水平的调控、转录后的调控和翻译水平的调控。
基因表达的调控机制:包括DNA甲基化、组蛋白修饰、非编码RNA等。
基因表达的生物学意义:基因表达调控对于生物体的生长发育、代谢和环境适应性等方 面具有重要意义。目的基因的获取:通过基因、PCR、基因合成等方法获取目的基因
绿色荧光蛋白(GFP)基因的克隆和表达(新手详细注释版)
绿色荧光蛋白(GFP)基因的克隆和表达背景知识绿色荧光蛋白( green fluorescent protein , GFP)是一类存在于包括水母、水螅和珊瑚等腔肠动物体内的生物发光蛋白。
当受到紫外或蓝光激发时, GFP 发射绿色荧光。
它产生荧光无需底物或辅因子。
发色团是其蛋白质一级序列固有的。
GFP 由 3 个外显子组成,长 2.6kb ;GFP 是由 238 个氨基酸所组成的单体蛋白 ,相对分子质量为27. 0kMr ,其蛋白性质十分稳定,能耐受 60℃处理。
1996 年 GFP 的晶体结构被解出,蛋白质中央是一个圆柱形水桶样结构,长 420 nm,宽 240 nm,由 11 个围绕中心α螺旋的反平行β 折叠组成,荧光基团的形成就是从这个螺旋开始的,桶的顶部由3 个短的垂直片段覆盖,底部由一个短的垂直片段覆盖,对荧光活性很重要的生色团则位于大空腔内。
发色团是由其蛋白质内部第 65-67 位的 Ser-Tyr-Gly 自身环化和氧化形成 .实验一质粒DNA 的分离与纯化一、实验目的掌握一种最常用的质粒 DNA 提取方法:碱裂解法。
该法用于从小量培养物中抽提质粒 DNA ,比较方便、省时,提取的质粒 DNA 质量较高,可用于 DNA 的酶切、 PCR 甚至测序。
二、基本原理质粒是一类在细菌细胞内发现的独立于染色体外,能够自主复制的稳定的遗传单位。
迄今为止,从细菌中分离得到的质粒都是环型双链 DNA 分子,分子量范围从 1kb 到200kb 。
质粒 DNA 可持续稳定地处于染色体外的游离状态,但在一定条件下又会可逆地整合到寄主染色体上,随着染色体的复制而复制,并通过细胞分裂传递到后代。
在大多数情况下质粒 DNA 复制中的酶体系和细菌染色体复制10-200 个拷贝。
当宿主细胞的蛋白时所用的酶是相同的。
有些质粒复制受宿主细胞复制作用的严格限制,因此每个细胞中只含一个或几个拷贝,称为严谨型质粒,有的质粒的复制受宿主细胞的控制不严,称为松弛型质粒,它们在每个细胞中的数目可达质合成受到抑制时(例如经氯霉素处理),细菌染色体虽不再增加,但松弛型质粒 DNA 可继续被复制,以至每个细胞内的拷贝数可以增至一千到几千。
基因工程中的基因克隆与表达
基因工程中的基因克隆与表达基因工程是一门涉及分子生物学、遗传学、生物化学等多个学科的综合性科学。
其中,基因克隆和基因表达是基因工程研究的两个重要方面。
本文将就基因克隆和基因表达的原理、方法及应用进行探讨。
一、基因克隆1.原理基因克隆是指将目标基因从其天然基因组或其他来源中分离出来,并将其插入到另一个载体(如质粒)中,使其能够在宿主细胞内复制和表达。
基因克隆的原理是基于DNA序列特异性杂交的方法,利用限制性内切酶切割目标DNA和载体DNA,然后将它们黏合在一起,形成重组DNA。
通过转形或感染,使重组DNA 进入宿主细胞内,并复制和表达。
2.方法基因克隆的方法主要有限制性酶切与黏合(RE-Mediated Ligation)、PCR(聚合酶链反应)、TA克隆和基因文库等。
限制性酶切与黏合是一种常用的基因克隆方法。
该方法利用限制性内切酶切割DNA,然后通过T4 DNA连接酶黏合在一起。
这种方法操作简单、效率高,但存在限制内切酶的局限性,无法应用于不同酶切位点的DNA。
PCR是用于复制DNA片段的重要方法,也可以用于基因克隆。
PCR方法可以在不使用限制酶的情况下,从任何源提取DNA片段,扩增需要的基因段,并使用酶切和连接技术插入到载体中。
TA克隆是指用于从PCR产物中克隆DNA的一种方法。
该方法利用了Taq聚合酶不完全特异性合成3'-末端斜伸的性质,使产生的末端序列与T自带的A进行互补配对,从而使PCR产物能够被直接连接到TA克隆载体上。
基因文库是一种重要的基因克隆技术,可以将许多目标基因同时克隆入同一载体中。
基因文库分为cDNA文库和基因组文库。
通过荧光筛选或选择性培养,可以从文库中筛选出感兴趣的基因。
3.应用基因克隆技术广泛应用于基因工程、疫苗制备、药物研发、作物改良、动物遗传改良、环境污染治理等领域。
例如,利用基因克隆技术可以创造出超级细菌、工业用酶、新型药物、高产优质作物等。
二、基因表达1.原理基因表达是指基因通过转录和翻译的过程,将DNA序列转化为蛋白质的过程。
基因的克隆、表达、检测原理步骤
应用于植物病原检测的实时荧光定量PCR张艳杰植物病理学20131130029摘要:实时荧光定量PCR技术是这些年兴起的可以定量DNA的新技术,广泛应用于植物病原检测、转基因检测、信号转导、植物抗病检测、微生物指标等;本文综述了实时荧光定量PCR技术的原理及其在植物病原菌检测中的应用。
关键词:实时荧光定量PCR 探针分子信标病原检测植物病害诊断和病原检测对病害防治具有重要意义,只有明确了病原的种类及侵染时期,才能制定合理的防治策略,控制损失,而在病害发生前进行病害的早期诊断,能够实现病害的早期预防和防治,从而采用及时的防治办法,更好地控制病害的发生。
传统的检测方法有平板稀释法、酶联免疫法、传统PCR等,一般不能实现早期检测,而且大多只能进行定性检测。
而近些年发展起来的实时荧光定量检测技术,不仅可以进行定性,还可以进行定量,可以实现在病害未显症时的早期微量检测。
实时荧光定量PCR技术,是指在PCR反应体系中加入荧光基团,利用荧光信号积累实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析的方法。
该技术于1996年由美国Applied Biosystems公司推出,该技术与常规PCR相比,具有许多优点[1]:第一,操作简便,有较高的敏感性及快速高效;第二,由于扩增在封闭体系中完成并对其进行实时测定,因此降低了污染的可能性。
第三,既可做定量分析,又可做定性分析;第四,可进行多重扩增,即通过不同的引物设计在同一反应体系中,同时对多个靶基因分子进行扩增;第五,可以在较大浓度范围内(>107倍)进行定量。
Miguel Montes-Borrego[2]等检测了感染霜霉病的Papaver somniferum在未显症时期,霜霉病菌(Peronospora arborescens)的含量,结果确定,采用实时定量PCR的检测精度为病原体生物量0.110-5557ppm。
Suren K. Samuelian[3]等采用实时定量PCR检测葡萄上Greeneria uvicola和Colletotrichum acutatum的存在,实现了基因组DNA 20fg和10个孢子的检测精度。
分子生物学 基因克隆及克隆基因的表达
Bam HⅠ GGATCC CCTAGG
Bg lⅡ AGATCT TCTAGA
互连后?
GCCTAG+
GATCC G
A
+GATCT
TCTAG
ALOGO
Ⅱ型限制性内切酶具有一些共性和特性:
5. 不同的酶可以识别同一个序列 同工异源酶(isoschizomer)或同裂酶 能识别同一序列(切割位点可同或不同)但来源不同的两种酶。
LOGO
聚合酶链式反应
Polymerase Chain Reaction, PCR
体外高效特异性的扩增目的DNA片段
LOGO
LOGO
LOGO
LOGO
LOGO
PCR的基本原理
• PCR反应条件 • PCR过程 • PCR的特点
1
2
3
高温变性 低温退火 适温延伸
94
温
度 72
(℃)
55
22
DNA 2
3’
3’
5’
上游引物、5’ 引物、Sense primer
PCR反应扩增的就是一对引物之间的DNA片段,PCR反应 成功扩增的关键在于引物的正确设计。
引物设计的总原则——提高引物与模板结合的特异性。
LOGO
PCR引物设计的基本原则: 1.引物与模板的序列要紧密互补。 2.引物自身、引物之间不应存在互补序列。 3.引物不能在模板的非目的位点引发PCR。
LOGO
分子生物学关键的技术突破: DNA重组技术
1972年, 世界上第一个重组DNA分子诞生
1980年, 获诺贝尔化学奖
猿猴病毒DNA
噬菌体DNA
限制性内切酶
限制性内切酶
DNA连接酶 重组DNA分子
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
限制性内切酶
Sma I Sau 3A I Not I Sfi I
识别位点
CCC’GGG GGG’CCC GATC’ ’CTAG GC’GGCCGC CGCCGG’CG GGCCNNNN’NGGCC CCGGN’NNNNCCGG
LOGO
Ⅱ型限制性内切酶具有一些共性和特性:
LOGO
基因克隆、 克隆基因的表达
吉林大学白求恩医学院 分子生物学教研室 讲师
孙 巍
Tel: 0431 - 85619369
2012-10
基因克隆趣闻
荧光蛋白基因克隆猫
科学家复活冰冻死老鼠 修正基因蚊子防控疾病
基因转换让蝌蚪长出三颗眼睛 基因克隆胚芽造就健康婴儿
LOGO
Ⅱ型限制性内切酶具有一些共性和特性:
1. 具有特定的识别和切割位点 2. 识别的核苷酸序列通常为回文结构(palindrome) 3. 切割双链DNA分子后产生黏端或平端 4. 不同的酶可以产生同样的末端
5.不同的酶可以识别同一个序列
6. 切割会受其他因素的影响
LOGO
94℃
55℃
37℃
LOGO
Taq DNA聚合酶(thermus aquaticus)
100
酶 活 性
80 60 40
(%)
20 40 50 100 60 70 80 90
温度(℃)
LOGO
94℃
55℃
72℃
限制性内切酶
获诺贝尔化学奖
噬菌体DNA
限制性内切酶
DNA连接酶 重组DNA分子
Paul Berg a biochemistry at Stanford
LOGO
克隆:通过无性繁殖过程所产生的与亲代完全相同
的子代群体。
molecule DNA clone Cell colony organism
在DNA双链内部的特异位点识别并切割DNA 一个细胞只接受一个 重组DNA分子
单克隆
LOGO基因组DNA(genomic DNA library): 包含某一个生物细胞或组织全部基因组DNA序列的随机克
四、重组DNA转入受体细胞(转);
五、重组体的筛选与鉴定(筛)。
LOGO
一、目的DNA的分离获取(分)
分离获取目的DNA有多种方法:
(一) PCR——待扩增目的基因两端序列法——直接合成目的DNA(序列已知、片段较短)
LOGO
修正基因蚊子防控疾病
科学家把一种可防疟疾的 基因植入蚊子基因之中,对蚊子 基因进行修正。 在实验中,科学家们不仅仅 在蚊子体内植入了防疟疾基因, 还植入了另一种可以使蚊子眼 睛发出荧光的基因。这样,科学 R反应条件 PCR过程 PCR的特点
72℃
引物1
DNA引物
引物2 Taq酶
LOGO
PCR的基本原理
PCR反应条件 PCR过程 PCR的特点
95℃
第1轮结束 第2轮开始
LOGO
PCR的基本原理
互连后?
Bam HⅠ
Bg lⅡ
AGATCT TCTAGA A +GATCT ALOGO TCTAG
GGATCC CCTAGG
G + GATCC CCTAG G
Ⅱ型限制性内切酶具有一些共性和特性:
5. 不同的酶可以识别同一个序列 同工异源酶(isoschizomer)或同裂酶
隆群体,以DNA片段的形式贮存了所有的基因组DNA信息。如何从中钓取基因?LOGO
用带有标记的、已知序列的核酸片段 (单链
RNA或DNA)作为探针,与待测DNA或RNA
样品进行核酸分子杂交,来检测被测样品中 是否有与探针序列同源的目标序列,以及目 标序列的量。
LOGO
荧光蛋白基因克隆猫
由韩国科学技术部公布的对比 照片显示出3只具有荧光蛋白 基因的克隆猫(上图为普通光 线照射下,下图为紫外线照射 下)
具有荧光蛋白基因的克隆 猫在紫外线照射下会变色
LOGO
科学家复活冰冻死老鼠
一只老鼠死亡后被冷冻了 16年之久,日本科学家从其体内 提取基因克隆了一只新老鼠,这 是人类首次成功克隆冷冻动物 。
LOGO
基因转换让蝌蚪长出三颗眼睛
2007年,英国科学家在实验室 中利用基因转换技术成功地在蝌 蚪头部培育出第三颗眼球。这个 消息对盲人来说是一个天大的喜 讯。利用这种技术,干细胞科学家 们真的有可能实现他们再造眼球 的梦想。
LOGO
基因克隆胚芽造就健康婴儿
PCR反应条件 Taq PCR过程 PCR的特点
72℃
Taq
Taq
Taq
LOGO
PCR的基本原理
PCR反应条件 72℃ PCR过程 PCR的特点
第2轮结束
体外高效特异性的扩增目的DNA片段
LOGO
LOGO
LOGO
LOGO
LOGO
PCR的基本原理
GTC GAC CAG + CTG
G + GATCC G CCTAG
平端切口 (blunt end)
黏端切口 (sticky end)LOGO
粘性末端又可分为两种:
1)5-端突出
5 ………GAATTC……… 3 3 …… CTTAAG……… 5
EcoRI
LOGO
转膜、
变性、
封闭、
加入变性的探针、
杂交、 洗涤、 检测杂交体。
LOGO
如何实现特异性的获得目的基因?
LOGO
聚合酶链式反应
Polymerase Chain Reaction, PCR
LOGO
PCR的基本原理
PCR反应条件 95℃ PCR过程 PCR的特点
高温变性 低温退火 适温延伸 温 度 72 (℃)
1
2 模板DNA 3
94
重复1~3步 25~30轮 目的DNA片段 扩增100万倍以上
形 成
DNA 2
55 22
条变 单性 链
PCR循环
LOGO
PCR的基本原理
标准的PCR反应体系
4种dNTP混合物 引物 模板DNA Taq DNA聚合酶 Mg2+ 各200umol/L 各10~100pmol 0.1~2ug 2.5u 1.5mmol/L
• PCR反应条件 • PCR过程 • PCR的特点
子链延伸 DNA加倍 DNA单链 与引物复性
DNA双螺旋
1
2
3
时间(min)
4
5
LOGO
PCR的基本原理
PCR反应条件 50℃ PCR过程 PCR的特点
引物1
DNA引物
引物2
LOGO
PCR的基本原理
Taq酶
能识别同一序列(切割位点可同或不同)但来源不同的两种酶。
Bam HⅠ XmaⅠ
GGATCC CCCGGG CCTAGG GGGCCC
GGATCC CCCGGG CCTAGG GGGCCC
G GATCC C CCGGG CCTAG + G CCCGG + G GATCC G CCC + GGG G + CCC CCTAG GGG
核酸水解酶,裂解磷酸二酯键。
LOGO
Ⅱ型限制性内切酶具有一些共性和特性:
1. 具有特定的识别和切割位点 识别位点通常为6或4碱基序列
II型限制性内切酶的识别位点举例('示切割位点) 限制性内切酶
Apa I BamH I Pst I EcoR I
识别位点
GGGCC’C C’CCGGG G’GATCC CCTAG’G CTGCA’G G’ACGTC G’AATTC CTTAA’G
BstⅠ SmaⅠ
为DNA操作增加了酶的可选余地
LOGO
Ⅱ型限制性内切酶具有一些共性和特性:
6. 切割会受其他因素的影响
通常不能切割在识别位点内有特异碱基甲基化的序列。 缓冲液或环境温度也会影响一些酶的特异性。 如,EcoR I在正常情况下识别“-GAATTC-”序列,但在甘油 浓度大于5%(v/v)或反应温度较低时识别序列可变为“AATT-”或“-嘌呤嘌呤AT嘧啶嘧啶-”,这种现象称为星号活 性(star activity),以EcoR I*表示。
5- AATTC……. 3 5………GOH HOG…… 5 3………CTTAA -5
2)3-端突出
5 ………CTGCA G………3 3 …… C ACGTC……… 5
PstI
5 ………CTGCAOH 3 ………G-5 5- G……… 3
HO
基因的秘密随着科技的日益发达而 被逐渐揭开。血友病、色盲、白化 病……这些遗传病困扰着一个又一 个家庭,也激励着一代又一代科学 家为之奋斗。
LOGO
分子生物学关键的技术突破: DNA重组技术
1980年,
1972年,
世界上第一个重组DNA分子诞生
猿猴病毒DNA
2. 识别的核苷酸序列通常为回文结构(palindrome) 两条核苷酸链中,从5’到3’方向的核苷酸序列完全一致
LOGO
Ⅱ型限制性内切酶具有一些共性和特性:
3. 切割双链DNA分子后产生黏端或平端
HindⅡ
Bam HⅠ
GTCGAC CAGCTG
GGATCC CCTAGG
LOGO
限制性核酸内切酶 Restriction endonuclease
可分为Ⅰ、Ⅱ、Ⅲ型,分子生物学中通常使用的是Ⅱ型: